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Abstract
The popularity of green, social and sustainability-linked bonds (GSS bonds) continues to rise, with circa US
$939 billion of such bonds issued globally in 2023. Given the rising popularity of ESG-related investment
solutions, their relatively recent emergence, and limited research in this field, continued investigation is
essential. Extending non-traditional techniques such as neural networks to these fields creates a good blend
of innovation and potential. This paper follows on from our initial publication, where we aim to replicate
the S&P Green Bond Index (i.e. this is a time series problem) over a period using non-traditional techniques
(neural networks) predicting 1 day ahead. We take a novel approach of applying an N-BEATS model
architecture. N-BEATS is a complex feedforward neural network architecture, consisting of basic building
blocks and stacks, introducing the novel doubly residual stacking of backcasts and forecasts. In this paper,
we also revisit the neural network architectures from our initial publication, which include DNNs, CNNs,
GRUs and LSTMs.We continue the univariate time series problem, increasing the data input window from
1 day to 2 and 5 days respectively, whilst still aiming to predict 1 day ahead.
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Disclaimer
The views expressed in this publication are those of invited contributors and not necessarily those
of the Institute and Faculty of Actuaries (IFoA).

The Institute and Faculty of Actuaries does not endorse any of the views stated, nor any claims
or representations made in this publication and accept no responsibility or liability to any person
for loss or damage suffered as a consequence of their placing reliance upon any view, claim or
representation made in this publication. The information and expressions of opinion contained in
this publication are not intended to be a comprehensive study, nor to provide actuarial advice or
advice of any nature and should not be treated as a substitute for specific advice concerning
individual situations. On no account may any part of this publication be reproduced without the
written permission of the Institute and Faculty of Actuaries.

This paper expresses the views of the individual author and not necessarily those of their
employer.

1. Executive Summary
We are pleased to publish our second paper as a Working Party using data science techniques to
look at sustainability and climate change-related issues. In this paper, we summarise the second
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stage of our analysis, where we explore more complex data science techniques and architectures to
continue our time series analysis of the Standard & Poor’s (S&P) Green Bond Index. Details of the
initial paper can be found in Dey (2024). The underlying data has been taken from https://www.
spglobal.com/.

1.1. Scope of this Paper

This paper builds on the initial publication on 1 November 2023 via the IFoA blog site (Dey, 2023)
and subsequent publication on 11 March 2024 via the British Actuarial Journal (Dey, 2024), where
we extend the time series univariate analysis to a more complex neural network architecture. We
have deliberately excluded traditional stationarity techniques such as ARIMA as well as restricted
this paper to a univariate analysis, to help focus on the impact of using a pure neural network
design and help with interpretability of the results. We may consider traditional stationarity
techniques and expanding our analysis to multivariate in subsequent papers.

For the purposes of this paper, we have focussed the S&P Green Bond Index and performed
various univariate time series analyses using a range of neural network architectures only. The
early part of this paper, Section 3, mainly focusses on using a rolling window approach of one
prior day’s index value to predict today’s index value. The latter part of this paper, Section 4,
extends the input window to a longer input period but the output horizon remains as 1 day.

In particular, this paper discusses (arranged as per the following sections):

• 2. Introduction
Recap on the prior analysis (Dey, 2024), the data used and how we will build on our
analysis in this paper.

• 3. N-BEATS
Introduction to N-BEATS (Neural Basis Expansion Analysis for interpretable Time Series
forecasting) architecture and extending our time series analysis to incorporate N-BEATS.

• 4. Widening the window
Extending our analysis to widen the input window into the original architectures from the
first paper (Dey, 2024).

• 5. Conclusions and next steps
Summary of conclusions from our analysis and potential areas of analysis for subsequent
papers.

Please note that many of the techniques mentioned in this paper build on Dey (2024) and the
detail is not duplicated here. For more underlying information on some of the architecture and
modelling techniques, please refer to Dey (2024) – this paper will be referred to as “initial paper”
throughout – and Appendix 3.

1.2. Summary of Analysis in this Paper

1.2.1. Aim of the analysis
This paper extends on the initial stages of our time series analysis on GSS (Green, Social and
Sustainability) bonds in Dey (2024), specifically focussing on the daily values from the Standard
and Poor’s (S&P) Green Bond Index and whether or not we can create accurate prediction models
using neural networks. This paper builds on the initial paper, where we hope to develop a model
that can assist with GSS bond index prediction, which will have wider applications such as index
price modelling and investment portfolio analyses for actuaries and non-actuaries alike. For the
purposes of this paper, we continue to look at predicting a rolling 1-day value of the index, based
on the prior x days index value over the period 2013 to 2023 inclusive.
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We retain the same Baseline model i.e. today’s value equals yesterday’s value over the course of the
full date range of 31 January 2013 to 17 February 2023. Similarly to the initial paper, we aim to see if we
can accurately create a time series model with non-traditional methods such as neural networks and
more complex neural network architectures, using N-BEATS. Analyses using traditional stationarity
techniques such as ARIMA and multivariate techniques have been deferred to later papers.

Towards the end of this paper, we extend our analysis by looking at using the prior x index
values (window) to predict the next y days in the future (horizon), rerunning the initial neural
network architectures analysed in Dey (2024). We restrict the input window to 2 and 5 days, whilst
retaining a future horizon to 1 day in this paper. In Section 3, for N-BEATS, we train the model
with an input window of 1 day in addition.

1.2.2. Data and method
We have retained the same underlying data as per Dey (2024) – the S&P Green Bond Index values
between 31 January 2013 and 17 February 2023, splitting the data using 70%/20%/10% ratios for
training/validation/test data sets. Section 3 of this paper extends our analysis by introducing a
more complex model architecture, the N-BEATS model architecture.

