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Sharp Localized Inequalities
for Fourier Multipliers

Adam Osȩkowski

Abstract. In this paper we study sharp localized Lq → Lp estimates for Fourier multipliers resulting
from modulation of the jumps of Lévy processes. The proofs of these estimates rest on probabilistic
methods and exploit related sharp bounds for differentially subordinated martingales, which are of
independent interest. The lower bounds for the constants involve the analysis of laminates, a family of
certain special probability measures on 2×2 matrices. As an application, we obtain new sharp bounds
for the real and imaginary parts of the Beurling–Ahlfors operator.

1 Introduction

This paper is devoted to sharp versions of localized Lq → Lp estimates for a large
class of Fourier multipliers. Recall that for any bounded, complex-valued function m
on Rd, there is a unique bounded linear operator Tm on L2(Rd), called the Fourier

multiplier with the symbol m, which is given by T̂m f = m f̂ . Obviously, the norm
of Tm on L2(Rd) is equal to ‖m‖L∞(Rd). There is an interesting question about the
class of those m for which the corresponding Fourier multipliers extend to bounded
linear operators on Lp(Rd), 1 < p < ∞. While the full characterization of such a
class seems to be hopeless, much work has been done in the literature to construct
examples and study their properties (cf. [19], [22], [23], [25]). It will be convenient
for us to consider the following class of symbols, studied by Bañuelos and Bogdan [4]
and Bañuelos, Bielaszewski and Bogdan [5]. Let ν be a Lévy measure on Rd, i.e., a
nonnegative Borel measure on Rd that does not charge the origin and satisfies∫

Rd

min{|x|2, 1}ν(dx) <∞.

Next, assume that µ is a finite Borel measure on the unit sphere S of Rd and fix two
Borel functions φ on Rd and ψ on S that take values in the unit ball of C. We define
the associated multiplier m = mφ,ψ,µ,ν on Rd by the formula

(1.1) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ (dθ) +
∫

Rd [1− cos〈ξ, x〉]φ(x)ν (dx)
1
2

∫
S〈ξ, θ〉2µ (dθ) +

∫
Rd [1− cos〈ξ, x〉]ν (dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈 · , · 〉 denotes the usual
scalar product in Rd. The Fourier multipliers corresponding to these symbols can be
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given a martingale representation by the use of transformations of jumps of Lévy pro-
cesses; see [4] and [5] for details. Combining this representation with Burkholder’s
moment inequality (see Theorem 3.1 below), Bañuelos, Bielaszewski and Bogdan
proved the following Lp estimate.

Theorem 1.1 Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.1). Then for any
f ∈ Lp(Rd) we have

(1.2) ‖Tm f ‖Lp(Rd) ≤ (p∗ − 1)‖ f ‖Lp(Rd),

where p∗ = max{p, p/(p − 1)}.

It turns out that the constant p∗ − 1 appearing above is the best possible, which
again can be shown with the use of probabilistic tools. See Geiss, Montgomery-Smith
and Saksman [17] and the paper [6] by Bañuelos and the author.

The martingale approach can be used to establish other tight estimates for Fourier
multipliers with symbols from the class (1.1) (see, e.g., [30] and [31] for logarith-
mic and weak-type inequalities). In the present paper we continue this line of re-
search and provide a significant improvement of (1.2). Namely, we study the action
of Fourier multipliers, with symbols of the form (1.1), as operators from Lq to Lp,
for any p, q ∈ [1,∞), p < q. It can be easily shown that for essentially all m we
have ‖Tm‖Lq(Rd)→Lp(Rd) = ∞. However, after an appropriate localization, we obtain
nontrivial results. We will study bounds of the form

‖Tm f ‖Lp(A) ≤ C‖ f ‖Lq(A) |A|1/p−1/q,

where A ⊂ Rd is a fixed Borel subset and f is assumed to vanish outside A. Our
primary goal is to determine the optimal constants C in the above inequality. Let us
introduce some auxiliary notation. For any 1 ≤ p < q ≤ 2, let h : [0,∞) → [0,∞)
be a special function described in Theorem 2.1 and put

Lp,q =
1

2
(2− p)h(0)p.

