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Thin film modelling of magnetic soap films
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Magnetic soap films under the forcing of an inhomogeneous magnetic field are governed
by a wide range of interconnected physics. The study of magnetic soap films requires
the development of comprehensive models to support experimental observations. In this
study, the thin film approximation is applied to the Navier–Stokes equations to derive
a model for the film thickness of magnetic soap films that incorporates the effects
of interfacial mobility, surfactant transport and magnetite nanoparticle (NP) transport.
This derived model consists of a coupled system of equations for the film thickness,
interfacial velocity, interfacial surfactant concentration and magnetite NP concentration.
Simulations are performed for both soap films and magnetic soap films by solving the
system of equations using the Galerkin finite element method, and results are compared
with experiments. Simulation results highlight that interfacial flows can dominate the
rate of film thinning and that accounting for the dependence of the magnetisation on
the local magnetite NP concentration can influence the predicted speed of magnetically
driven flows. Furthermore, simulation results demonstrate that the model is able to predict
marginal regeneration in qualitative agreement with the experiments for soap films; the
model also predicts the same flow pattern as seen in the experiments for magnetic soap
films. Overall, this study advances the state of soap film and magnetic soap film modelling
and will contribute to acquiring control over the drainage and stability of magnetic soap
films in the long term.

Key words: magnetic fluids, lubrication theory

1. Introduction

Soap films are thin films of liquid stabilised by interfaces laden with surface-active
agents (surfactants). In the case of free soap films, a gas phase surrounds the soap film
on both sides. This is typical of liquid foams, which contain gas dispersed between
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(surfactant-stabilised) thin films of liquid (Fameau & Fujii 2020). The stability of soap
films and liquid foams is of key relevance to several applications, for example, a high
foamability and foam stability is desired for shampoos (Mainkar & Jolly 2001) and
fire-fighting foams (Magrabi, Dlugogorski & Jameson 2002), whilst foamability and foam
stability is typically less desirable for carbonated drinks (Gonzalez Viejo et al. 2019).
Soap films thin over time due to drainage (liquid flows) and evaporation, leading to
thinner films, which are less stable and more prone to rupture than thicker films (Poulain,
Villermaux & Bourouiba 2018). Adding magnetic nanoparticles (NPs) to soap films, to
form magnetic soap films, allows for an applied magnetic field to control the drainage
and stability of soap films. Lalli et al. (2023) created free magnetic soap films from
aqueous-surfactant solutions containing magnetite (Fe3O4) NPs and reported that an
inhomogeneous magnetic field can have either a stabilising or destabilising effect on a
magnetic soap film, depending on the concentration of magnetite NPs in the film. It is
envisaged that further research devoted to acquiring control over the dynamics and stability
of magnetic soap films and further understanding the physics of these fluids could lead to
the development of novel technologies. One example is the use of magnetic soap bubbles
as stimuli-responsive carriers: magnetic fields could be used to control the position of
magnetic soap bubbles and trigger the release of a substance, such as a drug, carried by
the bubble (Soetanto & Watarai 2000; Tang et al. 2015).

A wide range of physics is involved in the thinning of both soap films and magnetic soap
films. In the following, a non-exhaustive introduction to the key phenomena involved in
the thinning of soap films is provided. The thickness of a soap film changes with time due
to drainage and evaporation. Drainage flows may be driven by gravity and by gradients in
capillary pressure, where the local capillary pressure depends on the local surface tension
and interface curvature (Manikantan & Squires 2020). Viscous shear from drainage flows
of the core liquid (the liquid in the film between the interfaces) or from a surrounding
fluid can drive interfacial flows (Couder, Chomaz & Rabaud 1989). The response of
the interface depends on the type and surface coverage of surfactants adsorbed at the
interface, as adsorbed surfactants resist shear and dilatational deformation. This viscous
response is typically characterised through interfacial shear and dilatational viscosities
(Sagis 2011; Li & Manikantan 2021). These interfacial viscosities depend on the type
of surfactant and generally increase with the surface coverage of surfactant (Fruhner,
Wantke & Lunkenheimer 2000; Denkov et al. 2009; Bhamla et al. 2017), which leads
to less mobile interfaces. Immobile interfaces, which feature no interfacial flows, arise in
the limit of large interfacial viscosities and lead to slow draining and long-lasting films
(Mysels 1968; Bruinsma 1995). In the remainder of the text, films with surfactant-laden
interfaces that are not immobile are referred to as partially mobile films, and films with
interfaces clean of surface-active agents are referred to as fully mobile films. Interfacial
flows advect surfactants along the interface, resulting in Marangoni stresses that can act to
immobilise the interface or, alternatively, drive interfacial flows (Manikantan & Squires
2020). Diffusion of surfactant along the interface and local stretching or compression
of the interface also affect the interfacial surfactant concentration. It is the change in
surface tension upon local stretching or compression that results in the elasticity of
soap films and allows soap films to survive against disturbances (Couder et al. 1989).
When the surfactants stabilising the interface are insoluble, the change in the surface
tension resulting from stretching or compression of the interface, which opposes further
stretching or compression, is referred to as the Marangoni elasticity (Manikantan &
Squires 2020). When the surfactants are soluble, adsorption/desorption of surfactant
to/from the interface additionally affects the local interfacial surfactant concentration. If an
interface laden with soluble surfactants is stretched or compressed over a long enough time
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that adsorption/desorption affects the surface tension, the film elasticity is now referred to
as the Gibbs elasticity. Many soluble surfactants also aggregate to form micelles once
their concentration in the core liquid increases above the critical micelle concentration.
Micelles affect adsorption/desorption kinetics (Lucassen 1975) and can lead to stepwise
thinning (Krichevsky & Stavans 1997; Ochoa et al. 2021).

For soap films bounded by a Plateau border, a solid frame or a liquid bath, the soap film
can be split into three regions (Barigou & Davidson 1994): (i) a thin film region, in which
the film has a thickness between several nanometres and several micrometres (Couder
et al. 1989); (ii) a meniscus with thickness of the order of a millimetre that connects
the thin film to the border, frame or bath (Gennes, Brochard-Wyart & Quéré 2004); and
(iii) a transition region between the thin film and the meniscus. Liquid is sucked from the
thin film into the meniscus by capillary suction, which arises since the meniscus is at a
lower pressure than the thin film due to its curvature (Overbeek 1960). The flow of liquid
into the meniscus causes a region of reduced film thickness, known as a marginal pinch, to
form in the transition region (Trégouët & Cantat 2021). Gradients in surface tension can
destabilise the marginal pinch (Miguet et al. 2021a), resulting in marginal regeneration,
an important drainage mechanism for partially mobile soap films (Mysels 1968; Miguet,
Rouyer & Rio 2021b). According to the mechanism reported by Nierstrasz & Frens (1999),
in marginal regeneration, elements of film with high surface coverage of surfactant are
extracted from the meniscus into the thin film. These elements expand due to Marangoni
stresses and become thinner as they expand, which creates extra film area that allows for
the continual suction of thicker fluid into the meniscus under the constraint that the surface
area of the film remains constant over time.

For soap films with thicknesses of the order of 100 nm or less, interactions between
the interfaces start to become significant. Attractive (conjoining) interactions arise, for
example, from van der Waals dispersion forces and act to accelerate film thinning
(Bergeron 1999; Stubenrauch & Von Klitzing 2003). On the other hand, repulsive
(disjoining) interactions, which act to oppose film thinning, may arise due to electrostatic
interactions between electric double layers or steric interactions. The strength of these
interactions is quantified by the conjoining/disjoining pressure (Bergeron & Radke 1995).
Assuming that the film does not rupture first, film thinning may continue until the
disjoining pressure becomes large enough to prevent any further thinning. Soap films in
this state are described as metastable (Couder et al. 1989; Bergeron 1999) and are either
Newton black films or common black films, depending on which interactions contribute
most significantly to the disjoining pressure. Common black films usually result from
electric double layer forces and have equilibrium thicknesses between approximately
10 and 100 nm (Overbeek 1960; Lyklema & Mysels 1965; Langevin & Sonin 1994).
In contrast, Newton black films are thought to be due to entropic confinement forces
(Bergeron 1999) and have smaller equilibrium thicknesses of around 5 nm (Overbeek
1960; Couder et al. 1989).

In addition to drainage, evaporation can have a significant effect on film thinning.
The rate of evaporation is dependent on the temperature and relative humidity of the
surrounding air (Miguet et al. 2020) and on the temperature of the film, which is affected
by evaporative cooling (Boulogne, Restagno & Emmanuelle 2022). Furthermore, the
presence of surfactant at the interface is expected to decrease the rate of evaporation with
the precise change determined by the surface coverage of surfactant (Rubel & Gentry 1984;
Marek & Straub 2001). Similarly, the presence of glycerol in the film is expected to slow
the rate of evaporation (Boulogne et al. 2022; Pasquet et al. 2022).

When a magnetic field is applied to a soap film containing magnetic NPs, additional
mechanisms need to be considered. The core liquid of a magnetic soap film is a colloidal
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dispersion of magnetic NPs in a non-magnetic base liquid, or a ferrofluid (Philip 2022).
Magnetite (Fe3O4) and maghemite (γ -Fe2O3) NPs are widely used as the magnetic NPs
in ferrofluids. These NPs usually have a single magnetic domain for the particle sizes in
a typical ferrofluid (Li et al. 2017; Kole & Khandekar 2021). When a magnetic field is
applied to a ferrofluid, the magnetic dipole moments of the magnetic NPs experience a
torque driving them to align with the applied field. The ferrofluid becomes magnetised
and the magnetisation will increase as the strength of the applied field is increased until
saturation, which occurs when the magnetic dipole moments of all NPs is aligned with
the applied field (Rosensweig 2013). If the applied magnetic field is inhomogeneous,
the magnetic NPs will be driven in the direction of increasing magnetic field intensity
(magnetophoresis) and a magnetically induced flow will result in the magnetic soap film
due to the interaction between the NPs and the surrounding liquid molecules. The local
magnetisation of a ferrofluid, which determines the strength of magnetic forcing, depends
on the local concentration of magnetic NPs and varies nonlinearly with the magnetic field
intensity. The local concentration of magnetic NPs is affected by magnetophoresis, flow of
the base liquid, diffusion, interactions between the magnetic NPs and interactions between
the magnetic NPs and other molecules in the film (Pshenichnikov, Elfimova & Ivanov
2011; Nacev et al. 2012; Ayansiji et al. 2020). Furthermore, the nonlinear relationship
between the magnetisation and magnetic field intensity depends on the size distribution
of magnetic NPs, magnetic dipole–dipole interactions and the thermal energy of the
system, which acts to randomly orient the magnetic dipoles. In addition, the magnetisation
is affected by demagnetising fields resulting from the magnetisation of the ferrofluid
(Richardi & Pileni 2004), which increase in importance with the concentration of magnetic
NPs in the ferrofluid (Pshenichnikov & Burkova 2012). An applied magnetic field can also
influence the shape of the meniscus of a magnetic soap film, which may impact the strength
of capillary suction (Rosensweig et al. 2005; Singh, Singh & Bhaumik 2024).

The speed of drainage flows is closely related to the viscosity of the draining liquid. The
viscosity of a ferrofluid is larger than the viscosity of the base liquid due to the dispersed
magnetic NPs (Rosensweig 2013), and the ferrofluid viscosity will increase on application
of a stationary magnetic field (Odenbach & Thurm 2002), which is the magnetoviscous
effect. Magnetic NPs in ferrofluids are typically coated in a surfactant to prevent them
from agglomerating (Rosensweig 2013). Interactions between the surfactant coating and
surfactants in the film may affect drainage flows. For example, agglomerates containing
surfactant molecules and magnetite NPs formed in the magnetic soap films investigated in
Lalli et al. (2023), and some of these agglomerates moved at high speeds in the direction
of increasing magnetic field intensity, thus affecting drainage flows.

It is evident that the dynamics of soap films and magnetic soap films are controlled
by a range of interconnected phenomena, and it is a notorious challenge to decouple and
understand the effects of many of these mechanisms from experiments alone (Manikantan
& Squires 2020). In this context, modelling can help to reveal the relative importance of
different physics and allows for predictions of film behaviour in a range of experimental
conditions. In a continuum framework, thin films, bubbles and foams are frequently
modelled using interface-tracking or interface-capturing methods (Tezduyar 2006), which
require each interface to be followed whilst imposing mass conservation and a momentum
balance at each point on the interface. These methods are computationally expensive
and require sophisticated techniques to avoid spurious oscillations around each simulated
interface (Denner et al. 2017). Thin films can also be modelled using the thin film
approximation (lubrication theory), which involves capitalising on the thickness of the film
being much smaller than the lateral extent of the film to derive an evolution equation for the
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film thickness that incorporates essential physics (O’Brien & Schwartz 2002; Craster &
Matar 2009). Thin film models, i.e. models derived using the thin film approximation, are
computationally less demanding and involve simpler numerics than interface-tracking and
interface-capturing methods; therefore, we opted to derive a thin film model to describe
the dynamics of soap films and magnetic soap films.

