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Fart of our folklore is that genuine laws of nature must be universal
in space and time. The purpose of this note is to explicate and compare
various senses of this requirement. I am not concerned to argue here
that the requirement, in any one of its explicated forms, should or
should not be adopted.

1. Tooley's Garden

If it is hard to state straight out exactly what is demanded by
universality in space and time, Michael Tooley has provided an example
of a hypothetical law which fails the requirement in a significant
sense:

All fruit in Smith's garden at any time are apples. When one
attempts to take an orange into the garden, it turns into an
elephant. Bananas so treated become apples as they cross the
boundary, while pears are resisted by a force that cannot be
overcome. Cherry trees planted in the garden bear apples or they
bear nothing at all. If all these things were true, there would be
a very strong case for its being a law that all the fruit in Smith's
garden are apples. And this case would be in no way undermined if
it were found that no other gardens, however similar to Smith's in
all other respects, exhibited behavior of the sort just described.
(Tooley 1977, p. 686)

In this example, the lawfulness of 'All the fruit in Smith's garden
are apples' is not meant to derive from some special property unique to
Smith's garden. In fact, the term 'Smith's garden' need not be
understood to pick out a physical entity at all, but can be taken simply
to delimit a particular space-time region R. The gist of the example is
that a statement of the form 'All F's are G's' holds in the space-time R
and nowhere else, and, furthermore, holds in R not as an accidental
generalization, but as a law of nature.

What sense of "universality in space and time" does the law in
Tooley's example violate?
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2. Earman's (U)

Earman (1978) considered a number of senses in which a law could be
taken to be "universal in space and time". One of these, that laws have
an unrestricted range in space and time, suggests itself as a candidate
for the sense in which Tooley's example fails to be universal.

Before giving Earman's explication of this condition, let me
establish the notation to be used in the remainder. Upper case Latin
letters A, B, etc. denote structures and models of theories and laws.
M(A) denotes the space-time manifold of A. R, R1, R'•, etc. are space-
time regions. AIR denotes the restriction of A to region R. The symbol
— is used to indicate isomorphism, in the appropriate sense for the
types of entities involved. K ranges over classes of structures. L, L1

etc. are statements of putative law. A t= L means that A satisfies L.
Mod L denotes the class of structures which satisfy L.

For the moment, let us restrict the class K of "permissible"
structures to one for which there is a single fixed space-time, so that
for all A,B 6 K, M(A) - M(B). In this context, Earman formally
interpreted "unrestricted range in space and time" to mean:

(U) There is no non-empty proper subregion R such that for any A
there is a B such that B1= L and BJR ̂  AIR.

The idea, in English, is that there is no region R in which, as far as L
is concerned, "anything goes". For this reason, I will officially call
Earman's (U) the "No Chaos" condition.

As Earman pointed out, this condition is not easily generalized to
contexts in which the space-time background varies from structure to
structure. Nonetheless, Tooley's example can be considered in the
context of a fixed space-time background. Suppose putative law L has
the intended content of 'All fruit in Smith's garden are apples'. Since
L itself in no way constrains what may happen outside Smith's garden, it
violates the No Chaos condition. But suppose that putative law L'
expresses the idea that all fruit in Smith's garden are apples and all
fruit contain seeds. Since, according to L', no region of space-time
may contain seedless fruit, L' meets the No Chaos condition.
Nonetheless, L' fails to be fully universal in space and time in a
univocal sense in which L fails.

If the No Chaos condition strikes you as relatively weak, it might
surprise you that a "good guy" law like Newton's Second fails to meet
it. Expressing this law in the form

m(a) x ( £

where a and b range over point masses and f ^ denotes the force of b on

a, consider any finite connected region R of Newtonian space-time.
Impose on R whatever kinematically consistent particle trajectories,
mass assignments, and interactions you will. R can always be extended
to a model of (*) by situating outside of R additional particles with
the right trajectories, masses, and interactions so as to balance the
equation. If it is said that Newton's Second Law is really
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(**) F = m(a) x (d2r(a)/dt2),

where F is the total force acting on a, then there is another law in
"""el

the edifice of Newtonian Mechanics relating component forces to total
force, to wit

which suffers the same fate as (*).