Furthermore, for 1 ≤ p < q <∞, define

C p,q =


L(q−p)/pq

p,q

( q−p
p

) 1/q( q
q−p

) 1/p
if 1 ≤ p < q < 2,

Cq′,p′ if 2 < p < q <∞,
1 otherwise.

Here p′ = p/(p − 1), q′ = q/(q − 1) denote the harmonic conjugates to p and q
respectively. Our main result can be stated as follows.

Theorem 1.2 Suppose that Tm is a Fourier multiplier with a symbol m belonging to
the class (1.1). Let 1 ≤ p < q < ∞ and let A be a Borel subset of Rd. Then for any
f ∈ Lq(Rd) which vanishes on the compliment of A we have

(1.3) ‖Tm f ‖Lp(A) ≤ C p,q‖ f ‖Lq(Rd) |A|1/p−1/q.

The constant C p,q is the best possible.
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Here by sharpness we mean that for any 1 ≤ p < q <∞ and any ε > 0 there is a
Borel subset A of Rd, a function f ∈ Lq(Rd) and a symbol m from the class (1.1) for
which ‖Tm f ‖Lp(A) > (C p,q − ε)‖ f ‖Lq(Rd) |A|1/p−1/q.

We refer the reader to the papers [4] and [5] for various explicit examples of mul-
tipliers that have symbols of the form (1.1). We will only mention here two very
important examples, strictly related to the so-called Beurling–Ahlfors transform BA

on C. This operator is a Fourier multiplier with the symbol m(ξ) = ξ/ξ, ξ ∈ C;
alternatively, it can be defined by the singular integral

BA f (z) = − 1

π
p.v.

∫
C

f (w)

(z − w)2
dw.

The Beurling–Ahlfors transform is of fundamental importance in the study of partial
differential equations and quasiconformal mappings, since it changes the complex
derivative ∂ to ∂. Precisely, we have BA(∂ f ) = ∂ f for any f from the Sobolev space
W 1,2(C,C) of complex valued locally integrable functions on C whose distributional
first derivatives are in L2 on the plane. For more on this interplay, consult, e.g., the
monograph [2] by Astala, Iwaniec and Martin.

The Beurling–Ahlfors operator can be decomposed as BA = R2
2 − R2

1 − 2iR1R2,
where R1, R2 are planar Riesz transforms (i.e., Fourier multipliers with the symbols
−iξ1/|ξ| and−iξ2/|ξ|, respectively). This follows at once from the identity

ξ

ξ
=
ξ2

1 − ξ2
2

ξ2
1 + ξ2

2

+ i
2ξ1ξ2

ξ2
1 + ξ2

2

.

Note that both R2
2 − R2

1 and 2R1R2 can be represented as the Fourier multipliers
with symbols of the form (1.1). For example, the choice d = 2, µ = δ(1,0) + δ(0,1),
ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives rise to Tm = <(BA); likewise, d = 2, µ =
δ(1/
√

2,1/
√

2) + δ(1/
√

2,−1/
√

2), ψ(1/
√

2, 1/
√

2) = 1 = ψ(1/
√

2,−1/
√

2) and ν = 0
leads to Tm = =(BA). Thus, Theorem 1.2 provides new information on the local
behavior of the Beurling–Ahlfors operator, as well as its real and imaginary parts.
Actually, we will prove that the optimality of the constants C p,q in (1.3) is achieved
on these particular operators. In fact, we will manage to establish a more general,
higher dimensional result, which is of interest in the theory of elliptic differential
operators and potential theory.