Several thin film models have been developed for the thickness of free soap films.
Barigou & Davidson (1994) modelled a circular soap film bounded by copper tubes and
accounted for the difference in mobility caused by varying degrees of surfactant adsorption
between the thin film, the transition region and the meniscus. However, the thin film
was treated simply by assuming fully mobile interfaces with a uniform velocity over the
thickness. Aradian, Raphael & De Gennes (2001), too, considered distinct behaviour in
each of the three regions, but assumed rather simplified behaviour in the thin film by
treating the interfaces as immobile with a uniform surface tension. A thin film model
relevant to soap films close to rupture was derived by De Wit, Gallez & Christov (1994).
The resulting model consists of a system of three nonlinear equations governing the
film thickness, interfacial surfactant concentration, assuming insoluble surfactants, and
tangential interfacial velocity. This model has less relevance to soap films with thicknesses
greater than approximately 100 nm. Schwartz & Roy (1999) assumed that the flow velocity
can be divided into shear and extensional contributions and that the two flows contribute
equally to the pressure gradient to derive a model for the thinning of vertical soap films.
This model is expected to be valid over a greater range of thicknesses than the model of De
Wit et al. (1994) and additionally includes disjoining pressure effects. Nierstrasz & Frens
(1999) incorporated interfacial shear and dilatational viscosities, in accordance with the
Boussinesq–Scriven surface stress model, into their thin film model for vertical soap films.
Soluble surfactants were also considered. In order to model soluble surfactants, equations
governing the surfactant concentration in the core liquid and on the interface are required
in addition to relations for the rate of surfactant adsorption and desorption (Manikantan &
Squires 2020). For thin film models, the equation governing the concentration of surfactant
in the core liquid must be integrated over the film thickness to remove the dependence on
the depth coordinate, which requires the variation of surfactant concentration over the film
depth to be assumed.

The aforementioned studies derive two-dimensional thin film models (film thickness as a
function of one spatial dimension); therefore, marginal regeneration can not be simulated,
as there can not be an exchange between thinner fluid and thicker fluid at the boundary of
a thin film represented by only a single point. Joye, Hirasaki & Miller (1996) and Naire,
Braun & Snow (2004) derived three-dimensional thin film models for soap films (film
thickness as a function of two spatial dimensions), similar to the model of Nierstrasz &
Frens (1999) but under the assumption of insoluble surfactants. Both studies were able to
simulate an instability driven by gradients in surface tension that is expected to lead to
marginal regeneration. Despite these studies, marginal regeneration in a soap film has yet
to be simulated using a thin film model. In addition, it is unclear why several studies have
imposed a no-flux boundary condition for soap films supported by a solid wire or frame
(Schwartz & Roy 1999; Braun, Snow & Naire 2002) since the thin film approximation is
not valid in the meniscus and a net flow of liquid between the thin film and the meniscus is
expected. Consequently, a key focus of the present study is to derive a three-dimensional
thin film model and solve the resulting system with a non-zero flux boundary condition,
with the aim of simulating marginal regeneration.

Several experimental studies have focused on investigating whether magnetic fields
can provide an element of control over free magnetic soap films, bubbles and foams:
Sudo, Hashimoto & Katagiri (1990) discovered that a magnetic field can be used to
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stabilise magnetic liquid foams by reducing the rate of foam coarsening. Furthermore,
Hutzler et al. (2002) were able to alter the structure of magnetic soap foams in cylindrical
tubes using inhomogeneous magnetic fields, and Drenckhan et al. (2003) were able to
control the size of the bubbles forming these foams by adjusting the strength of an
applied inhomogeneous magnetic field. Homogeneous magnetic fields can also affect
film dynamics due to the magnetisation induced by the applied field. Elias et al. (2005)
observed that the speed of drainage flows in vertical magnetic soap films was affected
by the application of a homogeneous magnetic field, and Mawet et al. (2023) found
that the shape of hemispherical magnetic soap bubbles sitting on a solid substrate was
altered by an applied homogeneous magnetic field. Lalli et al. (2023) chose to adopt
an inhomogeneous magnetic field in their experimental investigation of magnetic soap
films, as inhomogeneous magnetic fields provide a more direct control over drainage flows
through magnetophoresis. In a different configuration, inhomogeneous magnetic fields are
also advantageous in that they can control the position of freely floating magnetic soap
bubbles (Rodrigues et al. 2011). The focus of these studies investigating free magnetic
soap films, bubbles and foams was predominately experimental, such that only Elias
et al. (2005) developed a model for film thinning, which is a simple two-dimensional
thin film model accounting for gravity, capillary and demagnetising field effects. Moulton
& Pelesko (2010) and Back & Beckham (2012) investigated free magnetic soap films
formed on a vertical frame in inhomogeneous magnetic fields. Moulton & Pelesko (2010)
derived a two-dimensional thin film model for the film thickness, which was then extended
to three dimensions by Back & Beckham (2012) to account for the two-dimensional
nature of the applied magnetic field in the plane of the film. Although both studies
found some qualitative agreement between simulated films and their experimental results,
their models disregard essential physics. For example, their models make the restrictive
assumption of immobile interfaces, whilst experimental images in Moulton & Pelesko
(2010) and Back & Beckham (2012) suggest that they were investigating partially mobile
magnetic soap films (Mysels 1968; Bruinsma 1995). Furthermore, it was assumed that
the magnetisation of the core liquid was linearly related to the applied magnetic field
intensity through a constant and uniform magnetic susceptibility, which implicitly assumes
that the concentration of magnetic NPs is constant and uniform and that a linear relation
exists between the magnetisation and applied field intensity. Both studies adopt the
no-flux boundary condition at all boundaries, which, as discussed earlier, is inconsistent
with the thin film approximation only being valid within the thin film region. The
modelling of magnetic soap films has received no further attention, other than the
extension of the model in Moulton & Pelesko (2010) to include disjoining pressure effects
(Moulton & Lega 2013), such that the state of magnetic soap film modelling is rather
limited.

The aim of this study is to advance the state of magnetic soap film modelling, using
the experimental configuration and results in Lalli et al. (2023) as a reference. The
objectives of this work are then to (i) derive a model for the two-dimensional thickness
field of free magnetic soap films under the action of inhomogeneous magnetic fields that
includes interfacial mobility, surfactant transport, magnetite NP transport, the dependence
of the film magnetisation on the magnetite NP concentration and magnetic field intensity,
conjoining/disjoining pressure effects and evaporation; (ii) use the derived model to study
the effect of interfacial flows on the rate of film thinning and to understand how accounting
for the dependence of the magnetisation on the magnetite NP concentration affects film
thickness predictions; (iii) investigate the capability of the model to predict marginal
regeneration; and (iv) compare simulated films with the experimental results in Lalli et al.
(2023).
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Figure 1. A schematic of a magnetic soap film supported by a glass boundary. Panel (a) illustrates the thin
film region, which is the region that is modelled and simulated in the present study, in the x–y plane. The thin
film region is denoted by Ω; this region has boundary ∂Ω and outward-facing unit normal nd. A right-handed
rectangular Cartesian coordinate system with basis {ex, ey, ez}, coordinates {x, y, z} and origin in the bottom
left of the thin film is used throughout the derivation. Panel (b) presents a zoomed-in cross-section of a small
section of the thin film in (a) in the x–z plane. At the dividing surface, the outward-facing unit normal is denoted
by n and the tangential vector in this plane by tx. The thin film was assumed to be symmetrical about a centre
surface, denoted by z = C(x, y).

The remainder of this paper is organised as follows. Section 2 provides the derivation
of the model and the method for solving the system of equations governing the thickness
evolution. Section 3.1 examines the contribution of interfacial flows to the rate of film
thinning, and § 3.2 investigates how accounting for magnetite NP transport and the
dependence of the magnetisation on the magnetite NP concentration affects film thickness
predictions. Subsequently, §§ 3.3 and 3.4 present simulations that were performed to
allow for a comparison with experiments, and § 4 evaluates the model by comparing
these simulations with experiments. Section 4 also provides directions for future work.
Concluding remarks close the paper.

2. Method

This section presents the derivation of a three-dimensional thin film model for the free
soap films and magnetic soap films investigated in Lalli et al. (2023). The method for
solving the resulting system of equations is then introduced and validated.

2.1. Problem description and key assumptions
The films investigated in Lalli et al. (2023) were circular, almost horizontal, formed on
a glass boundary, and were created from aqueous-surfactant solutions containing glycerol
and dilute concentrations of magnetite NPs. A cylindrical neodymium (Nd2Fe14B) magnet
with diameter 38.5 mm, thickness 10 mm and remanence 1.43 T was used to apply an
inhomogeneous magnetic field to each film, as shown in figure 1(a). We refer the reader to
Lalli et al. (2023) for additional details about the experiments.

The phase interface that separates the core liquid from the gas phase is a
three-dimensional region with a thickness of the order of a few angstroms. We modelled
the phase interface by defining a two-dimensional dividing surface within the interface
region (Slattery 1967; Sagis 2011). The effect of the phase interface on the surrounding
phases is accounted for by defining excess quantities on the dividing surface, such as the
surface tension, γ .
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A rectangular Cartesian coordinate system, with basis {ex, ey, ez} and coordinates
{x, y, z}, was used to derive the system of equations governing the thickness evolution of
magnetic soap films. The film thickness equation was derived for the half-film thickness,
h, by assuming symmetry about a centre surface, C, with uniform curvature. Since
dilute concentrations of magnetite NPs in aqueous-surfactant solutions were used in the
experiments to create magnetic soap films, the core liquid was modelled as a water-based
ferrofluid containing a dilute concentration of magnetite NPs. Furthermore, the flow
of the core liquid was modelled as an incompressible flow of a Newtonian fluid with
uniform shear viscosity approximated by that of water, and magnetic dipole–dipole
interactions, magnetoviscous effects and demagnetising field effects associated with
the magnetisation of the film were neglected. Since the magnetic soap films in the
experiments were placed in the symmetry plane of the neodymium magnet such that
the applied magnetic field was approximately in the x–y plane throughout the films, the
gradient ∂H/∂z was neglected throughout the films, where H is the magnitude of the
magnetic field intensity. The deformation response of the interface was assumed to be
governed by the Boussinesq–Scriven surface stress model with uniform surface shear and
dilatational viscosities. It was also assumed, for simplicity, that the surfactants stabilising
each magnetic soap film were insoluble and that the magnetite NPs in each film were
monodisperse.

Figure 1 presents a schematic of the modelling configuration with the coordinate system
and several of the key assumptions illustrated. It should be highlighted that it is the thin
film, denoted by Ω and with boundary ∂Ω , that is being modelled in the present study.
The following notation is used throughout: a ′ is appended to fluid properties to denote that
they describe the gas phase surrounding the film. When no ′ is present, the fluid properties
describe the core liquid (e.g. ρ′ is the density of the surrounding gas and ρ is the density of
the core liquid). Furthermore, a subscript ‘s’ is used to denote fields defined at the dividing
surface. To avoid the derivation becoming too verbose, the centre surface, C, is initially
discarded and is reintroduced in the final equation for the thickness evolution.

2.2. Governing equations in the core liquid and at the dividing surface
The conservation of mass and balance of momentum demand

∂ρ

∂t
+∇ · (ρV ) = 0, (2.1a)

ρ
∂V
∂t
+ ρ(V · ∇)V = ∇ · T −∇φ + ρg, (2.1b)

where ρ is density, t is time, V is the velocity, T is the stress tensor, φ is the conjoining
pressure, through which interactions between the surfactant-laden interfaces can be
accounted for (Craster & Matar 2009), and g is the gravitational acceleration, which is
given by g = −gez. The stress tensor can be expressed as

T = −pI + T v + T m, (2.2)

where p is the thermodynamic pressure, I is the identity tensor, T v is the viscous stress
tensor and T m is the magnetic part of the stress tensor. For a Newtonian fluid,

T v = η(∇V + (∇V )ᵀ)+ λ(∇ · V )I, (2.3)

where η is the shear viscosity, λ is the dilatational viscosity and ᵀ is the transpose
operator. For a ferrofluid containing a dilute concentration of magnetite NPs and assuming
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magnetostriction effects are negligible (Rosensweig 2013), the magnetic part of the stress
tensor given in Cowley & Rosensweig (1967) simplifies to

T m = −1
2μ0H2I + BH , (2.4)

where μ0 is the permeability of free space, B is the magnetic flux density, H is the
magnetic field intensity with magnitude H and BH is the tensor product of B and H .
In the absence of demagnetising field effects due to the magnetisation of the film, H is the
field due to the neodymium magnet. The magnetic dipoles of the magnetite NPs rotate
to align with the applied field by either Brownian relaxation (rotation of the particle)
or Néel relaxation (rotation of the magnetic moment within the particle) (Rosensweig
1987). The time scale for magnetic relaxation (Rosensweig 2013) of the magnetisation,
M , of the experimentally investigated magnetic soap films is expected to be orders of
magnitude less than the characteristic flow time scale (Lalli et al. 2023). As a result,
the magnetisation was approximately parallel with the magnetic field intensity during the
lifetime of the investigated magnetic soap films. For an electrically non-conducting fluid
containing negligible displacement currents (∇ ×H = 0) and with M and H parallel,
the magnetic force per unit volume, f m = ∇ · T m, can be expressed as (Neuringer &
Rosensweig 1964; Cowley & Rosensweig 1967)

f m = μ0M∇H, (2.5)

where M is the magnitude of M . When considering the flow of core liquid as an
incompressible flow of a Newtonian fluid with uniform shear viscosity, the mass
conservation (2.1a) and momentum balance (2.1b) with the stress tensor (2.2) inserted
are

∇ · V = 0, (2.6a)

