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Although statistical techniques like regression analysis and path analysis are widely
used in the biomedical, behavioral and social sciences to make causal inferences there has
been surprisingly little philosophical discussion of the details of such techniques and of the
conceptions of causation and explanation implicit in them. There also has been relatively
little attempt to compare such techniques with various probabilistic models of causation and
explanation in the philosophical literature.

In this paper I explore, for reasons of space in a very sketchy and schematic way,
some issues in philosophy of science raised by regression analysis. One general
conclusion I reach is that it is considerably less obvious than one might suppose that the .
philosophical theories alluded to above are plausibly viewed as reconstructions of
regression techniques.

1. Introduction

I begin with a brief description of simple linear regression involving just one indepen-
dent variable. Suppose that X and Y are variables, measurable on an interval scale, and
that we have n pairs of observations (x\, yi),(x2, y£)... (xn ,yn) on X and Y. In linear
regression it is assumed that except for the operation of a so-called "eiTor" or "disturbance"
term, u; there is a definite general linear relationship between X and Y, i.e., that

(1) yi = a + fix; + ui for i = 1 ... n

where a and p are fixed coefficients and w/ varies in value for different observations. I
shall say more about the status of this disturbance term below, but in the simplest case it is
usual to think of the term as arising as a result either of "measurement error" in Y (but not
in X) or as the result of the operation of various other variables besides X which causally
influence Y but have been left out of equation (1). One assumes that the «,- are values of a
random variable U with a definite probability distribution and hence that Y is a random
variable as well. However, to carry out the regression by least squares techniques one
does not need to assume that X is a random variable.

The operation of the disturbance term ui will result in a "spread" of values for Y for
fixed values of X. In general, the regression equation for Y on X will be the equation
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which gives the path of the mean value of Y for fixed values of X. In the specific context
of linear regression the problem of specifying the regression equation will reduce to the
problem of estimating the values of the parameters a and p in (1) above. To do this
requires the choice of an estimating procedure and certain assumptions about the
distribution of the disturbance term. The usual practice is to employ the method of "least

squares", i.e., to choose a and P as estimators of a and p such that the quantity

£ - &-
is minimized. Geometrically this corresponds to choosing the regression line so that it
"best fits" the scatter of points fa ,)>,•), where the criterion of best fit is the minimization of
the squared vertical distance of these points from the regression line.The least squares
estimators obtained by minimizing Q in (2) will have desirable properties if we make the
following assumptions about«/:

3 (a) zero mean: E( «,• )=0 for all i,(b) common variance: V («,- )=a2 for all i (c) lack of
correlation between or statistical independence of error terms for UftUj, (d) statistical
independence of the error terms u,- and independent variable Xj. (We may think of this
as automatically satisfied in the case in which X is not a random variable.)

Under assumptions (3a - d), one can show that the least squares estimators of a and p are
best linear unbiased estimators.1 These assumptions do not by themselves commit one to
any definite assumptions about the probability distribution of the «j. However, for the
purposes of doing significance tests or establishing confidence intervals it is common to
assume also that (3e) the «,• are normally distributed.

The problem of minimizing Q in (2) is quite straightforward: one simply takes the
partial derivatives of Q with respect to a and p and sets these equal to zero. When one does
this one obtains the result that the least squares estimates for a and p are

» >•&

and

(5) &=y-fa

Here S ^ and Sy are respectively the sample covariance between x and y and the standard
deviation of X, and y andjc are the sample means for x and y.2

Thus given certain assumptions about the functional relationship between X and Y and
the distribution of the error terms, one can derive estimates for the regression coefficients a
and p in (1) from facts about the observed or directly measured values of X and Y (since
Ŝ y and Sx can be inferred from the data). The result will be a linear equation relating X
and Y. A non-zero value for the coefficient p will, it is hoped, under appropriate conditions
reflect a structural causal connection between X and Y. Questions about the significance of.
the coefficient p will occupy us inconsiderably more detail below, but in general we can
think of it as purporting to tell us what sort of change we may expect in the mean value of
Y, if a change occurs in the level of X and if everything else is held constant. For example,
in his introductory econometrics^textbook (1977), Maddala regresses a variable C
representing expenditures per capita (1958 prices) on a variable Y representing disposable
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income per capita (also 1958 prices) for values of C and Y for the years from 1929 to 1970
and obtains the following linear equation

(6) C = 55.432 + .8735F

This seems to suggest that an average increase of $.87 in per capita consumer spending will
be associated with each dollar increase indisposable income. Similarly, in his textbook
Data Analysis for Politics and Policy, Edward Tufte regresses a variable Y representing
percent of congressional seats in Congress won by Democrats against a variable X
representing percent of the Democratic vote in 36 congressional elections from 1900 to
1972 and obtains the following relationship.