The difficulty here is not that (*) fails to apply to some regions of
space-time, but that (*) subjugates the various regions in harmony. Its
reign is wholistic, not piecemeal. This suggests an important division
of laws, to which I shall return below.

3. Uniformity

The putative law L1 above, although it pre-empts completely "lawless"
regions, singles out some regions for harsher treatment than others. It
acts like a statute that prohibits everywhere the sale of alcohol to
minors but also restricts a particular township to the sale of only beer
and wine. We need a condition which asserts that, whatever the law
forbids, its prohibitions apply uniformly to all regions of space and
time.

(Uniformity) Let L be a putative law, R and R1 non-empty and
isomorphic space-time regions, and A an arbitrary model of L. Then if
R S M(A), there is some B € Mod L such that R1 £ M(B) and A^RSf B1R1.

The idea of Uniformity is, in English, that if R and R1 are isomorphic
space-time regions, then, according to L, whatever can happen in R can
happen in R'.

Two comments are in order. First, the Uniformity condition does not
suppose a fixed space-time background, and thus is already completely
general. Second, and more importantly, the notion of "region
isomorphism" must be delicately construed. Clearly, if R — R 1 , then R
and R1 must be at least homeomorphic. But the isomorphism must further
respect any additional absolute space-time structure present on the
regions. I realize that the distinction between absolute and dynamical
elements of a space-time may be problematic, but the distinction is
workable in many cases. For example, in Newtonian space-time, if R is a
region bounded by simultaneity sheets and a set of inertial
trajectories, then RtfR1 only if R1 is similarly bounded. Similarly,
in Aristotelian space-time, if each spatial hypersurface of R is a
sphere concentric about the center of the universe, then (since absolute
place is a distinguished absolute feature of Aristotelian space-time)
R — R1 only if each spatial hypersurface of R' is similarly centered.
In General Relativity, region isomorphism reduces simply to region
homeomorphism, since the metric is a dynamical element of the theory.

This said, I think it is reasonably clear that each law of the
usually studied theories in space-time formulations—Newtonian
mechanics, relativistic mechanics, electrodynamics, General Relativity,
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and even Aristotelian physics—satisfies the Uniformity condition.
Furthermore, the sorts of laws represented by L and L' above do not.
Let me briefly remark, on the relation of Uniformity to other conditions.

First, Uniformity does not entail No Chaos. This should be evident
from Newton's Second Law construed as (*) above. For reinforcement,
consider the following quaint example. Suppose in Aristotelian
space-time (see Fig. 1) there is a region R, roughly halfway between the
earth and the moon, in which "anything goes". Suppose the remainder of
the space-time is governed by the usual Aristotelian natural philosophy.
Because R is uniquely distinguished with respect to the center of the
universe, any subregion of R is at best isomorphic to only other
subregions of R (e.g., R' and R " in Fig. 2). Hence, Uniformity
prevails. But any subregion of R, including R itself, suffices as a
counterinstance to the No Chaos condition.

Nor does No Chaos entail Uniformity. Consider Maxwell's equations in
a context where there is a single, fixed Minkowski space-time. Because
the field equations satisfy the No Chaos condition, so does any stronger
theory. But by strengthening the theory so as to eliminate any model in
which, for some fixed region R, the charge density is non-zero, we
violate Uniformity.

Second, Uniformity does not coincide with the so-called "No
Reference" requirement, viz., that laws do not make reference to
specific spatio-temporal locations. Uniformity is at least a weaker
condition, since specific regions can be singled out by their relation
to absolute features of a space-time and laws formulated with reference
to them without violating Uniformity (witness the Aristotelian example
above). Whether or not Uniformity is entailed by No Reference is
undecidable pending an exact formulation of No Reference, a project
which may not even be possible. It would seem that a putative law, to
fail Uniformity, must somehow make reference to one or more special
regions. But what mechanisms of reference are illegitimate is not
clear. There are cases in which reference can proceed without names or
definite descriptions. Consider a context having a fixed space-time
background and suppose that that space-time, although globally £ > is
rather bumpy in curvature. There is a "big bump" and in addition to
that numerous lesser bumps, though the latter are distributed in such a
way that the manifold has no nontrivial automorphisms. The metric is an
absolute geometric feature, but the "big bump" per se is not. Yet it
can be picked out by its unique metrical features. And hence, so can
any other region by its metrical relation to the "big bump". Despite
all this, we may still have non-trivial isomorphism classes of regions.
All the apparatus is in place to write down a law violating Uniformity
but apparently satisfying the strictures of No Reference.

