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Abstract

Microplastic pollution has become a global environmental challenge, with significant impacts on
ecosystems and human health. Microbes have emerged as a promising tool in the combating
against microplastic contamination. However, the complex relationship between microbes and
microplastics presents both opportunities and challenges, leading to a nuanced understanding of
their applications in degradation. This paper provides critical insights into themultifaceted roles
of different microorganisms in microplastic degradation. It begins by highlighting the ‘good’
aspects, where several strains of microorganisms show the potential to break downmicroplastics
through enzymatic activities and the formation of biofilms. Conversely, the ‘bad’ aspects of
microbial involvement in microplastic degradation are examined. Microorganisms can facilitate
the transport and bioaccumulation of microplastics in various ecosystems, potentially exacer-
bating their harmful effects. The ‘ugly’ side of microplastic degradation includes the production
of harmful byproducts duringmicrobial breakdown, raising concerns about secondary pollution
and toxicity. The concept of plastisphere is discussed in this context, focusing on the photo-
trophs, photoheterotrophs and heterotrophs. Novel technologies involving microbial degrad-
ation ofmicroplastics are also explained. Thework emphasises the need for a comprehensive and
balanced approach regarding the application of microorganisms in microplastic degradation
and remediation.

Impact statement

This review summarises current available knowledge on microplastic degradation by microbes
and explores the novel and emerging techniques for microplastic remediation using microbes.
The paper incorporates in depth discussion on microbial (bacteria, fungi and enzymatic
degradation) action on microplastics and discusses why the ‘plastisphere’ is considered to be
the new delicacy for the microbial communities. The paper further explores how microplastics
can develop antibiotic resistance in bacteria. The effect of environmental factors and biofilms on
microbial degradation of microplastics is discussed. The key knowledge gaps and future research
directions were identified regarding the use of microbes for microplastic bioremediation.

Introduction

Plastics are durable, lightweight, cost-effective, and have become the most widely and frequently
used synthetic materials. Plastics are almost indispensable in many aspects of human life in
modern society (Chae and An, 2018). Various items like shopping bags, plastic bottles, food
containers, disposable cups, plumbing pipes, microwavable containers, plastic films, automotive
parts, hookup wire, coaxial cables, and so on are made using plastic additives like polyethylene
(PE), polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene terephthal-
ate (PET), nylon, polycarbonate, polytetrafluoroethylene (PTFE) (Amobonye et al., 2021).
Between 1950 and 2019, the annual global production of plastics had increased dramatically
from 2 million tons to 368 million tons, of this around 40% were for single-use plastics (Plastic
Europe, 2020) which resulted in the rapid accumulation of plastics in the environment (Nielsen
et al., 2019). Around 2050, the global volume of plastic wastes will reach 26 billion tonnes, of
which around 50% will eventually enter various compartments of terrestrial as well as aquatic
ecosystems, causing serious environmental impacts (Jambeck et al., 2015).

Microplastics (MPs) are defined as plastic particles having size less than 5 mm and can be
categorised based on primary and secondary types, sizes, shapes and polymer compositions. They
are widespread in the biosphere and are potential contaminants of grave concern (Klein et al.,
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2018a; Blair Espinoza, 2019) and are ubiquitously found in sedi-
ments (Zamprogno et al., 2021), water, sea salt (Kosuth et al., 2018),
food (Barboza et al., 2018), the atmosphere (Brahney et al., 2021)
and sewage sludge. The total amount of microplastics in the aquatic
ecosystems is expected to reach 12,000 metric tons (Mt) by 2050
(Geyer et al., 2017). MPs are persistent (Lambert and Wagner,
2018) and can bioaccumulate in the food chain and subsequently
can affect plants and animals, including humans. MPs accumula-
tion in the environment has adverse effects on the organisms
including molecular stress, reduced growth rate and reproductive
complications (Batel et al., 2016). MPs also affect plant growth and
fish reproduction (Guo andWang, 2019). Due to the wide range of
adverse effects of MPs reducing the levels of MPs pollution is the
need of the hour (Vince and Hardesty, 2017). MPs contain various
toxic substances added during manufacturing or collected from the
environment (Andrady, 2011). Plastic pollution has long been
regarded to be an irreversible problem (because of poor degradation
and the inability to collect all plastic particles) that will affect Earth
system processes. As a result, certain techniques to limit micro
(plastics) loss to the environment during manufacture, use, and
disposal have been proposed (Lambert and Wagner, 2018). How-
ever, isolating MPs in environmental matrices might be difficult
(Lambert and Wagner, 2018). In recent times, bio-plastics have
been developed but their biodegradation also produces MPs (Wei
et al., 2022). Physical treatment methods like sedimentation, filtra-
tion, and so on do separate MPs but retain them in the sludge.
Current practices for handling plastic wastes (e.g., recycling, land-
filling, incineration) have drawbacks that potentially exacerbate
existing environmental problems. For example, incinerating syn-
thetic plastics releases volatile and hazardous waste products, such
as dioxins, heavy metals, sulphides, nitrogen oxides, and furans, all
of which are thought to have the potential to cause cancer (Verma
et al., 2016). Furthermore, downcycling (Rahimi and Garcia, 2017)
and cost-ineffectiveness (Gradus et al., 2017) are also associated
with synthetic plastic recycling. Additionally, landfilling is also not
a good option since it takes a lot of space and has chances for leakage
into the environment. Due to these drawbacks efforts are directed
towards finding more environmental friendly approaches for man-
aging plastic wastes. In this context, microorganisms have emerged
as a likely alternative with numerous researches highlighting the
capability of various microbial species for degradingMPs including
PET (Taniguchi et al., 2019), PE (Restrepo-Flórez et al., 2014), PU
(Magnin et al., 2020), PS (Ho et al., 2018) and PP (Arutchelvi et al.,
2008). In this context, bioremediation of MPs has emerged as an
attractive and alternate method to remove MPs from the environ-
ment. The use of microbes for MPs degradation can help in the
remediation ofMPs without any environmental damage (Restrepo-
Flórez et al., 2014; Kumar Sen and Raut, 2015; Qi et al., 2017), thus
making it a promising and safe avenue for cleaning our natural
ecosystems (Shah et al., 2008). Various efforts have also been made
to screen potential plastic-degrading microbes (Hidalgo-Ruz et al.,
2012) and develop biodegradable polymers. However, presently
only a few microorganisms are known to be able to degrade MPs
and there is a dearth of knowledge in the context of microbial
degradation of MPs (Gu, 2003).

MP are mainly considered as persistent compounds offering a
large ecological niche for the colonisation of microbial communi-
ties (Kooi et al., 2017; Rummel et al., 2017). Numerous investiga-
tions have been carried out to examine the interaction betweenMPs
and the MP colonising microorganisms, which could likely impact
the behaviour of MP in the environment by altering their chemical
or physical properties (Rummel et al., 2017; Roager and

Sonnenschein, 2019; Oberbeckmann and Labrenz, 2020). However,
there was no consensus on whether these microorganisms specif-
ically chose plastics to colonise. According to some research, the
microbial communities on plastics do not seem to be substrate-
specific (Oberbeckmann et al., 2016). For instance, the lifetime and
relative mobility of microplastics in the water column were shown
to account for the differences in the microbial community com-
positions between floating microplastics and other substrates, such
as stones and sediments (Zettler et al., 2013; Fazey and Ryan, 2016).
However, multiple investigations showed differences in microbial
community betweenMP surface and the surrounding, possibly due
to the limitation of nutrients or the type of MPs (Kirstein et al.,
2019). Research in other areas revealed that the types of carbon
sources largely drive the turnovers of microbial community com-
positions (Goldford et al., 2018). While microplastics are not
commonly used by microbes, some specific bacteria that break
down plastic may be able to obtain carbon from them
(Aravinthan et al., 2016; Green et al., 2016). This suggests that
some microorganisms have a selection advantage when it comes to
breaking down microplastics. Furthermore, certain microbes also
favour adhering to the hydrophobic surface of microplastics and
interacting with them (Krasowska and Sigler, 2014).