(7) Y = - 49.64 + 2.07X

Tufte suggests that "[t]his means that a one percent change in the share of the Democratic
vote was typically accompanied by a change of 2.07 percent in the Democratic share of
seats in Congress" [p. 68].

So far we have considered regression with a single independent variable X. I now
turn to some very brief remarks on multiple regression, which one can think of as a
generalization of the procedures described above. In multiple regression one is interested
in the relationship between dependent variable Y and a number of independent variables Xi
, X2... X/c. In the linear case, one assumes the model

(8) yi = Po+Pl *li+P2 X2i+"Pk Xki+Ui, i=l,2 ,..., n

where the y,- are the n observations one makes on Y and x\i... xk\ are the corresponding
observations one makes on the variables X\ ..Xk and w; represents as before a disturbance
term. It will be convenient to write (8) in matrix notation as

(9) r=xp' + v

where Y = ,p = [poPi...p*]

U = andX =

Xnk

(The role of the column of l's added to the X matrix is to provide constant multipliers for
Po and p' is just the transpose of p .)

Using again the least squares criterion of fit, one can show that if one makes
assumptions like (3a - d) above regarding the distribution of the disturbance term, the best
linear unbiased estimator for the vector p is, in close analogy with (4), the vector

(10)
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where X1 is the transpose of X and (X1 X yl is the inverse ofX'X. One can think of the
observations on( X\... Xk, Y) as representing points in k + 1 dimensional space, to
which one is fitting a it-dimensional hyperplane. The coefficient P; on the variable Xi can be
interpreted as"the hypothetical change that would occur in the dependent variable if [the
variable x{\ were to change by one unit and if the other independent variables were to
remain constant" (Blalock 1971, p. 479).

2. Theses

In what follows I shall argue, rather schematically, for three general claims, (a)
Regression analysis does not yield lawlike generalizations but rather yields claims about
causal connections obtaining in particular populations. Regression analysis is a technique
for making causal inferences in circumstances in which one lacks knowledge of
exceptionless general laws or systematic theory, (b) Regression analysis and other causal
modeling techniques are not plausibly viewed as part of a neo-Humean program of
analyzing or defining causal claims in terms of claims about regular patterns of statistical
association, (c) The causal and explanatory claims embodied in regression analysis are
often most plausibly interpreted as population-level claims, rather than direct claims about
particular individuals in a population. In particular, the use of regression analysis does not
commit one to the claim that the causal processes at work with respect to individuals in the
population of interest are indeterministic or correctly described by some probabilistic theory
of causality of the sort to be found in the philosophical literature. Nor does regression
analysis involve the explanation of facts about individuals by subsumption under statistical
generalizations in the fashion described by various philosophical models of statistical
explanation, such as Hempel's IS model or Salmon's SR model. Instead the conception of
explanation associated with regression analysis is deductive and involves the exhibition of
patterns of counter-factual dependence. What is explained by regression analysis is facts
abo,ut such population-level parameters as changes in the mean value of the dependent
variable. Regression coefficients thus represent facts about the average or aggregate impact
of individual causal processes at work in a population.

3. Laws

A substantial philosophical tradition connects the notion of cause and the activity of
constructing causal explanations with various claims about the existence of laws of nature.
While a detailed assessment of these claims must be beyond the scope of this paper, it is
worth emphasizing that the notion of a law of nature does not seem to explicitly enter into
the above account of regression techniques at any point. While the use of regression
analysis to draw conclusions about causal connections certainly requires (as we shall see)
"extra-statistical" causal or theoretical assumptions of various kinds, these are not
assumptions about the obtaining or non-obtaining of natural laws. Nor is it plausible to
hold that the results of such an analysis-the regression equation itself-represents a law of
nature. To begin with, the results of such an analysis will be a claim about a causal
connection obtaining in a particular population, and not over a wide range of populations.
As Christopher Achen puts it in his monograph Using and Interpreting Regression, the
researchers intent, in using regression analysis, is to describe, for example,

...the effect of the Catholic vote on the Nazi rise to power or the impact of a pre-
school cultural enrichment program like Head Start on poor children's success in
school. Whatever the truth in such cases, one would not characterize it as a law.
Neither Catholics nor impoverished youngsters would behave the same way in other
times and places (Achen 1982, p. 12).