The latter part of this paper, Section 4, revisits the models analysed in our initial paper but
extends the input window of data to 2 days and 5 days respectively. These models can be
categorised into the following model categories: Deep Neural Network (DNN), Convolutional
Neural Network (CNN), Long Short-TermMemory (LSTM) and Gated Recurrent Unit (GRU)
neural network architectures. This is discussed in Section 4 and Appendix 3 in more detail.

The loss function used during training the models was set to Mean Absolute Error (MAE) for
all models, with an Adam optimiser used to update the weights to minimise the loss function as
part of the training process and L2 regularisation to reduce any overfitting during the training
process. Hyperparameter tuning of all models was completed via the open-source library Optuna,
using the Bayesian optimisation algorithm Tree-structure Parzen Estimator (TPE). These
techniques are discussed in more detail in Dey (2024).

1.2.3. Results and conclusions
The results of our analysis for N-BEATS (Section 3) were inconclusive: the models from each
category produced comparable results to the Baseline model with differences in Mean Absolute
Percentage Error (MAPE) of up to approximately +0.04% and hence with no material
outperformance.

Using similar neural network architectures as per the initial paper (Section 4), if we extend the input
window to 2 and 5 days respectively, there was no improvement in model performance when
compared with the Baseline, with differences in MAPE of up to around +0.3%. Widening the window
from 2 days to 5 days did result in an improvement in some models, though again the overall model
performance was still worse than the Baseline. Hence, the overall results were inconclusive.

We are potentially not sharing sufficient correlated information e.g. as per a multivariate
analysis, for our models to learn underlying material information and patterns in the data to result
in a model that materially outperforms the Baseline. We aim to address this in future papers
(please see below and Section 5 for more details).

1.2.4. Next steps
For future papers, we will expand our analysis to include the following:

1. Expanding the analysis to general GSS bonds. The analysis in this paper is based on a single
green bond index. We will look to expand our analysis to the wider GSS bond universe and
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over differing date ranges for the data to see if there are general underlying conclusions
across different data sets and GSS bond indices.

2. Expanding the analysis to include any potential relationships with the general market such
as stock market and oil prices i.e. move to a multivariate analysis in subsequent papers. This
is examined e.g. in Wang et al. (2021) which, when coupled with the CEEMDAN-LSTM
model, seems to produce materially improved model predictions based on green bond time
series data when compared to a baseline model.

3. Extend our analysis to alternative neural network architecture types, such as Graph Neural
Networks (GNNs).

1.2.5. Additional disclaimers
Please note the following:

a. Information within this paper is valid up to 31 May 2024. Hence, there may be updates
beyond this date that are not reflected in this paper e.g. changes to any legislation mentioned
or updates to any open-source libraries used.

b. This paper is not intended to be a comprehensive audit of models. Neither is this paper
recommending or promoting one approach over another, nor promoting any of the sources
or references stated in this paper. Any user of this paper should still reference the underlying
legislation, reference any standard mentioned in this paper, and should there be any conflict,
the underlying information in the relevant standard, reference or legislation supersedes any
information presented in this paper.

c. Though the work in this paper does not fall under the Financial Reporting Council’s
Technical Actuarial Standards, this paper has been reviewed both within the Working Party
and by the Institute and Faculty of Actuaries’ Data Science Practice Board.

2. Introduction
2.1. Recap on Prior Analysis

In our initial paper Dey (2024), we produced a time series analysis of the S&P Green Bond Index
and aimed to replicate the index using various models over a certain time period. The data in our
analysis was from the end of January 2013 to mid-February 2023.

Our initial stages of analysis focussed on a univariate time series model, where our model used
the prior day’s value to predict the index value one day ahead (i.e. today’s value). The prediction
models used were predominantly neural network architectures: deep neural networks (DNNs),
Convolutional Neural Networks (CNNs), Long Short-Term Memory models (LSTMs) and Gated
Recurrent Units (GRUs). Please note that for the purposes of this and the initial paper Dey (2024),
DNNs included 1 to 3 hidden layers. Strictly, a DNN has 2 or more hidden layers. However, for
ease of categorisation, we have extended this labelling to include 1 hidden layer as well. In our
initial paper, we further extended the analysis to include the popular library XGBoost, which is a
decision-tree model. We have not considered XGBoost further in this paper.

For the purposes of this paper, we will continue with our analysis with an overall aim to
produce a sufficiently accurate predictive model, where the models will be based on a neural
network architecture design. Data from 31 January 2013 to around mid-February 2022 will be
used to train and validate the models. These models will then be used to predict daily index values
on unseen data from mid-February 2022 to mid-February 2023 (i.e. the test data set). The
difference in predicted values from our models with actual daily index figures will be used to gauge
the accuracy of the proposed models.
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2.2. Summary of Data Used

We have continued to use the same data set as per Dey (2024), downloading via a free
subscription-based account from the main S&P website https://www.spglobal.com/ . For details of
the data set and underlying testing of this data, please see Dey (2024).

For the purposes of this paper, we will analyse the S&P Green Bond Index (Total Performance,
USD, from 31 January 2013 to 17 February 2023 inclusive). The splits are as per the initial paper
and further shown in Figure 1 and Table 1. Given the nature of the time series analysis we have
ordered the data and these splits chronologically, so that we can build models to infer some form
of prior time-dependency based on the underlying data, and have not randomly allocated the data
between these splits across the full data range.

Figure 1. S&P Green Bond Index data with training/validation/test splits highlighted (output from Google Colab).

