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RUIN PROBABILITIES IN A MARKOVIAN SHOT-NOISE ENVIRONMENT
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Abstract

We consider a risk model with a counting process whose intensity is a Markovian shot-
noise process, to resolve one of the disadvantages of the Cramér–Lundberg model,
namely the constant intensity of the Poisson process. Due to this structure, we can apply
the theory of piecewise deterministic Markov processes on a multivariate process con-
taining the intensity and the reserve process, which allows us to identify a family of
martingales. Eventually, we use change of measure techniques to derive an upper bound
for the ruin probability in this model. Exploiting a recurrent structure of the shot-noise
process, even the asymptotic behaviour of the ruin probability can be determined.
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1. Introduction

The theory of doubly stochastic Poisson processes described in [3] allows the generaliza-
tion of the well-known Cramér–Lundberg model to the broad class of Cox models, which
are discussed, e.g., in [8]. Members of this family are, for example, the Markov-modulated
risk model, where the intensity is modelled by a continuous-time Markov chain ([2, Chapter
VII] and [13, Chapter 8]), the Björk–Grandell model considered in [14], and diffusion-driven
models studied in [9].

In particular, arrivals of claims caused by catastrophic events can be realistically modelled
using shot-noise intensity. This was done in [1, 6, 10], where the asymptotic behaviour of the
ruin probability in general shot-noise environments was studied. In these settings, upper and
lower bounds could be derived. The idea of applying the theory of piecewise deterministic
Markov processes to a Cox model with Markovian shot-noise intensity was used in [4, 5] in
the context of pricing reinsurance contracts.

Interested in the behaviour of the ruin probability in this model, we follow the piecewise
deterministic Markov process (PDMP) approach to find suitable alternative probability mea-
sures. Further, we take advantage of the properties of the process under these measures to
obtain an exponentially decreasing upper bound. Exploiting a recurrent behaviour of the shot-
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Ruin probabilities in a Markovian shot-noise environment 543

noise process and applying the extended renewal theory obtained in [14], we eventually derive
the exact asymptotic behaviour of the ruin probability.

2. The Markovian shot-noise ruin model

We assume for the rest of this paper the existence of a complete probability space (�,F , P)
which is big enough to contain all the mentioned stochastic processes and random variables.
For some stochastic process Z we denote the right-continuous natural filtration by

{FZ
t

}
t≥0.

For the shot-noise environment we consider the following four objects: a Poisson process Nλ

with constant intensity ρ > 0 and jump times
{
Tλi
}

i∈N, a sequence {Yi}i∈N of positive inde-
pendent and identically distributed (i.i.d.) random variables with distribution function FY , a
non-negative function w, and a positive starting value λ0. With these components we define

the multiplicative shot-noise process by λt := λ0w(t) +∑Nλt
i=1 Yiw(t − Tλi ). Since we want to

exploit the theory of PDMPs, it would be preferable if the process λ satisfies the Markov prop-
erty. This is equivalent to the existence of some δ > 0 such that w(t) = e−δt. Due to this, we
define the Markovian shot-noise process in the following way.

Definition 1. Let Nλ be a Poisson process with intensity ρ > 0 and jump times
{
Tλi
}

i∈N,
{Yi}i∈N i.i.d. copies of a positive random variable Y with distribution function FY and indepen-
dent of the process Nλ, λ0 > 0, and δ > 0 constant. Then, we define the Markovian shot-noise

process by λt = λ0e−δt +∑Nλt
i=1 Yie−δ(t−Tλi ).

As shown in [5], the Markovian shot-noise process is a piecewise-deterministic Markov
process with generator

Aλf (λ) = −δλ∂f (λ)

∂λ
+ ρ

∫ ∞

0
(f (λ+ y) − f (λ)) FY (dy).

Further information about PDMPs can be found in [7] or [13, Chapter 11]. To fully specify our
model we will now define the surplus process.

Definition 2. Let λ be a Markovian shot-noise process, N a Cox process with intensity λ, and
{Ui}i∈N a sequence of i.i.d. copies of a positive random variable U with continuous distribution
FU , which are independent of N and λ. For some initial capital u and constant premium rate
c> 0 we define the surplus process by Xt = u + ct −∑Nt

i=1 Ui.

Now define Ft := FX
t ∨Fλ

t ; hence, {Ft}t≥0 is the combined filtration of the Markovian
shot-noise process and the surplus process. If not mentioned differently, we will from now on
consider the filtered probability space

(
�,F , {Ft}t≥0 , P(u,λ0)

)
, where we define the measure

P(u,λ0) as the measure P under the conditions that the initial capital of the surplus process is u
and the starting intensity is λ0. We will denote the expectation of a random variable Z under
this measure by E(u,λ0)[Z], or E[Z] if Z is independent of the initial values.