Even on a rather permissive conception of lawlikeness, according to which
generalizations which hold only over limited spatio-temporal intervals can count as laws,
the claims that result from regression analysis are just too closely tied to particular
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populations and too non-resilient in the sense of Skyrms (1980) to qualify as laws of
nature. Secondly (and relatedly) a regression analysis may identify just one (or some small
number of) the variables which are relevant to the dependent variable-the remaining omitted
variables are represented by the catch-all error term. Here again, this sort of omission (and
this strategy for dealing with omitted variables) does not seem characteristic of genuine
laws of nature. Third, as recent accounts emphasize, lawlike status often seems to have
something to do with integration into organized, systematic theory. Regression equations
typically lack this feature-they are not procedures for the construction of theories consisting
of a theoretically integrated system of lawlike generalizations analogous to a good physical
theory,but rather represent in part an alternative explanatory strategy, in which one eschews
the search for such a theory (perhaps on the supposition that it does not exist in the domain
in which one is interested) in favor of a more piecemeal, less systematic, more data-driven
investigation into the role of various causal factors in particular populations. The role of
theory in such an investigation is not to supply candidates for laws of nature, but rather, as
Achen (1982, p. 12-17) claims, to provide information about possibly causally relevant
variables or about "causal ordering," or to support claims about causal irrelevance
(important matters, as we shall see below).

Writers on explanation in history and the social sciences often claim that to identify a
cause of some event is to "tacitly commit" oneself to or to "implicitly rely on" or "to
invoke" some claim about the existence of a law linking this cause and its effect (cf.
Hempel 1965, Gardiner 1961). Other writers, supposing that all serious explanations must
involve appeal to laws and that the scientific status of a discipline depends upon whether
there are laws specific to that discipline conclude from the evident absence of laws in the
social sciences, that such disciplines do not contain serious explanatory theory (cf.
Rosenberg 1980). Regression analysis and other causal sophisticated techniques for
establishing claims about causal connections in the absence of knowledge of laws.
Moreover, such claims about causal connections sometimes seem to provide (and are
certainly regarded by users of the above techniques as providing) explanations. It seems
arbitrary and unmotivated to maintain that the results of those techniques is not really
science or not really explanatory.

4. Causes and Probabilities

Regression analysis and other causal modeling techniques are sometimes regarded as
attempts to define or reduce the notion of "cause" to claims about frequencies or patterns of
regular statistical association (cf. Suppes 1970, especially pp. 60-62). While the role of
probabilities in regression analysis will receive more attention below, it seems implausible
to regard causal modeling techniques as embodying any such wholesale reductionist
strategy. The regression techniques described above are not techniques for inferring causal
conclusions from purely statistical premises; they are rather techniques which allow one by
making certain assumptions about causal connections ("causal assumptions," as I shall call
them) to use statistical information about variances and covariances to test other causal
claims. These causal assumptions are commonly described as "a priori" or "extra-
statistical," where what this means is not that they are non-empirical or incapable of being
tested, but rather that they are not inferred just from the statistical data at hand, but rather
have at least in part some other rationale or justification (cf. Kendall and Stuart, 1961,
Simon 1954). These extra-statistical, causal assumptions take a number of different forms.
First, and perhaps most centrally, they include assumptions about which variables to
include or exclude from the regression equation. As (10) shows, one can always alter the
coefficient of any variable in a regression equation by the inclusion or deletion of other
variables, as long as these variables exhibit a non-zero correlation with one or more of the
original variables.^ As users of causal modeling techniques know all too well, it will
virtually always be possible to find such additional variables. This yields, in the context of
regression analysis, a version of (or analogue to) Simpson's paradox, as recently discussed
by Nancy Cartwright (1979).4 The moral drawn in the literature on regression analysis is
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essentially the moral drawn by Cartwright. One needs, among other things, extra-statistical
assumptions about which are the potentially causally relevant variables if the regression
analysis is going to be used to support causal claims. A good illustration of this general
point is provided in Edward Tufte's (1974), in the context of an investigation into
automobile fatality rates. Tufte notes that states with high rates tend, in addition to lacking
inspections and having low population density, not to have been one of the original 13
states and to have seven or less letters in their names, while states with low rates tend to
lack these characteristics. He writes

While we observe many different associations between the death rate and other
characteristics of the state, it is our substantive judgment, and not merely the observed
association that tells us density and inspections might have something to do with the
death rate and that the number of letters in the name of the state has nothing to do with
it (Tufte 1974, p. 9).