Theorem 1.3 Suppose that f is of class C2, supported on a Borel set A ⊂ Rd. Then
for 1 ≤ p < q <∞ and any distinct j, k ∈ {1, 2, . . . , d} we have

(1.4)

∥∥∥∥∥∂2 f

∂x2
j

− ∂2 f

∂x2
k

∥∥∥∥∥
Lp(A)

≤ C p,q‖∆ f ‖Lq(Rd) |A|1/p−1/q

and

(1.5)

∥∥∥∥2
∂2 f

∂x j∂xk

∥∥∥∥
Lp(A)

≤ C p,q‖∆ f ‖Lq(Rd) |A|1/p−1/q.

Both estimates are sharp for each d, j and k.
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One easily sees that (1.4) and (1.5) follow from (1.3). Indeed, a similar choice of
µ, ν and ψ as above shows that for any d and any distinct j, k ∈ {1, 2, . . . , d} the
multipliers R2

j − R2
k, 2R jRk have the symbols from the class (1.1). Thus, it suffices

to use (1.3) and apply R2
j − R2

k and 2R jRk to ∆ f (a straightforward comparison of

Fourier transforms gives the identity R jRk∆ f = − ∂2 f
∂x j∂xk

for all j, k). The difficult

part is to establish the sharpness of the two estimates. To handle this, we explore a
very interesting connection between the theory of martingales and that of laminates,
discovered recently by Boros, Shékelyhidi Jr., and Volberg in [8]. This will allow us
to show that the constant C p,q in (1.4) and (1.5) is optimal for d = 2. Then we will
apply appropriate transference-type arguments to obtain the sharpness for all d.

A few words about the organization of the paper. The next section contains some
preliminary material; we analyze there a certain class of differential equations, the so-
lutions to which will be important in our further considerations. Section 3 is devoted
to the proof of a certain martingale inequality, which can be regarded as a probabilis-
tic counterpart of (1.3). In Section 4 we exploit the martingale representation of
Fourier multipliers to deduce the inequality (1.3) from its stochastic version proved
in Section 3. The final section concerns the sharpness of (1.3). We will prove more:
the constant C p,q in (1.4) and (1.5) cannot be improved.

2 A Differential Equation

Throughout this section, we assume that 1 ≤ p < q ≤ 2 are given and fixed. Con-
sider the differential equation

(2.1) p(2− p)h′(x) + p = q(q− 1)xq−2h(x)2−p.

This equation has already appeared in [27], during the study of related class of mar-
tingale inequalities. Unfortunately, the results of [27] are too weak for our purposes
and do not lead to any form of (1.3). However, as we will see, a deeper investiga-
tion into the structure of the solutions to (2.1) gives us the possibility to establish
stronger inequalities for martingales. These, in turn, will lead to the estimates for
Fourier multipliers announced in Section 1.

We start with the following fact, established in [27] (see Theorem 2.1 and its proof
there). See also Figure 1 below for the exemplary case p = 3/2, q = 7/4.

Theorem 2.1 There exists a unique nondecreasing, continuous, concave solution
h : [0,∞) → [0,∞) of (2.1) satisfying h(0) > 0 and h′(t) → 0, h(t) → ∞, as
t →∞.

In all the considerations below, the special solution described in the above the-
orem will be denoted by h. We will require the following auxiliary fact about this
object. Let F : [0,∞)→ R be given by

F(u) =
(

h(u) + u
) q − uq − quq−1h(u)− (p − 1)h(u)p − 2− p

2
h(0)p.

Lemma 2.2 We have F(u) ≥ 0 for all u ≥ 0.
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Figure 1: The structure of the solutions to (2.1) for p = 3/2 and q = 7/4. When h(0) is small,
the maximal domain of the solution is bounded. On the other hand, if h(0) is large, then the
solution is convex for sufficiently large arguments. The bold curve corresponds to the graph
of the solution described in Theorem 2.1.