Finally, there appears to be a close connection between Uniformity
and symmetry principles, though perhaps not in the way anticipated.
Uniformity by itself is completely impotent to enforce any requirement
of the form 'Laws must be invariant under space-time transformations of
type x1. But in a context with a fixed space-time background, the
symmetries of the space-time take regions onto isomorphic images of
themselves in precisely the sense of "isomorphism" need to implement the
Uniformity condition. Consequently, Uniformity requires that for a
theory formulated in the context of a fixed space-time background, the
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local symmetries of the theory must Include the symmetries of the
space-time. Uniformity, however, does not prevent the symmetries of the
theory from outstripping the space-time symmetries, as is the case in
Newtonian mechanics formulated in Newtonian space-time with absolute
space. It should also be noted that even when non-trivial space-time
symmetries are lacking, Uniformity can still have "punch". The reader
is invited to consider the "bumpy" space-time in the preceding
paragraph. "

4. Armstrong and. Aristotle

Does Uniformity appropriately capture the sense in which Tooley's
garden variety law fails to be universal in space and time? Uniformity
rules out such cases, but permits such laws as those of Aristotelian
physics. Armstrong (1983), however, thinks the two cases are on a par
anent the issue of universality. Armstrong provides no reasons for
this judgment beyond the fact that the Aristotelian system endows the
center of the universe with a "special nomic role" (p. 26). Indeed it
does, but in the same sense that Newton gave the velocity of the center
of mass of the system of the world a special nomic role, viz. as an
absolute feature of the fixed space-time background. I do not see any
difference in principle between the imposition of absolute position on a
space-time and the imposition of absolute velocity or absolute
acceleration. According to Armstrong's lights, we would have to
consider the laws of classical mechanics as mere local uniformities,
since they serve to distinguish regions "comoving" with lnertial, frames
from regions "comoving" with accelerated frames.

The charged will no doubt be leveled that Tooley's law can be
converted into a law satisfying Uniformity simply by introducing into
the space-time backgound a distinguished object associated with the
region of Smith's garden. Doing this will indeed restore Uniformity,
but then we shall have a different example. Let $ be the absolute
object introduced, say a fixed scalar field vanishing everywhere except
in the garden. The law of the garden would then take the form 'If 5 J6

0, then all fruit are apples'. The difference between the two cases is
not a small one. In the former case, fruit in the garden has its
distinctive behavior there for no particular reason. In the latter
case, the field <£ can be held responsible. If this is judged
unsatisfactory, I remind you that in Newtonian mechanics, given frames F
and F1 relatively accelerating, there is no particular reason in virtue
of which F could be said to be inertial and F' non-inertial.