A second kind of extra-statistical, causal assumption which must be made in the
context of regression analysis has to do with "causal ordering." We can think of such
assumptions as assumptions about causal direction and causal independence. A particularly
simple illustration is furnished by the observation that the regression of Y on X will be
different from the regression of X on Y (unless X and Y are perfectly correlated). If the
situation is one in which we can rule out the possibility of reciprocal or "simultaneous"
causation and if our interest is in explanation or the identification of causes, whether it is
appropriate to regard X or Y as the independent variable will depend upon whether X is the
sort of thing that could cause Y or yice-versa. Here again, one often cannot infer causal
direction just from available statistical data-indeed one often cannot reliably infer causal
direction even if one is allowed in addition to rely on such acceptably Humean information
as observations about temporal order. Rather one must rely on prior, independent ideas

1 about which variables are causally prior to others.5

More generally, we can say that given any body of statistical data there will be a large
number of regression equations (or systems of such equations or linear causal models)
which are consistent with this data.6 To determine which causal model is the correct one
we must be able to eliminate other possible candidates for such models; this will generally
require rather strong "causally-committed" assumptions about, among other matters,
possibly causally relevant variables and about causal direction. Which causal conclusions a
researcher gets out of a body of statistical data thus depends very much on the causal
assumptions he is willing to make. Given a willingness to assume certain causal claims,
one may be able to test others by reference to a body of statistical data; and these
assumptions may in turn be tested piecemeal by relying on other causal claims, and other
statistical data, and so forth, but one never arrives at a point at which causal claims are
warranted just in terms of a body of statistical data or are translatable without a remainder
just into claims about patterns of statistical dependence. Rather than implementing a
Humean program in which causal claims are analyzed solely in terms of claims about
statistical regularities, regression and other causal modeling techniques strongly suggest
that such a project cannot be carried out.

5. Causation and Regression (

I turn now to what I take to be one of the central philosophical issues raised by
regression analysis: what are the conception of causation and explanation implicit in such
an analysis? There is of course a large philosophical literature on probabilistic theories of
causation and on various models of statistical explanation. Philosophers of science who
have discussed the matter have often assumed or suggested (usually without detailed
argument) that such models capture or correspond to important features in regression
analysis. For example, both Wesley Salmon (1984) and Peter Railton (1981) seem to
suggest that when statistical techniques like regression analysis are used in the social
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sciences to construct causal explanations, such explanations involve explaining claims
about individual members of the population of interest, by subsuming them under statistical
laws or generalizations, in (some rough approximation to) their SR and DNP models of
explanation. To use Salmon's example, one uses statistical data about the incidence of
juvenile delinquency in various subclasses of the American juvenile population (e.g.,
middle class boys from urban backgrounds) to explain why some particular boy, Albert,
became a juvenile delinquent (Salmon 1984, pp. 36-47).

Similarly, Patrick Suppes, in his classic monograph (1970), suggests that regression
analysis embodies a generalization (to continuous properties) of his well-known account of
probabilistic causation, the underlying idea of which is that a cause must raise the proba-
bility of (must be positively relevant to) its effect under suitable background conditions. A
related contention is made in Suppes' recent book, Probabilistic Metaphysics, where it is
claimed to be a point in favor of a "probabilistic analysis of causality" as opposed to a
"counterfactual analysis" that the former "has an extensively developed methodology and is
widely used in actual science. In contrast, the counterfactual analysis does not have a
developed methodology and is not used in practice, and for good reason" (1984, p. 53).
Here the move from the idea that the methodology used in making causal inferences has a
prominent statistical component to the idea that the notion of causality employed or
assumed in this methodology is itself probabilistic in the rather special sense of Suppes1

theory is quite transparent.

I think that the idea that regression analysis presupposes or embodies a probabilistic
conception of causality in Suppes1 sense or a model of statistical explanation in the sense of
the SR model begins to look rather problematic when one looks at the details of how such
analyses work. For definiteness, let us suppose that we are interested in investigating the
effect of variations in exposure to sunlight (Xi) on the height (Y) of plants in a certain
population. Our data consists of observations (x\ j 07) of sunlight exposure and height
for n individual plants. For each plant, the relationship between its height and sunlight will
be represented by the linear equation.

(1) y\i = a + faxu + ui for i = 1 ,..., n .

If (1) is taken literally, the coefficient Pi must be regarded as constant across the entire
population-it represents a fixed, linear relationship between exposure to sunlight and height
which is characteristic of each individual in the population.7 Of course individual plants
with the same exposure to sunlight will differ in height, but all of this variation is taken to
be due to the operation of the error term «,-. It is thus the error term, rather than the
coefficient Pi, which is the source or locus of the stochastic element in (1).

Discussions of regression analysis typically suggest two general ways of thinking
about what this error term represents.8 On the one hand, it may be that the mechanism
which generates particular values of Y is deterministic. In this case the error term will
reflect the operation of additional unknown causes which in conjunction withXi are
sufficient to determine the value of Y, or it may reflect the presence of measurement error in
Y. On the other hand, it may be that the mechanism which produces the values of Y is
itself ^deterministic. In this case the error term will represent, as it were, the stochasticity
that remains in Y, once we have taken account of the fixed contribution made to the value

Most discussions take the use of regression techniques to be neutral between these
possibilities. In the sorts of contexts in which regression is used, it is generally
uncontroversial that the spread in values of Y for a fixed X\ results at least in part from the
influence of omitted variables on Y. It is usually simply not known whether this spread
reflects in addition the presence of a fundamental indeterminacy in the mechanism
producing the values of Y. The use of regression techniques is thought to be justified
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whether or not such indeterminacy is present, provided the appropriate assumptions about
the distribution of the error term are satisfied.