The multivariate process (X, λ, ·) := ((Xt, λt, t))t≥0 is a càdlàg PDMP without active
boundary and with generator

Af (x, λ, t) = c
∂f (x, λ, t)

∂x
− δλ

∂f (x, λ, t)

∂λ
+ ∂f (x, λ, t)

∂t

+ λ

∫ ∞

0
(f (x − u, λ, t) − f (x, λ, t)) FU(du)

+ ρ

∫ ∞

0
(f (x, λ+ y, t) − f (x, λ, t)) FY (dy).
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Its domain consists of all functions f which are absolutely continuous and satisfy the
integrability condition

E(u,λ0)

[ Ñt∑
i=1

|f (XTi, λTi , Ti) − f (XTi−, λTi−, Ti − )|
]
<∞

for all t ≥ 0, where Ñ denotes the process counting the random jumps of the PDMP (X, λ, ·).
Similar to the Cramér–Lundberg model, we want to state a net profit condition, which is
necessary to ensure that ruin does not occur with probability 1.

Lemma 1. The surplus process satisfies

lim
t→∞

E(u,λ0)[Xt]

t
= c − ρ

δ
E[U]E[Y].

Proof. The function f̄ (x, λ, t) := x is in the domain of the generator. Consequently,

E(u,λ0)[Xt] = u +E(u,λ0)

[ ∫ t

0
Af̄ (Xs, λs, s) ds

]
= u + ct −E(u,λ0)

[ ∫ t

0
λsE [U] ds

]
.

The process λ is positive so we can use Tonelli’s theorem and interchange expectation and
integration, which leads to

E(u,λ0)[Xt] = u + ct −E[U]
∫ t

0
E(u,λ0)[λs] ds. (1)

Now we use the same procedure to obtain an equation for E(u,λ0)[λs]. Defining the function
f̃ (x, λ, t) := λ we get

E(u,λ0)[λs] = λ0 − δ

∫ s

0
E(u,λ0)[λu] du + ρsE[Y].

Differentiating both sides with respect to s gives us that E(u,λ0)[λs] is the solution to the dif-
ferential equation g′(s) = −δg(s) + ρ E[Y], with initial value g(0) = λ0. The solution of the
ordinary differential equation is

E(u,λ0)[λs] = λ0e−δs + ρ

δ
E[Y](1 − e−δs). (2)

Using (2) in (1) leads to

E(u,λ0)[Xt] = u + ct −E[U]
ρ

δ
E[Y]t +E[U]

(
λ0

δ
− ρ

δ2
E[Y]

)
(1 − e−δt).

Now, let us divide by t and let it tend to infinity to obtain

lim
t→∞

E(u,λ0)[Xt]

t
= c − ρ

δ
E[U]E[Y]. �

Motivated by this result, we make the following assumption.

Assumption 1. From now on we assume that the net profit condition c> (ρ/δ)E[U]E[Y] is
satisfied.
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3. Martingales and change of measure

To obtain the asymptotic behaviour of the ruin probability in this model, we want to exploit
the following result derived in [14].

Theorem 1. [14, Theorem 2] Assume that z(u) is directly Riemann integrable, that
0 ≤ p(u, x) ≤ 1 is continuous in u, and that

∫ u
0 p(u, y) B(dy) is directly Riemann integrable.

Denote by Z(u) the solution to Z(u) = ∫ u
0 Z(u − y)(1 − p(u, y)) B(dy) + z(u), which is bounded

on bounded intervals. Then, the limit limu→∞ Z(u) exists and is finite provided B(u) is not
arithmetic. If B(u) is arithmetic with span γ , then limn→∞ Z(x + nγ ) exists and is finite for all
x fixed.

Unfortunately, we cannot apply this theorem directly to our model because of two problems.
The first issue is that the ruin probability depends on the initial intensity level λ0. To bypass
this, we have to choose appropriate renewal times such that λ always has the same level, which
we will do in Section 4. The second problem is that suitable choices of B are defective under
the original measure P(u,λ0). This is a common issue and can be solved through change of
measure techniques.

To do so we have to find martingales of the form Mt = h(Xt, λt, t). Our approach is a func-
tion of the form h(x, λ, t) := β exp(−θ (r)t − α(r)λ− rx). To motivate the explicit choice of
our parameters, let us assume that h is in the domain of the generator and apply A to h. This
gives us

Ah(x, λ, t) = − θh(x, λ, t) − crh(x, λ, t) + δλαh(x, λ, t)

+ λh(x, λ, t)
∫ ∞

0
(eru − 1) FU(du) + ρh(x, λ, t)

∫ ∞

0
(e−αy − 1) FY (dy)

!= 0.

Since h is strictly positive, we can reformulate the equation to δλα − cr − θ + λ(MU(r) − 1) +
ρ(MY (−α) − 1) = 0. Here, MU(s) and MY (s) denote the moment-generating functions of the
random variables U and Y , which we assume to be finite. This equation has to hold for any
λ> 0; hence, this is equivalent to

δα + MU(r) − 1 = 0, −cr − θ + ρ(MY (−α) − 1) = 0.