ρ
∂V
∂t
+ ρ(V · ∇)V = −∇( p+ φ)+ η∇2V + μ0M∇H + ρg, (2.6b)

where ∇2 is the Laplace operator.
The dividing surface was defined at the position of 0 surface mass density (Slattery,

Sagis & Oh 2007). The jump mass balance, which is a statement of conservation of mass
at each point on the dividing surface, then requires (Burelbach, Bankoff & Davis 1988;
Slattery et al. 2007)

ρ(V − V s) · n = ρ′(V ′ − V s) · n at Σ, (2.7)

where V s is the surface velocity (rate of change of position following a particle on the
surface), n is the normal vector illustrated in figure 1 and Σ denotes the dividing surface.
In continuum fluid mechanics, it is assumed that the velocity tangential to the phase
interface is continuous across the phase interface (Slattery et al. 2007),

Ps · V = Ps · V s at Σ, (2.8)

where Ps is the surface projection tensor, defined by Ps = I − nn. The mass flux due to
evaporation, Je, is given by (Burelbach et al. 1988; Bai & Gosman 1996)

Je = ρ′(V ′ − V s) · n at Σ. (2.9)

Therefore, V is only equal to V s at the dividing surface when there is no evaporation. The
jump momentum balance, which is a statement of momentum balance at each point on the
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dividing surface, requires (Slattery et al. 2007)

∇s · T s + (T ′ − T ) · n− J2
e

ρ′

(
1− ρ′

ρ

)
n = 0 at Σ, (2.10)

where ∇s and ∇s· are the surface gradient and surface divergence operators, respectively,
and T s is the surface stress tensor. Appendix A provides additional details about these
surface operators. The surface stress tensor T s can be expressed as the sum of contributions
due to the surface tension, γ , and a surface stress tensor Ss that accounts for surface
viscous effects due to the presence of surfactant molecules at the phase interface,

T s = γ Ps + Ss. (2.11)

Using the surface stress tensor (2.11) and the stress tensor (2.2) in the jump momentum
balance (2.10) results in

∇sγ + 2κγ n+∇s · Ss + ( p− p′)n+ (T ′v − T v) · n+ (T ′m − T m) · n

= J2
e

ρ′

(
1− ρ′

ρ

)
n at Σ, (2.12)

where κ is the mean curvature at each point on the dividing surface, which is given by

κ = −1
2∇s · n. (2.13)

For a non-magnetisable gas surrounding the magnetic soap film and from the
magnetostatic equations (Rosensweig 2013),

(T ′m − T m) · n = 1
2μ0(M · n)2n. (2.14)

The Boussinesq–Scriven surface stress model is a surface analogue of the stress
deformation relation for a Newtonian fluid. With the Boussinesq–Scriven surface stress
model (Slattery et al. 2007),

Ss = 2ηsDs + (λs − ηs)(∇s · V s)Ps, (2.15)

where ηs and λs are the surface shear and surface dilatational viscosities, respectively, and
Ds is the surface rate of deformation tensor, which is given by

Ds = 1
2 (Ps · (∇sV s)+ (∇sV s)

ᵀ · Ps). (2.16)

Taking the inner product of (2.12) with three linearly independent vectors leads to three
scalar jump momentum balance equations, which serve as boundary conditions for the
governing equations in the core liquid (2.6). It is convenient to use {tx, ty, n}, where tx
and ty are two linearly independent vectors tangential to the film surface. In terms of the
half-film thickness, {tx, ty, n} are

tx =
(

1+
(

∂h
∂x

)2
)−1/2 (

ex + ∂h
∂x

ez

)
, (2.17a)

ty =
(

1+
(

∂h
∂y

)2
)−1/2 (

ey + ∂h
∂y

ez

)
, (2.17b)

n =
(

1+
(

∂h
∂x

)2

+
(

∂h
∂y

)2
)−1/2 (

−∂h
∂x

ex − ∂h
∂y

ey + ez

)
. (2.17c)

Another condition that must be satisfied at the dividing surface is the kinematic
boundary condition, which states that for a function Φ that is 0 at each point on the
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Modelling magnetic soap films

dividing surface (Slattery et al. 2007)

∂Φ

∂t
+ V s · ∇Φ = 0. (2.18)

In this instance, Φ(x, y, z, t) = z− h(x, y, t), and the kinematic boundary condition (2.18)
is

∂h
∂t
+ us

∂h
∂x
+ vs

∂h
∂y
= ws, (2.19)

where {us, vs, ws} are the rectangular Cartesian components of V s. Furthermore,
symmetry boundary conditions are used at the mid-plane of the film,

∂u
∂z
= 0,

∂v

∂z
= 0, and w = 0 at z = 0, (2.20)

where {u, v, w} are the rectangular Cartesian components of V .

2.3. Thin film approximation
With a characteristic thickness scale H and a characteristic length scale L, the
dimensionless coordinates and thickness are

x̃ = x
L

, ỹ = y
L

, z̃ = z
H , h̃ = h

H , (2.21a–d)

where ˜ denotes a dimensionless variable. The thin film approximation (or lubrication
approximation) involves capitalising on the small size of the thin film parameter, ε, which
is defined by

ε = H
L
� 1. (2.22)

All equations are written in dimensionless form and the dominant physics is extracted by
expanding dimensionless dependent variables using a series expansion in powers of ε, for
example,

ũ(x̃, ỹ, z̃, t̃; ε) = ũ0(x̃, ỹ, z̃, t̃)+ εũ1(x̃, ỹ, z̃, t̃)+ ε2ũ2(x̃, ỹ, z̃, t̃)+ · · · , (2.23a)

h̃(x̃, ỹ, t̃; ε) = h̃0(x̃, ỹ, t̃)+ εh̃1(x̃, ỹ, t̃)+ ε2h̃2(x̃, ỹ, t̃)+ · · · , (2.23b)

and retaining terms at leading order in ε. The velocity scale U, pressure scale P and scales
Mc and Hc for the magnetisation and magnetic field intensity are used to introduce the
following dimensionless variables:

ũ = u
U

, ṽ = v

U
, w̃ = w

εU
, ũs = us

U
, ṽs = vs

U
, w̃s = ws

εU
,

t̃ = tU
L

, p̃ = p
P

, φ̃ = φ

P
, M̃x = Mx

Mc
, M̃y = My

Mc
,

M̃z = Mz

εMc
, M̃ = M

Mc
, H̃ = H

Hc
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.24)

Here {Mx, My, Mz} are the rectangular Cartesian components of the magnetisation M .
Note that Mz has been scaled by εMc as it is expected that Mz � Mx and Mz � My due to
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the direction of the applied magnetic field. From (2.8), we find at leading order in ε that

u = us and v = vs at Σ. (2.25)

We use (2.25) with the kinematic boundary condition (2.19) and the result of integrating
the continuity equation (2.6a) over the film thickness using the Leibniz integral rule and
the symmetry boundary condition (2.20) to find that

∂h
∂t
+ ∂Qx

∂x
+ ∂Qy

∂y
= ws − w(x, y, z = h, t), (2.26)

where Qx and Qy are the following depth-integrated velocities:

Qx =
∫ h

0
u dz, Qy =

∫ h

0
v dz. (2.27a,b)

At leading order in ε and at the dividing surface, (V − V s) · n = w(x, y, z = h, t)− ws,
which allows the mass flux due to evaporation to be introduced into (2.26),

∂h
∂t
+ ∂Qx

∂x
+ ∂Qy

∂y
= −Je

ρ
. (2.28)

In dimensionless form, (2.28) reads

∂ h̃
∂ t̃
+ ∂Q̃x

∂ x̃
+ ∂Q̃y

∂ ỹ
= −J̃e, (2.29)

where

Q̃x =
∫ h̃

0
ũ dz̃ = Qx

UH , Q̃y =
∫ h̃

0
ṽ dz̃ = Qy

UH , J̃e = Je

ρUε
. (2.30a–c)

The focus now turns to finding ũ and ṽ so that Q̃x and Q̃y can be evaluated. The
pressure scale P = ηU/L is relevant to extensional (plug) flows (Kargupta, Sharma &
Khanna 2004; Münch, Wagner & Witelski 2005). Since we expect viscous shear from
the core liquid to enter the problem at leading order, we instead use the pressure scale
P = ηU/(εH), which allows the derived model to be used in the limit of immobile
interfaces. With the pressure scale P = ηU/(εH), the governing equations for the core
liquid (2.6) in dimensionless form are

∂ ũ
∂ x̃
+ ∂ṽ

∂ ỹ
+ ∂w̃

∂ z̃
= 0, (2.31a)

εRe
(

∂ ũ
∂ t̃
+ ũ

∂ ũ
∂ x̃
+ ṽ

∂ ũ
∂ ỹ
+ w̃

∂ ũ
∂ z̃

)
= −∂(p̃+ φ̃)

∂ x̃
+ ε2

(
∂2ũ
∂ x̃2 +

∂2ũ
∂ ỹ2

)

+ ∂2ũ
∂ z̃2 + Ψ M̃

∂H̃
∂ x̃

, (2.31b)

εRe
(

∂ṽ

∂ t̃
+ ũ

∂ṽ

∂ x̃
+ ṽ

∂ṽ

∂ ỹ
+ w̃

∂ṽ

∂ z̃

)
= −∂(p̃+ φ̃)

∂ ỹ
+ ε2

(
∂2ṽ

∂ x̃2 +
∂2ṽ

∂ ỹ2

)

+ ∂2ṽ

∂ z̃2 + Ψ M̃
∂H̃
∂ ỹ

, (2.31c)
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Modelling magnetic soap films

ε3Re
(

∂w̃
∂ t̃
+ ũ

∂w̃
∂ x̃
+ ṽ

∂w̃
∂ ỹ
+ w̃

∂w̃
∂ z̃

)
= −∂(p̃+ φ̃)

∂ z̃
+ ε4

(
∂2w̃
∂ x̃2 +

∂2w̃
∂ ỹ2

)

+ ε2 ∂2w̃
∂ z̃2 − εG, (2.31d)

where Re is the Reynolds number, Ψ is a dimensionless magnetic number and G is a
dimensionless gravitational number. These dimensionless numbers are defined by

Re = ρUH
η

, Ψ = Hεμ0McHc

ηU
, G = ρgH2

ηU
. (2.32a–c)

The Reynolds number can be expressed as Re = εRe
, where Re
 is of the order of 1 or
less. As a result, (2.31) at leading order in ε is

∂ ũ0

∂ x̃
+ ∂ṽ0

∂ ỹ
+ ∂w̃0

∂ z̃
= 0, (2.33a)

0 = −∂(p̃0 + φ̃0)

∂ x̃
+ ∂2ũ0

∂ z̃2 + Ψ M̃0
∂H̃
∂ x̃

, (2.33b)

0 = −∂(p̃0 + φ̃0)

∂ ỹ
+ ∂2ṽ0

∂ z̃2 + Ψ M̃0
∂H̃
∂ ỹ

, (2.33c)

0 = −∂(p̃0 + φ̃0)

∂ z̃
− εG. (2.33d)

The subscript 0s in (2.33), which come from the series expansion detailed in (2.23),
indicate that leading-order terms have been retained. For brevity, the subscript 0s are
omitted in the remainder of the text.

The surface tension was scaled using the maximum surface pressure, S,

γ̃ = γ − γsat

S , S = γc − γsat, (2.34)

where γsat is the surface tension of an interface saturated with surfactant and γc is
the surface tension of a clean interface, i.e. an interface free of surface-active agents.
Assuming viscous stresses in the gas phase can be neglected and introducing ρ′ = ερ,
the inner product of the jump momentum balance (2.12) with n when retaining each term
at its leading order in ε is

p̃ = p̃′ −
(

∂2h̃
∂ x̃2 +

∂2h̃
∂ ỹ2

)(
ε2Mγ̃ + ε3

C

)
+ J̃2

e ε3Re
(1− ε)

− ε2Bqsh

(
∂ ũs

∂ x̃

(
∂2h̃
∂ x̃2 −

∂2h̃
∂ ỹ2

)
+ 2

∂2h̃
∂ x̃∂ ỹ

(
∂ ũs

∂ ỹ
+ ∂ṽs

∂ x̃

)
+ ∂ṽs

∂ ỹ

(
∂2h̃
∂ ỹ2 −

∂2h̃
∂ x̃2

))

− ε2Bqd

(
∂2h̃
∂ x̃2 +

∂2h̃
∂ ỹ2

)(
∂ ũs

∂ x̃
+ ∂ṽs

∂ ỹ

)
+ 2ε2

(
−∂ ũ

∂ z̃
∂ h̃
∂ x̃
− ∂ṽ

∂ z̃
∂ h̃
∂ ỹ
+ ∂w̃

∂ z̃

)

− 1
2

Mc

Hc
ε2Ψ

(
−M̃x

∂ h̃
∂ x̃
− M̃y

∂ h̃
∂ ỹ
+ M̃z

)2

at Σ, (2.35)

where M is the Marangoni number, C is the capillary number, and Bqsh and Bqd are the
shear and dilatational Boussinesq numbers, respectively. These dimensionless numbers
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are defined by

M = Sε

ηU
, C = ηU

γsat
, Bqsh =

ηsε

ηL
, Bqd =

λsε

ηL
. (2.36a–d)