What does the coefficient Pi represent on these two possible construals of the error
term? If we take the situation to be one in which the relationship between Xi and Y is
deterministic, so that the error term merely represents omitted variables and measurement
error, then the coefficient Pi appears to tell us what the change in Y would be if X\ were to
change by one unit and every other relevant variable were to be held constant. (An
analogous interpretation will of course hold for each of the coefficients p,- in a multiple
regression equation-in each case p/ represents the amount Y would change, given a unit
change in X,-,with everything else held constant). On the other hand, if we think of the
relationship between 7andXi as fundamentally indeterministic, then we will of course not
be entitled to talk about "the" change in Y which would result from a unit change in Xi.
But provided that (3a - d) are satisfied, we can think of the coefficient Pi as telling us what
average or expected change would result from a unit change in X\. It is common to find
both of these formulations (the change in Y, the average change in Y) in textbooks, which
perhaps reflects the point that regression techniques are noncommittal regarding the truth or
falsity of determinism. In neither case, however, does the coefficient Pihavea
straightforward interpretation which makes explicit reference to probabilities. Rather than
explicitly representing a chancey or probabilistic link between Xi and Y, the coefficient pi
appears to tell us about a fixed linear relationship between changes in the value of Xi and
the value (or the expected value) of Y?

The significance of this point becomes clearer when we consider in more detail the role
that assumptions like (3a - d) concerning the distribution of the error term and its relation to
the independent variable play in regression analysis. Intuitively, these assumptions
function so as to insure that when we look at the association between Y andXi, the other
causal factors which we have left out of the equation will not, on the average, operate in
such a way as to yield a systematically misleading estimate of the effect of Xi on Y.
Similarly, the role of assumption (3e) is to make possible significance testing and the
construction of confidence intervals. In general the role of the entire set of assumptions (3a
- e) about the distribution of the. error term is one of specifying conditions which if met
insure us that we may reliably estimate the value of pi from observations on Y andXi, and
not the role of supporting a probabilistic analysis of the causal relation between Y and X\.
Suppose, for example, that in the above case soil quality (X2), which has been left out of
the analysis, also usually affects plant height and that, furthermore, above average
exposure to sunlight is systematically correlated with above average soil quality. Since the
error term will, in part, reflect the operation of the omitted variable X2, the error term will
now be correlated with the included variable Xi in violation of one or more of the
assumptions (3a - e). In consequence our estimate of the coefficient Pi will be biased-in
this case it will exaggerate the influence of exposure to sunlight on plant height10 To
obtain an unbiased estimate for Pi we need to bring X2 and perhaps additional variables as
well explicitly into the regression equation.

As noted above, even if we think that the underlying causal story about plant growth is
ultimately a fully deterministic one, so that deterministic processes generate each value of
the disturbance term, and deterministic generalizations link the height of each plant to facts
about its exposure to sunlight and the various other causes represented by thp error term
operative in that particular case, we can still use regression analysis as a basis for con-
ducting a causal investigation into the effects of sunlight on plant height, as long as
assumptions like (3a - e) are satisfied. Conversely, suppose that the relationship between
plant height and sunlight is in the case of individual plants an irreducibly indeterministic
one. This fact will not by itself guard against the above difficulty of specification error
(i.e., error in the estimate for Pi) if other causes correlated with sunlight are operative. To
rule out this possibility, one still needs, in addition, assumptions like (3a -e). This
illustrates again how the real work done by the assumptions about the distribution of the
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error term has to do with their evidential role and is quite independent of issues about
whether (1) presupposes a probabilistic analysis of causation.11

6. Explanation and Regression

I noted above that traditional models of statistical explanation like Hempel's IS model
or Salmon's SR model are clearly meant to apply to explanations of why a dependent vari-
able takes the values it does for particular individuals in a population. By contrast, regres-
sion analyses (and other causal modeling techniques) do not purport to explain the behavior
of particular individuals. Such techniques are more plausibly viewed as explaining aggre-
gate or population level facts such as facts about changes in the mean value of dependent
variable of interest.

