
J. Functional Programming 5 (1): 111-130, January 1995 © 1995 Cambridge University Press 1 1 1

Dynamic typing in polymorphic languages]
M. ABADI1, L. CARDELLI1, B. PIERCE2* AND D. REMY3

1 Digital Equipment Corp., Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA
2 Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, UK

31NRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Abstract

There are situations in programming where some dynamic typing is needed, even in the
presence of advanced static type systems. We investigate the interplay of dynamic types with
other advanced type constructions, discussing their integration into languages with explicit
polymorphism (in the style of system F), implicit polymorphism (in the style of ML), abstract
data types, and subtyping.

Capsule review

Dynamic typechecking is perhaps not the most fashionable of subjects; this makes it
particularly refreshing to see a serious treatment of it by respected authors. With the knowledge
that dynamic typechecking within a system does not preclude statically typechecked
applications, and that dynamic typechecking is essential for system-wide activities such as
persistence and data transfer between universes, it is surprising that more interest has not been
shown.

This paper extends a previous treatment of dynamic typechecking in programming languages
to deal with polymorphism in its different guises: explicit and implicit parametric
polymorphism, existentially quantified data types and subtyping. The essential problem
encountered is that pattern variables may be instantiated in non-unique ways when values may
be associated with a number of different types. This problem is treated by statically restricting
the allowed use of patterns so that only unique matches can occur dynamically. The emphasis
is on achieving maximum expressiveness whilst maintaining sound, decidable and under-
standable typechecking.

Some of the concepts exposed in the paper are tricky, and require careful reading and
sometimes re-reading; however, everything eventually becomes clear. The paper should be
regarded as essential reading for all programming language researchers - and not just the
functional community!

1 Introduction

Dynamic types are sometimes used to palliate deficiencies in languages with static
type systems. They can be used instead of polymorphic types, for example, to build
heterogeneous lists; they are also exploited to simulate object-oriented techniques

t A preliminary version of this material appeared as Abadi et al. (1992).
t Part of his work was completed at INRIA-Rocquencourt and part at the School of Computer Science,

Carnegie Mellon University, Pennsylvania.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


112 M. Abadi et al.

safely in languages that lack them, as when emulating methods with procedures. But
dynamic types are of independent value, even when polymorphic types and objects
are available. They provide a solution to a kind of computational incompleteness
inherent to statically-typed languages, offering, for example, storage of persistent
data, inter-process communication, type-dependent functions such as p r i n t , and the
e v a l function.

Hence, there are situations in programming where one would like to use dynamic
types even in the presence of advanced static type systems. In this paper, we
investigate the integration of dynamic types into languages with explicit poly-
morphism (in the style of system F (Girard, 1972)), implicit polymorphism (in the
style of ML (Milner et al., 1990)), abstract data types, and subtyping. Our study
extends earlier work (Abadi et al., 1991), but keeps the same general approach and
the same basic language constructs: dynamic, for tagging a value with its type, and
typecase , for comparing a type tag with a pattern and branching according to
whether they match.

The interaction of polymorphism and dynamic types gives rise to problems in
binding type variables. We find that these problems can be more clearly addressed in
languages with explicit polymorphism. Even then, we encounter some perplexing
difficulties (as indicated in Abadi et al., 1991). In particular, there is no unique way
to match the type tag of a dynamic value with a typecase pattern. Our solution
consists in constraining the syntax of t ypecase patterns, thus providing static
guarantees of unique solutions. The examples we have examined so far suggest that
our restriction is not an impediment in practice.

Drawing from the experience with explicit polymorphism, we consider languages
with implicit polymorphism in the ML style. The same ideas can be used, with some
interesting twists. In particular, we are led to introduce tuple variables, which stand
for tuples of type variables.

The treatment of abstract data types does not present any new typing or matching
difficulties. Instead, it raises an interesting question: whether the type tag of a
dynamically typed value should be matched abstractly or concretely (that is, using
knowledge of the value's actual run-time type). We explore the consequences of
both choices.

Subtyping is exploited in combination with dynamic types in languages with
restricted typecase patterns, such as Simula-67 (Birtwistle et al., 1979) and
Modula-3 (Nelson, 1991). There, a tag matches a pattern if it is a subtype of the
pattern. This sort of matching does not work out well with more general typecase
patterns. We find it preferable to match type tags against patterns exactly, and then
perform explicitly prescribed subtype tests.

In addition to Abadi et al. (1991), several recent studies consider languages with
dynamic types (Henglein, 1993; Leroy and Mauny, 1991; Thatte, 1990). The work
most relevant to ours is that of Leroy and Mauny, who define and investigate two
extensions of ML with dynamic types. We compare their designs to ours in Section 4.

Section 2 is a brief review of dynamic typing in simply typed languages, based on
Abadi et al. (1991). Section 3 considers the addition of dynamic typing to a language
with explicit polymorphism (Girard, 1972). Section 4 then deals with a language with

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 113

implicit polymorphism. Sections 5 and 6 discuss abstract data types and subtyping,
respectively. We conclude in Section 7.