Solving these equations for some fixed r, we get the unique solutions

α(r) = 1 − MU(r)

δ
, θ (r) = −cr + ρ

(
MY

(
MU(r) − 1

δ

)
− 1

)
.

Now we still have to show that, for this explicit choice of the parameters, the process
h(X, λ, ·) is indeed a martingale.

Lemma 2. Let r be constant such that MU(r) is finite, and define α(r) := (1 − MU(r))/δ.
Assume further that MY (−α(r)) is finite. If θ (r) := −cr + ρ(MY (−α(r)) − 1) and β = exp(ru +
α(r)λ0), then h(Xt, λt, t) is integrable and has expectation 1 for all t ≥ 0.
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Proof. The expectation can be rewritten as

E(u,λ0)[β exp(−rXt − α(r)λt − θ (r)t)]

= exp(−rct − θ (r)t + α(r)λ0)E(u,λ0)

[
exp

(
−r

Nt∑
i=1

Ui − α(r)λt

)]
.

Conditioned on Fλ
t , the counting process N is an inhomogeneous Poisson process and, as

shown in [1], its integrated compensator has the form

�t =
∫ t

0
λs ds = 1

δ

(
λ0 +

Nλt∑
j=1

Yj − λt

)
.

Using this, we get

exp(−rct−θ (r)t + α(r)λ0)E(u,λ0)

[
exp

(
−r

Nt∑
i=1

Ui − α(r)λt

)]

= exp(−rct − θ (r)t + α(r)λ0)E(u,λ0)
[
exp((MU(r) − 1)�t − α(r)λt)

]
= exp(−rct − θ (r)t)E

[
exp

(
−α(r)

Nλt∑
j=1

Yj

)]
.

The process
∑Nλt

j=1 Yj is a compound Poisson process, whose moment-generating function is
exp(ρt(MY (−α(r))−1). By this and the definition of θ (r) we get that h(Xt, λt, t) has expectation
1. �

These result leads immediately to the following theorem.

Theorem 2. Under the assumptions of Lemma 2, the process Mr
t := h(Xt, λt, t) is a martingale

with expectation 1.

Proof. By Lemma 2, the process is integrable and has constant expectation 1. Consequently,
we just have to show that, for all t> s, E(u,λ0)[h(Xt, λt, t) |Fs] = h(Xs, λs, s). The function h
is strictly positive for all values x, λ, and t, and hence we can simply expand the conditional
expectation above by h(Xs, λs, s)/h(Xs, λs, s). Consequently, we get

E(u,λ0)[h(Xt, λt, t) |Fs] = h(Xs, λs, s)E(u,λ0)

[
h(Xt, λt, t)

h(Xs, λs, s)

∣∣Fs

]
= h(Xs, λs, s)E(u,λ0)[exp(−θ (r)(t − s) − r(Xt − Xs) − α(r)(λt − λs)) |Fs]

= h(Xs, λs, s)E(Xs,λs)[h(Xt−s, λt−s, t − s)] = h(Xs, λs, s). �

Using these martingales, we can define a family of measures Q(r) such that

dQ(r)

dP(u,λ0)

∣∣∣∣Ft

= Mr
t .

The exponential form of the change of measure allows us to exploit the results shown in [12]
to derive the behaviour of the combined process under the new measures Q(r).
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Lemma 3. Let r be such that Mr is well defined. Then, under the measure Q(r), the process
(X, λ, ·) is again a PDMP with generator

A(r)f (x, λ, t) = c
∂f (x, λ, t)

∂x
− δλ

∂f (x, λ, t)

∂λ
+ ∂f (x, λ, t)

∂t

+ λ

∫ ∞

0
(f (x − u, λ, t) − f (x, λ, t))eru FU(du)

+ ρ

∫ ∞

0
(f (x, λ+ y, t) − f (x, λ, t))e−α(r)y FY (dy).

So far, we have found a new family of measures but we have to identify a measure that fits
our needs. Motivated by the definition of the adjustment coefficient in the classical model, we
consider the function θ (r) = −cr + ρ(MY (−α(r)) − 1).

Lemma 4. The function θ (r) is convex on {r | MU(r)<∞, MY (−α(r))<∞} and satisfies
θ (0) = 0.

Proof. To show convexity we use the fact that moment-generating functions are log-
convex, and therefore convex. Moreover, they are twice differentiable. Consequently, θ is twice
differentiable too and its derivatives are

θ ′(r) = −c + ρ

δ
M′

Y

(
MU(r) − 1

δ

)
M′

U(r),

θ ′′(r) = ρ

δ2
M′′

Y

(
MU(r) − 1

δ

)
M′

U(r)2 + ρ

δ
M′

Y

(
MU(r) − 1

δ

)
M′′

U(r).