Therefore, a deeper understanding of the properties of the
microbial communities colonising microplastics – such as their
structure, stability, and mechanism of community assembly – based
on stochastic and deterministicmodels was required in order to gain
insight into the relationship betweenmicroplastics and the attached
microorganism (Stegen et al., 2012; De Vries et al., 2018). Never-
theless, there is still a dearth of pertinent data regarding microbial
communities that colonise microplastics in different environments.
MP degradation in nature mainly occurs via physical, chemical and
biological means (Shah et al., 2008; Ter Halle et al., 2017; Ariza-
Tarazona et al., 2018). Light and oxygen can cause the degradation
of MPs through abiotically and enhance the microbial availability
through photodegradation, thermooxidative degradation and
hydrolysis (Andrady, 2011). In deep sediments, light and oxygen
are limited and redox conditions are the vital environmental factor
for MP degradation, which requires further study (Rogers et al.,
2020). Under anaerobic conditions, microorganisms found onMPs
utilise either plastics or other organic matters surrounding MPs as
electron donors (Rogers et al., 2020). To date, various anaerobic and
facultative anaerobic plastic-degrading bacterial strains have been
successfully isolated from plastics (Kathiresan, 2003; Auta et al.,
2017), suggesting possible biodegradation ofmicroplastics in anoxic
sediments.

Multi-disciplinary approaches are required in order to address
complex issues regarding MP bioremediation such as screening of
efficient microbes and their characterisation, evaluation of in situ
toxicity, and so on. MP assessment is necessary for the preparation
of appropriate feedstock for the biotransformation of MPs which
are recalcitrant.

Microplastics in the environment: Distribution,
accumulation, toxicity and health effects

MPs are known to occur ubiquitously in marine environment, in
surface water and sediments. The presence of MP has been exten-
sively reported in deep sea water, sea surface, on shorelines, and in
aquatic organisms in several countries around the world (Gray
et al., 2018; Khalik et al., 2018). The existence of MPs has been
reported in diverse types of ecosystems, including permafrost,
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both in Arctic (Zhang et al., 2023), Antarctica (Aves et al., 2022);
Tibetan plateau (Wang et al., 2023) and European alpine regions
(Materić et al., 2020, 2021). The occurrence and accumulation of
MPs were also evident in several mangrove ecosystems and coral
reefs (John et al., 2022). Occurrence of MP is also reported in
different fresh water systems, including Ottawa River (Vermaire
et al., 2017), Antuã River (Rodrigues et al., 2018), Yangtze River
(Hu et al., 2018), Vembanand Lake (Sruthy and Ramasamy, 2017)
in North America, Portugal, China and India. These MP particles
have negative effects on diverse marine organisms (Wright et al.,
2013) and mainly act as potential vectors for Persistent organic
pollutants (POP) and other toxic pollutants (Hermabessiere et al.,
2017). The presence of MP was also reported in air using different
types of sampling methods such as atmospheric sampling (Abbasi
et al., 2019), dust collection (Zhang et al., 2019) and wet and dry
deposition (Klein and Fischer, 2019). The size of the MP fibres
ranges from 100 to 5000 μm (Cai et al., 2017). In most cases,
population density and proximity to urban areas are the main
factors which influence the abundance ofMP. The presence ofMP
was mostly reported in various touristic centres of China (Jiang
et al., 2019), Rhine andMain Rivers, China’s Qinghai Lake (Xiong
et al., 2018), the Lagoon of Venice (Klein et al., 2015), Jakarta Bay
(Manalu et al., 2017) and the Ottawa river (Vermaire et al., 2017).
Both domestic and industrial sewage spillage are significant
sources of MPs. According to study made by Carr et al. (2016),
no MP was found in effluents of a tertiary waste water treatment
plant, whereas, one plastic particle per 1.14 litre of effluent was
reported from secondary waste water treatment plant. The density
of the MP particles effects the vertical distribution and buoyancy
of the particles. Usually, low-density MP occur more in surface
zone whereas, while high-density MPs accumulate in deep seas
and benthic organisms (Eerkes-Medranoet al., 2015).

Most MP are toxic and known to disrupts endocrine activity.
On exposure to MPs, the catalytic activity of the acetylcholin-
esterase (AChE) (which is essential for neurotransmission in
neuromuscular junctions and brain synapses) in zebrafish larva
can led to death (Chen et al., 2017). Similar AChE activity inhib-
ition was also reported in Dicentrarchus labrax, Artemia francis-
cana and Oreochromis niloticus. Moreover, body size, age
influences the impact of MP on AChE activity. The presence of
MP can also increase antioxidant defence response, cellular oxi-
dative stress and lead to peroxidation of lipid which can induce
disruption of membranes of presynaptic vesicles and damages the
gill, muscles and liver in several fish species (Wen et al., 2018).
According to Lei et al. (2018a, 2018b) MP caused neurodegenera-
tion on Caenorhabditis elegans. The MP can accumulate in the
gastrointestinal tract of fishes which effect the health and growth
of fishes (Yin et al., 2018). However, there is a lack of adequate
data related to the impact of MP in the GI tract of marine
organisms. It was also reported that both chemical composition
and shape may influence the ecotoxicology of MP particles. MP
present in sediments are mostly fibres followed by fragments,
beads, films and foam (Kooi and Koelmans, 2019); fibres are
found to induce more toxic effects compared to fragments and
beads. Polysterene (PS) MP was reported to upregulate nfa, il1b
and ifng1–2 gene expressions, resulting in inflammatory
responses on livers, guts and gills of zebrafish, induce ROS pro-
duction and decrease GSH and SOD levels (Lu et al., 2018). MPs
are considered to be potentially toxic to human health as it may
enter the gastrointestinal (GI) tract by endocytosis of M cells and
translocate to different parts of the body (Cox et al., 2019).
According to study made by Forte et al. (2016), it was reported

that PS nanoplastics can up-regulate IL-6 and IL-8 gene expres-
sion, resulting in inflammatory responses and morphological
alterations. Moreover, high concentration of PS nanoparticles
can lead to cell death through apoptosis by activating Caspase
3, 7 and 9 (Bexiga et al., 2011). The cytotoxicity ofMP particles can
also lead to DNA double-strand breaks and/or the high depletion
of GSH (Paget et al., 2015). The study made by Xu et al. (2019)
reported PS can affect the human lung cells and inhibit cell
viability. The presence of excess MP particles can cause abnormal
behaviour, produce ROS and impacts the immune system of fish.
Further research is needed to understand the underlying mech-
anisms of MP toxicity.

Plastisphere: A new delicacy for the microbes?

Plastisphere describes a novel microbial community attached to
plastics and distinct from the surroundings. Marine plastic debris
provides a selective hydrophobic environment that stimulates the
growth of early colonisers accelerating biofilm formation and fur-
ther microbial succession (ZoBell and Anderson, 1936). Stimula-
tion of microbial growth and respiration by inert surfaces is a well-
documented phenomenon, which creates a favourable environ-
ment for microbial colonisation through micronutrient concentra-
tion (ZoBell, 1943). This could play an important role for increasing
microbial activity in the upper layer of ocean gyres owing to the
abundant plastic debris in oligotropic areas of the oceans (Zettler
et al., 2013).