2 Review

The integration of static and dynamic typing is fairly straightforward for
monomorphic languages. The simplest approach introduces a new base type
Dynamic along with a dynamic expression for constructing values of type
Dynamic (informally called "dynamics") and a typecase expression for inspecting
them. The typechecking rules for these expressions are:

(DYN-I)

(DYN-E)

F I— dynamic (a: T)e Dynamic

ri-c?£Dynamic T,x:P\-beT T\-ceT
TV- typecased of (x:P)b else ceT

The phrases (x:P) and e l s e are branch guards; P is a pattern—here, just a
monomorphic type; b and c are branch bodies. For notational simplicity, we have
considered only typecase expressions with exactly one guarded branch and an
e l s e clause; a typecase involving several patterns can be seen as syntactic sugar
for several nested instances of the single-pattern typecase .

In the most direct implementation, the semantics of a dynamic is a pair consisting
of a value and its type. The semantics of typecase d of (x: A) b e l s e e is then:
break d into a value c and a type C, and if C matches A then bind x to c and execute
b, otherwise execute e. In the simplest version of this semantics, C matches A if they
are identical; in languages with subtyping, it is common to allow C to be a subtype
of A instead.

Constructs analogous to dynamic and typecase have appeared in a number of
languages, including Simula-67 (Birtwistle et al., 1979), CLU (Liskov et al, 1981),
Cedar/Mesa (Lampson, 1983), Amber (Cardelli, 1986), Modula-2 + (Rovner, 1986),
Oberon (Wirth, 1987) and Modula-3 (Nelson, 1991). These constructs have surprising
expressive power; for example, fixpoint operators can already be defined at every type
in a simply typed lambda-calculus extended with Dynamic (Abadi et al, 1991).
Important applications of dynamics include persistence and inter-address-space
communication. For example, the following primitives might provide input and
output of a dynamic value from and to a stream:

e x t e r n e W r i t e r x Dynamic->Unit
i n t e r n e Reader-^-Dynamic

Moreover, dynamics can be used to give a type for an eval primitive (Gordon, circa
1980; Mycroft, 1983):

eval eExp->Dynamic

We obtain a much more expressive system by allowing typecase guards to
contain pattern variables. For example, the following function takes two dynamics

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


114 M.AbadietdX.

and attempts to apply the contents of the first (after checking that it is of functional
type) to the contents of the second:

dynApply=
A, (df: Dynamic) A. (da: Dynamic)

typecase df of

{U, V} (f:U->V)

typecase da of

{} (a:U)

dynamic(f(a):V)

else ...

else ...

Here U and V are pattern variables introduced by the first guard. In this example, if
the arguments are:

df = dynamic ( (A.(x: In t ) x + 2) : Int->Int)
da = dynamic (5: In t )

then the typecase guards match as follows:

Tag: In t -» In t
Pattern: U-W
Result: {U=Int , V=In t}

Tag: I n t
Pattern: I n t
Result: {}

and the result of dynApply is dynamic (7 : I n t ) .
A similar example is the dynamic-composition function, which accepts two

dynamics as arguments and attempts to construct a dynamic containing their
functional composition:

dynCompose =
A, (df: Dynamic) A. (dg: Dynamic)

typecase df of
{U,V} (f:U-»V)

typecase dg of
{W} (g:W-»-U)

dynamic (f o g:W->V)
else ...

else ...

3 Explicit polymorphism

This formulation of dynamic types may be carried over almost unchanged to
languages based on explicit polymorphism (Girard, 1972; Reynolds, 1974). For
example, the following function checks that its argument df contains a polymorphic
function f taking lists to lists. It then creates a new polymorphic function that accepts

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 115

a type and a list x of values of that type, instantiates f appropriately, and applies f
to the reverse of x:

X(df:Dynamic)

typecase df of

{} (f:V(Z) List(Z)-»List(Z))

X{Y) M x : L i s t ( Y ) ) f[Y] ( reverse [Y] (x) )
e l s e MY) M x : L i s t ( Y ) ) x

Here L i s t and r e v e r s e have the obvious meanings; they are not primitives of the
language treated below, but can be encoded. The type abstraction operator is written
X. Type application is written with square brackets. The types of polymorphic
functions begin with V. For example, V(Z) Z->Z is the type of the polymorphic
identity function, X{Z) X{x:Z) x.

3.1 Higher-order pattern variables

First-order pattern variables, by themselves, do not appear to give us sufficient
expressive power in matching against polymorphic types. For example, we might like
to generalize the dynamic-application example from Section 2 so that it can accept a
polymorphic function and instantiate it appropriately before applying it:

dynApply2try=
Mdf: Dynamic) Mda: Dynamic)

typecase df of
{} (f :V(Z) . . .->. . .)

typecase da of
{W} (a:W)

d y n a m i c ( f [ W ] ( a ) : . . . )
e l se . . .

e l se dynApply(df)(da)

But there is no single expression we can fill in for the domain of f that will make
dynApply2try apply to both

df = dynamic (X{Z) Mx:ZxZ) <snd (x) , f st (x) >: ...)
da=dynamic (<3,4>: ...)

and

df = dynamic ( (A. (Z) X(x:Z->Z) x) : . . . )
da = dynamic ( (X (x: In t ) x) : . . . )

In the former case, the expected type for f is V (X) (X x X) -»- (X x X) ; in the latter
case, it is V (X) (X->X) -»• (X->-X). These two types are incompatible.