We used the surrounding gas pressure as the reference pressure, i.e. p̃′ = 0. Integrating the
leading-order z-momentum equation (2.33d) in z and using (2.35) as a boundary condition
leads to

p̃+ φ̃ = εG(h̃− z̃)−
(

∂2h̃
∂ x̃2 +

∂2h̃
∂ ỹ2

)(
ε2Mγ̃ + ε3

C

)
− Π̃, (2.37)

where Π̃ is the dimensionless disjoining pressure, which is related to the conjoining
pressure by Π̃ = −φ̃, and several lower-order terms from (2.35) have been discarded.
Having obtained an expression for the pressure, the leading-order x-momentum (2.33b)
and y-momentum (2.33c) equations can be integrated twice in z with the symmetry
boundary condition (2.20) and the continuity of tangential velocity across the interface
(2.25) to obtain

ũ = ũs + 1
2
(z̃2 − h̃2)

(
∂(p̃+ φ̃)

∂ x̃
− Ψ M̃

∂H̃
∂ x̃

)
, (2.38a)

ṽ = ṽs + 1
2
(z̃2 − h̃2)

(
∂(p̃+ φ̃)

∂ ỹ
− Ψ M̃

∂H̃
∂ ỹ

)
. (2.38b)

In deriving (2.38), it was assumed that the magnetisation does not vary over the film depth,
as is discussed further in § 2.4. At this point, equations are needed to define the surface
velocity components present in (2.38). By taking the inner product of the jump momentum
balance (2.12) with tx and ty, two equations governing us and vs can be derived. Taking
each term in the inner products at leading order in ε results in

M∂γ̃

∂ x̃
+ Bqd

(
∂2ũs

∂ x̃2 +
∂2ṽs

∂ x̃∂ ỹ

)
+ Bqsh

(
∂2ũs

∂ x̃2 +
∂2ũs

∂ ỹ2

)
= ∂ ũ

∂ z̃

∣∣∣∣
z̃=h̃

, (2.39a)

M∂γ̃

∂ ỹ
+ Bqd

(
∂2ũs

∂ ỹ∂ x̃
+ ∂2ṽs

∂ ỹ2

)
+ Bqsh

(
∂2ṽs

∂ x̃2 +
∂2ṽs

∂ ỹ2

)
= ∂ṽ

∂ z̃

∣∣∣∣
z̃=h̃

. (2.39b)

The velocity gradients in (2.39), which arise from the viscous stress tensor, can be
evaluated using the velocities in (2.38). As a result,

M∂γ̃

∂ x̃
+ Bqd

(
∂2ũs

∂ x̃2 +
∂2ṽs

∂ x̃∂ ỹ

)
+ Bqsh

(
∂2ũs

∂ x̃2 +
∂2ũs

∂ ỹ2

)
= h̃

(
∂(p̃+ φ̃)

∂ x̃
− Ψ M̃

∂H̃
∂ x̃

)
,

(2.40a)

M∂γ̃

∂ ỹ
+ Bqd

(
∂2ũs

∂ ỹ∂ x̃
+ ∂2ṽs

∂ ỹ2

)
+ Bqsh

(
∂2ṽs

∂ x̃2 +
∂2ṽs

∂ ỹ2

)
= h̃

(
∂(p̃+ φ̃)

∂ ỹ
− Ψ M̃

∂H̃
∂ ỹ

)
.

(2.40b)
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With equations for ũ (2.38a) and ṽ (2.38b) at hand, the thickness evolution equation can
be obtained from (2.29),

∂ h̃
∂ t̃
= −∂ ũsh̃

∂ x̃
+ 1

3
∂

∂ x̃

(
h̃3

(
∂(p̃+ φ̃)

∂ x̃
− Ψ M̃

∂H̃
∂ x̃

))

− ∂ṽsh̃
∂ ỹ
+ 1

3
∂

∂ ỹ

(
h̃3

(
∂(p̃+ φ̃)

∂ ỹ
− Ψ M̃

∂H̃
∂ ỹ

))
− J̃e. (2.41)

There is no explicit z dependence in the derived thickness evolution equation
because of the thin film approximation. Consequently, the derived equations can be
expressed compactly by introducing a dimensionless planar gradient operator defined
by ∇̃p = (∂/∂ x̃)ex + (∂/∂ ỹ)ey, which is a dimensionless two-dimensional version of the
three-dimensional gradient operator, ∇. We denote the dimensionless planar divergence
operator by ∇̃p· and the dimensionless planar Laplace operator (for both scalar and vector
fields) by ∇̃2

p . At this stage, the centre surface of the film can be introduced such that
the dividing surface is located at z = h(x, y, t)+ C(x, y). With the dimensionless centre
surface given by C̃ = C/H, the equations governing the thickness evolution, written using
planar operations, are

∂ h̃
∂ t̃
= −∇̃p · (Ṽ sh̃)+ 1

3
∇̃p · (h̃3(∇̃p(p̃+ φ̃)− Ψ M̃∇̃pH̃))− J̃e, (2.42a)

p̃+ φ̃ = εG(h̃+ C̃ − z̃)−
(

ε2Mγ̃ + ε3

C

)
(∇̃2

p h̃+ ∇̃2
p C̃)− Π̃, (2.42b)

M∇̃pγ̃ + Bqd∇̃p · ((∇̃p · Ṽ s)I)+ Bqsh∇̃2
p Ṽ s = h̃(∇̃p(p̃+ φ̃)− Ψ M̃∇̃pH̃). (2.42c)

Equation (2.42c) arises by writing two scalar equations, (2.40a) and (2.40b), as one vector
equation, where Ṽ s = ũsex + ṽsey. In order for the thin film approximation to remain valid
with a curved centre surface, the curvature of the centre surface, κcs, must be everywhere
much less than the reciprocal of the characteristic thickness scale, i.e. κcs � 1/H (O’Brien
& Schwartz 2002).

The magnetisation is a function of the molar concentration of magnetite NPs, c, and the
surface tension depends on the surface excess concentration of surfactant, Γ . Equations
characterising c and Γ are derived in §§ 2.4 and 2.5, respectively. These equations need
to be solved together with (2.42a), (2.42b) and (2.42c) to determine the time evolution of
film thickness.

2.4. Magnetite NP transport
By approximating the molar flux of magnetite NPs as the sum of fluxes due to
advective transport, magnetic forcing and diffusion, the transport equation for the molar
concentration of magnetite NPs, c, in the core liquid of a magnetic soap film can be
expressed as (Pshenichnikov et al. 2011; Nacev et al. 2012)

∂c
∂t
+∇ · (cV )+∇ ·

(
cbc

f m

n

)
= ∇ · (Dc∇c), (2.43)

where bc, n and Dc are the mobility, number concentration and gradient diffusion
coefficient of the magnetite NPs, respectively. For a dilute dispersion of magnetite NPs in
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a liquid, the mobility and gradient diffusion coefficient can be approximated by (Batchelor
1983)

bc = b0(1− 6.55ϕ) and Dc = D0(1+ 1.45ϕ), ϕ � 1, (2.44a,b)

where ϕ is the volume concentration of magnetite NPs, and b0 and D0 are the mobility
and Brownian diffusion coefficient of an independent sphere, respectively. For a sphere of
radius a (Batchelor 1983),

D0 = kBT
6πηa

, (2.45)

where kB is the Boltzmann constant and T is the absolute temperature. The mobility
b0 is related to D0 through D0 = b0kBT (Peskir 2003). Here, the mobility and gradient
diffusion coefficient of magnetite NPs in a thin film have been modelled using equations
derived for particles in a bulk liquid, i.e. not thin films of liquid. This is a good
approximation when the film thickness dominates the size of the particles dispersed in
the film (Vivek & Weeks 2015; Kim et al. 2016). For particles with size of the order of the
film thickness, Prasad & Weeks (2009) found that diffusion occurred faster in soap films
compared with diffusion in a bulk soap film solution. As a result, the mobility and gradient
diffusion coefficient are expected to be functions of the film thickness. It is anticipated that
the thickness dependence may be derived by considering the Trapeznikov approximation
(Prasad & Weeks 2009; Vivek & Weeks 2015); however, this is not considered here as the
film thickness was considerably larger than the particle dimensions throughout most of the
film thinning in the experiments.

For a ferrofluid containing a dilute concentration of monodisperse magnetite NPs,
the magnetisation of the ferrofluid varies with the magnetic field intensity according to
(Rosensweig 2013)

M = MsatL(ξ)
H
H

, ξ = μ0mH
kBT

, (2.46)

where Msat is the saturation magnetisation of the ferrofluid, L is the Langevin function
(L(ξ) = coth ξ − 1/ξ ), ξ is the Langevin parameter and m is the magnetic dipole moment
of a magnetite NP. Since Msat = nm, M = nmL(ξ).

It is evident that the magnetite NP transport equation (2.43) is three dimensional,
whilst the equation governing the film thickness (2.42a) is two dimensional. The
three-dimensional transport equation can be integrated over the film thickness by assuming
a concentration profile over the film depth (Nierstrasz & Frens 1999; Huybrechts, Villaret
& Hervouet 2010) to derive a two-dimensional transport equation for the magnetite NPs.
We assumed a uniform concentration of magnetite NPs over the film depth since Brownian
motion and the surfactant coating around the magnetite NPs act to uniformly disperse the
NPs in the core liquid (Rosensweig 1987). Upon integrating (2.43) in z and introducing
the linear approximations (2.44), the magnetic force (2.5) and the magnetisation relation
(2.46), the two-dimensional transport equation for the dimensionless molar concentration
of magnetite NPs is

∂ c̃
∂ t̃
+ Q̃

h̃
· ∇̃pc̃+ α

Pec
∇̃p · (c̃(1− 6.55ϕcc̃)L(αH̃)∇̃pH̃)

= 1
Pec

∇̃p · ((1+ 1.45ϕcc̃)∇̃pc̃), (2.47)

where c̃ = c/cc, Q̃ = Q̃xex + Q̃yey, α is a Langevin-type parameter, Pec is a Péclet number
for magnetite NP transport and ϕc is the volume concentration for c = cc. The introduced
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dimensionless numbers are given by

α = μ0mHc

kBT
, ϕc = ccNAVp, Pec = UL

D0
, (2.48a–c)

where NA is Avogadro’s constant and Vp is the volume of each NP including the coating.

2.4.1. Coupling between film thickness and magnetite NP transport
In order to couple the film thickness equation (2.42a) with the magnetite NP transport
equation (2.47), a relationship for M̃ as a function of c̃ is needed. From M = nmL(ξ),

M̃ = c̃
cc

Mc
NAmL(αH̃). (2.49)

Taking Mc to be the magnetisation when c = cc and H = Hc,

Mc = ccNAmL(α). (2.50)

Injecting (2.50) into (2.49) results in the required relationship for M̃,

M̃ = c̃
L(αH̃)

L(α)
. (2.51)

2.5. Surfactant transport
The dimensionless surface tension in the pressure equation (2.42b) depends on the
surfactant dynamics in the film. We assume that the surfactants stabilising each magnetic
soap film are insoluble and that they form a Langmuir monolayer at each film interface
with the relationship between the surface tension and surface concentration of surfactant
given by the Langmuir isotherm (Manikantan & Squires 2020),

γ = γc + ΓsatRT ln
(

1− Γ

Γsat

)
, (2.52)

where R is the ideal gas constant, Γsat is the surface surfactant concentration for a saturated
interface in units of mol m−2 and ln is the natural logarithm. With Γ̃ = Γ/Γsat, the
Langmuir isotherm (2.52) in dimensionless form is

γ̃ = 1+Λ ln(1− Γ̃ ), Λ = ΓsatRT
S . (2.53)

The transport equation for the surface concentration of surfactant along a deforming
surface is (Stone 1990)(

∂Γ

∂t

)
n
+∇s · (Γ Ps · V s)+ Γ (∇s · n)(V s · n) = Ds∇2

s Γ, (2.54)

where Ds is the surface diffusion coefficient for surfactant transport and ∇2
s is the surface

Laplace operator. This equation assumes that there is no transport of surfactant between
the core liquid and the surface and that the diffusive flux of surfactant along the surface is
governed by

J D = −Ds∇sΓ (2.55)

with Ds uniform over the surface. This diffusion relation is not consistent with the
Langmuir isotherm; therefore, the following diffusive flux relation that is consistent with
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the Langmuir isotherm was used (Manikantan & Squires 2020):

J D = − DsΓsat

Γsat − Γ
∇sΓ. (2.56)

Here Ds was assumed to be uniform over the surface and constant in time. The partial time
derivative in the surfactant transport equation (2.54) should be interpreted as the change
in Γ when following the interface in a direction normal to the original interface (Wong,
Rumschitzki & Maldarelli 1996; Pereira et al. 2007). Each position on the dividing surface
can be specified by two parameters known as the surface coordinates (Slattery et al. 2007),
and it is easier to work in terms of partial time derivatives when following the evolution of
the interface at fixed surface coordinates. We can conveniently use x and y as the surface
coordinates since the position vector of any point on the dividing surface is

rs = xex + yey + (h(x, y, t)+ C(x, y))ez. (2.57)

Wong et al. (1996) and Cermelli, Fried & Gurtin (2005) provide a relation for the partial
time derivative present in the transport equation (2.54) in terms of the partial time
derivative when keeping the surface coordinates fixed, which we denote by ( ∂Γ

∂t )◦,(
∂Γ

∂t

)
n
=
(

∂Γ

∂t

)
◦
−U s · ∇sΓ, (2.58)

where U s is the rate of change of spatial position following a point on the surface with
fixed surface coordinates, i.e.