Proof First we show the estimate for large u. Since q ≤ 2, an application of the
mean value property and then (2.1) gives

F(u) ≥ q(q− 1)

2

(
h(u) + u

) q−2
h(u)2 − (p − 1)h(u)p − 2− p

2
h(0)p

=
1

2
h(u)p

[( h(u) + u

u

) q−2
· q(q− 1)uq−2h(u)2−p − 2(p − 1)

]
− 2− p

2
h(0)p

≥ 1

2
h(u)p

[( h(u) + u

u

) q−2
p − 2(p − 1)

]
− 2− p

2
h(0)p →∞

as u→∞. Next, suppose that F attains a local minimum at some point u0 ∈ (0,∞).
We compute that

(2.2) F′(u) = (h′(u) + 1)
[

q
((

h(u) + u
) q−1 − uq−1

)
− ph(u)p−1

]
,

so
q
((

h(u0) + u0

) q−1 − uq−1
0

)
− ph(u0)p−1 = 0

and in consequence,

F(u0) = (−q + 1)uq−1
0 h(u0) +

( p

q
− p + 1

)
h(u0)p +

p

q
h(u0)p−1u0 −

2− p

2
h(0)p.

We will prove that F(u0) ≥ 0; multiplying this estimate by qh(u0)1−p, we get the
equivalent form

(p − pq + q)h(u0) + pu0 − q(q− 1)uq−1
0 h(u0)2−p − 2− p

2
qh(0)ph(u0)1−p ≥ 0,

or, combining this with (2.1),

(2.3) (p − pq + q)h(u0)− p(2− p)u0h′(u0)− 2− p

2
qh(0)ph(u0)1−p ≥ 0.
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To show this bound, recall that h is a concave function; thus, differentiating both
sides of (2.1), we obtain

(2.4) h(u0) ≥ 2− p

2− q
u0h′(u0).

Furthermore, again by the concavity of h,

(2.5) h(u0) ≥ u0h′(u0) + h(0).

Mutiplying (2.4) by (2 − q)(p − 1) and (2.5) by 2 − p, and adding the obtained
bounds, we get

(p − pq + q)h(u0)− p(2− p)u0h′(u0)− (2− p)h(0) ≥ 0.

This implies (2.3), since h(u0) ≥ h(0) and q ≤ 2.
Therefore, to complete the proof, we need to show that the inequality F(0) < 0

cannot hold. Suppose on contrary, that F(0) is negative; then, by the above reasoning,
F′ does not vanish inside (0,∞), so F′(0+) ≥ 0. However, in view of (2.2), this means
qh(0)q−1 ≥ ph(0)p−1 or h(0)q−p ≥ p/q; it remains to observe that

F(0) = h(0)q − p

2
h(0)p = h(0)p

[
h(0)q−p − p

2

]
≥ 0,

a contradiction.

We conclude this section by introducing another function to be used later. Let
H : [h(0),∞)→ [0,∞) be the inverse to t 7→ t + h(t). Then, of course,

h
(

H(t)
)

+ H(t) = t and h′
(

H(t)
)

+ 1 =
1

H′(t)
.

3 A Martingale Inequality

The key role in the proof of (1.3) is played by a certain related inequality for differen-
tially subordinated martingales. Let us introduce the necessary background and no-
tation. Assume that (Ω,F,P) is a complete probability space, equipped with (Ft )t≥0,
a nondecreasing family of sub-σ-fields of F, such that F0 contains all the events of
probability 0. Let X, Y be two adapted martingales taking values in a certain sep-
arable Hilbert space (H, | · |), which may and will be taken to be equal to `2. As
usual, we assume that both processes have right-continuous trajectories which have
limits from the left. The symbol [X,Y ] will stand for the quadratic covariance pro-
cess (square bracket) of X and Y . See, e.g., Dellacherie and Meyer [16] for details in
the case when the processes are real-valued, and extend the definition to the vector
setting by [X,Y ] =

∑∞
k=0[Xk,Y k], where Xk, Y k are the k-th coordinates of X, Y .

Following Bañuelos and Wang [7] and Wang [34], we say that Y is differentially sub-
ordinate to X, if the process ([X,X]t − [Y,Y ]t )t≥0 is nonnegative and nondecreasing
as a function of t .