One reason for thinking this is that it seems to best fit the conception of explanation
employed in the literature on the subject. One common measure adopted for the assessment
of a regression equation is the proportion of variance in the dependent variable which is
"explained" by the independent variable. The basic idea is typically developed (focusing
for simplicity on the case in which there is just one independent variable) as follows: let
yi = a+$Xy Let y,-be, as before, the actual value of Yassociated with *,• and let y be
the mean for all values of Y. Then one can readily show that

(11) 2 (y/ -y) 2 = S (y/-y/)2 + 2 ( y / - y ) 2

i=i »=i i=l

The first quantity on the right is the sum of the squares of the deviations of the actual '
values of Y from the values predicted by the regression line. It is, as Herbert Blalock
writes in a typical passage, "unexplained since it indicates the amount of error in
prediction" (1979, p. 107). By contrast, the second quantity on the right represents
the relative improvement in one's ability to predict obtained by using*; to predict y/ instead
ofy . This quantity is referred to as the "explained" sum of squares. The quantity

(12)

n A -
s (yt-y)2

z (yt-y)2

measures the ratio of the "explained variance" or sum of squares to the total variance in Y.

This is readily shown to be equal to the square of the correlation coefficient r*y and is a
measure of spread about the regression line. The closer the actual values( y;) of Y to the
predicted valuesy/ (and the closer the value of r^, to 1), the better the explanation which
the independent variable in the equation is said to provide.

It seems clear that the underlying conception of explanation here involves the idea that
what is explained is what can be deduced or predicted via the use of the regression
equation. To the best of my knowledge, there is no suggestion in any of the literature on
regression analysis that values y/ of Y which lie off the regression line are to be thought of
as explained by the regression equation-rather the extent to which those values differ from

the predicted valuesyi is precisely the extent to which they are regarded as "unexplained."
The model of explanation at work here is simply not one in which particular values of Y for
particular individuals are regarded as explained according to some model of statistical
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explanation by subsumption under a statistical generalization or by reference to some causal
factor (or propensity) which operates in a probabilistic fashion.

As a measure of explanatory power, (12) has certain well-known limitations, which I
have discussed elsewhere (cf. Woodward 1987). These limitations have to do with the fact
that (12) is relativised to the variance of the dependent variable Y in an undesirable way and
do not provide one with a good reason for rejecting the general claim that the conception of
explanation embodied in regression analysis is in part deductive and that what is explained
is facts about population-level parameters, rather than facts about individuals. If one
wishes to reject (12) as a measure of explanatory power, the alternative construal which I
think is most naturally suggested by the literature on regression analysis, is to simply take
what is explained to be the mean value of Y or perhaps changes in the mean value of Y with
changes in the values of X. On this sort of construal one thinks of a regression analysis as
purporting to explain, e.g., a certain increase in the mean rate of lung cancer in a certain
population in terms of an increase in per capita cigarette consumption or an increase in the
mean murder rate for a group of states in terms of an increase in the unemployment rate.

An additional reason for adopting this sort of construal of what is explained in
regression analysis is the obvious point that there is no direct and simple inference from
general population-level causal claims to causal claims about particular individuals.
Suppose, for the sake of definiteness that we regress a variable F representing the per
capita incidence of lung cancer in various regions of the United States on a variable X\
representing the concentration of certain pollutants in the air of that region and obtain a
positive coefficient Pi differing significantly from zero. Suppose also that we are satisfied
that assumptions of form 3a-dais satisfied and that the relationship between Xi and Y is
genuinely a causal one. Presumably underlying this relationship are facts about causal
processes going on in individuals (particular people in various parts of the country are
caused to get lung cancer at varying rates by these pollutants) and also facts about the
causal processes that would go on in these individuals if they were exposed to more or less
pollutants. Nonetheless, the regression analysis will not tell us why some particular
individual developed lung cancer or necessarily identify the causal factors actually relevant
to this outcome.

Even given the results of the regression analysis and the fact that some individual
Jones was exposed to these pollutants and has developed lung cancer, we are not entitled to
infer that this exposure actually caused Jones' lung cancer-it may be that Jones' cancer was
entirely caused by exposure to some other carcinogen. To show that the pollutants in
question were the cause of Jones' lung cancer, one must produce additional
considerations-e.g., one must show that no other possible causes of lung cancer were
present or that some characteristic modus operandi which such other causes exhibit when
they produce lung cancer was absent This seems to me to provide an additional reason for
doubting that regression analysis explains such facts as why particular individuals get lung
cancer or become juvenile delinquents or directly describes the individual causal processes
at work when some particular person develops these conditions. It is instead more
plausible to conclude that regression analysis captures average or aggregate features of the
operation of many individual causal processes in a population-that such an analysis tells us
about, for example, the aggregate causal impact of various levels of air pollution on lung
cancer in different areas of the United States.