Table 1. Summary table of data used, split by training, validation and test data sets.

Full Data Training Data Validation Data Test Data

Start date 31 Jan 2013 31 Jan 2013 17 Feb 2020 17 Feb 2022

End date 17 Feb 2023 16 Feb 2020 16 Feb 2022 17 Feb 2023

Number of index entries 2,615 1,830 523 262

Index minimum 109.80 121.78 133.14 109.80

Index maximum 158.99 143.59 158.99 143.34

Index average (2 d.p.) 136.00 133.60 150.46 123.96

Index standard deviation (2 d.p.) 9.65 5.32 5.70 8.04
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The splits are: to 16 February 2020, to 16 February 2022 and to 17 February 2023 inclusive.
Table 1 details further each data split.

In summary, there is greater volatility in the test data set range when compared to the training
and validation data sets. Hence, it will be interesting to see how our models cope given that they
will be built on less volatile training and validation data.

Similar to Dey (2024), for the purposes of our analysis, we have not adjusted the data further
i.e. no normalisation of the index (setting to a scale of 0 to 1, a technique typically used to result
in a quicker convergence to a solution for a model) and no log transformation (which can be
used to potentially dampen any impact of seasonality). Such techniques may be discussed in
later papers.

3. N-BEATS
3.1. Introduction

We start our analysis with the N-BEATS (Neural Basis Expansion Analysis for interpretable Time
Series forecasting) architecture. In this section, we give an overview of the model architecture,
before explaining in more detail the generalised model architecture. We then explain how we
trained this model architecture specifically on our data set and finally present our results from this
analysis.

Originally submitted in 2019, with the publication revised in 2020, the N-BEATS time series
model was specifically designed to tackle time series problems. We refer to this publication
Oreshkin et al. (2019) as the “source paper”. The source paper states that N-BEATS demonstrates
state-of-the art performance, improving forecast accuracy by 11% over a statistical benchmark and
by 3% over last year’s winner of the M4 competition (Oreshkin et al., 2019). The paper considers
tackling a univariate discrete time series problem. Given this, using the model architecture for our
forecasting problem seems appropriate.

Oreshkin et al. (2019) discusses how deep learning techniques have struggled to consistently
outperform more traditional statistical techniques: the rankings of the six “pure” ML methods
submitted to M4 competition were 23, 37, 38, 48, 54, and 57 out of a total of 60 entries (Oreshkin
et al., 2019). Please note however that we do not explore more traditional techniques in our paper
and continue to focus on non-traditional techniques i.e. neural networks.

The Makridakis Competitions is an open time series competition (Makridakis et al., 2020). The
fourth iteration of the competition, M4 which is mentioned above, was held in 2020.

Beyond designing a model architecture that uses deep learning to tackle a time series problem,
the aim of Oreshkin et al. (2019) was to also design an architecture with interpretable outputs that
can be used by practitioners in very much the same way as traditional decomposition techniques
such as the “seasonality-trend-level” approach (Oreshkin et al., 2019).

Below are some key features of the N-BEATS model architecture:

1. It is a deep neural architecture based on backward and forward residual links and a very deep
stack of fully connected layers (Oreshkin et al., 2019). The model architecture is made up of
stacks that are in turn made up of blocks. Each block produces a backcast residual and
partial forecast with the aim of iteratively improving the prior input value and augmenting
the future value respectively within the forecasting process. For more details of the
underlying architecture, please see Section 3.2.

2. One of the aims of an N-BEATS model architecture is to ensure underlying patterns in the
data are interpretable (i.e. understandable) for users, where the model can infer an
underlying trend and seasonality pattern within any given time series data set.

For a high-level introductory summary of N-BEATS, please see for example an article
published on the Towards Data Science website (Dancker, 2024).

6 Debashish Dey

https://doi.org/10.1017/S1357321724000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321724000217


3.2. Deeper dive into Generalised N-BEATS Model Architecture

Below we look at the generalised N-BEATS model architecture in more detail. We summarise
some of the key points raised from Oreshkin et al. (2019) and use the same notation as per
Oreshkin et al. (2019) when presenting formulae.

The generalised model architecture is based on the following principles (Oreshkin et al., 2019):

1. It should be simple and generic, yet expressive (deep).
2. It should not rely on time series-specific feature engineering or input scaling.
3. The outputs should be extendable towards making its outputs human interpretable.

The first two principles allow a user to set up a time series forecasting model based on a pure
deep learning architecture.

Figure 2 shows a generalised overview of the architecture design underlying N-BEATS model
architecture. Figure 2 is taken directly from Oreshkin et al. (2019).

Below is an overview of the N-BEATS architecture:

1. Basic building blocks consist of hidden layers each of several neurons, which are fully connected.
The outputs from this structure can be further extended to incorporate basis functions which
allow for time series features such as seasonality and trends. The basic building block is
represented by the blue box on the left in Figure 2, which illustrates 4 hidden layers.

2. These basic building blocks in turn form a stack, which take the residual backcasts from the
prior block and cumulate the partial trend forecasts outputs. This is represented by the
middle box in Figure 2, which illustrates K basic building blocks.

3. In a similar fashion, the residual backcasts from the prior stack feed into later stacks, and
then cumulate the partial trend forecasts to an overall global forecast i.e. the overall model
output. This is represented by the box towards the right in Figure 2 earlier, which illustrates
M stacks in total.

Figure 2. Generalised N-BEATS architecture. Source: Oreshkin et al. (2019).
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The above technique of residuals and partial forecasts form part of doubly residual stacking.
This is discussed further in Section 3.2.2 below.