By the convexity of the moment-generating functions, we know that their second derivatives
are non-negative. To ensure that θ is convex, we have to check whether the first derivative of the
moment-generating function of Y is non-negative too. Equivalently, we show that the moment-
generating function of Y is monotone increasing. Now let r> s; then E[erY ] =E[esYe(r−s)Y ].
The random variable Y is almost surely positive, and r − s is positive too. Hence, e(r−s)Y > 1
almost surely. This gives us MY (r) =E[esYe(r−s)Y ]>E[esY ] = MY (s). Consequently, the first
derivative of MY (r) is non-negative. Therefore, θ is convex and, since MU(0) = MY (0) = 1, we
get that θ (0) = 0. �

Lemma 5. Let r be such that the measure Q(r) is well defined, and assume there is some ε > 0
such that MU(r + ε) and MY (−α(r) + ε) are finite. Then,

lim
t→∞

EQ(r)
[Xt]

t
= −θ ′(r).

Proof. To show this property, we can use the ideas of the proof of Lemma 1. The main
difference is that we apply the generator A(r). Again we obtain

EQ(r)
[Xt] = u + ct − MU(r)EQ(r)

[U]
∫ t

0
EQ(r)

[λs] ds.

The expectation of λt under Q(r) satisfies

EQ(r)
[λt] = ρ

δ
MY (−α(r))EQ(r)

[Y](1 − e−δt) + e−δtλ0.
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The expectations EQ(r)
[U] and EQ(r)

[Y] can easily be obtained from

MQ(r)

U (s) = MU(s + r)

MU(r)
, MQ(r)

Y (s) = MY (s − α(r))

MY (−α(r))
.

Consequently,

EQ(r)
[U] = M′

U(r)

MU(r)
, EQ(r)

[Y] = M′
Y (−α(r))

MY (−α(r))
.

Combining these results, we get

lim
t→∞

EQ(r)
[Xt]

t
= c − ρ

δ
M′

Y (−α(r))M′
U(r) = −θ ′(r). �

Assumption 2. From now on we assume that there exists a positive solution R to the equation
θ (R) = 0, that Q(R) is well defined, and that, for some ε > 0, both MU(R + ε) and MY (ε− α(R))
are finite.

This assumption ensures that the measure Q(R) is well defined, and that we can express the
expectation of Y and U in terms of their original moment-generating functions. One example
where this is satisfied is the following.

Example 1. Let μ and κ be positive constants. If Y ∼ Exp(μ) and U ∼ Exp(κ), the net profit
condition simplifies to c>ρ/δκμ. The moment-generating functions are given by MU(r) =
κ/(κ − r) and MY (−α(r)) =μ/(μ+ α(r)), where r< κ and −α(r)<μ. If we fix some r<
μδκ/(1 + δμ), we can determine the functions α(r) = −r/δ(κ − r) and

θ (r) = −cr + ρ

(
r

μδ(κ − r) − r

)
.

Solving the equation θ (r) = 0 gives us the solutions r1 = 0 and

R := r2 = μδκc − ρ

(1 +μδ)c
,

which is positive by the net profit condition. Now we want to show that there is some ε > 0
such that R + ε < [μδ/(1 +μδ)]κ and ε− α(R)<μ. The first inequality is equivalent to

ε <
ρ

(1 +μδ)c
,

which is a strictly positive upper bound. The second condition can be rewritten as

ε <
μρδ + ρ

δκc + ρδ
,

which is positive too. Consequently, Assumption 2 is satisfied.

Lemma 6. For every u ≥ 0 and λ0 > 0, Q(R)[τu <∞] = 1.

Proof. We already know that limt→∞
(
EQ(R)

[Xt]/t
)= −θ ′(R). If we can show that θ ′(R)> 0,

then ruin occurs almost surely under the new measure. The function θ is convex and satisfies
θ (0) = θ (R) = 0. Further, we have that

θ ′(0) = −c + ρ

δ
E[Y]E[U],
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which is smaller than 0 by the net profit condition. Therefore, there exists 0< r< R such that
θ (r)< 0. Since θ (R)> θ (r), it follows by the mean-value theorem that there is an r̃ ∈ (r, R)
such that

θ ′(r̃) = θ (R) − θ (r)

R − r
> 0.

By convexity, we know that θ ′ is a monotone increasing function and θ ′(R) ≥ θ ′(r̃)> 0. �

Similar to the classical model and the Björk–Grandell model considered in [14], we have
found a new measure under which ruin occurs almost surely. We can use this to get an upper
bound for the ruin probability.

Theorem 3. Under our assumptions, ψ(u, λ0) ≤ e−α(R)λ0 e−Ru.

Proof. The ruin probability can be rewritten as

ψ(u, λ0) =E(u,λ0)
[
1{τu<∞}

]=EQ(R)[
1{τu<∞}

(
MR
τu

)−1]
= exp(−Ru − α(R)λ0)EQ(R)

[exp(RXτu + α(R)λτu )].