Early scanning electron micrographs of plastic surface biofilms
(Sieburth, 1975) provided clues about microbial diversity within the
plastisphere. The bacterial community found on the MP surface is
found to be significantly different from that in surrounding middle
and upper waters or other particle types (Oberbeckmann et al.,
2018). Various factors like season, temperature, humidity, sur-
rounding environment, polymer type, surface morphology and size
of MPs influence the abundance and diversity of colonising micro-
bial groups (Reisser et al., 2014; De Tender et al., 2015; Dussud et al.,
2018a, 2018b). For example, studies have shown different microbial
communities attached to MPs from two different oceans, and the
diversity of bacteria living in water columns and bacteria attached to
microplastic debris (Amaral-Zettler et al., 2015). Heterotrophic
bacteria are capable of rapidly colonising plastic surfaces, which
can survive longer than in the surrounding aquatic environments
(Webb et al., 2009). The biodegradability of plastic is influenced not
only by the capacity of microorganisms but also by surface texture,
hydrophobicity, electrostatic interactions and free energy of the
material (Falahudin et al., 2020). MPs provide a novel ecological
niche for microbial growth and colonisation and serves as a carbon
source. Recent studies on the basis of molecular data (Zettler et al.,
2013; Bryant et al., 2016; Dussud et al., 2018a, 2018b; Kirstein et al.,
2018) also confirmed that plastispheres are comprised of various
organisms including primary producers (e.g., phototrophs), hetero-
trophs, predators, symbionts and decomposers. Members of genus
Vibrio are reported to be enriched on microplastic surface (Frere
et al., 2018; Zettler et al., 2013), however, other researchers have
contradicted the claim (Schmidt et al., 2014; Bryant et al., 2016;
Oberbeckmann et al., 2018). SEM photomicrographs confirmed the
presence of varied eukaryotic and bacterial microbiota on both
Polypropelene (PP) and Polyethelene (PE) samples. DNA analyses
validated that the communities on plastics and the surrounding
water differed consistently. For example, photosynthetic filament-
ous cyanobacteria including Phormidium and Rivularia OTUs
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occurred on plastics but were absent from seawater samples where
unicellular Prochlorococcus dominated the bacterial phototroph
community (Zettler et al., 2013). Marine suctorian ciliates of the
genus Ephelota was also present known to harbour ectosymbiotic
rod-shaped bacteria (Chen et al., 2008). Also, sulphide-oxidising
Gammaproteobacteria of the genus Thiobios was present in the
samples and on the surface of stalked ciliates (Zettler et al., 2013).
Moreover, polycystine colonial radiolaria were found on MP sur-
face. The identification of the Vibrio sequence recovered in high
abundance and showed similarity (100%) with various Vibrio spe-
cies from the gene bank. From the Mediterranean Sea, harmful
dinoflagellate species under genus Alexandrium were reported to
be present on plasticmarine debris (Maso et al., 2007) and also a few
from Atlantic Ocean.

Phototrophs

Diatoms are common and omnipresent residents of plastisphere
and are one of the early and dominant colonisers (Oberbeckmann
et al., 2014; Eich et al., 2015; Masó et al., 2016; Michels et al., 2018;
Kettner et al., 2019). Diatoms belonging to number of bacillario-
phyte genera including Navicula, Nitzschia, Sellaphora, Stauroneis
and Chaetoceros (Zettler et al., 2013). Studies from Sargasso Sea
reported diatoms including Mastogloia angulata, Mastogloia
pusilla, Mastogloia hulburti, Cyclotella meneghiniana and Pleur-
osigma sp. (Carpenter and Smith, 1972), and amplicon reads
belonging to genera Sellaphora, Amphora and Nitzschia (Zettler
et al., 2013). Furthermore, the taxa Mastogloia, Nitzschia, and
Amphora have been reported from the Arabian Gulf only on the
basis of morphological traits (Muthukrishnan et al., 2019). Meta-
genomic surveys (Bryant et al., 2016) have placed diatom clades at
less than 1% of the eukaryotic community suggesting their replace-
ment as the community matures. Cyanobacteria are also present
along with diatoms (Bryant et al., 2016). Various filamentous
bacteria like Phormidium, Rivularia and Leptolyngbya are also
continuously reported on microplastics (Amaral-Zettler et al.,
2020). Additionally, other known photosynthetic representatives
included prasinophytes, rhodophytes, cryptophytes, haptophytes,
dinoflagellates, chlorarachniophytes, chrysophytes, pelagophytes
and phaeophytes.

Fungi are able to form chemical bonds like carbonyl, carboxyl
and ester bonds which decreased the hydrophobicity of the
MP. Fungi also uses MPs as a carbon source and as a result are
able to degrade them. Yamada-Onodera et al. (2001) demonstrated
Penicillium simplicissimum YK to successfully grow on solid
medium supplemented with 0.5% PE after UV irradiation for
500 h. Aspergillus niger and Penicillium pinophilum was able to
degrade thermo-oxidised (80°C, 15 days) low-density polyethylene
(TO-LDPE) by 0.57 and 0.37% after 31 months. Additionally, the
TO-LDPE weight decreased by three crystallinity and crystalline
lamellar thickness units (0.4–1.8 Å), and increased small-crystal
content (up to 3.2%) and mean crystallite size (8.4–14 Å) were
observed. Dantzler et al. showed that serine hydrolase secreted from
Pestalotiopsis microspora isolates were responsible for bio-
degrading polyurethane (PUR) MP. Aspergillus tubingensis
VRKPT1 and Aspergillus flavus VRKPT2 are able to degrade high-
density polyethylene (HDPE) efficiently (Sangeetha Devi et al.,
2015) having weight loss of HDPE around 6.02 ± 0.2 and 8.51 ±
0.1%, respectively. White-rot fungi IZU154, Trametes versicolor
and Phanerochaete chrysosporium have also shown excellent cap-
ability to degrade MPs (Deguchiet al.).

Photoheterotrophs and heterotrophs

In addition to phototrophs, potential photoheterotrophic bacteria of
the genera Erythrobacter, Roseobacter and ‘Candidatus Pelagibacter’
(REF) are also common residents of plastisphere. Heterotrophic
bacteria in seawater samples were dominated by Pelagibacter along
with other free-living picoplanktonic bacterial groups with different
levels of abundance in PP and PE (Giovannoni et al., 1990). Experi-
ments to culture bacteria with plastic as only carbon source have
given various assortments, including members of Gammaproteo-
bacteria (Nakamiya et al., 1997; Yoon et al., 2012) and Firmicutes
(Harshvardhan and Jha, 2013), as well as Actinobacteria (Gilan and
Sivan, 2013). Fungal sequences from plastic debris have also been
reported by various studies (Zettler et al., 2013; Debroas et al., 2017;
Kettner et al., 2017, 2019). Fungal diversity in the plastisphere is
somewhat less known, however, recent studies highlighted that in
brackish and freshwaters fungal assemblages are dominated by
members of Chytridiomycota, Cryptomycota and Ascomycota
(Kettner et al., 2019). From visual analysis of microbial population,
members of fungal genus Malassezia were also reported (Amend
et al., 2019).

Studies have shown that bacterial groups belonging to phyla
Bacteroidetes, Proteobacteria, Cyanobacteria and Firmicutes are
frequent colonisers of MPs (Zettler et al., 2013; Dussud et al.,
2018a, 2018b).

Bacteria belonging to genus Corynebacterium, Arthrobacter,
Pseudomonas,Micrococcus, Streptomyces and Rhodococcus are cap-
able of biodegrading plastics and have demonstrated that they can
use plastics as their carbon source under laboratory conditions
(Shah et al., 2008). Interestingly, it was discovered that significant
differences exist in the diversity, abundance and activity of bacterial
and physiochemical characters of plastics between biodegradable
and non-biodegradable plastics, indicating the presence of plastic-
degrading microbes (Negoro, 2000).

Auta et al. (2018) described two pure bacterial cultures, Rhodo-
coccus sp. strain 36 and Bacillus sp. strain 27 from mangrove sedi-
ments having capability for PP MP degradation. Bacillus cereus and
Bacillus gottheilii were found to degrade PE (weight loss: 1.6%),
polyethylene terephthalate (PET; 6.6%), and PS (7.4%) while, for
B. gottheilii MP weight loss was 6.2%, 3.0%, 3.6% and 5.8% for PE,
PET, PP and PS, respectively (Auta et al., 2018). Stenotrophomonas
maltophilia LB 2-3 was found to decrease molecular weight and
tensile properties of polylactic acid (PLA) (Jeon and Kim, 2013a).
E. coli was able to degrade polyurethanes (1–2% after 72 hours)
(Uscategui et al., 2016). Polypropylene films (PP) and Bioriented
Polypropylene (BOPP) polymers were reported to be degraded by
microorganisms to some extent (Longo et al., 2011). Pseudomonas
aeruginosa was found to degrade PS-PLA nanocomposites (Shimpi
et al., 2012). Mohan et al. (2016) found that newly isolated Bacillus
strains were able to degrade brominated high-impact polystyrene
(HIPS). Bacterial strains (Enterobacter asburiae YT1 and Bacillus
sp. YP1) residing in gut of waxworms were able to degrade PE
(Yang et al., 2014).