U s =
(

∂rs

∂t

)
◦
. (2.59)

Following from (2.57), U s = (∂h/∂t)ez. With (2.56) and (2.58), the surfactant transport
equation (2.54) becomes(

∂Γ

∂t

)
◦
−U s · ∇sΓ +∇s · (Γ Ps · V s)+ Γ (∇s · n)(V s · n)

= Ds∇s ·
(

Γsat

Γsat − Γ
∇sΓ

)
, (2.60)

which in dimensionless form and at leading order in ε is(
∂Γ̃

∂ t̃

)
◦
+ ∇̃p · (Ṽ sΓ̃ ) = 1

Pes
∇̃p ·

(
1

1− Γ̃
∇̃pΓ̃

)
, (2.61)

where Pes is the Péclet number for surfactant transport along the dividing surface. This
Péclet number is given by

Pes = UL
Ds

. (2.62)

2.6. Closures
In order to solve for the film thickness, closures are needed for the evaporation rate and
disjoining pressure.
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2.6.1. Evaporation rate
In the simplest case, soap films can be simulated assuming a constant and uniform rate
of evaporation (Huang et al. 2020; Ishida et al. 2020; Pasquet et al. 2022). A more
accurate treatment of evaporation involves solving the energy balance equation in the
core liquid and the jump energy balance equation at the dividing surface and introducing
a constitutive relation between the mass flux due to evaporation and the interface
temperature (Burelbach et al. 1988; Sultan, Boudaoud & Amar 2005). To isolate the effects
of drainage phenomena, all simulations were conducted without evaporation, i.e. J̃e = 0.
We leave it as an area of future work to couple the system of equations introduced in the
present contribution with the energy balance equations.

2.6.2. Disjoining pressure
The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used for the disjoining
pressure in this study (see Ninham 1999 for a list of assumptions inherent in DLVO theory).
With the DLVO theory, the disjoining pressure is expressed as the sum of attractive van der
Waals forces and repulsive electric double layer forces. Under the assumption of identically
charged planar surfaces with a small and constant surface potential, the disjoining pressure
is given by the relation (Bergeron 1999; Matsubara et al. 2021; Agmo Hernández 2023)

Π = − A
6π(2h)3 + Be−ζ2h, (2.63)

where A is the Hamaker constant, B is a parameter that depends on the interface potential
and ζ−1 is the Debye length. In dimensionless form, (2.63) is

Π̃ = −A
h̃3
+ B e−Dh̃, (2.64)

where the introduced dimensionless numbers are

A = A
48πH3P

, B = B
P

, D = 2ζH. (2.65a–c)

We used constant values for A, B and D throughout the simulations, which does not
account for the spatiotemporally varying interfacial surfactant concentration. Note that
DLVO theory does not have general applicability, for example, it would not be effective at
predicting the equilibrium thickness of Newton black films (Ochoa et al. 2021). Additional
interactions, such as steric forces or solvation forces, may need to be accounted for to more
accurately represent the disjoining pressure for films of interest (Bergeron 1999).

2.7. Solving
The thickness field is governed by the system of coupled partial differential equations
(PDEs) defined by (2.42a–c), (2.47) and (2.61), where the variables that must be solved
for are (h̃, p̃, Ṽ s, c̃, Γ̃ ). The Galerkin finite element method was used to solve this coupled
system with the addition of suitable initial and boundary conditions and the relations
for the magnetisation (2.51), surface tension (2.53) and disjoining pressure (2.64). With
(2.42b) in (2.42a), the thickness evolution equation is a nonlinear fourth-order parabolic
equation (Liu, Peco & Dolbow 2019). A fourth-order PDE of this type can be solved with
mixed finite element methods (Wells, Kuhl & Garikipati 2006; Liu et al. 2019; Keita,
Beljadid & Bourgault 2021), which involve solving the fourth-order equation as a system
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Section 3.1(i) 3.1(p) 3.2(u) 3.2(t) 3.3 3.4

ε 0.005 ← ← ← ← ← ← ←
J̃e 0.0 ← ← ← ← ← ← ←
Ψ — — 50 ← ← ← — 50
G 0.0 ← ← ← ← ← 245 ←
M 0.0 {10, 100, 1000} 100 ← ← ← 40 000 ←
C 10−7 ← ← ← ← ← ← ←
Bqsh 106 10−3 ← ← ← ← 2.5× 10−4 ←
Bqd 106 10−3 ← ← ← ← 2.5× 10−4 ←
A 8.3× 10−6 ← ← ← ← ← ← ←
B 4.2× 106 ← ← ← ← ← ← ←
D 3.0× 103 ← ← ← ← ← ← ←
α — — 13.1 ← ← ← — 15.9
ϕc — — — — 0.0005 ← — —
Pec — — — — 6.55 ← — —
Λ — 0.15 ← ← ← ← ← ←
Pes — 1.0 ← ← ← ← 10.0 ←
P 5.0 5.0 2.0 — 2.0 — 5.0 ←
Q — — — 5.0 — 5.0 — —
∂ h̃
∂nd

30◦ ← 0◦ ← ← ← ← ←
h̃i 0.5 ← ← ← ← ← ← ←
c̃i 0.0 ← 0.5 ← ← ← 0.0 {0.5, 1.0}
Γ̃i — 0.5 ← ← ← ← {0.05, 0.20} 0.02
Ncell 10 100 ← 15 000 ← ← ← 195 400 ←

Table 1. The dimensionless numbers used for the governing equations, boundary conditions and initial
conditions are provided for the simulations presented in each section. The number of cells, Ncell, used to
discretise the domain to the nearest 100 cells is also provided. Section 3.1(i) refers to the immobile soap film
and § 3.1(p) refers to the partially mobile soap films simulated in § 3.1. Section 3.2(u) refers to the simulated
magnetic soap films with a uniform concentration of magnetite NPs for two boundary conditions, and § 3.2(t)
refers to the same but when considering the transport of magnetite NPs. The ← symbol indicates that the
simulation parameter was the same as the value for the simulation in the column to the left, e.g. the same
value was used for the capillary number, C, for all simulations. A hyphen symbolises that a parameter does not
affect the results of a simulation, e.g. the value of Ψ has no effect when there are no magnetite NPs in the film
(c̃i = 0.0).

of two second-order equations. This allows for the use of standard Lagrange finite element
basis functions to approximate the unknowns. It was natural to solve for p̃+ φ̃ (2.42b) as
one of the second-order equations.

Uniform initial conditions were used for each of the five variables. In all simulations,
the initial pressure was set to 0 and the initial surface velocity was set to 0. The initial
conditions for h̃, c̃ and Γ̃ , which we denote by h̃i, c̃i and Γ̃i, are given in table 1 for each
simulation.

Five boundary conditions are needed on ∂Ω , one corresponding to each of the five
second-order PDEs. As discussed in the introduction, a net flow of liquid is expected
between the meniscus and the thin film due to capillary suction and marginal regeneration;
therefore, we did not employ a no-flux boundary condition. Instead, since a larger force
acts on thicker film due to this suction compared with thinner film (Overbeek 1960; Mysels
1968), we imposed a boundary condition relating the flux of liquid out of the thin film due
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to capillary suction to the local film thickness at the boundary,

− 1
3

h̃3∇̃pp̃c · nd = P h̃3 on ∂Ω, p̃c = −
(

ε2Mγ̃ + ε3

C

)
∇̃2

p h̃, (2.66a,b)

where P governs the strength of capillary suction and p̃c is the dimensionless capillary
pressure. It is unknown at present how the suction strength depends on the applied
magnetic field due to the influence of the applied magnetic field on the meniscus shape
(Rosensweig et al. 2005; Singh et al. 2024); this could be an interesting area for future
research. For some of the simulations in which a magnetic field was applied, we also
investigated the boundary condition

− 1
3 h̃3(∇̃pp̃− Ψ M̃∇̃pH̃) · nd = Qh̃3 on ∂Ω, (2.67)

which imposes a limit on the drainage flux of core liquid out of the thin film (without
disjoining pressure contributions), determined by the parameter Q.

A Neumann boundary condition was used for the film thickness to allow the film
thickness to change with time at the boundary of the thin film. The Neumann condition
sets ∇̃ph̃ · nd on ∂Ω , which we denote by ∂ h̃/∂nd.

The divergence of the tensor Bqd(∇̃p · Ṽ s)I + Bqsh∇̃pṼ s appears in (2.42c), and the
weak variational form features this tensor operating on nd. We chose to adopt the natural
boundary condition

Bqd(∇̃p · Ṽ s)nd + Bqsh∇̃pṼ s · nd = 0 on ∂Ω. (2.68)

A number of Neumann and Dirichlet boundary conditions were investigated for c̃;
however, the most physically consistent behaviour was observed with the boundary
condition

αc̃(1− 6.55ϕcc̃)L(αH̃)∇̃pH̃ · nd = (1+ 1.45ϕcc̃)∇̃pc̃ · nd on ∂Ω, (2.69)

which is a balance of the flux of c̃ out of the thin film between magnetic forcing and
diffusion. With this boundary condition, the concentration of magnetite NPs averaged
over the thin film can change with time due to the advective flux in (2.47).

Nierstrasz & Frens (1999) argued that with marginal regeneration, the surfactant that
flows out of the thin film during drainage is replaced by an equal amount of surfactant
from saturated patches of fluid that are extracted from the film boundary. Consequently,
we used a boundary condition that keeps the amount of surfactant covering the thin film
constant in time,

Γ̃ Ṽ s · nd = 1
Pes

1

1− Γ̃
∇̃pΓ̃ · nd on ∂Ω, (2.70)

which is a no-flux surfactant boundary condition.
We use the following compact notation to express the problem of finding the time

evolution of film thickness in weak form (Langtangen & Logg 2017):

〈∇h, ∇k〉 =
∫

Ω

∇h · ∇k dΩ, 〈h, k〉∂Ω =
∫

∂Ω

hk ds. (2.71a,b)

The mixed weak form of the problem, with the boundary conditions inserted into the
surface integral terms and the initial conditions not repeated here for brevity, is to find
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(h̃, p̃, Ṽ s, c̃, Γ̃ ) ∈ K(0) × K(1) × K (2) × K(3) × K(4) such that〈
∂ h̃
∂ t̃

, k(0)

〉
+ 〈∇̃p · (Ṽ sh̃), k(0)〉 + 1

3
〈h̃3∇̃p(p̃+ φ̃), ∇̃pk(0)〉 + 〈J̃e, k(0)〉

+ 1
3
Ψ 〈∇̃p · (h̃3M̃∇̃pH̃), k(0)〉 − 1

3
εG〈h̃3∇̃p(h̃+ C̃) · nd, k(0)〉∂Ω

+ 〈P h̃3, k(0)〉∂Ω + 1
3
〈h̃3∇̃pΠ̃ · nd, k(0)〉∂Ω = 0 ∀k(0) ∈ K(0), (2.72a)

〈p̃+ φ̃, k(1)〉 − εG〈h̃+ C̃, k(1)〉 −
〈(

ε2Mγ̃ + ε3

C

)
∇̃ph̃, ∇̃pk(1)

〉

+ 〈Π̃, k(1)〉 +
〈(

ε2Mγ̃ + ε3

C

)
∂ h̃
∂nd

, k(1)

〉
∂Ω

= 0 ∀k(1) ∈ K(1), (2.72b)

M〈∇̃pγ̃ , k(2)〉 −
∫

Ω

(Bqd(∇̃p · Ṽ s)I + Bqsh∇̃pṼ s) : ∇̃pk(2) dΩ

− 〈h̃(∇̃p(p̃+ φ̃)− Ψ M̃∇̃pH̃), k(2)〉 = 0 ∀k(2) ∈ K (2), (2.72c)〈
∂ c̃
∂ t̃

, k(3)

〉
+
〈

Q̃

h̃
· ∇̃pc̃, k(3)

〉
+ 1

Pec
〈(1+ 1.45ϕcc̃)∇̃pc̃, ∇̃pk(3)〉

− α

Pec
〈c̃(1− 6.55ϕcc̃)L(αH̃)∇̃pH̃, ∇̃pk(3)〉 = 0 ∀k(3) ∈ K(3), (2.72d)〈(

∂Γ̃

∂ t̃

)
◦
, k(4)

〉
− 〈Γ̃ Ṽ s, ∇̃pk(4)〉 + 1

Pes

〈
1

1− Γ̃
∇̃pΓ̃, ∇̃pk(4)

〉
= 0 ∀k(4) ∈ K(4),

(2.72e)

where : is the Frobenius inner product, k(i) are test functions and K(i) are suitable
infinite-dimensional function spaces containing the exact solution to the problem. Since
the centre surface was assumed to be of uniform curvature, ∇̃2

p C̃ was set to 0 in (2.72b).
The FEniCSx project, which comprises Basix (Scroggs et al. 2022a,b), UFL (Alnæs

et al. 2014), FFCx and DOLFINx (Baratta et al. 2023), was used to find approximate
solutions to the variational problem (2.72). All time derivatives were discretised using
the backward Euler scheme with a time step of �t̃ = 0.001, except where otherwise
noted, and the finite element method was used at each time step to solve the time-discrete
system of PDEs on a triangulation of the domain with linear Lagrange basis functions
used to approximate all variables being solved for. The triangulation was created using
Gmsh (Geuzaine & Remacle 2009), with increased refinement from the centre to the
circumference of the circular domain to better resolve large gradients in h̃ and Γ̃ near the
domain boundary. Table 1 presents the number of cells, Ncell, used in each simulation.
The number of cells used for each simulation was chosen by investigating increasing
numbers of cells until the boundary conditions were enforced with sufficient accuracy
and the average thickness over time had converged with the number of cells. Newton’s
method, through an interface from DOLFINx to PETSc’s Newton solver (Dalcin et al.
2011), was used to solve the system of nonlinear algebraic equations arising after implicit
temporal discretisation and finite element spatial discretisation. Convergence criteria based
on the residual were employed with tolerances for the absolute and relative residuals set
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to 10−10. The multifrontal massively parallel sparse direct solver (MUMPS) with LU
factorisation (Amestoy et al. 2000) was used to solve the linear system in each Newton
iteration. All simulations were run in parallel on 16 processors (Intel Xeon Silver 4216
processor−2.10 GHz base frequency) using the message passing interface (Dalcin & Fang
2021). For the simulations presented in § 3.4 (Ncell = 195 400, �t̃ = 0.001, t̃ ∈ [0, 0.5]),
the simulation time was approximately 2 h.