I have argued above that the explanations provided in regression analysis are deductive
in structure. This is reassuring since many explanations elsewhere in science also possess
a deductive structure. I now want to suggest, again rather schematically, that the results of
regression analyses possess another feature often associated with good explanation
elsewhere in science. ̂  Contrary to what Patrick Suppes claims in the remark quoted
above insofar as a regression equation is understood as furnishing an explanation and as
reflecting a non-spurious causal relationship, it should be understood as embodying a
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counterfactual claim. An equation of form (1) or (8) tells us how the mean value of the
dependent variable would change if, contrary to present fact, the average value of the
independent variable(s) were to change in various ways. That is to say, a regression
equation reflecting a non-spurious causal relationship claims to provide one with
information about a (population-specific) pattern of counterfactual dependency obtaining
between the mean values of the independent and dependent variables. If one claims, on the
basis of regression analysis.that an increase of some amount (or some part of the increase)
in the incidence of lung cancer among women is due to (and explained by) an increase in
their average cigarette smoking, then one must also believe that if American women were to
smoke less this would change .the incidence of lung cancer among them in the way
represented by the relevant regression equation.

The fact that when a regression equation is taken to reflect a genuine causal
relationship, it will carry with it this sort of counterfactual commitment is reflected in,
among other things, the use of such techniques in connection with public policy issues.
Thus when Tufte, in an example referred to above, regresses a variable representing state-
wide automobile fatalities on a variable representing quality of state automobile inspections,
he is explicitly interested in the question of whether if all states were required to make
inspections (as is not now the case), this would be an effective way of reducing fatalities.
It is precisely because he concludes that there is a causal connection between these two
variables, and because he takes this claim to have counterfactual import, that he concludes
that requiring universal inspections would reduce fatalities. It is because he thinks that the
relationship between fatalities and the number of letters in a state's name is non-causal and
spurious that he does not think that changing states' names would be an effective strategy
for promoting automobile safety. Similar points can be made about the use of regression
analysis and other causal modeling techniques to assess the deterrent effect of the death ,
penalty or the effect on educational attainment of pre-schcol enrichment programs such as
Head Start. Similarly, if the examples of regression equations (6) and (7) above are
understood as having causal or explanatory import, they should also be understood as
counterfactual claims about how consumer spending would change if contrary to fact,
disposable income would change in various ways or about how Democratic representation
in Congress would change if the Democratic popular vote were to change in various ways.
Insofar as one's interest in regression techniques goes beyond the purely descriptive (and
represents an interest in explanation and in establishing causal connections) a central point
of the whole exercise is the successful identification of patterns of counterfactual
dependency. *3

Notes

Suppose that we are attempting to estimate the value of a parameter 0 and we have a
sample of n observations y\... yn. An estimator t for -0 will be a function t (y\ ...yn ) -
itself a random variable-of these observations and will be unbiased for -d if its expected
value, E(t) = i3. Linear estimators are those for which t is a linear function, that is, t=c\
yi+C2y2+... +cn yn, where c\ ...cn are constants. The estimator among the class of
unbiased, linear estimators which has minimum variance will be the best linear unbiased
estimator (BLUE).

2Here

Sr =

where x andy are the sample means for X and Y.
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3For example in the case in which we have a regression equation with two independent
variables X\ andX2 and a dependent variable Y.

i.e., 7=PiXi+p2X2+t/

the estimator Pi for the partial regression coefficient pi will be

A _ SX2 ' Syxv Syx2Syx\x2
1 -

where Sxy is, as before, the covariance between x and y. Clearly the value of the
regression coefficient will depend in part on the covariance Sx\xz, which will reflect the
correlation between X\ and X2. Note also that if X\ and X2 are not correlated, so that
Sxix2=0 then

which is just the estimate for the regression coefficient in the one variable case-cf. (4). If
X\ andX2 are not correlated, one can just ignore one variable in estimating a value for the
coefficient for the other variable, but one cannot do this if the variables are correlated.

4Simpson's paradox, which is arguably not a paradox at all but simply a problem for
any purely probabilistic definition of "cause," involves the observation that any relation of
statistical association between two variables in a population can be reversed in the
subpopulations characterized by reference to some third variable correlated with both of the
original variables.

5For examples, and further discussion, see e.g., Simon (1953).

^This is a common-place observation in the literature on causal modeling-see, for
example, Simon (1954), Asher (1983), Achen (1982), and Blalock (1979). Indeed, in
many cases there will literally be millions of linear causal models which entail observed
facts about correlations in the data. Developing systematic procedures (where possible) for
generating such alternatives and efficient and systematic criteria for evaluating them is
perhaps the central methodological problem posed by the use of causal modeling
techniques-for pertinent discussion see especially Glymour, Scheines, Spines, and Kelly
(1987).