Park and Kim (2019) reported a bacterial consortium consisting
mainly of Bacillus sp. and Paenibacillus sp. was able to reduce the
dry weight of MP particles by 14.7% and the mean diameter of MP
particles by 22.8% after 60 days. Tsiota et al. (2018) reported Agios
and Souda bacterial community to decrease the weight of HDPE
MPs by 8 and 18% after 2months, respectively. The gut microbes of
earthworm (Lumbricus terrestris) containing members of Actino-
bacteria and Firmicutes genera were able to degrade LDPE MPs
upon ingestion by the earthworm (Huerta Lwanga et al., 2018).
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Syranidou et al., (2017) demonstrated that bacterial consortium
was capable of developing dense biofilm on theweathered surface of
PE and induced alterations in the surface topography and rheo-
logical properties. Exiguobacterium sp. strain YT2 isolated from gut
of mealworm showed potential signs of degrading andmineralising
PS MP over a time of 28 days (Yang et al., 2015a; Brandon et al.,
2018).

Predators

Predatory ciliate Ephelota and sulphide-oxidising ectosymbiotic
bacteria were reported to exist in a symbiotic relationship on the
plastisphere (Zettler et al., 2013; Kettner et al., 2019). Positive
associations between Amoebophrya and Suessiaceae on polyethyl-
ene were reported as well (Kettner et al., 2019). SEM and molecular
data have also confirmed that choanoflagellates, radiolaria and
small flagellates such as Micromonas also constitute the predatory
guild in the plastisphere that devours bacteria and other organisms
(Amaral-Zettler et al., 2020).

Pathogens

Various potentially pathogenic microorganisms are reported to be
attached with plastic debris (Zettler et al., 2013) including the
members of the Campylobacteraceae, Aeromonas salmonicida or
Arcobacter spp. from all over the world (McCormick et al., 2014;
Kirstein et al., 2016; Oberbeckmann et al., 2016; Jiang et al., 2018;
Curren and Leong, 2019). Various phototrophic species able to
cause harmful algal blooms are also reported from plastic debris
(Masó et al., 2016; Casabianca et al., 2019). Plastisphere commu-
nities can be dominated by genus Vibrio during the summer

months. Moreover, they can transport potential protistan coral
pathogens (Goldstein et al., 2014) and a known fish pathogen
(Virsek et al., 2017). A recent study has reported the presence of
Campylobacteraceae in microplastic particles which can cause
gastrointestinal infections in humans (McCormick et al., 2014).

The knowledge regarding the microbial composition of
MP-associated biofilm has revolutionised in the last half of the
decade with the advent of metagenomics (Ivar do Sul et al., 2018).
The biofilm communities differ significantly from their surrounding
environment (Zettler et al. 2013; Oberbeckmann et al. 2014; Amaral-
Zettler et al. 2015; Bryant et al. 2016; Debroas et al. 2017; Frere et al.
2018), which is obvious sincemicrobial community compositions on
natural particles usually differ from free-living microorganisms
(Crespo et al. 2013; Rieck et al., 2015).

The outline of plastisphere is shown in Figure 1. Different strains
of bacteria and fungi capable of degrading plastics, along with the
types of microplastics degraded are summarised in Table 1.

Action of microorganisms on microplastics

Microbial degradation of MPs occurs through various steps:
(1) Initial degradation of polymers to small-size particles from large
polymeric structures, (2) Degradation of polymers to their oligo-
mer, dimer and monomers and, (3) Mineralisation of MPs by
microbial biomass (Blair Espinoza, 2019). Upon complete mineral-
isation, microplastics breakdown forming carbon dioxide by vari-
ous enzymes, and the transformation of produced intermediates to
use as a source of energy and biomass production.

The majority of synthetic polymers such as polyethylene (PE),
polypropylene (PP) and polystyrene (PS) are degraded very slowly
(Weinstein et al., 2016). Even the novel consortia like Enterobacter

Figure 1. Plastisphere, the novel microbial community colonising and thriving on the plastic debris.
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Table 1. Different strains of bacteria and fungi capable of degrading plastics, along with the types of microplastics degraded

Source of microbes Isolate Type of MP degraded Incubation period % of degradation References

Bacterial isolates

Polluted soil samples Lysinibacillus sp. Polypropylene and
polyethylene

26 days 4 and 9%, Jeon et al., 2021

Compost Bacillus cereus, Bacillus thuringenesis,
Bacillus licheniformis

Polypropylene (PP)
and poly–L–lactide
(PLLA)

6 months Jain et al., 2021

Cow dung sample Enterobacter sp nov. bt DSCE01,
Enterobacter cloacae nov. bt DSCE02,

Pseudomonas aeruginosa nov. bt
DSCE–CD03

Low–density
polyethylene (LDPE)
and polypropylene
(PP)

160 days 64.25 ± 2% and 63.00 ± 2% Skariyachan et al.,
2021

Antarctic soil Pseudomonas sp. ADL15,
Rhodococcus sp. ADL36

Polypropylene (PP)
microplastics

40 days 17.3% and 7.3% Habib et al., 2020

Municipal landfill
sediment

Bacillus sp., Paenibacillus sp. PP 60 days 14.7% Park and Kim, 2019

Mediterranean Sea Alcanivorax borkumensis HDPE 80 days 3.5% Delacuvellerie et al.,
2019

Landfill site Cupriavidus necator LDPE 21 days 33.7% Montazer et al., 2019

Landfill site Micrococcus luteus LDPE 21 days 18.9% Montazer et al., 2019

Landfill sites and waste
treatment facilities

Aneurinibacillus sp.,
Brevibacillus spp.

LDPE and HDPE strips
and pellets

140 days LDPE and HDPE strips:
58.21 and 46.6% weight
loss LDPE and HDPE
pellets: 45.7 and 37.2%
weight loss

Skariyachan et al.,
2018

Dumpsite (Africa) Bacillus cereus LDPE film 16 weeks 35.72% Muhonja et al., 2018

Mangrove sediments Bacillus gottheilii
Rhodococcus

PE, PET, PP, PS 40 days 6.2, 3.0, 3.6, 5.8 and 6.4 Auta et al., 2018

Compost Bacillus thuringiensis, Bacillus
licheniformis

PP and poly–L–lactide
(PLLA)

15 days 12%, 10% Jain et al., 2018

Laboratory isolate Klebsiella pneumoniae LDPE film pretreated
with hot dry air (70°
C, 10 days)

60 days 18.4% Awasthi et al., 2017

Plastic waste in soil Delftia sp., Stenotrophomonas sp. Untreated LDPE 90 days Change of chemical
properties

Peixoto et al., 2017

Mangrove sediments in
Peninsular Malaysia

Bacillus cereus,
Sporosarcina
Globispora

Polypropylene 40 days 12 and 11 % Helen et al., 2017

Marine Lysinibacillus sp.
Salinibacterium sp.

PE 6 months 19% Syranidou et al., 2017

Municipal solid waste Stenotrophomonas panacihumi PA3–2 polypropylene (PP) 90 days 20.3 ± 1.39% Jeon and Kim, 2016

Nitrosomonas sp., Nitrobacter sp.,
Burkholderia sp., Pseudomonas sp.