By the definition of τu the value Xτu is negative, and since R> 0 we have that MU(R)> 1.
Consequently, α(R)< 0. By this, we get that exp(RXτu + α(R)λτu ) ≤ 1 and ψ(u, λ0) ≤
exp(−Ru − α(R)λ0). �

4. The renewal equation

We now want to use Theorem 1 to get information about the asymptotic behaviour of the
ruin probability ψ(u, λ0). Because of the dependence on λ0, we have to choose the renewal
times {S+(i)}i∈N such that λS+(i) = λ0. To exploit the renewal equation, we have to ensure that
there are infinitely many renewal times, and that they are almost surely finite. For this, we
will use the ideas from [11] to get an intensity for the number of upcrossings of the process λ
through some level l.

Lemma 7. Let λ be the Markovian shot-noise process and l> 0 be arbitrary. The process
counting all upcrossings of λ through l has intensity

ν+
l (t) = ρ

∫ l

0
(1 − FY (l − z)) Fλ(dz, t),

where F(z, t) = P(u,λ0)[λt ≤ z] is the cumulative distribution function of λt.

Proof. Consider, for some small�t> 0, the probability P(u,λ0)[λt ≤ l, λt+�t > l]. The jumps
of λ are governed by a Poisson process with rate ρ; hence,

P(u,λ0)[λt ≤ l, λt+�t > l]

= P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt+�t > l

]+ o(�t)

= P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λte

−δ�t + Ye−δ(t+�t−T) > l
]+ o(�t)

= P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt + Ye−δ(t−T) > leδ�t]+ o(�t).

Here, T denotes the jump time occurring between t and t +�t, and Y is the corresponding
shock. The random time T − t can be represented as��t, where� is a random variable which
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takes values in the interval (0, 1). Consequently, we have Yeδ��t ∈ (Y, Yeδ�t). Using this, we
can bound the above probability by

P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt + Yeδ�t > leδ�t]+ o(�t)

≥ P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt + Ye−δ��t > leδ�t]+ o(�t)

≥ P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt + Y > leδ�t]+ o(�t).

Let us focus on the upper bound. The term Nλt+�t − Nλt is independent of λt and Y , so we
can rewrite

P(u,λ0)
[
Nλt+�t − Nλt = 1, λt ≤ l, λt + Yeδ�t > leδ�t]+ o(�t)

= ρ�tP(u,λ0)
[
λt ≤ l, λt + Yeδ�t > leδ�t]+ o(�t)

= ρ�t E(u,λ0)
[
E(u,λ0)

[
1{λt≤l}1{Y>l−λte−δ�t} | λt

]]+ o(�t)

= ρ�t
∫ l

0
(1 − FY (l − ze−δ�t)) Fλ(dz, t) + o(�t).

Now, let us divide by �t and consider the limit of �t → 0. Since FY (l − ze−δ�t) decreases as
�t becomes smaller, we get, by the right continuity of cumulative distribution functions, that
this tends to ρ

∫ l
0(1 − FY (l − z)) Fλ(dz, t). Using the same arguments, we can show that the

lower bound divided by �t converges to the same value. Hence, the term (1/�t)P(u,λ0)[λt ≤
l, λt+�t > l] converges too. �

Assumption 3. From now on we assume that

∫ ∞

0

∫ λ0

0

(
1 − FQ(R)

Y (λ0 − z)
)
FQ(R)

λ (dz, t) dt = ∞,

where FQ(R)

λ (z, t) := Q(R)[λt ≤ z] and FQ(R)

Y (x) =Q(R)[Y ≤ x].

This assumption guarantees that there are infinitely many upcrossings of the process through
λ0 under the measure Q(R); hence, that the intensity is Harris recurrent. The structure of our
Markovian shot-noise process means that upcrossings can only happen through shock events,
and downcrossings are due to the continuous drift. Consequently, there have to be infinitely
many continuous downcrossings and recurrence times {S(i)}i∈N such that λS(i) = λ0.

One example which satisfies Assumption 3 is the following.

Example 2. Consider the same configuration as in Example 1. Under the new measure Q(R),
the shocks are again exponentially distributed with parameter μ+ α(R), and the new intensity
of λ is

ρ̃ = ρMY (−α(R)) = μδκc +μδρ

μδ + 1
.

Assume that ρ̃/δ= n ∈N. As in [11], we can determine the distribution of Y(t) using its
characteristic function,

Kt(s) =EQ(R)
[exp(isλ(t))] =

(
e−δt + (1 − eδt)

μ+ α(R)

(μ+ α(R)) − is

)n

.
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This is the characteristic function of the random variable η=∑Bt
i=1 Yi, where Bt ∼ B(n, 1 −

e−δt). Consequently, λ(t) admits a density of the form

f (z, t) =
n∑

j=1

(
n

j

)
e−δt(n−j)(1 − e−δt)j(μ+ α(R))je−(μ+α(R))z zj−1

(j − 1)! .

Using this, the intensity of the upcrossings is given by

ν+
λ0

(t) = ρ

n∑
j=0

(
n

j

)
e−δt(n−j)(1 − e−δt)j (μ+ α(R))jλ

j
0

j! e−(μ+α(R))λ0 .