3.2.1. Basic building block
The basic building blocks generate a backcast and forecast as previously mentioned. The backcast
can be viewed as iterative adjustments to the input vectors via residuals, whilst the forecast from
each basic building block can be viewed as a partial forecast which is cumulated and form part of
the overall global forecast.

Focusing on the lth basic building block, as per Oreshkin et al. (2019): each basic building block
has a fork architecture which takes an input vector (or residual outputs from a prior basic building
block) xl and produces two outputs: bxl i.e. the block’s best estimate of xl and the block’s forward
forecast byl. The input of the very first block in the model is the original data input. The remaining
basic building block inputs are residual outputs from a prior basic building block, and can be
thought of as running a sequential analysis of the input signal (Oreshkin et al., 2019). See
Section 3.2.2 for more details.

The internal structure of a basic building block broadly consists of two sections: a fully
connected section and a basis layer section.

The fully connected layer produces backward (backcast) and forward (forecast) predictors, θbl
and θ

f
l respectively, of expansion coefficients. The predictors determine how much each basis

function contributes to the overall approximation of the function. Please see Section 3.2.1.2 for
more details on basis function.

The above two sections of the internal structure of a basic building block are discussed in more
detail immediately below in Sections 3.2.1.1 and 3.2.1.2.

3.2.1.1. Fully connected section. Using the same formulae notation and architecture discussed in
Oreshkin et al. (2019), which has four hidden layers, the equations within the lth basic building
block are as follows:

• hl; 1 � FCl;1 xl� �, hl;2 � FCl;2 hl;1
� �

, hl;3 � FCl;3 hl;2
� �

, hl;4 � FCl;4 hl;3
� �

, where hl;i repre-
sents the ith hidden layer in the lth block, FCl;i represents the i

th fully connected layer in the lth

block, and xl is the input vector for the l
th block.

• θbl � LINEARb
l hl;4
� �

and θ
f
l � LINEARf

l hl;4
� �

, where hl; i, θbl and θ
f
l are as per earlier.

LINEAR is a linear projection layer i.e. θbl � Wb
l hl;4
� �

and θ
f
l � Wf

l hl;4
� �

with the subscript
l representing the lth block, the superscripts b and f representing backcast and forecast
respectively, and W is a weight matrix active on a hidden layer.

For the purposes of Oreshkin et al. (2019), FC is a standard fully connected layer with a relu
activation function i.e. hl;1 � RELU �Wl;1xl � bl;1�, where Wl;1 represents the weight vector
connecting the input xl to the first hidden layer in the lth block and bl;1 is the bias term for the first
hidden layer in the lth block.

3.2.1.2. Basis layer section. The basis layer maps the backcast and forecast expansion coefficients θbl
and θ

f
l to outputs, where the partial output byl � gfl θ

f
l

� �
and the residual output bxl � gbl θbl

� �
. The

basis functions gbl and gfl are for backcast and forecast respectively.
More generally, expansion coefficients are parameters that are learned during the training

process. When combined with basis functions, they help to capture any underlying patterns or
features in a time series data set such as a trend, an anomaly or seasonal patterns. Examples of
basis functions include polynomial, Fourier, wavelet and Gaussian functions.
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3.2.2. Doubly residual stacking
A unique feature of the N-BEATS model architecture is the concept of doubly residual stacking.
Instead of a single residual branch of outputs, the architecture proposes two branches as
mentioned: one for a backcast residual and one for a partial forecast. Mathematically, we represent
this as:

xl � xl�1 � dxl�1; by �
X

l
byl;

where xl and dxl�1 are defined earlier in Section 3.2.1, by is the global forecast i.e. overall model
output which is the sum of individual byl . Each byl can be viewed as a partial forecast.

3.2.3. Interpretability
There are 2 types of configurations or design patterns for an N-BEATS architecture:

1. Generic architecture, which does not assume any specific underlying time series model and
relies on a generalised deep learning approach.

2. Interpretable architecture, which is an augmented model that often includes a trend and
seasonality model to the generalised N-BEATS architecture discussed earlier for a time series
forecasting problem.

For the purposes of this paper, we have focussed on the first configuration i.e. generic
architecture as the aim of this paper is to seek a model architecture that accurately predicts the
time series future values without any further input by the modeller or prior knowledge of any
underlying time series features from the modeller. For more details on the above, and other
considerations, please see Oreshkin et al. (2019).

3.2.4. Comparison with other model architectures
In Table 2, we provide a high-level comparison of the N-BEATS architecture versus DNNs, and
LSTMs/GRUs. Please note that these are generalised comments based on experience and the
comparison table below may differ for different data sets, problems and scenarios.

Table 2. Comparison of N-BEATS model architecture.

Model Architecture DNN LSTM, GRU N-BEATS

Neural network type Feedforward Recurrent Feedforward

Handles long-term memory No Yes Yes – via backcasting
and forecasting

Complexity Low Medium High

Computational resources Low Medium High

Indicative time taken to train
model in Google Colab
based on data set and
methodology discussed in
this paper (epochs and
Optuna trials may vary)

Up to circa 15 mins Up to circa 30 mins circa 3 to 4 hours

Performance Varies though better on
short sequences

Varies though better
on long sequences

Excellent for time series

Interpretability Low Medium High

(Continued)
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3.3. Model Approach Used and Training the Model

Below we give a brief overview of our code implementation of the N-BEATS model.