Thus we are led to introducing higher-order pattern variables. A higher-order
pattern variable ranges over pattern contexts—patterns abstracted with respect to
some collection of type variables. With higher-order pattern variables, we can express
polymorphic dynamic application:

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


116 M.Abadi et al.

dynApply2 =
X(df:Dynamic) X(da:Dynamic)

typecase df of
{F,G} (f :V(Z)F(Z)->G(Z))

typecase da of
{W} (a:F(W))

dynamic(f [W] (a) :G(W))
e l s e . . .

e l s e dynApply(df) (da)

For example, if

df = dynamic ( id : V (X) X^X)
da = dynamic (3 : I n t )

then the typecase expressions match as follows:

Tag: V(X)X->X
Pattern: V(Z) F(Z)-»-G (Z)
Result: {F = A (X) X, G = A (X) X}

Tag: I n t
Pattern: F(W) (which reduces to W)
Result: {W = Int}

and the result of the application

dynApply2(df)(da)
is

d y n a m i c ( i d [ I n t ] ( 3 ) : I n t )

Following standard notational conventions, we write A (X) X for the identity function
on types, reserving lowercase letters for expressions at the level of terms and X for
term-level abstractions.

It is now easy to deal with the two inputs given above. If

df = dynamic (X(Z) Mx:ZxZ) <snd(x) , f s t (x) >:
V(X) (XxX)->(XxX) ) )

da = dynamic (<3, 4>: I n t x Int)

then the match is
Tag: V(X) (XxX)^(XxX)
Pattern: V(Z) F (Z) -*-G (Z)
Result: {F = A(X) X x X, G = A(X) Xx X}

Tag: I n t
Pattern: F(W) (which reduces to WxW)
Result: { W = l n t x l n t }

If

df = dynamic( (X(Z) X{x:Z^Z) x) : V(X) (X->X)-* (X -̂X) )
da = dynamic ( {X (x: I n t ) x) : Int-^-Int)

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 117

then the match is:

Tag: V(X) (X-*X)->(X->X)
Pattern: V(Z) F (Z) ->G (Z)
Result: {F = A (X) X-»X, G = A(X) X^X}

Tag: I n t
Pattern: F(W) (which reduces to W^w)
Result: { W = I n t ^ I n t }

3.2 Syntax

We now present dynamic types in the context of a second-order polymorphic X-
calculus, system F. The syntax of F with type Dynamic (including some third-order
constructs used in patterns) is given in Fig. 1. In examples we also use base types,
cartesian products, and lists in types and patterns, but we omit these in the formal
treatment.

We regard as identical any pair of formulas that differ only in the names of bound
variables. For brevity, we sometimes omit kinding declarations and empty pattern-
variable bindings. Also, it is technically convenient to write the pattern variables
bound by a typecase expression as a syntactic part of the pattern, rather than
putting them in front of the guard as we have done in the examples. Thus, t y p e c a s e
e l of {V}(x:T)e2 e l s e e3 should be read formally as t y p e c a s e e l of
(x:{V:Type}T)e2 e l s e e 3 .

K :••= T y p e

r::=Z
\F
\T^T
| V(Z : K) T
| F(T») (n>0)
|Dynamic

7 ::=/<:
| * » - * («>0)

P : : = { F I : J 1 > . . . , F ) I : y i I } r

a '•'•= x

\l{x : T) a
\a(a)
\UZ:K)a
\a[T)
| dynamic(a : T)
| typecase a of (x : P) a e l s e a

the kind of types

type variables
first-order pattern variable
function types
quantified types
application of a type operator
the dynamic type

kind of simple pattern types
functional kinds

patterns

variables
abstraction
application
type abstraction
type application
tagging
tag matching

Fig. 1. Syntax for system /"with Dynamic.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


118 M. Abadi et al.

3.3 Tag closure

One critical design decision for a programming language with type Dynamic is the
question of whether type tags must be closed (except for occurrences of pattern
variables), or whether they may mention universally bound type variables from the
surrounding context.

In the simplest scenario, dynamic (a: A) is legal only when A is a closed type. (The
type A may be polymorphic, of course, so long as all the type variables it mentions
are also bound within A; for example, V (Z) Z is a legal tag.) Similarly, we would
require that the guard in a typecase expression be a closed type.

If the closure restriction is not instituted, then types must actually be passed as
arguments to polymorphic functions at run time, so that code can be compiled for
expressions like:

X(X) X(x:X) dynamic (<x,x>:X XX)

where the type X x X must be generated at run time. For languages where type
information is not retained at run time, such as ML, the closure restriction becomes
essential (see Section 4). For now, we consider the unrestricted case, where tags may
contain free type variables.

3.4 Definiteness and matching

When pattern variables may range over functions on types, there is in general no
guarantee of unique matches of patterns against tags. For example, when the pattern
F ( I n t ) is matched against the tag Bool, the pattern variable F is forced to be
A (X) Bool. But when the same pattern is matched against the tag I n t , we find that
F can be either A (X) X or A (X) In t . There is no reasonable way to choose. Worse
yet, consider F (W) or F (W^-lnt) for a pattern variable W .

Two sorts of solutions come to mind:

• At run time, we may look for matches and fail if none or more than one exist.
Unfortunately, failures could be somewhat unpredictable.