Since (μ+ α(R))jλ
j
0/j! has a positive lower bound c̃, we get that∫ ∞

0
ν+
λ0

(t) dt ≥
∫ ∞

0
ρc̃e−(μ+α(R))λ0 dt = ∞.

Using this, we can even show that there are infinitely many recurrence times if ρ̃/δ is any real
number greater than 1. For this, we consider two auxiliary shot-noise processes,

λt = e−δtλ0 +
Nλt∑
i=1

e−δ(t−Tλi )Yi, λt = e−δtλ0 +
Nλt∑
i=1

e−δ(t−Tλi )Yi,

where δ and δ are chosen such that

ρ̃

δ
= N1 >

ρ̃

δ
>
ρ̃

δ
= N2,

with N1,N2 ∈N. By construction, λt ≤ λt ≤ λt and both auxiliary processes cross λ0 infinitely
often. As a consequence, λ crosses λ0 infinitely often too.

If Assumption 3 holds, we have that, under the measure Q(R), the surplus process tends to
−∞ and λ returns to λ0 infinitely often. Hence, we can define a sequence of renewal times
{S+(i)}i∈N0 via S+(0) = 0 and S+(i) = min{S(i)> S+(i − 1) | XS(i) < XS+(i−1)} which satisfies
Q(R)[S+(i)<∞] = 1 for all i. We will use these renewal times similarly to the ladder epochs
in the classical ruin model.

Define

B(x) = P(u,λ0)[S+(1)<∞, u − XS+(1) ≤ x],

p(u, x) = P(u,λ0)[τu ≤ S+(1) | S+(1)<∞, XS+(1) = u − x].

Then, the ruin probability satisfies

ψ(u, λ0) =
∫ u

0
ψ(u − x, λ0)(1 − p(u, x)) B(dx) + P(u,λ0)[τu ≤ S+(1), τu <∞].

This may look like a renewal equation but the distribution B is defective. We solve this problem
by multiplying both sides by eRu, which is equivalent to a measure change from P to Q(R), and
obtain

ψ(u, λ0)eRu =
∫ u

0
ψ(u − x, λ0)eR(u−x)(1 − p(u, x))eRx B(dx)

+ P(u,λ0)[τu ≤ S+(1), τu <∞]eRu. (3)
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Lemma 8. The distribution B̃ defined by B̃(dx) = eRxB(dx) is non-defective.

Proof. Using the definition of B̃, we get

∫
R

B̃(dx) =
∫
R

eRxB(dx) =E(u,λ0)
[
eR(u−XS+(1))1{S+(1)<∞}

]
.

Now focus on our martingale MR at time S+(1) and observe that

MR
S+(1) = exp(α(R)λ0 + Ru − α(R)λS+(1) − RXS+(1)) = exp(R(u − XS+(1))).

Using this leads to

∫
R

B̃(dx) =EQ(R)
[1{S+(1)<∞}] =Q(R)[S+(1)<∞] = 1.

Consequently, B̃ is not defective. �

Even though we have found a renewal equation, we still have to show that all the functions
appearing in (3) satisfy the assumptions of Theorem 1.

Assumption 4. From now on, we assume that there exists an ε > 0 such that, for r := (1 + ε)R,
the measure Q(r) is well defined and E(u,λ0)

[
e−r(XS+(1)−u)1{S+(1)<∞}

]
<∞.

Since S+(1) depends on X and λ, this assumption may be hard to check. Alternatively, we
can use the following lemma, which allows us to focus on the first recurrence time S(1).

Lemma 9. Let ε > 0 be such that, for r := (1 + ε)R, the measure Q(r) is well defined.
Then, E(u,λ0)

[
exp(−r(XS+(1) − u))1{S+(1)<∞}

]
<∞ if and only if E(u,λ0)

[
exp(−r(XS(1) −

u))1{S(1)<∞}
]
<∞.

Proof. At first, assume that E(u,λ0)
[
exp(−r(XS+(1) − u))1{S+(1)<∞}

]
<∞ holds. By defini-

tion, S+(1) ≥ S(1) and θ (r)> 0. Consequently,

E(u,λ0)
[
exp(−r(XS(1) − u))1{S(1)<∞}

]=EQ(r)
[exp(θ (r)S(1))]

≤EQ(r)
[exp(θ (r)S+(1))]

=E(u,λ0)
[
exp(−r(XS+(1) − u))1{S+(1)<∞}

]
<∞.

Now assume that E(u,λ0)
[
exp(−r(XS(1) − u))1{S(1)<∞}

]=: C<∞ holds. Then,

E(u,λ0)
[
exp(−r(XS+(1) − u))1{S+(1)<∞}

]=EQ(R)
[exp(−εR(XS+(1) − u))]

=
∞∑

i=1

EQ(R)[
exp(−εR(XS(i) − u))1{S+(1)=S(i)}

]
.