3.3.1. Code background
The underlying basis of our code for the N-BEATS model is taken from Zero to Mastery
TensorFlow for Deep Learning Book (Bourke, 2023) and has been adapted for our analysis, where
we look at a general N-BEATS architecture. We vary the number of layers within each block and
the number of blocks per stack but set the total number of stacks equal to 1 (i.e. M is 1 in Figure 2).
This is in part to simplify the trained model architecture given that the time taken to train such a
model was close to 4 hours. Further, in doing so, we do not believe that taking such an approach
would materially impact any overall conclusion, as effectively adding another stack would repeat a
similar iterative fine-tuning process and potentially the hyperparameter optimisation could
compensate by increasing the number of blocks in the single stack.

The original authors of the N-BEATS model also extend their analysis to allow for an ensemble
technique (using multiple different loss functions and multiple different lookback periods in
Figure 2) to make predictions when testing on M4 dataset. To retain consistency with the
approach taken with other models within our initial paper, we have not extended our analysis to
allow for such ensemble techniques.

We have assumed the same underlying architecture per block within each stack e.g. the same
number of hidden layers within each block. Similarly, we have assumed the same underlying
architecture for each hidden layer within each block e.g. number of neurons, activation function
and L2 loss regularisation parameter. The output layer from the block is a generalised dense layer,
each with the same number of neurons in effect as the total combined length of the input window
and output horizon. Similarly, we have assumed that all output layers have the same activation
function, though this may differ to the hidden layers above.

Similar to our initial paper, we have used the same underlying data and training/validation/test
splits within the data to train our model. We have run our code in Google Colab, using similar
libraries including Tensorfow and Keras as per our initial paper. For hyperparameter
optimisation, we have again used Optuna. For an in-depth discussion, please see Dey (2024).

3.3.2. Hyperparameter optimisation
We have used Optuna for hyperparameter optimisation. Below we list some key search spaces
used within our hyperparameter optimisation.

1. The number of epochs was set to 400.
2. The number of trials within Optuna was set to 30.

Table 2. (Continued )

Model Architecture DNN LSTM, GRU N-BEATS

Typical usage Wide range of problems Sequential data e.g.
Sentiment analysis,
Language
modelling, Speech
recognition

Time series forecasting

Practical considerations Easy to implement Better for tasks
requiring
understanding of
long-term
dependencies

Highly effective for complex
time series forecasting
tasks where
interpretability and
performance are crucial
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3. The batch size for the input data was set to 128.
4. The activation list was as follows: elu, gelu, linear, relu, sigmoid, swish and tanh.
5. The specific search space for each N-BEATS block includes:

a. Number of neurons in each hidden layer from 4 to 512 at steps of 4.
b. Number of hidden layers from 1 to 4 at steps of 1. As mentioned earlier, we have assumed

all hidden layers have the same underlying architecture e.g. the same number of neurons,
same activation function and same L2 regularisation.

c. L2 regularisation with a search space of 1e-5 to 1e-1.
d. Output theta layer or basis layer is a generalised deep layer.

i. The number of neurons is set equal to the theta size – in effect the combined length is
the window size and horizon size for this analysis.

ii. The activation function is from the activation list above. No L2 regularisation
function was applied to this layer.

iii. No further adjustments were made for seasonality and trend i.e. via basis functions,
as previously mentioned.

6. Specific search space for number of N-BEATS blocks per stack from 2 to 30 at steps of 2.
7. Similar to Dey (2024), the model was compiled on a loss function of Mean Absolute Error

(MAE) using an Adam optimiser with a learning rate search space of 1e-5 to 1e-1.

3.3.3. Training the model
Below is a loss history curve based on training one of the models, using the search space, number
of epochs and number of trials in Optuna as mentioned in Section 3.3.2 (Figure 3).

As we would expect, the model loss decreases as the number of epochs increases, suggesting
that the model is able to converge to a solution.

Figure 3. Training and validation loss curves (output from Google Colab).
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Similarly, we have used the open source Keras visualizer library to demonstrate the underlying
architecture of the trained model in Figure 4. Please note that we have taken a snippet of the first
few blocks and initial stacks, given the size of the overall final trained model.

The visualisation tool in general gives an alternative simplified representation of any final
neural network model architecture. Further, given that we have generalised our code and set the
overall number of stacks equal to 1 as mentioned earlier, there are cosmetic differences in Figure 4
when compared with Figure 2.

In Figure 4, the Keras visualisation tool helps visualise basic building blocks (represented by
“NBeatsBlock”) showing:

1. Subtraction (represented by “Subtract” in Figure 4) to represent the process of residuals or
backcasts.

2. Additions (represented by “Add” in Figure 4) to represent the process of partial forecasts.

The final trained model (with an input window of 1 day) has over 4 million trainable
parameters (i.e. weights and biases). As a comparison, Model 1 from Appendix 3 in Dey (2024),
which is a DNN model, has 625 trainable parameters. Similarly, Model 6 from Appendix 3 in Dey
(2024), which is an LSTM model, has 47,629 trainable parameters.

Figure 4. Snippet of the final trained N-BEATS model architecture using Keras visualizer (output from Google Colab).
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3.3.4. Model outputs and observations
The paper Oreshkin et al. (2019) mentions that the input length of the window is typically set to
a multiple of the length of the output horizon H, between 2H and 7H. For the purpose of this
paper, we have trained the model setting this input length to a multiple of one (1 times) to align
with Dey (2024), two (2 times) and five (5 times) in order to adhere to the recommendation
above and in Oreshkin et al. (2019), as well as our analysis in Section 4. The output horizon is as
per the initial paper i.e. 1 day.

In Table 3, we compare the performance of the trained N-BEATS models, which have been
trained on the same data but on input windows of 1, 2 and 5 days, and with the same output
horizon of 1 day.