A celebrated theorem of Burkholder [9] compares the Lp-norms of differentially
subordinated martingales. We would like to mention that the result was originally
formulated in the discrete-time case, and the extension below is due to Wang [34]
(see also [9]). We use the notation ‖X‖p = supt≥0 ‖Xt‖p for 1 ≤ p ≤ ∞.
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Theorem 3.1 Assume that X, Y areH-valued martingales such that Y is differentially
subordinate to X. Then for 1 < p <∞ we have

‖Y‖p ≤ (p∗ − 1)‖X‖p,

where, as above, p∗ = max{p, p/(p − 1)}. The constant p∗ − 1 is the best possible.

This result has proved to be very useful in many applications. The literature is too
vast to review it here; we refer the interested reader to the papers [3]–[11], [17] and
the references therein. Furthermore, the above theorem has been extended in many
directions; consult, for instance, [10], [12], [13], [14], [18], [29] and [33].

We will require a certain version of the above estimate, in which the order of the
moments of X and Y are different. The main result of this section can be stated as
follows.

Theorem 3.2 Assume that X, Y areH-valued martingales such that Y is differentially
subordinate to X. If 1 ≤ p < q < 2, then for any t ≥ 0 we have

(3.1) E(|Yt |p − Lp,q)+ ≤ E|Xt |q.
The constant Lp,q is the best possible.

Here by the optimality of Lp,q we mean that for any L < Lp,q, there exists a pair
X, Y of martingales such that Y is differentially subordinate to X and E(|Yt |p−L)+ >
E|Xt |q.

The proof of (3.1) is based on the so-called Burkholder’s method. Namely, the
validity of this estimate will be shown by constructing certain special functions and
exploiting their properties (see [29] for the detailed description of the technique and
numerous examples). To construct these special objects, we need an auxiliary func-
tion W1 : H ×H→ R, given by the formula

W1(x, y) =

{
|y|2 − |x|2 if |x| + |y| ≤ 1,

1− 2|x| if |x| + |y| > 1.

The crucial property of this function is the following (for the proof, see Wang [34]
or [28, Lemma 2.2]).

Theorem 3.3 Suppose that X, Y are H-valued martingales such that Y is differen-
tially subordinate to X. Then for any t ≥ 0 we have

EW1(Xt ,Yt ) ≤ 0.

We will also need the following evident property of W1: for a fixed x ∈ H,

(3.2) W1(x, y1) ≤W (x, y2) provided |y1| ≤ |y2|.
We are ready to introduce the special functions corresponding to the martingale in-
equality (3.1). For 1 ≤ p < q < 2, let h be the solution to (2.1) described in
Theorem 2.1. Put

wp,q(t) =
p(2− p)

2
h
(

H(t)
) p−3

h′
(

H(t)
)

H′(t)t2
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and define U p,q by

(3.3) U p,q(x, y) =

∫ ∞
h(0)

wp,q(t)W1(x/t, y/t) dt +
(2− p)h(0)p

2
.

If X, Y are martingales such that Y is differentially subordinate to X, then, obviously,
for any t > 0 the martingale Y/t is differentially subordinate to X/t . Therefore, by
Theorem 3.3 and Fubini’s theorem, we obtain

(3.4) EU p,q(Xt ,Yt ) ≤ U p,q(0, 0) for t ≥ 0.

The function U p,q admits the following explicit formulas (see Lemma 4.1 in [27]).

Lemma 3.4 We have

U p,q(x, y) = p
|y|2 − |x|2

2h(0)2−p
+

(2− p)h(0)p

2

if |x| + |y| ≤ h(0), and

U p,q(x, y) = p|y|h
(

H(|x| + |y|)
) p−1 − (p − 1)h

(
H(|x| + |y|)

) p

−H(|x| + |y|)q − qH(|x| + |y|)q−1
(
|x| −H(|x| + |y|)

)
,

if |x| + |y| > h(0).

Now we turn to the following majorization property. Let V p,q : H ×H → R be
given by V p,q(x, y) = max{|y|p, Lp,q} − |x|q.

Lemma 3.5 For any (x, y) ∈ H ×H we have U p,q(x, y) ≥ V p,q(x, y).