• At compile time, we may allow only patterns that match each tag in at most one
way. This condition on patterns is called definiteness in a preliminary version of
this work (Abadi et al., 1992). As definiteness seems hard to decide at compile
time, an approximation to definiteness may be used instead.

As in Abadi et al. (1992), we choose a compile-time solution. We propose a condition
on patterns sufficient to guarantee definiteness ((1) and (2), below), in combination
with an appropriate definition of matching (3), below. This condition is more
restrictive than that of Abadi et al. (1992), and in some cases it may entail some code
duplication. On the other hand, it is easier to describe, it suffices for our examples,
and in general it does not seem to affect expressiveness.

Our condition on patterns is:

1. Each pattern variable introduced in a pattern is used in the same pattern.
2. In each of these uses, the arguments of the pattern variable are distinct type

variables bound in the same pattern (not pattern variables).

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 119

Note that as far as inner t y p e c a s e expressions are concerned, pattern variables of
outer t y p e c a s e expressions are just constants, and they may appear in any
positions where constants may appear.

For example, we allow:

{F: Type^Type}V (Z) F (Z)
{F:Type^Type}V(Z)H(F(Z) )
{G: Type x Type^TypejV (Z) V (W) G (W, Z)

(where H is a pattern variable of arity 1 introduced by an enclosing typecase ) . But
we do not allow:

{F: Typen>-Type}F ( I n t )
{F:Type-»Type, H: Type^TypeJV (Z) F (H (Z) )
{G: Type x Type-^Type}V (Z) G (Z, Z)

because, according to requirement (2), F must be applied to a type variable rather
than to I n t or to H (Z), and G must be applied to two distinct type variables rather
than to Z twice.

At run time, we must solve the problem of matching a tag against a pattern. The
cases where the pattern's outermost construct is a type variable, ->, or V are all evident.
Hence, the problem of matching a tag against a pattern is reduced to matching
subproblems of the form F (Xx, ..., Xk) =A, where F is a pattern variable introduced
in the pattern, Xlf ..., Xk are distinct type variables, and A is a subexpression of the
tag. We require:

3. The free type variables of a tag subexpression matching a pattern variable are
exactly the arguments to the pattern variable.

or, in this instance, X1, ..., Xk are the free type variables of A. If this holds, we take
F = A (Xx) ... A (Xk) A as the solution for the subproblem. This solution is evidently
unique, and thus definiteness is guaranteed. Moreover, requirement (3) implies that
the function A (Xx) ... A (Xk) A has the desirable properties of being closed and of
using all of its arguments.

For example, we obtain a success with

Tag: V(Z) V(W)Z->(Z->Z)
Pattern: {F: Type-^Type}V (Z) V (W) F (Z)
Result: {F = A (X) X-> (X->X)}

but failures with

Tag: V(Z)V(W) Z-MW-»-W)
Pattern: {F:Type^Type}V (Z) V (W) F (Z)
Result: failure

and

Tag: V(Z)V(W)Int -MInt->Int )
Pattern: {F: Type^Type}V (Z) V (W) F (Z)
Result: failure

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


120 M. Abadi et al.

In the second example, W is a free variable of the tag subexpression Z-> (W-*W) but
not an argument in F (Z). Requirement (3) prevents the escape of W from the scope
of its binder. In the third example, Z is an argument in F (Z) but does not occur in
the tag subexpression Int-MInt-s-Int) • Requirement (3) guarantees that later,
successful matches instantiate all new pattern variables: if F were allowed not to use
its argument Z, a later pattern

{V:Type}F(V)

might succeed with V undetermined.
The cost of our requirements may be some inconvenience. We adopt them for the

sake of soundness and simplicity.

4 Implicit polymorphism

In this section we investigate dynamics in an implicitly typed language, the core
language of ML.

The general treatment of dynamics for explicitly typed languages can be applied
directly to ML, thus providing the language with explicitly tagged dynamics. In this
extension of ML, types can still be inferred for all constructs except dynamics; the
user needs to provide type information only when creating or inspecting dynamics.
For instance, consider the following program:

t w i c e = dynamic(X(f ) X{x) f (f x) :V (Z) (Z-»-Z) -+ (Z-*Z) )

To verify its correctness, we first infer the type scheme V(Z) (Z^-Z) -+ (Z^-Z) for
X (f) X (x) f (f x) as if it were to be let-bound. Then we check that this type scheme
has no free variables and that it is more general than the required tag
V (Z) (Z->-Z) -> (Z->Z). Similarly, when a t y p e c a s e succeeds, the extracted value is
given the type scheme of its tag as if it had been let-bound. That is, an instance of the
value can be used with different instances of the tag as in:

foo = M d f )
typecase df of

(f :V(Z) (Z->Z)-MZ->Z) ) <f succ, f not)
else ...

where succ is the successor function on integers, and not is the negation function
on booleans.

This solution is adequate. However, it seems to go against the spirit of ML in
several respects, as we discuss next.

4.1 Implicit tagging

The solution just sketched requires explicit tags in dynamic expressions. Since the
ML typechecker can infer most general types for expressions, one would expect it to
tag dynamics with their principal types. For instance, the user should be able to write:

t w i c e = d y n a m i c (X(f) X(x) f ( f x ) )

and expect that the dynamic will be tagged with V(Z) (Z->Z)-MZ^Z).