Though the N-BEATS models performed relatively accurately, based on the data set, split of
data between training/validation/test, and hyperparameter optimisation, there is no improve-
ment to the Baseline for each of our N-BEATS models based on either MAE or MAPE measures
on the test data set. The model trained on a 5-day input window performs marginally better than
the model trained on a 2-day input window. However, the model trained on a 1-day input
window outperforms the N-BEATS models trained on a 2-day and 5-day input window. All
trained models perform marginally worse than the Baseline model. Hence, the overall results are
inconclusive.

One potential area of future study is to incorporate ensemble techniques as per the original
authors of N-BEATS as mentioned in Section 3.3.1, as well as allow for the number of stacks to
vary during hyperparameter optimisation when training the model.

4. Widening the Window
4.1. Introduction

We now change the focus of our analysis and widen the input window of data going into our
models when training, validating and testing, with the aim of hopefully improving the model
accuracy, as we are looking to provide more information to the models to recognise any
underlying potential patterns and dependencies within the data. Please note that we revisit the
majority of the original neural network architectures discussed in Dey (2024), though have
excluded return sequence true models as we are predicting 1 day into the future in this paper. We
have also excluded XGBoost in our analysis in Section 4, given that this is a decision-tree library
and not based on any underlying neural network architecture. We have used various chart
functions from the Python-based, open source statsmodels library. For more details on this library,
please see: https://www.statsmodels.org/.

Table 3. Comparison of performance measure, between the baseline model and N-BEATS, based on MAE and MAPE,
varying the input window between 1, 2 and 5 days.

Performance
Measure

Baseline (Window =
1 Day) (3 d.p.)

N-BEATS (Window =
1 Day) (3 d.p.)

N-BEATS (Window =
2 Days) (3 d.p.)

N-BEATS (Window =
5 Days) (3 d.p.)

MAE 0.610 0.620 0.662 0.657

Difference from
Baseline MAE

– +0.010 +0.052 +0.047

MAPE 0.497% 0.505% 0.539% 0.536%

Difference from
Baseline MAPE

– +0.008% +0.042% +0.039%

British Actuarial Journal 13

https://doi.org/10.1017/S1357321724000217 Published online by Cambridge University Press

https://www.statsmodels.org/
https://doi.org/10.1017/S1357321724000217


4.2. Autocorrelation (ACF) and Partial Autocorrelation (PACF) Plots

We used the seasonal_decompose function from the statsmodels library to separate potential trend
lines, seasonality and residual plots across the full data set discussed in Section 2. These can be
viewed further in Figure 5. We analysed the daily log returns of the underlying data set to infer
potential lags in the data and correlations, and hence to help determine alternative window sizes.

Within Figure 5, “index” represents the daily log returns of the data set, “trend” represents any
underlying trend, “seasonal” represents any potential seasonal element and “resid” represents any
unaccountable residual (after the trend and seasonal components have been accounted for).

Using the built-in plot_acf and plot_pacf functions from the statsmodels library, we have
created an autocorrelation (ACF) plot in Figure 6 and partial autocorrelation plot in Figure 7
respectively.

Figure 5. Seasonal, trend and residual plot outputs from the data set (output from Google Colab).

Figure 6. Autocorrelation plot for data set mentioned in Section 2 (output from Google Colab).
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Both plots can be used to infer a correlation between different lags. For more general
background to ACF and PACF plots, please see for example Monigatti (2022).

Though there is a certain amount of subjectivity involved in interpreting Figures 6 and 7, we
could expect a 2-day historic lag in data to be representative of any potential underlying feature.

4.3. Window Length to Choose

Based on the analysis in Section 4.2, the implied input window is 2 days. Similarly, the window lag
implied by Peters et al. (2022) is 5 days. Strictly speaking, these lags are based on the daily log
returns. Reversing the log transformation implies a lag of around 7 working days and around 148
working days respectively. The latter time period of 148 days is equivalent to around 6 to 7
months, and may indicate that the prior 2 quarters of annual data incorporate longer term market
trend information, and hence may useful when producing better future predictions.

Rerunning all models within this paper based on 7-day and a sample on 148-day input
windows resulted in worse performing models, using the same underlying conditions and
predicting 1 day ahead, than if the input window was restricted to 5 days. Hence, we have retained
input windows of 2 and 5 days, and not extended beyond 5 days. Given that the data is per
working day, intuitively 5 days may seemmore appropriate. The results frommodel outputs based
on an input window of 7 and 148 days have not been included in this paper given the above.

4.4. Training the Models

We have retrained the neural network models from our initial paper Dey (2024) based on a 2-day
input window and 5-day input window. The approach taken is as per the initial paper.

4.5. Results from Analysis of 2-day and 5-day Input Window

We have summarised the MAE and MAPE results from different model runs for some of the
model architectures originally analysed. We have maintained the same labelling e.g. model
number and abbreviated name. For a full list of these models, please see Appendix 3.

Table 4 compares the performance based on MAE and MAPE for these different models, based
on input windows of 1, 2 and 5 days.

Figure 7. Partial autocorrelation plot for data set mentioned in Section 2 (output from Google Colab).
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We have retained the original Baseline, which has been trained on an input window of 1 day
across all comparison scenarios, given the existing level of accuracy/relative difficulty for other
neural networks architecture models to materially outperform this. As can be seen in Table 4,
generally the GRU and LSTMmodels outperform CNN and DNNmodels, based on both a 2- and
5-day input window.

Table 5 repeats similar information but compares the relative performance of a 2-day and
5-day input window against a 1-day input window for the same model i.e. the comparison is
within the same row.

Table 4. Comparison performance of neural network models with 1, 2 and 5 days of input window information.