Proof Clearly, it suffices to prove the lemma for H = R, since the dependence
of U p,q and V p,q on x, y is only through the norms |x|, |y|. Furthermore, we will be
done if we consider the case x, y ≥ 0. For the convenience of the reader, the proof is
split into a few parts.

Step 1: y = 0. If x ≥ h(0) and we substitute u = H(x), the majorization is equiva-
lent to the assertion of Lemma 2.2. If x ∈

(
0, h(0)

)
, we derive that

∂

∂x
[U p,q(x, 0)−V p,q(x, 0)] = x

(
−ph(0)p−2 + qxq−2

)
.

Therefore, the derivative is positive for small x and changes sign at most once in
the interval

(
0, h(0)

)
. Since U p,q(0, 0) = Lp,q = V p,q(0, 0) and U p,q

(
h(0), 0

)
≥

V p,q

(
h(0), 0

)
, the majorization follows.

Step 2: y ∈ (0, Lp,q). For a fixed x, the function y 7→ V p,q(x, y) is constant on
[0, Lp,q], while y 7→ U p,q(x, y) is nondecreasing on this interval (which follows im-
mediately from (3.2) and (3.3)). Therefore, U p,q(x, y) − V p,q(x, y) ≥ U p,q(x, 0) −
V p,q(x, 0) ≥ 0, by virtue of Step 1.
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Step 3: y ≥ Lp,q, x + y < h(0). We easily compute that

∂

∂y
[U p,q(x, y)−V p,q(x, y)] = py

(
h(0)p−2 − y p−2

)
< 0,

so U p,q(x, y) − V p,q(x, y) ≥ U p,q

(
x, h(0) − x

)
− V p,q

(
x, h(0) − x

)
. Therefore, it

suffices to deal with the case x + y ≥ h(0), which will be done in Step 4 below.

Step 4: y ≥ Lp,q, x + y ≥ h(0). Fix r ≥ h(0) and suppose that |x| + |y| = r.
Denoting s = |y|, we see that the inequality U p,q(x, y) ≥ V p,q(x, y) is equivalent to
G(s) ≥ 0 for s ∈ [Lp,q, r], where

G(s) = psh
(

H(r)
) p−1 − (p − 1)h

(
H(r)

) p

−H(r)q − qH(r)q−1h
(

H(r)
)
− sp + (r − s)q, s ≥ 0.

We have G
(

h
(

H(r)
))

= G′
(

h
(

H(r)
))

= 0. Furthermore, the second derivative
of G, equal to G′′(s) = −p(p− 1)sp−2 + q(q− 1)(r− s)q−2, is negative on (0, s0) and
positive on (s0, r) for some s0 ∈ (0, r). Therefore, to show that G ≥ 0 on [Lp,q, r], it
suffices to prove that G(Lp,q) ≥ 0. But this follows immediately from continuity and
Step 2.

We are ready to establish the main result of this section.

Proof of (3.1) Observe that we may assume that ‖X‖q < ∞, since otherwise there
is nothing to prove. The martingale inequality is equivalent to

E max{|Yt |p, Lp,q} ≤ E|Xt |q + Lp,q, t ≥ 0,

i.e., to EV p,q(Xt ,Yt ) ≤ U p,q(0, 0). But this follows at once from (3.4) and the asser-
tion of Lemma 3.5. The sharpness of (3.1) will be established later, while providing
lower bounds for Fourier multipliers; see the beginning of Section 5.