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 121

If types are not to be passed as arguments to polymorphic functions at run time,
the tags of dynamics must be closed (see Section 3.3). This restriction creates
difficulties for the implicit-tagging approach: a program like

X(x) dynamic(x)

will fail to have a principal type. It will therefore simplify matters to assume that
explicit tags are given in dynamic expressions. An alternative is discussed in Abadi
et al. (1992).

4.2 Tag instantiation and tuple variables

The tag of apply :

apply = dynamic(Mf) Mx) f x:V (X, Y) (X^Y) -* (X->Y) )

is equivalent to V (Y, X) (X->Y) -»• (X->Y), and an ML programmer would probably
view the order of quantifiers as unimportant. In addition, the tag is more general than
the pattern in the function f oo; hence an ML programmer would probably expect
the tag and the pattern to match when apply is passed to f oo. In general, it seems
reasonable to ignore the order of quantifiers in a tag, and to let a tag match a pattern
if any instance of the tag does. This principle is called tag instantiation.

Tag instantiation and second-order pattern variables do not fit smoothly together.
The difficulty comes from the combination of two features:

• Second-order pattern variables may depend on universal variables, as in the
pattern {F} (f :V(Z) F (Z)->Z).

• Tag instantiation requires that i f a typecase succeeds, then it also succeeds for
a dynamic with an argument that has a more general tag. The tag
V(Z) (ZxZ)-*Z matches the previous pattern, and so should the tag
V (X, Y) (X x Y) ->X. But F is not supposed to depend on two variables.

Because of tag instantiation, polymorphic pattern variables may always depend on
more variables than the ones explicitly mentioned. We deal with this possibility by
introducing tuple variables, which stand for tuples of variables. The tuple variable in
a pattern will be dynamically instantiated to the tuple of all variables of the tag not
matched by other variables of the pattern. For example, using a tuple variable U, the
pattern {F} (f :V (Z) F (Z) ->Z) should be written {F} (f :V(U, Z) F (U, Z)-»Z).

Tuple variables bound in different patterns may be instantiated to tuples with
different numbers of variables. Because of such size considerations, it is not always
possible to use a tuple variable as argument to an operator, since this operator may
expect an argument of different size. We introduce a simple system of arities in order
to guarantee that type expressions are well formed. Formally, our example pattern
should now be written:

{TI : Tuple, F: 7t^Type^Type} (f: V (U: n, Z : Type) F (U, Z) -s-Z)

The arity variable n is to be bound at run time to the size of the tuple assigned to the
tuple variable U. However, it is not necessary to write all the arities in programs since
a typechecker can easily infer them. In the following examples, we write UL for the i-th
component of tuple variable U:

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


122 M.Abadi Qtal.

Tag: V(Z) ( Z x Z ) ^ Z
Pattern: {n, F} (f : V (U: n, Z) F (U, Z) -*Z)
Result: {71 = 0, F = A ( U , Z ) Z x Z }

Here the tuple arity is zero, thus F does not depend upon U:

Tag: V(X, Y) (XxY)->X
Pattern: {n,F} (f :V (U:n, Z) F (U, Z)->Z)
Result: { n = l , F = A (U, Z) Z x Uj

Tag: V(X,Y) ( X x Y ) ^ X
Pattern: {7i,F,G} (f :V (U:rc, Z) F (U)->G (U) )
Result: {n = 2 ,F=A(U)U 1 xU 2 ,G=A(U)U 1 }

4.3 A language

We briefly consider a language with explicit tagging of dynamics and with tuple
variables for tag instantiation. The syntax of the language is given in Fig. 2.

K

J

T-

S

P

a

'•'•- 7 t

|Type

• :=K

| K x Type"-*-*

:=Z

|Dynamic

| T-*T
\F(T") (n>0)

" = V(Z, : AT,, .... ZH : *„) T

::= {n, F, : /„ .... Fa : /„} 5

- = X

| X(x) a
| a a
| l e t x - a in a
| dynamic(a : 5)
| t ypecase a of (x : P) a e l s e a

arity variables
sort of types

type variables
first-order pattern variables

application of a pattern operator

type schemes

patterns

Fig. 2. Syntax for ML with Dynamic.

Typechecking for this language is similar to typechecking for ML with local type
declarations and type constraints. In addition to typechecking the core language, the
well-formedness of type expressions and the correct scoping of type symbols must
also be checked.

The matching algorithm is slightly complicated by tag instantiation and the use of
tuple variables. As in the explicit case, we stipulate that fresh pattern variables can be

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 123

applied only to distinct universally quantified variables. We also require that there be
at most one universal tuple variable per pattern, and that its arity be given by the
unique fresh arity variable introduced in the pattern . With these restrictions,
matching becomes a simple extension of first-order unification with restricted type
operators; we omit the details.

4.4 Related work

The work on dynamic typing most closely related to ours is that of Leroy and Mauny
(1991). Their dynamics without pattern variables have been implemented in the
CAML language (Weis et ah, 1990). Our work can be seen as an extension of their
system with "mixed quantification".