Model Number Abbreviated Name Category

Data Input

Window = 1 Day Window = 2 Days Window = 5 Days

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

0 Baseline Baseline 0.610 0.497% – – – –

1 DNN0 DNN 0.607 0.495% 0.739 0.602% 0.933 0.763%

2 DNN1 0.627 0.511% 0.706 0.576% 0.948 0.773%

3 DNN2 0.620 0.505% 1.320 1.085% 0.798 0.651%

4 CNN0 CNN 0.619 0.504% 0.686 0.560% 0.992 0.811%

5 CNN1 0.611 0.498% 0.705 0.575% 0.959 0.783%

6 LSTM_0HL_F LSTM 0.609 0.497% 0.769 0.627% 0.719 0.585%

8 LSTM_1HL_F 0.617 0.503% 0.655 0.534% 0.667 0.545%

10 GRU_0HL_F GRU 0.632 0.514% 0.680 0.554% 0.647 0.528%

12 GRU_1HL_F 0.638 0.519% 0.623 0.507% 0.643 0.524%

Table 5. Comparison performance 2-day and 5-day input window against window of 1 day for the same model.

Model
number Abbreviated name Category

Data input

Window = 1 day Window = 2 days Window = 5 days

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

0 Baseline Baseline 0.610 0.497% – – – –

1 DNN0 DNN 0.607 0.495% +0.132 +0.107% +0.326 +0.268%

2 DNN1 0.627 0.511% +0.079 +0.065% +0.321 +0.262%

3 DNN2 0.620 0.505% +0.700 +0.580% +0.178 +0.146%

4 CNN0 CNN 0.619 0.504% +0.067 +0.056% +0.373 +0.307%

5 CNN1 0.611 0.498% +0.094 +0.077% +0.348 +0.285%

6 LSTM_0HL_F LSTM 0.609 0.497% +0.160 +0.130% +0.110 +0.088%

8 LSTM_1HL_F 0.617 0.503% +0.038 +0.031% +0.050 +0.042%

10 GRU_0HL_F GRU 0.632 0.514% +0.048 +0.040% +0.015 +0.014%

12 GRU_1HL_F 0.638 0.519% −0.015 −0.012% +0.005 +0.005%
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The pink colour boxes in Table 5 indicate that the model has performed worse than the
corresponding model trained on a window of 1-day input. The yellow colour boxes in Table 5
indicate that the model has performed worse than the corresponding same model architecture
trained on a window of 1-day input, but better than the corresponding model architecture trained
on a window of 2-day input. The green colour boxes in Table 5 indicate that the model has
performed better than the corresponding same model architecture trained on a window of
1-day input.

As can be seen in Table 5, model 12 (a GRU model with 1 hidden layer) outperforms with a
2-day input window compared to 1-day input window. The remaining models perform worse if
the input window is expanded from 1 day to 2 or 5 days.

Models 3, 6 and 10 performed better with a 5-day input window versus a 2-day input window.
However, as per earlier, the differences are relatively similar and hence the overall results are
inconclusive.

Table 6 repeats similar information but compares the relative performance of increasing the
data input window to 2 and 5 days respectively, against the Baseline across all scenarios (which
was trained with an input window of 1 day).

The colour coding within Table 6 is as per Table 5 but comparing relative performance against
the Baseline performance across all scenarios.

Models 3, 6 and 10 performed better with a 5-day input window versus a 2-day input window.
However, as per earlier, the differences are relatively similar with all models performing worse
than the Baseline. Hence the overall results are inconclusive.

4.6. Conclusions

By increasing the input window from 1 day to 2 and 5 days, on the whole, there were no material
improvements to the results. The differences in model performance (based on a MAPE measure)
are relatively small and hence the overall results are inconclusive.

Table 6. Comparison performance of each neural network model against baseline.

Model Number Abbreviated Name Category

DataIinput

Window = 1 Day Window = 2 Days Window = 5 Days

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

MAE
(3 d.p.)

MAPE
(3 d.p.)

0 Baseline Baseline 0.610 0.497% – – – –

1 DNN0 DNN 0.607 0.495% +0.129 +0.105% +0.323 +0.266%

2 DNN1 0.627 0.511% +0.096 +0.079% +0.338 +0.276%

3 DNN2 0.620 0.505% +0.710 +0.588% +0.188 +0.154%

4 CNN0 CNN 0.619 0.504% +0.076 +0.063% +0.382 +0.314%

5 CNN1 0.611 0.498% +0.095 +0.078% +0.349 +0.286%

6 LSTM_0HL_F LSTM 0.609 0.497% +0.159 +0.130% +0.109 +0.088%

8 LSTM_1HL_F 0.617 0.503% +0.045 +0.037% +0.057 +0.048%

10 GRU_0HL_F GRU 0.632 0.514% +0.070 +0.057% +0.037 +0.031%

12 GRU_1HL_F 0.638 0.519% +0.013 +0.010% +0.033 +0.027%
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The performance of increasing from 1 to 2 or 5 days did however produce relatively accurate
models, with a MAPE of circa 0.5% to circa 1.1% across all models which were investigated.

5. Conclusions and Next Steps
5.1. Conclusions

Based on our analysis, given the data range and training/validation/test splits of the S&P Green
Bond Index and modelling approach discussed earlier, we can draw the following conclusions.

5.1.1. N-BEATS
As observed, we trained a model based on the N-BEATS architecture in Section 3. The outputs of
each model (trained on an input window of 1, 2 and 5 days) did produce output forecasts for a
1-day horizon (i.e. the next day) which were relatively accurate, with the MAPE differing by
approximately +0.5% over the test range data set.