The dimensionless numbers that were used for each simulation are provided in table 1.
The properties and scales in table 2 of Appendix B, or values similar to those provided,
were used to calculate many of the dimensionless numbers in table 1. The characteristic
length scale was chosen as 2 mm on the basis that the strength of capillary suction is
determined by the meniscus curvature and the characteristic size of the meniscus is given
by the capillary length (Gennes et al. 2004; Berg, Adelizzi & Troian 2005), which is√

γ /(ρg) ≈ 2 mm. Furthermore, the velocity scale U = 4× 10−6 m s−1 was found by
setting the capillary number to C = 10−7 so that capillary effects enter the problem at
leading order, i.e. ε3/C ∼ 1.

2.8. Validation
Appendix C presents the model derived in this study adapted to free vertical magnetic
soap films. Given that the model in Appendix C simplifies to the model in Moulton &
Pelesko (2010) under several assumptions, we can validate our numerical implementation
of the model derived in the present study by comparison with the simulation results in
Moulton & Pelesko (2010). With the assumptions used in Moulton & Pelesko (2010),
which are immobile interfaces, uniform surface tension, a linear relationship between the
film magnetisation and the magnetic field intensity (M̃ = H̃), no disjoining pressure effects
and no evaporation, the model detailed in Appendix C simplifies to

∂ h̃
∂ t̃
= 1

3
∇̃p · (h̃3(∇̃pp̃− Ψ H̃∇̃pH̃ − Gex)), (2.73a)

p̃ = −ε3

C ∇̃
2
p h̃. (2.73b)

This system was solved on the same domain and with the same simulation parameters,
magnetic field, initial conditions and boundary conditions as in Moulton & Pelesko (2010).
Figure 2 presents a comparison between our simulation results and the results in figure 7
of Moulton & Pelesko (2010). Since Moulton & Pelesko (2010) adopt the thin film
approximation in the meniscus region, where it is not valid, x = 0 mm and x = 45 mm
correspond to the very borders of the frame in these simulations. The agreement is almost
exact when no magnetic field was applied. There is a slight deviation between the results
in figure 2(b–d); however, we believe that this is because the Dirichlet boundary condition
deviates from h = 0.5 mm at the top boundary (x = 0 mm) in the simulations performed
by Moulton & Pelesko (2010) when a magnetic field was applied. As a result, we consider
this sufficient validation for the numerical implementation of the derived model. In § 3 the
derived model is used to simulate horizontal magnetic soap films.

3. Results

In § 3.1, simulation results are used to investigate the significance of interfacial flows on
the rate of film thinning, and in § 3.2, simulations results are used to study how accounting
for magnetite NP transport and the dependence of the magnetisation on the magnetite
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Figure 2. The grey line represents the initial condition. The black line and blue circles in each figure indicate
the thickness after 60 s for the simulations in this study and the simulations performed in Moulton & Pelesko
(2010), respectively. The blue circles were obtained by sampling the data from figure 7 of Moulton & Pelesko
(2010) using WebPlotDigitizer (Rohatgi, Rehberg & Stanojevic 2018). The four cases are (a) no magnetic field
applied, (b) 14.5 mm between film and magnet, (c) 8.5 mm between film and magnet, and (d) 2.5 mm between
film and magnet.

NP concentration affects film thickness predictions. The simulations presented in §§ 3.1
and 3.2 were performed on a dimensionless domain defined by Ω̃ = {(x̃, ỹ) | (x̃− 0.5)2 +
(ỹ− 0.5)2 ≤ 0.25}; the simulation parameters were chosen to investigate the phenomena
of interest and are not necessarily physically realistic. In §§ 3.3 and 3.4, more realistic
simulation parameters were chosen to align with the experiments in Lalli et al. (2023). The
length scale L was held fixed at the capillary length, and the simulations were conducted
on a larger dimensionless domain defined by Ω̃ = {(x̃, ỹ) | (x̃− 9.125)2 + (ỹ− 9.125)2 ≤
18.25}. Table 1 provides the dimensionless numbers that were used in each simulation.

3.1. Effects of surface mobility and surface flows – soap films
The assumption of immobile interfaces is commonly made in thin film models for soap
films and magnetic soap films. In this section we compare immobile soap films (Bqsh →
∞ and Bqd →∞, or sufficient Marangoni stresses) with partially mobile soap films to
investigate the importance of including surface mobility and surface flows in thin film
models, where the surface mobility can be thought of as the inverse of the Boussinesq
numbers (Stone et al. 2002; Dame et al. 2005), although the surface mobility also depends
on Marangoni effects (Stebe, Lin & Maldarelli 1991). Note that the fully mobile limit
occurs when the interfaces are free of surface-active agents (Bqsh = Bqd = 0, γ = γc),
which is not investigated here as surfactants are a prerequisite for films to survive for
any reasonable amount of time. Gravitational effects were set to 0 (G = 0) to isolate the
effects of interfacial flows that arise in partially mobile films. An immobile soap film
was simulated by assuming that the interface was saturated with surfactant, i.e. γ = γsat
and γ̃ = 0, which was imposed in the simulations by setting the Marangoni number to
M = 0. Marangoni stresses arising due to interfacial flows driven by viscous shear from
the core liquid are expected to have an immobilising effect on the interface. Consequently,
the Marangoni number was varied alone for the simulated partially mobile soap films to
investigate interfacial flows of varying magnitudes.

In all simulations, the thickness field remained axisymmetric over time. Figure 3(a)
presents the thickness profiles of an immobile soap film over time. The immobile film
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Figure 3. (a) Film thickness profiles for t̃ ∈ [0, 1] along a line passing through the centre of the film at ỹ = 0.5
for an immobile soap film and a partially mobile soap film with M = 100. The time between the thickness
profiles is �t̃ = 0.04, and time increases in the vertically downwards direction, indicated by darker colours.
(b) The average film thickness over the thin film as a function of time for an immobile film and three partially
mobile films.

thins due to the capillary suction boundary condition with all drainage within the film
governed by spatial variations in the capillary pressure. The thinning slows with time
due to the h̃3 dependence in the thickness evolution equation (2.42a) and the decrease in
capillary suction force at the boundary with time (2.66). Furthermore, as time progresses,
a region of increased film thickness forms in the centre surrounded by a thinner ring. This
behaviour has been reported for circular thin films and occurs when the rate of thinning
due to capillary suction exceeds the curvature-related thinning at the centre of the film
(Joye, Hirasaki & Miller 1992; Pugh 2016).

The thinning progresses considerably faster for the partially mobile soap film shown in
figure 3(a) compared with the immobile film. This occurs because a surface velocity field
develops that is radially outward from the centre due to viscous shear forcing from the
core liquid that is also moving radially outwards from the centre. Surfactants adsorbed at
the interface are advected radially outwards from the film centre, leading to Marangoni
stresses that act to decelerate the surface velocity.

Faster surface flows arise with smaller Marangoni numbers, causing the average
thickness over the film to fall faster with time, as shown in figure 3(b). The film
thickness reaches an equilibrium when the disjoining pressure is sufficient to prevent
any further drainage or evaporation. The precise equilibrium thickness obtained in this
set of simulations is dependent upon the disjoining pressure parameters used in (2.63)
and the strength of the capillary suction boundary condition. For the partially mobile
film with M = 10, we were able to simulate an equilibrium film by reducing the time
step and slowly ramping down the Neumann slope condition from 30◦ to 0◦ once
disjoining pressure effects became significant to avoid numerical instabilities caused by
large gradients in the disjoining pressure. The simulated equilibrium film thickness (2h)
was 45.6 nm (h̃ = 2.28× 10−3), which is a typical thickness of common black films
(Bergeron 1999).

Figure 3(b) presents how the rate of film thinning approaches the rate of thinning for the
immobile soap film as the Marangoni number is increased, highlighting how Marangoni
stresses can immobilise the interface. Overall, the results presented in this section highlight
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the importance of including interfacial flows in models for the thinning of soap films, as
interfacial flows can significantly affect the rate of film thinning.

3.2. Magnetite NP transport – magnetic soap films
The drainage flows in magnetic soap films induced by an inhomogeneous magnetic field
are caused by the transport of magnetic NPs within the film; this transport can affect the
local magnetic NP concentration and the film magnetisation. Despite this, previous models
for the thinning of magnetic soap films under the forcing of inhomogeneous magnetic
fields calculate the local film magnetisation by implicitly assuming that the concentration
of magnetite NPs remains uniform throughout the film (Moulton & Pelesko 2010; Back
& Beckham 2012). It is therefore of interest to understand how accounting for variations
in the magnetite NP concentration and the dependence of the film magnetisation on the
magnetite NP concentration affects film thickness predictions. Consequently, simulations
were performed with magnetite NP transport by solving for the local molar concentration
of NPs using (2.47) and without magnetite NP transport by imposing a constant and
uniform concentration of magnetite NPs. The present results evaluate the possible effects
and importance of accounting for magnetic NP transport when simulating magnetic soap
films in inhomogeneous magnetic fields. The magnetic field used in the simulations is
presented in figure 12(a).

With the capillary suction boundary condition (2.66), the thickness initially increases
from right to left due to magnetically induced flows in the direction of increasing magnetic
field intensity, as shown in figure 4(d). The thickness then falls to a minimum on the left
side of the domain, as illustrated by figure 4(a,d), due to the magnetic drainage flux out of
the thin film, which is given by 1

3 h̃3Ψ M̃(c̃, H̃)∇̃pH̃ · nd. The thickness on the left side of
the domain falls faster when accounting for magnetite NP transport since the concentration
of magnetite NPs, and therefore, the magnetisation, is greater on the left side of the film
with magnetite NP transport compared with the case of uniform concentration. In contrast,
the magnetic soap films in the experiments generally increased in thickness in the direction
of increasing magnetic field intensity (Lalli et al. 2023). As a result, we also investigated
boundary condition (2.67), which limits the drainage flux of core liquid out of the thin
film. With this boundary condition, we see a continual increase in thickness from right
to left in figure 4(b,e). The difference between the thickness profiles for uniform c̃ and
with the transport of c̃ is now smaller. Nevertheless, due to the build up of concentration
of magnetite NPs on the left side of the film and the depletion of magnetite NPs on the
right side of the film, as illustrated in figure 4(c, f ), there is a larger thickness on both the
left and right sides of the film when considering magnetite NP transport. This is because
magnetically driven flows are stronger on the left side of the film and weaker on the right
side of the film when accounting for magnetite NP transport.

With boundary condition (2.67), the thickness profiles are more realistic; however, this
boundary condition results in ∇̃pp̃c · nd varying around the boundary. Although it seems
reasonable that there would be a limit on the drainage flux of core liquid out of the thin
film, it is unclear, at present, whether there is any physical justification for ∇̃pp̃c · nd
varying around the boundary of the thin film, but it could possibly be attributed to the
effect of the magnetic field on the meniscus shape (Rosensweig et al. 2005; Singh et al.
2024). Overall, accounting for the transport of magnetite NPs in thin film models can
significantly affect film thickness computations since the magnetisation depends on the
local NP concentration. The size of this effect is strongly dependent on the dimensionless
numbers α, ϕc and Pec, which control the strength of magnetophoresis and diffusion
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Figure 4. The top row presents h̃ and c̃ at t̃ = 0.10. Panels (a,b) present the thickness field with magnetite
NP transport for boundary conditions (2.66) and (2.67), respectively. Panel (c) presents the concentration field
for magnetite NPs for boundary condition (2.67). The profiles in (d), (e) and ( f ) are plots over the dashed
centrelines marked in (a), (b) and (c) over time for t̃ ∈ [0.0, 0.2]. The time between profiles is �t̃ = 0.02, and
the progression of time is indicated by arrows and progressively darker colours. In (d) and (e), the dashed
profiles are for a uniform concentration of magnetite NPs and the solid profiles are for magnetite NP transport
governed by (2.47).

relative to advective transport, and the choice of the boundary condition for c̃. Further
research is needed to understand the behaviour of magnetite NPs at the thin film boundary,
∂Ω , to justify the boundary condition used for c̃ (2.69) or to suggest an alternative
boundary condition that may be more realistic.