Rather than introduce a typecase statement, Leroy and Mauny merge dynamic
elimination with the usual case statement of ML. Ignoring this difference, their
dynamic patterns have the form 2.T where Tis a type and 2. a list of existentially or
universally quantified variables. For instance,

V(X)3(F)V(Y)3(G) (v:X->F->Y->-G)

is a pattern of their system. The existentially quantified variables play the role of our
pattern variables. The order of quantifiers determines the dependencies among
quantified variables. Thus, the pattern above can be rephrased:

3(F)3(G)V(X)V(Y) (v:X^F(X)^Y->G(X, Y) )

The equivalent pattern for us is:

{ir,F,G} (v:V(U:7l,X,Y)X^F(U,X)->Y^G(U,X,Y) )

With the same approach, in fact, we can translate all their patterns. On the other
hand, some of our patterns do not seem expressible in their language, for example:

{7t,F,G} (v:V(U:7l,X,Y) (X-*F(U,X) ) X (Y->G(U,Y)) )

because the quantifiers in the prefix of their patterns are in linear order, and cannot
express the "parallel" dependencies of F on X and G on Y.

Another source of differences is our use of tuple variables. These enable us to write
examples like the applyTwice function:

let applyTwice=
X(df) X(dxy)

typecase df of
{7t,F,F'} (f :V(U:7t)F(U)^F' (U) )

typecase dxy of
{TT',G,H} (x,y:V(U' :n') F (G (U' ) ) x (F(H(U') ) ) )

f x, f y
else ...

else ...

which applies its first argument to each of the two components of its second argument
and returns the pair of the results. Such examples cannot be expressed in systems with
only type quantifiers.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


124 M. Abadi et al.

5 Abstract data types

The interaction between the use of Dynamic and abstract data types gives rise to a
puzzling design issue: should the type tag of a dynamic containing an element of an
abstract type be matched abstractly or concretely? There are good arguments for
both choices:

• Abstract matching protects the identity of "hidden" representation types and
prevents accidental matches in cases where several abstract types happen to have
the same representation.

• On the other hand, transparent matching allows a more permissive style of
programming, where a dynamically typed value of some abstract type is
considered to be a value of a different version of "the same" abstract type. This
flexibility is critical in many situations. For example, a program may create disk
files containing dynamic values, which should remain usable even after the
program is recompiled, or two programs on different machines may want to
exchange abstract data in the form of dynamically typed values.

By viewing abstract types formally as existential types (Mitchell and Plotkin, 1988),
we can see exactly where the difference between these two solutions lies, and suggest
a generalization of existential types that supports both. (Existential types can in turn
be coded using universal types; with this coding, our design for dynamic types in the
previous sections yields the second solution.)

To add existential types to the variant of F denned in the previous section, we
extend the syntax of types and terms as in Fig. 3. The typechecking rules for pack
and open are given in Fig. 4.

| 3(Z : K) T existential types

a '•'•= ...

| pack a as T hiding T packing (existential introduction)
| open a a s [Z,x] i n a unpacking (existential elimination)

Fig. 3. Extended syntax with existential types.

s

r h- a € 3(Z

= 3(Z : K) T r\- ae

r 1— (pack a as S h id ing

: K) S Zi FV(71 T,

F 1— (open aas [Z, x] in

[R/Z]T

R)e S

Z : K,x: S \- b e T

b)e T

(PACK)

(OPEN)

Fig. 4. Typechecking rules for existential types.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 125

A typical example where an element of an abstract type is packed into a Dynamic
is:

let stackpack =
pack

M s : IntList) A.(i:Int) cons(i) (s) ,
= A. (s: IntList) cdr(s),
= A. (s : IntList) car(s),

new = nil
as 3(X)

push:X^Int->X,
pop:X->X, top:X-»Int, new:X

hiding IntList
in

open stackpack as [Stack,stackops] in
let dstack =

dynamic
(stackops.push(stackops.new) (5) :Stack)

in

typecase dstack of

(s:Stack) stackops.top(s)
else 0

Note that this sort of example depends critically on the use of open type tags. As
discussed in Section 3.3, open tags must be implemented using run-time types. The
evaluation of pack must construct a value that carries the representation type.

We have a choice in the evaluation rule for the open expression:

• We can evaluate the expression open a as [Z, x] in b. by replacing the
representation type variable Z by the actual representation type obtained by
evaluating a.

• Alternatively, we can replace Z by a fresh type constant.

Without Dynamic, the difference between these rules cannot be detected. But with
Dynamic we get different behaviours. Since both behaviours are desirable, we may
choose to introduce an extended open form that provides separate names for the
abstract version and for the transparent version of the representation type:

r\-ael(Z:K)S Z^FV(J) T,Z:K,x:S\-[Z/R]beT
r \-(open a as [R,Z,x] in b)eT

In the body of b, we can build dynamic values with tags R or Z; a typecase on the
former could investigate the representation type, while a typecase on the latter
could not violate the type abstraction.

Further experience would be useful for understanding the interaction of Dynamic
and abstract types.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


126 M. Abadi et al.

6 Subtyping

In simple languages with subtyping (e.g. Cardelli, 1986; Nelson, 1991) it is natural to
extend t y p e c a s e to perform a subtype test instead of an exact match. Consider for
example the expression:

let dx = dynamic (3 :Nat) in
typecase dx of

(x:Int) ...
else ...

The first t y p e c a s e branch is taken: although the tag of dx, Nat, is different from
I n t , we have N a t ^ I n t .