The indicator can be rewritten as

1{S+(1)=S(i)} = 1{S+(1)>S(i−1)}1{XS(i)<u} =
i−1∏
j=1

1{XS(j)≥u}1{XS(i)<u}.
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With S(0) = 0 we define the i.i.d. sequence of random variables (ξj)j≥1 := (XS(j) − XS(j−1))j≥1.
Consequently, XS(i−1) − u =∑i−1

j=1 ξj holds for all i. Using this, we get

EQ(R)[
exp(−εR(XS(i) − u))1{S+(1)=S(i)}

]
≤EQ(R)

[
exp

(
−εR

i−1∑
j=1

ξj

)
1{∑i−1

j=1 ξj>0
}EQ(R)

[
exp(−εRξi)1{XS(i)<u}

∣∣ i−1∑
j=1

ξj

]]
.

Let us focus on the conditional expectation. The indicator is less than or equal to 1, and ξi

is independent of the condition. Hence,

EQ(R)

[
exp(−εRξi)1{XS(i)<u}

∣∣ i−1∑
j=1

ξj

]
≤EQ(R)

[ exp(−εRξi)] = C<∞.

From this, we get that

EQ(R)[
exp(−εR(XS(i) − u))1{S+(1)=S(i)}

]≤ C EQ(R)

[
exp

(
−εR

i−1∑
j=1

ξj

)
1{∑i−1

j=1 ξj>0
}
]

.

Now we want to bound the remaining expectation. For this, we observe that, for all ε̃ > 0,

EQ(R)

[
exp

(
−εR

i−1∑
j=1

ξj

)
1{∑i−1

j=1 ξj>0
}
]

≤EQ(R)

[
exp

(
ε̃R

i−1∑
j=1

ξj

)]
.

To choose ε̃ in a suitable way, we focus on the properties of θ . This function is convex
and satisfies θ (0) = θ (R) = 0 and θ ′(0)< 0. Consequently, there exists an r̃ ∈ (0, R) such that
θ (r̃)< 0. Choosing ε̃= 1 − (r̃/R) ∈ (0, 1) we have

EQ(R)

[
exp

(
−εR

i−1∑
j=1

ξj

)
1{∑i−1

j=1 ξj>0
}
]

≤EQ(R)

[
exp

(
ε̃R

i−1∑
j=1

ξj

)]

=EQ(R)
[exp(ε̃Rξ1)]i−1

=E(u,λ0)
[
exp((ε̃− 1)R(XS(1) − u))1{S(1)<∞}

]i−1

=E(u,λ0)
[
exp(−r̃(XS(1) − u))1{S(1)<∞}

]i−1

=EQ(r̃)[
exp(θ (r̃)S(1))1{S(1)<∞}

]i−1.

By construction, θ (r̃)< 0 and S(1)> 0; hence, EQ(r̃)[
exp(θ (r̃)S(1))1{S(1)<∞}

]= p< 1. Finally,
we get

E(u,λ0)
[
exp(−r(XS+(1) − u))1{S+(1)<∞}

]≤ C
∞∑

i=1

pi−1 = C

1 − p
<∞. �

Lemma 10. The function P(u,λ0)[τu ≤ S+(1), τu <∞]eRu is directly Riemann integrable in u.
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Proof. Let r be as in Assumption 4. Observe that α(r)< 0 and θ (r)> 0 since r> R> 0.
First, we show that P(u,λ0)[τu ≤ S+(1), τu <∞]eru is uniformly bounded. Let t> 0 be arbitrary
but fixed. Then,

P(u,λ0)[τu ≤ (S+(1) ∧ t)]eru =EQ(r)[
1{τu≤(S+(1)∧t)}eθ(r)τu erXτu eα(r)λτu

]
e−α(r)λ0

≤EQ(r)[
1{τu≤(S+(1)∧t)}eθ(r)τu

]
e−α(r)λ0

≤EQ(r)
[eθ(r)S+(1)]e−α(r)λ0

=E(u,λ0)
[
e−rXS+(1)+ru−α(r)λS+(1)+α(r)λ0 1{S+(1)<∞}

]
e−α(r)λ0

=E(u,λ0)
[
1{S+(1)<∞}e−r(XS+(1)−u)]e−α(r)λ0 <∞.

The upper bound is independent of t, so by letting t tend to infinity we get

P(u,λ0)[τu ≤ S+(1), τu <∞]eru ≤E(u,λ0)
[
1{S+(1)<∞}e−r(XS+(1)−u)]e−α(r)λ0 .

This bound is even independent of u. To see this, we consider the process Rt = ct −∑Nt
i=1 Ui

and define the random time T+(1) := min{S(i) | RS(i) < 0}. They are independent of u, but
under P(u,λ0) we have, almost surely, Rt = Xt − u and T+(1) = S+(1). From this we see that
XS+(1) − u = RT+(1) does not depend on u.

Using the derived boundedness we get that there is some K > 0 such that P(u,λ0)[τu ≤
S+(1), τu <∞]eRu ≤ Ke−(r−R)u, which is a directly Riemann integrable upper bound.
Consequently, P(u,λ0)[τu ≤ S+(1), τu <∞]eRu is directly Riemann integrable too. �

Let us now focus on the properties of p(u, x).