3.3. Simulating experimental soap films
There are a number of unknowns from the experiments, such as the surface shear and
dilatational viscosities, the initial surface excess concentration of surfactant and the initial
film thickness (the films were initially too thick to exhibit interference colours (Lalli
& Giusti 2023)) such that it is only possible for a qualitative comparison between the
simulations and the experiments.

The length scale L was held fixed at the capillary length and the size of the dimensionless
simulation domain was increased to Ω̃ = {(x̃, ỹ) | (x̃− 9.125)2 + (ỹ− 9.125)2 ≤ 18.25}
to align with the experiments. With a domain of this size, capillary pressure effects are
no longer significant over the entire domain, with negligible capillary pressure gradients
in the centre of the domain, in contrast to the soap films simulated in § 3.1. Based on the
method used to create the soap films in the experiments, we hypothesise that the pressure
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Figure 5. Simulated thickness fields for Γ̃i = 0.05 (a) and Γ̃i = 0.20 (b) for t̃ ∈ [0.03, 0.165]. The time
between each thickness field is �t̃ = 0.015.

was slightly larger under the soap films studied. As a result, we imposed an axisymmetric
centre surface, C, of uniform curvature in the simulations, created by slicing a spherical
bubble of radius 100 mm at a level such that C̃ was 168.0 in the centre of the film and 0.0
at the thin film boundary.

Figure 5 presents the dimensionless thickness field over a segment of the simulation
time for two initial surface concentrations of surfactant (top row is Γ̃i = 0.05 and bottom
row is Γ̃i = 0.20). With an initially uniform thickness field, a minimum in the thickness
field arises in the centre of the film for both initial concentrations of surfactant, primarily
due to gravitational drainage and shear-driven surface flows. The surface flows advect
surfactant outwards from the film centre, resulting in larger Marangoni stresses with
increasing distance from the film centre, as illustrated in figure 6(a) for t̃ = 0.01. The
film thickness and surfactant distribution is axisymmetric at this time. Furthermore, the
Marangoni stresses are similar with Γ̃i = 0.05 and Γ̃i = 0.20 since the Marangoni number,
which features in (2.42c), is the same in each instance. After some thinning has taken
place, the axisymmetry in the simulations is broken by the large Marangoni stresses
at the boundary of the thin film combined with the suction boundary condition (2.66).
Figure 5 presents how film that is thinner than the surrounding film is then frequently
extracted from the boundary of the film before being driven towards the film centre. These
thin patches of fluid initially have a higher surfactant concentration than the surrounding
film, and their motion towards the film centre is driven by Marangoni stresses and the
difference in gravitational forcing on thin patches of fluid compared with surrounding
thicker fluid (Huang et al. 2020). This simulated behaviour appears to be in agreement
with the mechanism for marginal regeneration outlined by Nierstrasz & Frens (1999).

Figure 6(b) presents the variation of the average thickness over a central section of film
and over the entire film as a function of time. There is initially a sharp change in the
thickness averaged over the centre of the film for both initial surfactant concentrations.
This is caused by large surface velocities arising in the initial absence of surface tension
gradients, which are driven by viscous shear from the core liquid. Marangoni stresses
acting to immobilise the interface arise quicker with the larger initial concentration
of surfactant, Γ̃i = 0.20. Consequently, the film with a smaller initial concentration of
surfactant drains considerably faster over time.
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Figure 6. (a) Strength of Marangoni stresses relative to viscous shear at t̃ = 0.01 along a line passing through
the centre of the film at ỹ = 9.125 for Γ̃i = 0.05 and Γ̃i = 0.20. The grey line represents the initial condition.
(b) The average thickness over the entire film (solid line) and over a central circular section of film defined
by Ω̃c = {(x̃, ỹ) | (x̃− 9.125)2 + (ỹ− 9.125)2 ≤ 9.125} (dashed line) as a function of time for Γ̃i = 0.05 and
Γ̃i = 0.20.

3.4. Simulating experimental magnetic soap films
Two magnetic soap films with different concentrations of magnetite NPs (c̃i = 0.5 and
c̃i = 1.0) were simulated with magnetic field intensity given by figure 12(c). As Pec →
∞ in the magnetite NP transport equation (2.47), the transport of c̃ is dominated by
advection. In this limit, the solution for c̃ is uniform for a uniform initial concentration
of magnetite NPs. Preliminary simulations showed that the solution for c̃ may faithfully
be taken as uniform for Pec = 2000 and the other dimensionless number given in
table 1. Consequently, a uniform concentration of magnetite NPs was adopted for the
simulations performed in this section for computational efficiency. A centre surface of
uniform curvature was imposed with smaller height than in § 3.3 to satisfy the assumption
∂H/∂z = 0 over the film depth. This surface was obtained by slicing a bubble of radius
1 m such that C̃ was 16.7 in the centre of the film and 0.0 at the thin film boundary.

Figure 7 presents the variation of the average thickness over the left side of the thin film,
right side of the thin film and entire thin film as a function of time for the two magnetic
soap films studied. Magnetically induced flows in the direction of increasing magnetic field
intensity drove the average thickness to be larger on the left side of the film compared with
the right side. The difference in average thickness between the left and right sides of the
film is greater for the more concentrated magnetic soap film since a larger concentration
of magnetite NPs leads to stronger magnetically driven flows. The average thickness over
the entire thin film falls faster with c̃i = 1.0 compared with c̃i = 0.5, as the drainage flux
out of the thin film due to magnetic forcing, 1

3 h̃3Ψ M̃(c̃, H̃)∇̃pH̃ · nd, is larger for c̃i = 1.0.
Thickness fields over a subset of the simulation time are presented in figure 8 for the two

magnetic soap films studied. Figure 8 shows that film that is thinner than the surrounding
fluid is sporadically extracted from the film boundary before being driven away from
the film boundary. Thin patches of fluid extracted from the left side of the film move
approximately in the ex direction, while thin patches extracted from the right side of the
film are deflected away from moving radially towards the centre of the film.

The simulated films feature fast flows in the direction of increasing magnetic field
intensity that drive fast flows around the circumference of the film in the reverse direction.
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Figure 7. Average thickness over the left-half (Ω̃l), right-half (Ω̃r) and entire thin film (Ω̃) as a function of
time for c̃i = 0.5 and c̃i = 1.0.
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Figure 8. Simulated thickness fields for c̃i = 0.5 (a) and c̃i = 1.0 (b) for t̃ ∈ [0.20, 0.38]. The time between
each thickness field is �t̃ = 0.02.

This behaviour is evident from the surface velocity fields in figure 9(a,c). The flows around
the boundary eventually separate from the boundary and orient towards the interior of the
film. The separation can be seen in figure 8 for t̃ = 0.20, with thinner fluid being driven
from the boundary at the point of separation according to the surface flows in figure 9(a,c).
The point of separation occurs further to the right for the magnetic soap film with a higher
concentration of magnetite NPs, as the magnetically driven surface velocities are larger for
this film. In figure 9(b,d) the surface velocities are smaller due to Marangoni stresses, and
the separation of the flows from the boundary occur earlier (further to the left) for each of
the two magnetic soap films. Again, the separation occurs earlier for c̃i = 0.5 compared
with c̃i = 1.0.

4. Comparison with experiments

This section evaluates the performance of the model by comparing the results in §§ 3.3
and 3.4 with experiments. Recommendations for future work are also discussed.
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Figure 9. A subset of surface velocity vectors for c̃i = 0.5 at (a) t̃ = 0.20 and (b) t̃ = 0.38 and for c̃i = 1.0 at
(c) t̃ = 0.20 and (d) t̃ = 0.38, where Ṽs is the magnitude of Ṽ s.

4.1. Soap films
To the best of our knowledge, marginal regeneration has not been simulated before
using a thin film model. The computations performed using the thin film model derived
in the present study were in qualitative agreement with the drainage due to marginal
regeneration observed in the experiments, namely, thin patches of fluid were extracted
from the boundary of the film before moving towards the centre of the film whilst thicker
fluid was sucked into the meniscus. The trajectories of the thin patches in figure 5 are in
qualitative agreement with the trajectories illustrated in figure 9 of Lalli et al. (2023).

There are some key differences between the marginal regeneration behaviour observed
in the simulations (see figure 5) and in the experimentally investigated soap films (see
figure 10a–c), which are now discussed. In the experiments, marginal regeneration started
almost instantly after film formation, whilst the breaking of axisymmetry occurred later
after around 20 s in the simulations. The mechanism that leads to pinch destabilisation
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(b)(a) (c)

(d ) ( f )

Figure 10. The thinning of a soap film (a–c) and magnetic soap film in an inhomogeneous magnetic field
(d–f ) (Lalli et al. 2023), where t is the time from film formation. The relationship between film thickness and
interference colours was computed by applying an interference relation derived for monochromatic waves at a
number of discrete wavelengths (Lalli & Giusti 2023).

and marginal regeneration, which is yet to be fully understood (Trégouët & Cantat 2021),
is not incorporated into the model since the pinch lies outside of the simulated region;
therefore, it may be more realistic to trigger marginal regeneration in the simulations
by perturbing the film thickness or surface surfactant concentration. As evident from
figures 5 and 10(a–c), the frequency of thin patches was much larger in the experiments
compared with the simulations, suggesting that marginal regeneration contributed more
significantly to the rate of thinning in the experiments. The thin patches were also typically
larger in the simulations compared with the experiments. Since the frequency and size
of thin patches is expected to be closely tied to the pinch destabilisation mechanism, a
more accurate treatment of this destabilisation mechanism may lead to a better agreement
between the simulations and the experiments. Furthermore, the thin patches of fluid in
the experiments had well-defined, although deformable, boundaries, while the simulated
thin patches had more diffusive boundaries. We hypothesise that the behaviour observed
in the experiments is governed by the surfactant monolayers covering the thin patches
of fluid, preventing surrounding thicker fluid from flowing into the thin patches and
equilibrating their thickness with the surrounding fluid. It would be interesting to conduct
further research to explore how thin patches of fluid interact with surrounding fluid,
which could inform how the model could be improved to more accurately simulate
marginal regeneration. The diffusive nature of the thin patches of fluid is also related
to the choice of simulation parameters, such as the Péclet number for surface surfactant
transport. Additionally, it may be important to account for the variation of the interfacial
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viscosities with the surface concentration of surfactant. Spatial gradients in the surface
shear and dilatational viscosities would then enter the equation governing the surface
velocity (2.42c) from the Boussinesq–Scriven surface stress model (2.15).

A black film formed in the centre of experimentally investigated soap films, as seen
in figure 10(a), within around 10 s from film formation. The black centre then grew with
time, as evident from figure 10(b,c), due to drainage and evaporation. Although a minimum
in thickness was observed in the centre of the simulated soap films, black film did not
form. This may be attributed to the aforementioned differences in drainage due to marginal
regeneration and since evaporation was switched off in all simulations.

As many surfactants are soluble, future work should focus on extending the model
from insoluble surfactants to soluble surfactants. This will allow the effects of surfactant
adsorption and desorption on film thinning to be explored.

4.2. Magnetic soap films
The simulated magnetic soap films shown in figure 8 feature an increase in thickness in
the direction of increasing magnetic field intensity (from right to left), in alignment with
the magnetic soap film shown in figure 10(d–f ). Furthermore, the simulations predicted
faster magnetically driven drainage flows with a larger initial concentration of magnetite
NPs in the magnetic soap film, as was also reported by Lalli et al. (2023).

The arrows in figure 10(d) illustrate the direction of the fastest drainage flows: there
are flows towards the magnet in the centre of the film with reverse flows around the film
boundary that then separate from the film boundary and move towards the interior of the
film. Our model predictions in figures 8 and 9 predict this same flow pattern.

The trajectories of the thin patches of fluid in figure 8 are in good agreement with the
trajectories in figure 9 of Lalli et al. (2023); however, in similarity with soap films, the size
and frequency of thin patches differs significantly between simulation and experiment. For
example, many thin patches of fluid are present in the reverse flows around the boundary
in figure 10(d–f ), whilst only a few thin patches of fluid were observed in these flows in
the simulated films in figure 8. As previously mentioned, a more accurate treatment of the
pinch destabilisation mechanism could lead to a closer agreement between simulation and
experiment. Furthermore, the frequency of thin patches of fluid depends on the proposed
capillary suction boundary condition (2.66) and the suction strength, P . This boundary
condition allows the model to reproduce behaviour in qualitative agreement with marginal
regeneration. Nevertheless, further research is needed to validate this boundary condition
for film borders subject to capillary suction. In addition, further research is needed to
justify a suitable value for the Neumann boundary condition for the film thickness, based
on the behaviour in the transition region and the meniscus.

The derived model assumes a dilute concentration of magnetite NPs in the core liquid.
The validity of the model could be extended to higher concentrations of magnetite NPs by
considering interactions between the NPs, magnetoviscous effects and demagnetising field
effects. Furthermore, the Langevin relation (2.46) describing the nonlinear magnetisation
of the ferrofluid assumes that the magnetite NPs in the ferrofluid are monodisperse.
Since most ferrofluids are polydisperse, it may be valuable in future work to investigate
magnetisation relations derived for polydisperse NPs (Ivanov et al. 2007).