HDPE, LDPE and PP 90 days 20%, 5% and 9% Muenmee et al., 2016

Source of microbes Isolate Type of MP degraded Incubation period % of degradation Reference

Fungal isolates

Aspergillus sp., Penicillium sp. PP/PBAT 30 days Oliveira et al., 2020

Guts of wax moth
Galleria mellonella

Aspergillus flavus HDPE 28 days Zhang et al., 2020

Marine sediments Zalerion maritimum PE pellets 28 days Paco et al., 2017

Bjerkandera adusta Gamma irradiated
polypropylene and biomass

Butnaru et al., 2016

6 Avishek Talukdar et al.

https://doi.org/10.1017/plc.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2024.26


and Pseudomonas developed from cow dung showed faster biodeg-
radation of PE and PP, demonstrated up to 15% weight loss after
120 days (Skariyachan et al., 2021). No information is available till
date about the actions of depolymerases enzymes and the microbial
degradation mechanisms of these microplastics and plastic debris
(Ru et al., 2020). Bacteria, fungi and enzymes are identified based on
their bioremediation capacity for PP, PE and PVC has been dem-
onstrated based on their capacity of biofilm formation on plastic
films, surface deterioration, thermal and mechanical properties
alteration of plastics (Yang et al., 2015b; Auta et al., 2018; Giaco-
mucci et al., 2019; Ru et al., 2020). Though most of the studies are
based on macro-plastic films, however the same can be applied to
MPs as well.

Bacterial metabolism and degradation of microplastics

Biodegradation of plastics requires the action of microbial enzymes
(both bacterial and fungal) for converting them into easily metab-
olizable fractions (dimers, oligomers and monomers) for example
lipase hydroxylase, depolymerase and protease (Haider et al., 2019).
After disintegration, microorganisms feed on those products as
carbon source for their growth and reproduction (Haider et al.,
2019; Zuo et al., 2019a). Apart from that, the potential microbial
degrading organisms must possess appropriate enzymatic and
metabolic pathways. Physical characteristics of microplastics
should facilitate attachment of microorganisms to the surface and
biological reactions should not be affected by the branching pattern.

The complex interaction between the available surfaces for the
colonisation of microorganisms forming biofilm was studied by
Fleming et al. (2017). The attachment processes that act on MP
biofilm include (1) biofouling, (2) plasticiser breakdown, (3) assault
on the polymer backbone, (4) hydration and (5) organism pene-
tration into the polymer structure.

Various bacterial taxa are renowned as plastic colonisers, for
example, Arcobacter spp., Vibrio spp., Colwellia spp., Escherichia
spp. and Pseudomonas spp. (Oberbeckmann and Labrenz, 2020).
In research conducted by Oberbeckmann et al. (2016), it was
reported that assemblages of microbes on the surface of polymers
are not substrate-specific. Curren and Leong (2019) found colon-
isation of diverse epiplastic bacteria including Erthrobacter, Vibrio
and Pseudomonas species. While another research reported rapid
colonisation of low-density polyethylene (LDPE) microplastic by
costalmarine sediments bacteria includingArcobacter andColwellia
spp. (Harrison et al., 2014). Members of bacterial families like
Rhodobacteraceae and Flavobacteriaceae and the genera Albirhodo-
bacter, Methylotenera, and Hydrogenophaga have been found to
be widespread on the surface of MPs (Oberbeckmann and
Labrenz, 2020). Rosato et al. ( 2020) used a PCB-dechlorinating
microbial culture to study microbial colonisation of various MPs
(polyethylene, polyethylene terephthalate, polystyrene, polypropyl-
ene and polyvinyl chloride) and found all the MP to be colonised by
microbes and also the microbes performed dechlorination proving
their potential to remediate toxicity related to PCB polluted MPs
(Rosato et al., 2020).

Research indicates that using bacterial consortia in MP biodeg-
radation is more efficient rather than using single bacterial culture.
Recent research conducted on MP degradation by using microbial
consortia demonstrated maximum mineralisation in around
15 days (MeyerCifuentes et al., 2020).

Bacterial and fungal strains, including Phaeosphaeria spartini-
cola, P. halima, Mycosphaerella sp. assemblages can decompose
complex polymers andmay potentially form biofilms on the surface

and ingest MP particles (Kawai et al., 2019). Various marine
hydrocarbonoclastic bacteria (e.g., Alcanivorax borkumensis) dem-
onstrated capacity to degrade alkanes, branched aliphatic, as well as
isoprenoid hydrocarbons, and alkyl cycloalkanes (Davoodi et al.,
2020). Researchers have also found possible potential of various
marine bacteria for MP biodegradation due to their ability to form
biofilms (Salvador et al., 2019). Evidence of LDPE degradation by
A. borkumensis was observed while investigating biofilm formation
on LDPE surface (Delacuveellerie et al., 2019). Alcanivorax sp. also
interacts with plastic surface by adjusting its hydrophilicity of the
cell membrane (Delacuvellerie et al., 2019). Recently, putative
laccase isolated from actinomycete Rhodococcus ruber was found
to be involved in PE biodegradation. Some bacterial strains
obtained from sewage treatment plants, mulch films and landfills
waste demonstrated the ability to utilise unpretreated PE, and PP
strips as a carbon source ( Jeyakumar et al., 2013). In the presence of
starch, microorganisms showed accelerated hydrolytic biodegrad-
ation of PP and PE (Cacciari et al., 1993) also the enzymatic
reactions make the polymers more vulnerable to biodegradation
(Ru et al., 2020).

Fungal metabolism and degradation of microplastics

Fungi are excellent candidates for potential plastic degradation
owing to their variety of metabolic potential and ability to degrade
complex chemical structures (Lacerda et al., 2020). Marine fungus
Zalerion maritimumis was reported to be successfully biodegrade
PE (Paço et al., 2017). A wide diversity of epiplastic fungal species
was reported from various geographic locations indicating their
abundance in aquatic environments (Lacerda et al., 2020). Different
fungal genera such as Aspergillus, Cladosporium, and Wallemia as
well as a wide variety of taxa such as, Chytridiomycota and Aphe-
lidomycota were reported from various locations (Lacerda et al.,
2020). The fungal diversity thriving in the biofilm of microplastics
found dominance of members from Chytridiomycota, Cryptomy-
cota and Ascomycota (Kettner et al., 2017). Brunner et al. (2018)
reported around 100 fungal species able to degrade MP debris
highlighting the potential of marine epiplastic fungal communities.
The isolated fungal strains were found successful to degrade Poly-
urethane (PU) but not PE polymers (Brunner et al., 2018). Lignin-
biodegrading fungi catalyses the oxidation of aromatic and non-
aromatic substrates like chorophenolic or nonphenolic compounds
(polymethylmethacrylate [PMMA] and polyhydroxybutyrate
[PHB]) by producing laccase (Straub et al., 2017).

Enzymatic degradation of microplastic: Microbial gene
action and metabolism

Enzymes play a vital role in cellular functions regulation; microbes
tend to modify their enzyme activity in response to changing
environmental conditions. Inside the biofilm, the microbial
enzymes build up a microenvironment interacting with the MP
causing its degradation. Extracellular enzymes of microbes
(esterase, lipase, lignin peroxides, laccase and manganese perox-
ides) are indispensable for increasing the hydrophilicity of plastic
polymers by converting to functional carbonyl or alcohol groups,
which can enhance microbial attachment and promotes biodeg-
radation (Shahnawaz et al., 2019; Taniguchi et al., 2019). Extracel-
lular enzymes such as hydrolases (such as lipases, esterase, poly
(3-hydroxybutyrate) depolymerases and cutinases) operate on the
plastic surface to break it down into smaller molecules (Sol et al.,
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2020). Integration of monomers transported into the cytoplasm of
microbes and finally their metabolism results in their assimilation
(Zettler et al., 2013). There are two types of MP degrading enzymes
according to theirmechanisms namely, surfacemodificationmech-
anisms and degradation mechanisms (Vertommen et al., 2005).
The first category of enzymes consists of a group of hydrolases
(lipases, carboxylesterases, cutinases and proteases), while the poly-
mer degrading enzymes includes oxidases, amidases, laccases,
hydrolases and peroxidases (Álvarez-Barragán et al., 2016; Gómez-
Méndez et al., 2018). Large polymers are broken down into smaller
fragments with the help of enzymes, the fragment then gets ingested
by themicrobes and finally gets incorporated into themetabolic cell
cycle. The extracellular polymeric substance (EPS) regulates the
microenvironment andmaintains themicrobial community (Lucas
et al., 2008) also governing the characteristics of the biofilm deter-
mining microbial penetration rate (Lucas et al., 2008) and ultim-
ately control the fate of the plastic particles.