Lemma 11. The function p(u,x) is continuous in u for u> 0.

Proof. To prove continuity, we will show that limε→0 p(u + ε, x) = limε→0 p(u − ε, x) =
p(u, x). We start with the first limit. To do so we will consider a path of our surplus process X
with initial capital u, and exactly the same path of the process Xε with initial capital u + ε. The
premium rate c, the claim sizes Ui, and the counting process N do not depend on the initial
capital; hence, Xεt = Xt + ε. By the same line of argument as in the proof of Lemma 10, we see
that S+(1) and the condition in the definition of p do not depend on u.

To be precise, let ω ∈� be an arbitrary event and let us compare the fixed paths of our pro-
cesses. If X(ω) gets ruined before S+(1)(ω), there is some ε̃ > 0 such that, for all ε < ε̃, the path
Xε(ω) gets ruined in the same moment. If X(ω) stays greater than or equal to 0 then Xε stays
positive for all ε > 0. Consequently, we have that limε→0 1{τu+ε<S+(1)}(ω) = 1{τu<S+(1)}(ω) and
also, by dominated convergence, p(u + ε, x) → p(u, x).

If we can exclude the case that X exactly hits the value 0, then the same arguments hold for
X−ε

t := Xt − ε.
The infimum of the surplus process can only occur at a jump time of our counting pro-

cess N. Let T be an arbitrary claim time; then, P(u,λ0)[XT = 0] = P(u,λ0)[XT− − UNT = 0] =
E(u,λ0)

[
P(u,λ0)[XT− − UNT = 0 |FT−]

]
. The random variable UNT is independent of FT− and

its distribution is continuous. Hence, the probability of hitting exactly the value XT− is 0.
Consequently, P(u,λ0)[XT = 0] = 0. Since we have only countably many jump times, the event
that the surplus process hits 0 at any jump time has measure 0 too. Hence, p(u − ε, x) → p(u, x).
Combining these results we get that p(u, x) is continuous in u. �
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Lemma 12. Under our assumptions,
∫ u

0 p(u, x)eRx B(dx) is directly Riemann integrable.

Proof. Again, let r be as in Assumption 4. Then,∫ u

0
p(u, x)eRx B(dx) ≤ eRu

∫ u

0
p(u, x) B(dx) = eRuP(u,λ0)[τu ≤ S+(1)<∞]

≤ eRuP(u,λ0)[τu ≤ S+(1), τu <∞] ≤ Ke−(r−R)u.

As before (see Lemma 10), we have a directly Riemann integrable upper bound, and therefore∫ u
0 p(u, x)eRx B(dx) is directly Riemann integrable. �

The continuity of the distribution of U implies that B is not arithmetic. Consequently, all the
conditions of Theorem 1 are satisfied. Hence, we can apply it to the renewal equation satisfied
by ψ(u)eRu and obtain our main result.

Theorem 4. Under our assumptions, limu→∞ ψ(u, λ0)eRu exists and is finite.

Finally, we consider an example where all our assumptions are satisfied.

Example 3. Let Y and U be exponentially distributed with parameter 1, δ = 1, ρ = 1.5, λ0 = 1,
and c = 15

4 . The net profit condition is satisfied since

c = 15

4
>

3

2
= ρ

δ
E[Y]E[U].

Further, the moment-generating function of U is given by MU(r) = 1/(1 − r) and α(r) = 1 −
MU(r) = −r/(1 − r). Consequently, MY (−α(r)) = (1 − r)/(1 − 2r) is well defined for all r< 1

2
and the adjustment coefficient is given by R = 3

10 . The measure Q(R) is well defined and the
new intensity is ρ̃(R) = 21

8 . Since this is greater than 1, we know from Example 2 that there are
infinitely many recurrence times S(i) under Q(R).

Choosing r = 1
3 > R, we see that Q(r) is well defined and ρ̃(r) = 3 ∈N. Following the results

shown in [11], we know that, under the measure Q(r), the recurrence times S(i) have intensity

ν(t) = 1

2e
(1 + 3e−t − 3e−2t − e−3t) ≤ 2(

√
2 − 1)

e
.

Therefore,

E(u,λ0)
[

exp(r(XS(1) − u))1{S(1)<∞}
]

=EQ(r)
[exp (θ (r)S(1)) ] =

∫ ∞

0
exp(0.25s)ν(s) exp

(
−
∫ s

0
ν(u) du

)
ds.

For t ≥ 1 we have that ν(t)> 0.26, which gives us the existence of some constant c such that∫ ∞

0
exp(0.25s)ν(s) exp

(
−
∫ s

0
ν(u) du

)
ds< c

∫ ∞

0
e0.25se−0.26(s−1) ds<∞.

By this, all the assumptions made are satisfied. Hence, there exists some constant C such that
limu→∞ ψ(u, λ0)e0.3u = C.
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