With the simulation parameters used in this study, convergence is achieved with a
relatively large time step, �t̃ = 0.001 (Liu et al. 2019). It is anticipated that some form of
stabilisation, such as streamline-upwind Petrov–Galerkin stabilisation or a subgrid-scale
method (Codina 1998; John & Knobloch 2007; Liu et al. 2019), will be needed when
forcing terms are particularly large, such as large values of Ψ or G, or when the Péclet
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numbers for magnetite NP and surfactant transport are particularly large. Finally, future
work should focus on defining the range of variables and dimensionless numbers over
which the pressure scale P = ηU/(εH) remains appropriate. For films close to the fully
mobile limit, the pressure scale suitable for extensional flows, P = ηU/L, is expected to be
more relevant (Kargupta et al. 2004; Münch et al. 2005), whilst for films close to rupture,
inertial terms become significant such that the pressure scale P = ρU2 would be more
relevant (Erneux & Davis 1993; De Wit et al. 1994).

5. Concluding remarks

A system of equations governing the thickness field of free magnetic soap films has
been derived using the thin film approximation. This system of equations incorporates
several physical phenomena that were not accounted for in previous magnetic soap film
models, such as interfacial flows and the dependence of the magnetisation on the local
concentration of magnetite NPs. This model was used to simulate both soap films and
magnetic soap films. It was found that interfacial flows can dominate the rate of film
thinning, depending on the strength of Marangoni stresses created by the interfacial flows.
Accounting for variations in the magnetite NP concentration can also have a notable effect
on film thickness predictions; however, this is less important for high Péclet number (Pec)
flows. A capillary suction boundary condition was proposed with the aim of simulating
marginal regeneration. An exchange between thin and thick fluid at the film boundary
was observed in the simulations for soap films, and the simulated thin patches of fluid
flowed from the film boundary towards the film centre, in agreement with the marginal
regeneration phenomena observed in the experiments. The derived model was also able
to reproduce several features observed in experimentally investigated magnetic soap films,
such as faster magnetically driven drainage flows in the direction of increasing magnetic
field intensity with larger concentrations of magnetite NPs and reverse flows that separate
from the film boundary and flow into the interior of the film. This work advances the
state of magnetic soap film modelling and is an important step towards more accurately
modelling soap films in which marginal regeneration is occurring.
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Appendix A. Calculus on surfaces

In order to evaluate ∇s · T s, it is necessary to evaluate the surface gradient of a scalar
field, the surface gradient of a vector field, the surface divergence of a vector field and
the surface divergence of a second-order tensor field, where all these field are defined on
the dividing surface only. This section provides the required background to perform these
operations with the rectangular Cartesian coordinate system used in this study. Throughout
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this section, repeated Greek indices indicate a summation from 1 to 2, whilst repeated
Latin indices indicate a summation from 1 to 3.

Each point on the dividing surface can be specified through two surface coordinates,
which we denote by y1 and y2. The position vector of any point on the surface is then
rs = rs( y1, y2). Vector fields defined on the surface that are at every point on the surface
tangential to the surface may be expressed as a linear combination of the basis {a1, a2},
where (Slattery et al. 2007)

aα = ∂rs

∂yα
, α ∈ {1, 2}. (A1)

The surface projection tensor, Ps, is a second-order tensor field defined on the surface that
maps any vector on the surface into the part of the vector tangential to the surface. The
surface projection tensor may be expressed as (Slattery et al. 2007)

Ps = aαβaαaβ, (A2)

where aαβ are the contravariant components of Ps. The covariant components of Ps are
given by aαβ = aα · aβ , and the contravariant components can be found from the covariant
components through (Slattery et al. 2007)

aαβ = 1
a

eαν eβγ aγ ν, a =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , (A3)

where eαβ is the Levi-Civita symbol in two dimensions and a is the determinant of the
square matrix with entries aαβ .

For a scalar field A, vector field A and second-order tensor field A, all defined on the
dividing surface, the required surface operations for evaluating ∇s · T s are defined by
(Slattery et al. 2007)

∇sA = aαβ ∂A
∂yα

aβ, (A4a)

∇sA = aαβ ∂A
∂yα

aβ, (A4b)

∇s · A = aαβ ∂A
∂yα

· aβ, (A4c)

∇s · A = aαβ ∂A

∂yα
· aβ. (A4d)

We now introduce the rectangular Cartesian coordinate system, with basis {ex, ey, ez}
and coordinates {x, y, z}, used in this study. Since the dividing surface was defined at
z = h(x, y, t), x and y were used as the surface coordinates such that rs = xex + yey +
h(x, y, t)ez. We may then use (A1) and (A3) to find

a1 = ∂rs

∂x
= ex + ∂h

∂x
ez, (A5a)

a2 = ∂rs

∂y
= ey + ∂h

∂y
ez, (A5b)

a = 1+
(

∂h
∂x

)2

+
(

∂h
∂y

)2

, (A5c)
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a11 = 1
a

(
1+

(
∂h
∂y

)2
)

, (A5d)

a12 = a21 = −1
a

∂h
∂x

∂h
∂y

, (A5e)

a22 = 1
a

(
1+

(
∂h
∂x

)2
)

. (A5f )

With the centre surface included, h must be replaced by h+ C in (A5). In order to
evaluate the surface operations defined in (A4), all that remains is to express A and A in
terms of their rectangular Cartesian components. For brevity, we use {e1, e2, e3} to denote
{ex, ey, ez}. With A = Aiei, (A4b) and (A4c) become

∇sA = aαβ ∂Ai

∂yα
eiaβ, (A6a)

∇s · A = aαβ ∂Ai

∂yα
ei · aβ. (A6b)

Similarly, with A = Aijeiej, (A4d) becomes

∇s · A = aαβ ∂Aij

∂yα
ei(ej · aβ). (A7)

The presented results allow the surface operations featuring in the present study to
be evaluated, for example, the surface gradient of the surface tension and the surface
divergence of the surface velocity field are

∇sγ = ex

(
a11 ∂γ

∂x
+ a21 ∂γ

∂y

)
+ ey

(
a12 ∂γ

∂x
+ a22 ∂γ

∂y

)

+ ez

(
a11 ∂γ

∂x
∂h
∂x
+ a12 ∂γ

∂x
∂h
∂y
+ a21 ∂γ

∂y
∂h
∂x
+ a22 ∂γ

∂y
∂h
∂y

)
, (A8a)

∇s · V s = a11
(

∂us

∂x
+ ∂h

∂x
∂ws

∂x

)
+ a22

(
∂vs

∂y
+ ∂h

∂y
∂ws

∂y

)

+ a12
(

∂us

∂y
+ ∂h

∂x
∂ws

∂y
+ ∂vs

∂x
+ ∂h

∂y
∂ws

∂x

)
. (A8b)

Appendix B. Material properties and scales

Table 2 provides typical properties and scales for soap films created from
aqueous-surfactant solutions and magnetic soap films created from aqueous-surfactant
solutions containing a dilute concentration of magnetite NPs.

Appendix C. Free vertical magnetic soap films

The simplest way to adapt the derived model to free vertical magnetic soap films is to
keep the dividing surface at z = h (a centre surface is not considered for vertical films).
We, therefore, rotate the coordinate system so that ex is in the vertically downwards
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Properties Scales

ρ 1000 kg m−3 H 10 μm
η 1 mPa s L 2 mm
γsat 40 mN m−1 U 4× 10−6 m s−1

γc 72 mN m−1 P 0.08 Pa
ηs (10−8 − 10−3) Pa s m Mc 65 A m−1

λs (10−7 − 10−5) Pa s m Hc 200 kA m−1

A (10−20 − 10−19) J S 32 mN m−1

B (105 − 106) Pa cc 5× 10−4 mol m−3

ζ (108 − 3× 108) m−1 ϕc 4× 10−4

m 2.4× 10−19 A m2 Γsat (106 − 5× 106) mol m−2

T 298 K
Vp 1.4× 10−24 m3

D0 3.9× 10−12 m2 s−1

b0 9.5× 108 m s−1 N−1

Ds (10−10 − 10−8) m2 s−1

Table 2. Typical properties and scales for soap films and magnetic soap films created from aqueous-surfactant
solutions and with magnetite NPs providing the source of magnetism in the magnetic soap films. The data
in Rosen & Kunjappu (2012), Bergfreund et al. (2021) was used for the surface tension and surface excess
concentration of surfactant for a saturated interface, γsat and Γsat. The values for the surface shear viscosity, ηs,
were taken from Dimova et al. (2000), Stevenson (2005), and the values for the surface dilatational viscosity, λs,
were taken from Fruhner et al. (2000), Wantke, Fruhner & Örtegren (2003). The disjoining pressure coefficients
in (2.63) were estimated using data in Lyklema & Mysels (1965), Casteletto et al. (2003), Matsubara et al.
(2021). The magnetic dipole moment, m, was calculated using a magnetic core diameter of 10 nm with the
ferrofluid properties in Lalli et al. (2023), and the particle volume including the coating, Vp, was calculated by
assuming a coating thickness of 2 nm (Ivanov et al. 2007). The Brownian diffusion coefficient of the magnetite
NPs, D0, was computed by using the hydrodynamic radius of the NPs in the ferrofluid (56 nm) in place of a in
(2.45). Finally, the values in Dimova et al. (2000), Craster & Matar (2009) were used for the surface diffusion
coefficient, Ds.

direction and ey is across the film, as shown in figure 11(a). Gravitational forcing now
enters through the x-momentum equation, and the resulting system of equations is

∂ h̃
∂ t̃
= −∇̃p · (Ṽ sh̃)+ 1

3
∇̃p · (h̃3(∇̃p(p̃+ φ̃)− Ψ M̃∇̃pH̃ − Gex))− J̃e, (C1a)

p̃+ φ̃ = −
(

ε2Mγ̃ + ε3

C

)
∇̃2

p h̃− Π̃, (C1b)

M∇̃pγ̃ + Bqd∇̃p · ((∇̃p · Ṽ s)I)+ Bqsh∇̃2
p Ṽ s = h̃(∇̃p(p̃+ φ̃)− Ψ M̃∇̃pH̃ − Gex),

(C1c)

with the magnetite NP and surfactant transport equations still given by (2.47) and (2.61).
The assumptions that were used in the derivation of (2.42a–c), such as ∂H/∂z = 0 over
the thickness of the film, also apply to these equations governing the thickness evolution
of free vertical magnetic soap films (C1a–c).

Figure 11(c) presents an example simulation of a free vertical soap film bounded by
a square frame. All simulation parameters, boundary conditions and initial conditions
were the same as for § 3.3 in table 1, except G = 1, M = 500, Bqsh = Bqd = 5× 10−4,
Γ̃i = 0.1 and Ncell = 258 000 were used for the simulated vertical soap film. The film
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Gas

Dividing surface
Liquid

Meniscus

Thin film

Origin

Frame

t̃  = 1.0

t̃  = 2.0

0.800.450.10

t̃  = 0.1

t̃  = 1.1

z = –h

z = h
n

tx

nd
ez

ey

ey

ex

ex

Ω

∂Ω

(a) (b)

(c)

h̃

Figure 11. (a) A schematic of a free vertical soap film bounded by a frame, in the x–y plane, (b) presents a
zoomed-in cross-section of a small section of the thin film in (a) in the x–z plane, and (c) shows the simulated
thickness field of a free vertical soap film on dimensionless domain Ω̃ = {(x̃, ỹ) | 0 ≤ x̃ ≤ 20; 0 ≤ ỹ ≤ 20} for
t̃ ∈ [0.1, 2.0].

thickness increases in the positive ex direction, predominately due to gravitational
drainage. Furthermore, thin patches of fluid are extracted from the bottom film boundary
and rise upwards due to Marangoni stresses (Nierstrasz & Frens 1999) and gravitational
effects (Huang et al. 2020). This behaviour is in qualitative agreement with the marginal
regeneration phenomena observed in experimental images of free vertical soap films in
Nierstrasz & Frens (1999) and Berg et al. (2005); however, the frequency and size of thin
patches of fluid differ between this simulation and these images.

Appendix D. Applied magnetic field

Figure 12 presents the applied magnetic fields over the spatial region of the thin film,
Ω , that were used in the simulations. The characteristic magnetic field intensity, Hc,
was chosen as the maximum value of the magnetic field intensity, H, in Ω . The applied
magnetic field used in simulations performed in § 3.2 is shown in the top row of figure 12,
whilst the applied magnetic field used in simulations performed in § 3.4 is shown in the
bottom row of figure 12. These magnetic fields were calculated using Magpylib (Ortner
& Bandeira 2020) by assuming a cylindrical magnet of homogeneous magnetisation
with remanence equal to 1430 mT. This approach was justified in Lalli et al. (2023)
by comparison with measurements made using an F71 Teslameter. Both H̃ and |∇̃pH̃|
increase from right to left, as the neodymium magnet was placed on the left side of the
film.
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ỹ

H̃

H̃

x̃ x̃

(b)(a)

(c) (d )

|∇̃ p
H̃

|
|∇̃ p
H̃

|

Figure 12. The top row shows (a) the applied magnetic field, H̃, and (b) the gradient ∇̃pH̃ over the thin
film region, Ω , for a cylindrical magnet with diameter 10 mm, thickness 10 mm and Hc = 180.4 kA m−1.
The bottom row shows the same for a cylindrical magnet with the same dimensions and properties as the
neodymium magnet used in the experiments: diameter 38.5 mm, thickness 10 mm and Hc = 218.9 kA m−1.
The arrows in (b) and (d) represent the direction of ∇̃pH̃, and the colours represent the magnitude of ∇̃pH̃.
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