Unfortunately, this idea runs into difficulties when applied to more complex
languages. In general, there does not exist a most general instantiation for pattern
variables when a subtype match is performed. For example, consider the pattern V->V
and the problem of subtype-matching ( i n t ^ N a t ) ^ (V-*V) . Both i n t ^ I n t and
Nat-^Nat are instances of V->V and supertypes of Int^-Nat, but they are
incomparable. Even when the pattern is covariant there may be no most general
match. Given a pattern Vx V, there may be a type AxB such that A and B have no
least upper bound, and so there may be no best instantiation for V. This can happen,
for example, in a system with bounded quantifiers (Cardelli and Wegner, 1985;
Ghelli, 1990), and in systems where the collection of base types does not form an
upper semi-lattice. Linear patterns (where each pattern variable occurs at most once)
avoid these problems, but we find linearity too restrictive.

Therefore, we take an approach different from that found in simple languages with
subtyping. Our approach works in general and fits well with the language described
in Section 3.2. We intend to extend system Fwith subtyping along the lines of Cardelli
et al. (1991). In order to incorporate also the higher-order pattern variables, we resort
to power-kinds (Cardelli, 1988).

The kind structure of Section 3.2 is extended in Fig. 5, where it is assumed that T: K
and F:Kn-+K. Informally, the kind Power (Type) (T) is the collection of all the

K

J

:••= T y p e

| Power (K) (T)

::= K

the
the

kind of types
kind of subtypes of T

Fig. 5. Extended syntax with subtyping.

subtypes of T, and similarly the kind P o w e r ^ x ...Kn^-K){F) is the collection of
all the operators of kind Kr x .. .Kn -> K that are pointwise in the subtype relation with

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 127

F. Subtyping (3$) is not a primitive notion in the syntax, but it is denned by
interpreting:

T^T'.K as T: Power (K) (7"), where T,T':K
F^G:(K1x...xKn^K) as F(QU ...,Qn) ̂  G(Qlt ...,Qn): K,
for all Ql:Kl,...,Qn.Kn, where F, G: (Kt x ... x Kn -» K)

The axiomatization of Power (K)(T) (Cardelli, 1988) is designed to induce the
expected subtyping rules. For example, r :Power(r) says that T^T.

Because of power-kinds, we can now write patterns such as

typecase dx of
{V,W<(VxV)} (x:WxV) ...
( t h a t i s : {V:Type , W: Power (Type) (V x V ) } ( x : W x V ) )

e l s e . . .

Each branch guard is used in typechecking the corresponding branch body. The
shape of branch guards is{F1:K1,...,Fn: KJ (x:P), where each F( may occur in the K}

withy > / and in P. This shape fits within the normal format of typing environments,
and hence it introduces no new difficulties for static typechecking.

Next we consider the dynamic semantics of t ypecase in the presence of
subtyping. The idea is to preserve the previous notion that t ypecase performs exact
type matches at run time. Subtyping is introduced as a sequence of additional
constraints to be checked at run time only after matching. These constraints are easily
checked because, by the time they are evaluated, all the pattern variables have been
fully instantiated. In the example above, suppose that the tag of dx is
(Natx I n t ) x I n t ; then we have the instantiation W = Na tx I n t and V = I n t .
When the matching is completed, we successfully check that W^ (VxV) .

Some examples should illustrate the additional flexibility obtained with subtyping.
First, we show how to emulate simple monomorphic languages with subtyping but
without pattern variables, where t ypecase performs a subtype test. The first
example of this section can be reformulated as:

typecase dx of
{V<Int} (x:V) . . .

e l s e . . .

In this example, the tag of dx can be any subtype of In t .
The next example is similar to dynApply in Section 2, but the type of the

argument can be any subtype of the domain of the function:

typecase df of
{V,W} (f:V^W)

typecase da of
{V'SJV} ( a : V )

dynamic(f(a):W)
else . . .

else ...

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


128 M. Abadi et al.

With polymorphic tag types, or with polymorphic pattern types with only first-
order pattern variables, nothing new happens except that the matching and subtype
tests must be the adequate ones for polymorphism.

The next degree of complexity is introduced by higher-order pattern variables. Just
as we had V'<V, a subtype constraint between two first-order pattern variables, we
may have F^G: (K^K') for two higher-order pattern variables F,G: (K->K') . As
mentioned above, the inclusion is intended pointwise F^G iff F(X) <G(X) :K'
under the assumption X: K.

Another form of dynamic application provides an example of higher-order matches
with subtyping:

typecase df of
{F,G:Type->Type,V} (f: V (Z^V) F (Z)-»G (Z) )

typecase da of

[Ws£V} (a:F(W)) dynamic(f [W] (a) :G(W) )
else ...

else ...

Finally, dynamic composition calls for a constraint of the form G' ̂  G:

typecase df of
{ G , H : T y p e ^ T y p e } (f :V (X) G(X)-»-H (X) )

t y p e c a s e d g o f
{ F : T y p e - > T y p e , G ' s*G :Type-»Type}

( g : V ( Y ) F ( Y ) ^ G ' (Y) )
d y n a m i c ( (X (Z) f [ Z ] o g [ Z ] ) : V (Z )F (Z)-*H (Z) )

e l s e . . .
e l s e . . .