7I am concerned here with the question of what (1) claims, and not with whether this
claim about the constancy of the regression coefficient across the entire population is
plausible. In fact, it seems clear that this claim of constancy is not plausible in many of the
contexts in which regression techniques are used. The value of the regression coefficients
will instead be different across different subpopulations of the total population for which
the equation is estimated. The coefficient in an equation like (1) will thus represent an
average over the coefficients for these subpopulations-a case of what is called an "inter-
action effect" I would reject the suggestion that in this sort of case, (1) should be rejected
as telling us nothing of causal interest, although I lack the space to defend this view here.

8See, for example, Johnston (1972), p. 11.
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9There is one rather special circumstance in which it is sometimes argued that the
coefficient Pi has a straightforward interpretation in terms of probabilities. Suppose that Y
andXi are both dichotomous variables-that is, restricted to the values 1 and 0 which we
may associate with their occurrence or non-occurrence. Then it is easy to show that the
coefficient Pi, can be interpreted as the difference between the probability that Y occurs,
given thatXi occurs and the probability that Y occurs, given thatXi does not occur.
Several writers (e.g., Humphreys, 1985) appeal to this fact in claiming that there is a close
connection between linear causal models and probabilistic analyses of causation of the sort
found in the philosophical literature. This suggested connection strikes me as misleading.
In ordinary regression analysis, while one or more of the independent variables can be
dichotomous, it is essential that the dependent variables be measurable on an interval scale.
When a linear model is used with a dichotomous dependent variable, several key
assumptions underlying the use of ordinary least squares estimation techniques will be
violated and the resulting parameter estimates will be biased. Indeed, if one assumes a
linear model, one may get predicted values for the dependent variable which are negative or
greater than one, and which are thus not interpretable as probabilities. For this reason, the
preferred approach with a dichotomous dependent variable is to assume one of a variety of
nonlinear functional forms and to estimate these by means of maximum likelihood tech-
niques. Thus causal models with dichotomous dependent variables are not appropriately
treated as "special cases" of linear regression models at all. Moreover, quite apart from
this, even if it were appropriate to regard the use of a model with dichotomous variables as
a special case of a linear model, the proposed probabilistic interpretation doesn't seem to
generalize to yield a natural interpretation in terms of probabilities for the regression
coefficient for models with variables measureable on an interval scale and such models are,
after all, the standard or paradigmatic cases of regression models. In general, I think that
the discontinuities and disanalogies between standard philosophical accounts of causation,
which are framed in terms of dichotomous or discrete-valued variables, and linear causal
models, which are generally taken to apply to variables which are measureable on an
interval scale, are much more striking than the continuities. From the perspective of the
literature on linear causal models, the tendency of philosophical discussion to focus so
exclusively on the dichotomous or discrete-valued case looks myopic and not well
motivated.

lOTo be a bit more precise, suppose that the "true" regression equation is

(13) y=PiXi+p2X2+f/

but that one mistakenly omits the relevant variable X2 and instead estimates

(14) y=PxXi+y

The least squares estimator for Pi from (14)-the omitted variable equation (em is

A V

(where the values ofy andx\ have now been "standardized" by subtracting y and* )
Then one can show that

E ( Pi)=Pi+p2bi2

where bi2 is the regression coefficient of the omitted variable X2 on the included variable
X\. Thus the bias in the estimated value of Pi resulting from the omission of X2 will be the
true coefficient of X2 multiplied by the regression coefficient of X2 onXi.
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1 'For an additional argument that, although probabilities are relevant as evidence for
causal claims, it does not follow that the correct analysis of causality involves probabilistic
elements, see David Papineau's interesting recent paper (1985). Some of Papineau's
arguments echo arguments made here, but I would dissent from a number of the details of
his discussion.

12For arguments that good explanations in science are often deductive in structure and
exhibit patterns of counterfactual dependency, see Woodward (1979) and Woodward
(forthcoming).

^But what warrants or grounds the assertion of such counterfactuals? How can one
justifiably arrive at a conclusion which has counterfactual import on the basis of data about
actual frequencies? The answer to this question, as I hope my discussion above suggests,
is that in carrying out a regression analysis one relies on other assumptions as well as
frequency data. These are the extra-statistical "causal" assumptions concerning possibly
causally relevant variables, causal ordering, and so forth described above. These
assumptions, since they are causally loaded themselves have counterfactual import and it is
in virtue of making them, that we are able to draw conclusions which have counterfactual
import via regression analysis. If we did not make any such assumptions.and attempted to
make inferences by relying only on data about actual frequencies and nothing more, we
would not be entitled to draw conclusions that had causal or counterfactual import.
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