I submit that whatever qualms one might feel about Tooley's garden
with scalar field % derive, not from a violation of "universality in
space and time", but from the introduction of what Einstein called
"factitious causes". In his paper on the foundations of General
Relativity (1916), Einstein poses the case of two fluid bodies, S and
S', in constant relative rotation about the line joining them and
sufficiently separated from one another and all other masses so that the
gravitation interaction becomes negligible. Suppose further S measures
to be a sphere while S* measures to be a flattened ellipsoid. According
to Einstein, to explain the flattening of S' with reference to the class
of inertial frames of Newtonian mechanics (or of special relativity) is
to invoke a factitious cause.
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The prohibition against factitious causes can be interpreted in at
least three different senses, none of which can plausibly be taken as an
expression of the requirement of "unversality in space and time". (1)
Einstein's immediate reading of it was as an epistemological principle
that only an "observable fact of experience" is an admissible cause.
(2) Einstein's derivative reading of it two paragraphs later was as a
form of Mach's Principle, to wit that all motion is relative motion.
(3) Finally, the prohibition might be taken as a prohibition against
absolute objects in Anderson's sense of an object which can influence
other objects without itself being influenced (Anderson 1964, 1967).
Unless the notion of "observable" is extremely liberalized, reading (1)
is simply an expression of a principle of strict empiricism. The
principle expressed by reading (2) is not satisfied in any space-time
theory with historical currency, including General Relativity. The
prohibition of reading (3) is satisfied in General Relativity, but fails
in Newtonian Mechanics, electrodynamics, Special Relativity, and the
like—theories which we want to say satisfy the requirement of
"universality in space and time".

It might be suggested that (3) be strengthened in such a way to
exclude only those absolute objects of a "local" character. One attempt
at this night be to say that an absolute object G is non-local if for
any regions R and R' and any homeomorphism f& from R to R',
f *(GJR) = G1R', where jzf * is the mapping of G induced by ft. But this
is too strong, since, according to it, the inertial structure of, e.g.,
Newtonian space-time is not non-local. Another attempt might be to
insist that a space-time contains absolute objects of a "local"
'character just in case the space-time has no non-trivial automorphisms.
This, however, will not serve Armstrong's purposes, since Aristotelian
space-time is preserved under spatial rotations and time translations.
Consider also a space-time which is topologlcally E x E where the E
component is an infinite three dimensional "checkerboard", each cube of
which contains as a subregion an isomophic copy of the Tooley garden
with absolute scalar field (£ .

The appropriate conclusion, I believe, is that "universality in space
and time" is not a feature of laws given by the "permitted phenomena"
alone, but by the phenomena plus the details of space-time. If this
seems unacceptable, then I leave as a challenge the formulation of
comparable criterion of universality independent of the details of the
structure of space-time.

5. Other Senses of Local, Global, and Universal

In the short space remaining, let me mention some other senses in
which laws can be said to be local laws, global laws, or universal laws.
Full treatment of the details will have to be reserved for another
occasion.

There is a well entrenched sense of "local", current with
mathematicians and physicists, in which Tooley's law is not a local law
at all. This sense is that in which a space-time is locally E4 but
globally may be in a different homeomorphism class. Such distinctions
are habitual in topology and have the standard form "X is locally Q iff
every p£X has a neighborhood U such that ^J(U)", where <p is
characteristic of the property Q. Adopting the topologist's sense of
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"local", a law L is said to hold locally in A if every pfiM(A) has a
neighborhood U such that L holds in U. Of course, this requires that,
for the context in which the law is formulated, the class K of
"permissible" structures be closed under restrictions to all open
subregions of the respective manifolds, something we do not normally
require in talking about the class of all "possible" worlds. But once
done, it is easy to see that there are laws which hold locally but not
globally, or globally but not locally. In fact, so-called cosmological
principles appear to be laws of the latter sort.

Once we open the semantic doors to "fragments" of possible worlds, we
can formulate another sense of "universality" which connects directly
with an often proposed syntactic constraint on the form of law
statements, namely that laws, or law statements, must be universal
sentences. (I hasten to add that this sense of "universality" is a
fruit different from the condition of Uniformity.) Familiar to model
theorists is the result that any class of structures (for a first-order
language) closed under the formation of substructures is axiomatizable
by a set of universal sentences. Thus, if our structures are such that
the space-time manifold constitutes the domain of each structure, we can
say that a law L is universal in this sense just in case for any model A
of L and any non-empty region R £= M(A), AIR is also a model of L. Field
theories will typically be universal in this sense; theories involving
sums over discrete masses, such as classical mechanics, will not. This
is the sense mentioned above in which the laws of mechanics rule
wholistically.