Despite ample evidence that EPS and enzymes have a significant
influence on the biodeterioration ofMPs, there is currently a dearth
of technical options for the total destruction of these MPs (Kumar
et al., 2020). Thus, it can be said that although a variety of micro-
plastic (PE, PP and PVC) degrading microbes has been identified
but microbial enzymes known to successfully degrade PE (laccase,
soybean peroxidase, manganese peroxidase) and PS (hydroquinone
peroxidase) are very few (Zhang et al., 2004; Santos et al., 2013) and
none for PP degradation (Arutchelvi et al., 2008).

Microorganisms are able to produce enzymes that can break-
down complex polymer of plastics using them as carbon source for
their growth and metabolism. Their ubiquity in different environ-
ments makes them the most promising natural and sustainable
approach of MPs degradation. MPs degradation by microbes is
influenced by various factors, including the type and structure of
the plastic, environmental conditions (e.g., temperature, pH, oxy-
gen availability) and microbial diversity and biochemical activities
(Syranidou et al., 2017a). Among the reported potential MP
degraders, bacteria play a significant role through various mechan-
isms. Bacterial strains in the genera Pseudomonas, Bacillus and
Rhodococcus have the ability to breakdown and utilise different
types ofMPs (Yakimov et al., 2007; Syranidou et al., 2017a). Various
types of extracellular enzymes like lipases and esterases are pro-
duced by the bacteria which help in MPs degradation (Auta et al.,
2018). MPs degradation potential have also been shown by fungi,
especially by the species of Aspergillus, Penicillium and Fusarium
(Tournier et al., 2020; Solanki et al., 2022). Enzymes like cellulases
and ligninases are secreted by fungi which are able to degrade MPs
polymers (Yang et al., 2022). Algae, especially diatoms, can also
potentially degrade MPs with the help of their extracellular
enzymes like lipases and proteases, which are able to degrade and
modify MPs surface properties (Sun et al., 2020a; Zhu et al., 2021).
Algae such as Scenedesmus dimorphus (a green alga), Anabaena
spiroides (a blue-green alga), Navicula pupula (a diatom), and
various species of Oscillatoria, have been observed to thrive on
polythene surfaces in sewage water (Chia et al., 2020). The adhesion
of these colonising algae on to the MPs surface marks the start of
biodegradation, and various ligninolytic and exopolysaccharide
enzymes produced by them facilitates plastic degradation (Priya
et al., 2022). Additionally, with biofilm formation on the plastic
surface, enhanced degradation of MPs takes place due to the
secretion of a range of microbial enzymes, which also facilitates
the establishment of a diverse microbial community, promoting
efficient microplastics degradation (Oberbeckmann et al., 2018;

Ogonowski et al., 2018).Within the biofilm, synergistic interactions
among various microorganisms creates a microenvironment
favourable for enzymatic activity which further enhances the deg-
radation potential (Wei and Zimmermann, 2017; Tournier et al.,
2020).

Addressing the burning issue of plastic pollution requires
detailed knowledge of the MPs degradation mechanism for imple-
mentation of effective remediation (Lopez-Pedrouso et al., 2020;
Othman et al., 2021). A wide range of enzymatic processes includ-
ing hydrolysis, oxidation, reduction and esterification, can break-
down polymer bonds ormodify polymer functional groups (Lopez-
Pedrouso et al., 2020; Othman et al., 2021). These enzymatic
processes are crucial for breakdown of plastic polymer chains into
smaller molecules that can serve as microorganisms’ source of
carbon and energy. One of the most common plastics in our daily
life polyethylene terephthalate (PET) can be degraded by PET
hydrolases (Carniel et al., 2017), which can be obtained from
microorganisms like Ideonella sakaiensis and Rhodococcus
sp. (Yoshida et al., 2016; Wei and Zimmermann, 2017) and offers
a promising avenue for PET plastic waste management. Also,
cutinases have shown excellent ability in PET degradation
(O’Neill et al., 2007; Furukawa et al., 2019) especially, microorgan-
isms Thermobifida alba and Thermobifida fusca can achieve this.
Additionally, Microbes like Trametes versicolor and Pycnoporus
cinnabarinuswith the help of laccases oxidise phenolic compounds,
influencing the fate of PS and PU (Bilal et al., 2019; Ghatge et al.,
2020; Yao et al., 2022). Notably, in plastic degradation lignin
peroxidases and manganese peroxidases, obtained from micro-
organisms such as Phanerochaete chrysosporium and Pleurotus
ostreatus, have shown promise (Mukherjee and Kundu, 2014; Ojha
et al., 2017; Rovaletti et al., 2023). Excellent plastic degrading
potential is also shown by Cellulases, particularly against PS
(Koeck et al., 2014; Pathak, 2017; Yan et al., 2021c). The likes of
Clostridium thermocellum and Cellulomonas fimi contribute to our
understanding of this multifaceted enzymatic approach to plastic
waste management.

Can microplastic develop antibiotic resistance in bacteria?

In the context of antibiotic resistance, two freshwater studies dem-
onstrated microplastic-associated assemblages having an increased
transfer frequency of a plasmid coding for trimethoprim resistance
(Arias-Andres et al., 2018) and higher abundance of the gene int1, a
proxy for anthropogenic pollution (Eckert et al., 2018).

MPs can selectively enrich both antibiotics and antibiotic-
resistant bacteria on their surfaces in various environments
(Wu et al., 2019; Su et al., 2020; Sun et al., 2020b; Wang et al.,
2020). Zhang et al. (2020) isolated and characterised antibiotic-
resistant marine bacteria from MP particles which showed the
presence of several multidrug-resistant marine bacteria including
pathogenic Vibrio species (Zhang et al., 2020). Other studies
showed the presence of multidrug-resistant pathogens from Vibrio
sp. (Laverty et al., 2020) and E. coli (Song et al., 2020) on marine
microplastics. A study published recently described whole genome
sequencing (WGS) of antibiotic-resistant microorganisms isolated
from marine plastics (Radisic et al., 2020).

Enrichment of various Antibiotic Resistant Genes (ARGs) like
sul1, tetA, tetC, tetX and ermE was reported from plastic particles in
both sea and freshwater (Wang et al., 2020) and selective enrichment
of strB, blaTEM, ermB, tetM and tetQwas seen onMPparticles from
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landfill leachates (Shi et al., 2020). Lu et al. (2020) reported the
presence of upto 43 different ARGs on MP surface from vegetable
soil using advanced high-throughput qPCR screening.

Using Shotgun metagenomics 64 different ARG subtypes pro-
viding resistance against 13 different antibiotics on macroplastics
and microplastics were collected from North Pacific Gyre (Yang
et al., 2019). This research and numerous others have discovered
clinically relevant ARGs on MP particles, such as sul1, tetA, tetC,
tetX, ermE, aac(3), macB and blaTEM, which are typically present
in human infections (Alcock et al., 2020), suggesting that MPs
serves as reservoirs of clinically important antibiotic resistance
genes. The numerous antibiotics and active metabolites present
in various chemicals and heavy metals (Godoy et al., 2019; Chen
et al., 2020;Mammo et al., 2020;Wang et al., 2020) adsorbed toMPs
leads to multidrug resistance among different bacteria within
microbial biofilm resulting in active selection of antibiotic resist-
ance on MP surfaces.

Imran et al. (2019) have advocated that the development and
spread of multiple drug-resistant human pathogens occur by
co-contamination of MPs and heavy metals through co-selection
mechanisms.