This example generalizes to functions of bounded polymorphic types, such as

7 Conclusion

The extension of statically-typed languages with dynamic types is rather complicated.
Perhaps we have been overly ambitious. We have tried to allow as much flexibility as
possible, at the cost of facing difficult matching problems. And perhaps we have not
been ambitious enough. In particular, we have not provided mechanisms for dealing
with multiple matches at run time, in order not to complicate the language designs or
their implementations. We have also ignored the possibility of adding dynamic types
to F3, or to Fa (Girard, 1972). Only more experience will reveal the most useful
variants of our approach.

We have deliberately avoided semantic considerations in this paper. It seems
relatively straightforward to provide precise operational semantics and then prove
subject-reduction theorems for our languages. These theorems would be extensions of
those established for monomorphic languages in Abadi et al. (1991), and would
guarantee the soundness of evaluation for the languages. It is an entirely different
matter to define denotational semantics. In particular, open tags clearly allow the

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


Dynamic typing in polymorphic languages 129

expression of a rich class of non-parametric functions (which manipulate types at run
time), and these do not exist in many of the usual models for polymorphic languages.

Acknowledgements

Francois Bourdoncle, Richard Connor, and an anonymous referee made many useful
suggestions on the presentation of this paper. Cynthia Hibbard provided editorial
help.

References

Abadi, M., Cardelli, L., Pierce, B. and Plotkin, G. (1991) Dynamic typing in a statically-typed
language. ACM Transactions on Programming Languages and Systems, 13(2):237-268.

Abadi, M, Cardelli, L., Pierce, B. and Rimy, D. (1992) Dynamic typing in polymorphic
languages. In P. Lee (ed.), ACM Sigplan Workshop on ML and its Applications, pp. 92-103.
(Technical Report CMU-CS-93-105, School of Computer Science, Carnegie Mellon
University.)

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B. and Nygaard K. (1979) Simula Begin.
Studentlitteratur (Lund, Sweden), Bratt Institute Fuer Neues Lerned (Goch, FRG),
Chartwell-Bratt Ltd.

Cardelli, L., and Wegner, P. (1985) On understanding types, data abstraction, and
polymorphism. Computing Surveys 17(4), December.

Cardelli, L., Martini, S., Mitchell, J. C. and Scedrov, A. (1991) An extension of system F with
subtyping. In T. Ito and A. R. Meyer (eds.) Theoretical Aspects of Computer Software,
Lecture Notes in Computer Science 526, Springer-Verlag, pp. 750-770.

Cardelli, L. (1988) Amber. In G. Cousineau, P. L. Curien and B. Robinet (eds.), Combinators
and Functional Programming Languages, Lecture Notes in Computer Science 242. Springer-
Verlag, pp. 21-47.

Cardelli, L. (1988) Structural subtyping and the notion of power type. Proc. 15th ACM
Symposium on Principles of Programming Languages, pp. 70-79.

Ghelli, G. (1990) Proof theoretic studies about a minimal type system integrating inclusion and
parametric polymorphism. PhD thesis, Universita di Pisa. (Technical report TD-6/90,
Dipartimento di Informatica, Universita di Pisa.)

Girard, J.-Y. (1972) Interpretation fonctionelle et elimination des coupures de l'arithmetique
d'ordre superieur. PhD thesis, Universite Paris VII.

Gordon, M. (1980) Adding Eval to ML. Personal communication.
Henglein, F. (1993) Dynamic typing: Syntax and proof theory. Science of Computer

Programming. Special Issue on European Symposium on Programming 1992.
Lampson, B. (1983) A description of the Cedar language. Technical Report CSL-83-15, Xerox

Palo Alto Research Center.
Leroy, X. and Mauny, M. (1991) Dynamics in ML. In J. Hughes (ed.) Functional Programming

Languages and Computer Architecture 1991, Lecture Notes in Computer Science 523,
Springer-Verlag, pp. 406-426.

Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J. C, Scheifler, R. and Snyder, A.
(1981) CLU Reference Manual. Springer-Verlag.

Milner, R., Tofte, M. and Harper, R. W. (1990) The Definition of Standard ML. MIT Press.
Mitchell, J. and Plotkin, G. (1988) Abstract types have existential type. ACM Transactions on

Programming Languages and Systems, 10 (3): 470-502, July.
Mycroft, A. (1983) Dynamic types in ML. Draft.
Nelson, G. (ed.) Systems Programming in Modula-3. Prentice Hall.
Reynolds, J. (1974) Towards a theory of type structure. Proc. Colloque sur la Programmation,

Lecture Notes in Computer Science 19. Springer-Verlag, pp. 408-425.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X


130 M. Abadi et al.

Rovner, P. (1986) On extending Modula-2 to build large, integrated systems. IEEE Software,
3(6): 46-57, November.

Thatte, S. R. (1990) Quasi-static typing (preliminary report). Proc. Seventeenth ACM
Symposium on Principles of Programming Languages, pp. 367-381.

Weis, P., Aponte, M.-V., Laville, A., Mauny, M. and Suarez, A. (1990) The CAML reference
manual. Research report 121, INRIA, Rocquencourt, September.

Wirth, N. (1987) From Modula to Oberon and the programming language Oberon. Technical
Report 82, Institut fur Informatik, ETH, Zurich.

https://doi.org/10.1017/S095679680000126X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000126X