There is a twist to this. Consider the question whether or not in
elementary logic the theory of Boolean algebras is universal. It all
depends. If a Boolean algebra is regarded as a distributive
complemented lattice, the answer is no. If thought of as an algebraic
structure with the operations meet, join, and complement and the
distinguished elements top and bottom, the answer is yes. The
difference is this. In the former case a Boolean algebra is a
relational structure, and any restriction of the relation to a subset of
the domain generates a substructure. But not every subset of a lattice
is necessarily a sublattice. In the latter case, since the semantics of
elementary logic interprets function symbols as total functions, only
restrictions to subsets which contain the top and bottom and are closed
under the algebraic operations count as substructures. The point here
is that "universality" in this sense is not a property preserved under
interpretations between theories. Thus, it may be that field theories
are "universal" in their space-time formulations. But interpreted in,
say, set theory, they are not.

6. Conclusion

I have considered here a number of senses in which laws might be
taken to be "universal in space and time". The condition of Uniformity
strikes me as the appropriate explication of an important, and often
intended, sense. In addition to this concept, I have sketched a few
others—local, global, and univeral in the sense of preservation under
substructures—which should be kept distinct from it.

Must laws satisfy Uniformity, or any of the other senses of
"universal"? I don't think one can say without an understanding of what
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makes for lawfulness. Sure, there are a number of accounts available.
But the fact that they fail to resolve such issues suggests that our
grip on nomology is still quite feeble.

Notes

1 would like to thank John Earman for several helpful comments on an
earlier draft of his paper.

2
One can also pose a case in which 'All F's are G's1 is true in every

space-time region, but holds as a law of nature exclusively in R.
3
The other senses Earman considered are:

-laws do not make reference to specific spatio-temporal locations
-laws do not explicitly contain space or time coordinates
-laws are invariant under spatio-temporal translations.

See Anderson (1964, 1967), Earman (1974), and Friedman (1983).

See Earman (1978) for a similar remark.

6
The notion of "the symmetries of a theory" is given implicitly in

Earman (1974) and explicitly in Earman (forthcoming). The sense of
"local" here is that discussed in section 5. If the class of models of
the theory is closed under model isomorphism, then each of these local
symmetries will be global as well. But closure under model Isomorphism
alone suffices to guarantee that each space-time symmetry is also a
global symmetry of the theory. An imaginative reader can verify that
Uniformity and closure under model isomorphism are independent
conditions.

To say "In F there are no centrifugal and coriolis effects but in F1

there are", no more answers the question than does the reply, in the
Tooley case, that ij> has the character it does in R because "in R, all
fruit are apples".

Q

For a discussion of this see, e.g., Earman (1974) pp. 269-271 and
Sklar (1974) pp. 216-221.

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193108 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193108


75

References

Anderson, J.L. (1964). "Relativity Principles and the Role of

Coordinates in Physics." In Gravitation and Relativity. Edited
by Chui, H. and Hoffman, W. New York: Benjamin. Pages 175-194.

. (1967). Principles of Relativity Physics. New York:
Academic Press.

Armstrong, D.M. (1983). What Is a Law of Nature? Cambridge:
Cambridge University Press.

Earman, J. (1974). "Covariance, Invariance, and the Equivalence of
Frames." Foundations of Physics 4: 267-289.

(1978). "The Universality of Laws." Philosophy of Science
45: 173-181.

. (forthcoming). "Meaningfulness and Invariance." In
Minnesota Studies in the Philosophy of Science. Edited by C. Wade
Savage. Minneapolis: University of Minnesota Press.

Einstein, A. (1916). "Die Grundlage der allgemainen
Relativitaetstheorie." Annalen der Physik 49: 769-822.
(Reprinted as "The Foundation of the General Theory of
Relativity." In Lorentz, H.A. et. al. • The Principle of
Relativity, (trans.) W. Perret and G.B. Jeffrey. New York:
Dover, 1952. Pages 111-164.)

Friedman, M. (1983). Foundations of Space-Time Theories. Princeton:
Princeton University Press.

Sklar, L. (1974). Space, Time, and Spacetime. Berkeley: University
of California Press.

Tooley, M. (1977). "The Nature of Laws." Canadian Journal of
Philosophy 7: 667-698.

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193108 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193108