Role of environmental factors in microbial degradation of
microplastics

Various environmental factors like pH, moisture, salinity and
temperature play vital roles in bioplastic degradation (Gong et al.,
2012). While, factors like temperature and ionic strength facilitate
the colonisation of microbes and biofilm formation (Rummel et al.,
2017), the presence of nutrients and other pollutants, as well as the
availability of light and pressure are known to affect the nature and
extent of microbial attachment (Harrison et al., 2018). The sur-
rounding environment is amajor player for biofilm structuring and
low nutrient and high salinity forms substrate-specific assemblages
(Oberbeckmann et al., 2018). An optimum temperature is required
which favours enzymatic activity and microbial growth (Shruti and
Kutralam-Muniasamy, 2019). Moisture content and salinity are
other important factors for biodegradation (Gong et al., 2012).
Bioplastic degradation is kick-started by water uptake followed by
the breakage of ester bonds. pH of the medium also affects the rate
of reaction, alkaline condition favours hydrolysis of PLA (Elsawy
et al., 2017). Comparative analysis revealed that the plastic material
is a minor factor determining MP-associated biofilms while the
most important factor was geographical region (Amaral-Zettler
et al., 2015).

Keeping the above facts in mind, it can be inferred that finding a
natural environment for complete bioplastic degradation is a diffi-
cult task. A potential solution to this situation is the use of engin-
eered microorganisms which can degrade bioplastics with highest
efficiency while withstanding extreme environmental conditions
(Danso et al., 2018b).

Role of microbial biofilms in microplastic degradation

Biofilms are diverse microbial communities consisting of bacteria,
fungi, algae, and so on thriving on any surface submerged and in
spatial proximity (Donal, 2002). The microorganisms are collect-
ively benefited by having a stable consortia, availability of nutrients,
and protection from desiccation (Zettler et al., 2013). Biofilm can
affect microplastic structure and function in various ways, with the
help of various enzymes. These enzymes can transform surface

properties, additive degradation and metabolic by-product release,
thus can determine the fate of MPs in marine environments (Miao
et al., 2019).

MP biodegradation starts off after the attachment of first
microbes and development of biofilm on the plastic surface
(plastisphere). The plastisphere comprises of various microbial
communities developing into a biofilm (Urbanek et al., 2018).
The plastic surface encourages microbial colonisation and biofilm
formation leading to a reduction in polymer buoyancy and hydro-
phobicity (Lobelle and Cunliffe, 2011). Various polymer additives
being easily metabolised, encourages microorganisms’ initial
attachments and biofilm formation (Ru et al., 2020). Microbes
ensure surface attachment by various mechanisms like, cell surface
charge changes and hydrophobicity and modifications in EPS
production, pioneer microbes then modify surface morphology
for additional microbial colonisation. Various substratum property
like crystallinity, melting temperature, roughness, and so on might
influence microbial community assemblages during colonisation
stages (Rummel et al., 2017). Various factors affecting biofilm
degradation of MPs are summarised in Figure 2; biofilm formation
process and microplastic degradation are shown in Figure 3.

Biofilm maturation into complex structures is apparently
achieved through quorum sensing (QS) processes among cells.
QS Signalling gene gets accumulated in the external environment
and regulates neighbouring cells specific gene expression. A few
bacterial species use QS to coordinate and regulate the disassembly
of the biofilm (Sharma et al., 2019). Various researches have
suggested active QS involvement in the organisation and develop-
ment of multispecies biofilms in the marine environment (Hmelo,
2017).

After colonisation, biodeterioration of the polymer follows lead-
ing to loss in physical integrity and loss of polymer’s mechanical
properties (Kumar et al., 2020). The process is primarily achieved
by exoenzymes secreted by microbes. At this point, the microbe’s
EPS offers strong adherence to the polymer surface, and the
enzymes’ catalytic activity commences the dissolution of the poly-
meric structure. EPS and enzymes are thought to have significant
influences on the biodeterioration of MPs (Kumar et al., 2020). The
deteriorated polymers are then converted to oligomers, dimers and
monomers through biofragmentation and finally get assimilated
(Amobonye et al., 2020). The catalytic axctivities of microbial
enzymes control the biodegradation of MPs mediated by biofilm
promoting fragmentation of the polymer. The fragments formed
through enzymatic depolymerisation can be assimilated by
microbes resulting in increase in their biomass (Degli-Innocenti,
2014). These enzymes hydrolyze polymers by a nucleophilic attack
on the carbonyl carbon, resulting in either readily assimilable
oligomeric or monomeric elements or compounds that require
more processing before they can be digested by themicroorganisms
(Kumar et al., 2020).

During assimilation, the fragmented polymers gets integrated in
themicrobial cells (Lucas et al., 2008). Enzymes and carrier proteins
are involved in assimilation of monomers with catabolic cycles for
energy production (Hosaka et al., 2013; Durairaj et al., 2016). The
assimilation step is mostly followed by mineralisation, in which the
polymers get completely degraded and final products like CO2, N2,
H2O and CH4 are released. Complete mineralisation of PET has
been reported to produce acetic acid which gets used in the Krebs
cycle or integrated into lipid synthesis (Wilkes and Aristilde, 2017).
Polymer physiochemical properties such as hydrophobicity, sur-
face energies and functional groups influence the formation of
biofilm (Bhagwat et al., 2021). For biological sedimentation, the
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conditioning layer is very important, which actually depends on the
roughness, hydrophobicity and chemical nature of the initialmatrix
surface (Tu et al., 2020).

Different biochemical processes in microbe-mediated micro-
plastic degradation and related biotechnological interventions are
shown in Figure 4.

Microbial remediation of microplastic: Novel and emerging
techniques

Absorption of microplastics by green algae

Algal cells can be effectively used for the breakdown of complex
polymeric materials (Manzi et al., 2022). These algal cells may
interact with MP particles and alter their properties which may
determine the adsorption rate and fate of these MP particles
(Kershaw et al., 2015). Algal consortium can be used in degradation
of MP polymers as they do not require carbon source in the growth
media and can easily adapt to different environmental conditions.
Microalgae are known to produce biofilms on the surface of MP
particles and help in the degradation process by producing ligni-
nolytic and exopolysaccharide enzymes, this polymers on the other
hand act as a source of carbon which promotes the growth of algal

cells. The crucial processes that promote the degradation of MP
particles includes corrosion, hydrolysis penetration and fouling
(Chia et al., 2020). Green algae such as Oscillatoria subbrevis and
Phormidium lucidum have been reported to colonise the surface of
LDPE and degrade it without any pretreatment (Sarmah and Rout,
2018). Recent advancement in biotechnology have led to the pro-
duction of genetically modified microalgal cell factories capable of
producing hydrolytic enzymes having the ability to degrade plas-
tics. Green microalgae Chlamydomonas reinhardtii was genetically
modified to produce polyethylene terephthalate hydrolase, able to
degrade polyethylene terephthalate films and terephthalic acid
(Kim et al., 2020). These microalgae affect the vertical flux of the
polymers by varying the density of the polymers which can be
incorporated into hetero-aggregates promoting adsorption. How-
ever, this process is poorly understood (Tadsuwan et al., 2021).

Application of whole cell biocatalysis and microplastic
immobilisation

Biocatalysis uses whole cells of bacteria, fungi, microalgae and
plants to catalyse organic reaction. This provides high enantios-
electivity and is considered as low or non-toxic, ecofriendly and
green alternative to treat pollutant. Recent publications on

Figure 2. Various factors affecting biofilm degradation of microplastics. Reprinted after Sun et al. (2023), under a creative commons licence, open access.

10 Avishek Talukdar et al.

https://doi.org/10.1017/plc.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2024.26


biocatalysis concentrates on the use of enzymes and overexpression
of enzymes in genetically engineered microbes but they are con-
sidered to be expensive as it requires resources to renew cofactors
required for enzyme activities (Monti et al., 2011; Sheldon and
Pereira, 2017). Biocatalysis may result in chemical transformation
which may help in preparation of chiral compounds and organic
compounds. They can effectively reduce carbon–carbon double
bonds using highly selective processes and mild reactions. Thus,
whole cell biocatalysis can be a sustainable technique in organic
synthesis (Iqbal et al., 2012). Biocatalytic hydrogenation of alkanes
can also serve as a crucial strategy for metal-assisted hydrogenation
reactions. MP contains complex structures which can be effectively
degraded and immobilised using whole cell biocatalysis.