However, the trained models did not outperform the Baseline model over the test data set.
The trained N-BEATS models differed from the Baseline results by up to about +0.04% i.e. our
findings are inconclusive. This may be indicative of the fact that the current Baseline is
actually a good predictor in the first place, given that the relatively low coefficient of variation
of 7.1% for the index across the full data set. Similarly, it may be indicative of the fact that the
problem we are facing with the S&P Green Bond Index is as per any other stock price
movement i.e. a random walk, where it is difficult to continually outperform any baseline
model (Bourke, 2023).

5.1.2. 2-day lag and 5-day lag
Expanding the input window from 1 day to 2 and 5 days respectively for the neural network
architectures explored in Dey (2024) did not result in an improvement, with the performance
relatively similar to the Baseline i.e. our findings are still inconclusive.

5.2. Next Steps

The analysis to date has been based on a univariate analysis and simpler neural network
architectures – such as DNNs, CNNs, LSTMs and GRUs, as discussed in Dey (2024). We have
further expanded this to a complex and cutting-edge architecture with N-BEATS.

For future papers, other potential areas we may explore include:

1. Explore other complex neural network architectures based on a univariate analysis e.g.
Google’s TFT (Temporal Fusion Transformer) and temporal GNNs (Graph Neural
Networks).

2. Expanding our analysis to a multivariate analysis.
3. Broaden the projection horizon from 1 day to 1 week or possibly 1 month into the future.
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⚬ Assoc. Prof. George Tzougas [https://url.avanan.click/v2/___https:/www.linkedin.com/in/george-tzougas-
648711294/___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOjhiM2VjMTNmMjZlYTM3YmZiY2ExYWE3OTJlNWQ0O
GQ4OjY6YzkxNDpkZDU5NmU0NWFjZTNhMDI4MjQ1ZWM3MTRlMmJmYzFhM2QzZWQ4ZGI0ZDBmM2M
2MzMxNWEyMmE0NDU4MGM4MTFkOnA6VDpG ].

• Review of graphs and tables within the paper by ShubhamMehta [https://url.avanan.click/v2/___http:/linkedin.com/
in/mehta-shubham___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOjhiM2VjMTNmMjZlYTM3YmZiY2ExYWE3OTJlN
WQ0OGQ4OjY6M2RkNDplYjVlMTUzMjhjMTc2YTMxOTEyOGNlNjgwZTExZDg4ZTUyNGIxZDg0MjliOWI1
YjgwNjNkOWMwZjIzMjAyMWM3OnA6VDpG ].

Appendix 2 – List of Abbreviations

Below is a list of abbreviations used within this paper.

Abbreviation Explanation
ARIMA AutoRegressive Integrated Moving Average
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CNN Convolutional Neural Network
DNN Deep Neural Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
GSS bonds Green, Social and Sustainability bonds
IFoA Institute and Faculty of Actuaries
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSCI Morgan Stanley Capital International
N-BEATS Neural Basis Expansion Analysis for interpretable Time Series
RNN Recurrent Neural Network
S&P Standard and Poor’s
TFT Temporal Fusion Transformer
TPE Tree-structure Parzen Estimator

Appendix 3 – Summary of Models Analysed in the Initial Paper

Below is a summary of the models analysed in the initial paper Dey (2024), with a brief description of the underlying model
architecture for each.

Model Abbreviated name Category Description of architecture
0 Baseline Baseline Baseline model which assumes today’s value is the same as yesterday’s value.
1 DNN0 DNN Feedforward artificial neural network with one hidden dense layer.
2 DNN1 Feedforward artificial neural network with two hidden dense layers.
3 DNN2 Feedforward artificial neural network with three hidden dense layers.
4 CNN0 CNN Convolutional neural network, with one Conv1D layer and no additional

hidden layers.
5 CNN1 Convolutional neural network, with one Conv1D layer and one hidden

dense layer.
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6 LSTM_0HL_F LSTM LSTM neural network, with one LSTM layer, return sequence set to false,
and no additional hidden layers.

7 LSTM_0HL_T LSTM neural network, with one LSTM layer, return sequence set to true,
and no additional hidden layers.

8 LSTM_1HL_F LSTM neural network, with one LSTM layer, return sequence set to false,
and one additional hidden dense layer.

9 LSTM_1HL_T LSTM neural network, with one LSTM layer, return sequence set to true,
and one additional hidden dense layer.

10 GRU_0HL_F GRU GRU neural network, with one GRU layer, return sequence set to false,
and no additional hidden layers.

11 GRU_0HL_T GRU neural network, with one GRU layer, return sequence set to true,
and no additional hidden dense layers.

12 GRU_1HL_F GRU neural network, with one GRU layer, return sequence set to false,
and one additional hidden dense layer.

13 GRU_1HL_T GRU neural network, with one GRU layer, return sequence set to true,
and one additional hidden dense layer.

14 XGBoost XGBoost XGBoost model. Hyperparameters analysed are described earlier in this paper.

Appendix 4 – Useful links

• IBM’s introductory series on neural networks: https://www.ibm.com/topics/neural-networks
• IFoA’s Certificate in Data Science programme: https://www.actuaries.org.uk/news-and-insights/news/data-scie
nce-credential

• IFoA’s Data Science Lifelong Learning page: https://actuaries.org.uk/learn/lifelong-learning/data-science/
• Google Tensorflow’s tutorial on time series: https://www.tensorflow.org/tutorials/structured_data/time_series

Cite this article: Dey D. (2024). Time series analysis of GSS bonds Part 2 – further univariate analysis of S&P Green Bond
Index. British Actuarial Journal. https://doi.org/10.1017/S1357321724000217
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