Microplastic biodegradation by hyperthermophilic
composting technology

Hyperthermophilic composting (hTC) is done at high temperature
above 90°C using hyperthermophilic bacteria (Yu et al., 2018). As
this process is performed at a very high temperature it leads to more
efficient bioconversion within short period. Moreover, hTC is also
effective for the reduction of antibiotic resistance genes and mobile
genetic elements in sewage sludge due to the involvement of high
temperature (Liao et al., 2019). Sewage sludge is one of the major
sources of MP particles and removal of these MP particles by
conventional treatment procedures can be ineffective. hTC can be
effectively used for in situ biodegradation of sludge-based MPs. In a
study made by Chen et al. (2019) hTC reported removal of 43.7% of
MP from sewage sludge. hTC was also capable of degradation of 7.3
% of the PS-MPs at 70°C in 56 days through bio-oxidation. High-
throughput sequencing showed the presence of Bacillus, Geobacillus
and Thermus was directly linked with hTC which accelerate MP
degradation and associated �C�C� bonds cleavage at high

temperature (Manzur et al., 2004). In addition, hTC leads to the
killing of pathogens associated with MP and lacks nitrification and
denitrification processes, preventing the excess loss of nitrogen
(Kanazawa et al., 2008).

Future research directions in microplastic bioremediation

Studies regarding accumulation, characterisation, identification of
microplastics are numerous, however, studies regarding their miti-
gation are still lagging. Biodegradation process of microplastics can
be understood following four common approaches namely, (1) the
depletion of substrates, (2) accumulation of biomass, (3) reaction
products and (4) changes in substrate properties. Additionally,
standard processes for plastic biodegradation involves producing
microbial films on the polymeric surfaces followed by thier break-
down into smaller pieces (<20 μm). However, the methods are not
economical and also not widely applicable. The micro-Fourier
transform infrared (FTIR) can facilitate the mapping of samples,
multiple polymer characterisation and identification of irregular
shapedMPs and is widely accepted (Gong et al., 2018), however, the
method is quite expensive and time-consuming. Other analytical
methods employed for MP identification includes scanning elec-
tron microscope-energy dispersive spectroscopy (SEM-EDS),
pyrolysis-gas chromatography-mass spectrometry and ESEM-
EDS (Horton et al., 2017). MPs are classified as an emerging
pollutants due to a paucity of MPs data from soil and water, which
limits knowledge of their environmental impact. It is difficult to
show the ecotoxicological risks of microplastics on the surrounding
ecosystems due to a lack of quantitative data (Harrison et al., 2012;
Goel, 2017; Gong et al., 2018). In a nutshell, microplastic research is
still in its infancy and more research is needed to address links
between plastics and microplastics generation.

MPs have become a potential substrate for colonisation in the
oceans, with members of the family Sphingomonadaceae in par-
ticular selectively colonising microplastic polymers. Based on our
reanalysis of available literature and critical review, available infor-
mation and evidences of MPs degradation by microbes are not
adequate. According to Tagg and Labrenz (2018) for ensuring
environmental compatibility and sustainability, collective actions
are needed in order to better understand microbial degradation of
plastics focused research on understanding the microbial pathways
that can potentially degrade plastic are needed.

Future studies should consider genomics and proteomics
approach in order to amplify the rate of microbe-mediated degrad-
ation of MP. The use of fungi for degrading MP effectively is now
receiving increased attention. Fungi that are able to withstand oxi-
dation and corrosion will be identified and screened for investigating
their degradation properties on MPs that are difficult to degrade
paving the way towards new and innovative strategies focused at
mitigating the environmental impacts of MPs (Paco et al., 2017).
SinceMPbiodegradation is a complex issue testing the efficacy of the
process under real-world conditions is of prime importance.

Although advanced and innovative methods have been devel-
oped for isolating strains capable of degrading MPs, still the num-
ber of bacteria selected for screening is mostly limited to taxa like
Bacillus, Pseudomonas, Chelatococcus and Lysinibacillus fusiformis.
However, the bacterial degradation efficiency of MPs is quite low
(0–15%) and takes a long time (usually 0–3 months) showing that
microbial degradation ofMP is a slow and time consuming process.
Thus, future studies should look into improving the bacteria-
mediated degradation potential of MPs with the help of modern

Figure 3. Bacterial colonisation, biofilm formation and degradation of microplastics.
Reprinted after Sun et al. (2023), under a creative commons licence, open access.
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molecular techniques like in vitro transcription, in situ hybridiza-
tion, high-throughput sequencing and PCR. Also, multiple bacter-
ial consortia have been identified from various environments
(Sangwan andWu, 2008) which have potential forMP degradation.
However, these are complex processes due to the involvement of
variousmicroorganisms andmultiple enzymes. Therefore, in depth
studies are needed to get a clear idea about the factors influencing
and mechanisms involved in the degradation process.

Also, the progression of the whole process of biofilm formation
needs to be studied in detail, especially the microorganisms initi-
ating the colonisation of a novel MP particle in different environ-
ments and the successional process leading to further colonisation
by other microorganisms. This will help us in getting an idea about
the whole process of MP biodegradation.

Future research should be oriented towards microbial remedi-
ation of plastic, especially understanding the microbial degradation
mechanism and factors affecting it under real-world conditions so
that it can be applied in real-world situations and can perform
optimally and especially in developing innovative approaches
towards microbial remediation through novel methods which are
environmentally sound and sustainable.

Conclusions

Human activities have long continued to modify planet earth, but
now it is time to access our impacts on the planet. Plastics have
provided many benefits and have made our life easier. Perhaps it is
time to reconsider the importance we place on contemporary

Figure 4. Different biochemical processes in microbe-mediated microplastic degradation and related biotechnological interventions. Reprinted after Zhou et al. (2022) (Elsevier),
licence number 5647011139377.
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conveniences. Planet Earth, with its many ecosystems and over
1030 microbial inhabitants (Flemming and Wuertz, 2019), has
discovered a mechanism to biotransform and even to some extent
degrade plastic materials. MPs are an emerging class of contamin-
ants having ubiquitous presence in every environment and affect-
ing them negatively. Currently, MPs are a serious issue not only in
the aquatic ecosystem but also in terrestrial ecosystems. In this
scenario, there is an urgent need to develop strategies for mitigating
this problem. Very little knowledge is available on key depolymer-
ase and the mechanisms of biodegradation of Low biodegradable
MPs (e.g., PP, PE, PS, PVC) and the most common depolymerising
method is pyrolysis. Thus, more research efforts are needed to
identify depolymerases from the plastic-degrading strains. Surface-
modifying enzymes and esterase’s (e.g., cutinases, lipase, PETase)
have been tested for MPs and their catalytic efficiency towards
initial PET hydrolysis varies depending on crystallinity and envir-
onment conditions. Thus, to protect enzymes within an engineered
cellular environment application of whole-cell biodegradation has
been recommended. Nevertheless, degradation of biodegradable
MPs takes place under assisted conditions. Regarding the highly
crystalline MPs sustained thermal hydrolysis has been recom-
mended to make the polymer bioavailable to microbes. For com-
posting biodegradation, uncertainty remains in the requirement for
specific collection and composting facilities and various contam-
inated and toxicMPs residues. Thus, the primary focus should be to
reduce MP footprint through the use of natural alternatives (e.g.,
jojoba beads, pumice, ground nutshells) and MPs isolation in
environmental matrices in order to reduce MPs release into the
environment. Future studies should aim atmulti-omics approaches
to decipher biochemical transformation mediated by microbes.
Furthermore, biotransformation of plastic debris by microbes
may potentially have an important role in the generation ofmicron-
and sub-micron-scale polymer particles, which could impact
human health and food security.

In marine environments, biofilms induce transformation of sur-
face properties, the degradation of additives, and the release of
metabolic by-products with the help of modifying/hydrolysing
microbial enzymes. Thus, biofilms can be potential candidates for
mitigation of microplastics. However, we have limited knowledge
about microbial communities on MPs coated by biofilm, factors
affecting their colonisation and their interaction with plastic sub-
strate. There is an urgent need for studies regarding epispasticmarine
microbial communities and their ability to remediate MPs from
aquatic environment. Bioengineeredmicrobes andmodified enzyme
systems can provide exciting avenues of research in this regard.
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