4 Norm Inequalities for Fourier Multipliers

We start by recalling the martingale representation of the multipliers from the
class (1.1). This is described in full detail in [4] and [5], so we shall be brief. Let
m be the multiplier as in (1.1), with the corresponding parameters φ, ψ, µ and ν.
Assume in addition that ν(Rd) is finite and nonzero. Then for any s < 0 there is
a Lévy process (Xs,t )t∈[s,0] with Xs,s ≡ 0, for which Lemmas 4.1 and 4.2 below hold
true. To state these, we need some notation. For a given f ∈ L∞(Rd), define the
corresponding parabolic extension U f to (−∞, 0]× Rd by

U f (s, x) = E f (x + Xs,0).
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Next, fix x ∈ Rd, s < 0 and let f , φ ∈ L∞(Rd). We introduce the processes F =

(Fx,s, f
t )s≤t≤0 and G = (Gx,s, f ,φ

t )s≤t≤0 by

Ft = U f (t, x + Xs,t ),

Gt =
∑

s<u≤t

[(Fu − Fu−) · φ(Xs,u − Xs,u−)]

−
∫ t

s

∫
Rd

[U f (v, x + Xs,v− + z)− U f (v, x + Xs,v−)]φ(z)ν (dz) dv.

(4.1)

Finally, fix s < 0, a function φ on Rd taking values in the unit ball of C and define the
operator T = Ts by the bilinear form

(4.2)

∫
Rd

T f (x)g(x) dx =

∫
Rd

E[Gx,s, f ,φ
0 g(x + Xs,0)] dx,

where f , g ∈ C∞0 (Rd). By the results from [4] and [5], the family {(Xs,t )s≤t≤0}s<0

can be chosen so that the following statements are valid.

Lemma 4.1 For any fixed x, s, f , φ as above, the processes Fx,s, f , Gx,s, f ,φ are martin-
gales with respect to (Ft )s≤t≤0 =

(
σ(Xs,t : s ≤ t)

)
s≤t≤0

. Furthermore, if ‖φ‖∞ ≤ 1,

then Gx,s, f ,φ is differentially subordinate to Fx,s, f .

Lemma 4.2 Let 1 < p <∞ and d ≥ 2. The operator Ts is well defined and extends
to a bounded operator on Lp(Rd), which can be expressed as a Fourier multiplier with
the symbol

M(ξ) = Ms(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν (dz)

)] ∫
Rd (1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd (1− cos〈ξ, z〉)ν (dz)

if
∫

Rd (1 − cos〈ξ, z〉)ν (dz) 6= 0, and M(ξ) = 0 otherwise. Furthermore, the iden-
tity (4.2) holds if f ∈ C∞0 (Rd) and g ∈ Lq(Rd) for some 1 < q <∞.

Equipped with the necessary background, we are ready to establish the main esti-
mate for Fourier multipliers.

Proof of (1.3) Of course, we may assume that |A| <∞. It is convenient to split the
reasoning into a few parts.

Step 1. It suffices to deal with the estimate when both p, q lie in [1, 2] or both lie
in [2,∞). Indeed, having this done, if we take p, q such that 2 lies between p and q,
then

|A|−1/p ‖Tm f ‖Lp(A) ≤ |A|−1/2 ‖Tm f ‖L2(A)

≤ C2,q‖ f ‖Lq(Rd) |A|−1/q = C p,q‖ f ‖Lq(Rd) |A|−1/q,

as desired.
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Step 2. Suppose that 1 ≤ p < q ≤ 2. First we show the estimate for the multipliers
of the form

(4.3) Mφ,ν(ξ) =

∫
Rd (1− cos〈ξ, z〉)φ(z)ν (dz)∫

Rd (1− cos〈ξ, z〉)ν (dz)
.

In addition, we assume that 0 < ν(Rd) <∞, so that the above approach using Lévy
processes is applicable. Fix s < 0, a Borel subset A of Rd satisfying |A| < ∞ and a
function f ∈ C∞0 (Rd). We will prove that

(4.4) ‖Ts f ‖Lp(A) ≤ [‖ f ‖q
Lq(Rd) + Lp,q|A|]1/p.

To this end, set g = χA|Ts f |p−2Ts f (if Ts f = 0, put g = 0). This function belongs
to L2; indeed, if p = 1, then there is nothing to prove, and for p > 1 this follows from
Hölder inequality and (1.2) (the function f belongs to Lr(Rd) for all 1 < r < ∞).
Now, assume that p = 1. For a fixed x ∈ Rd, we have, by (3.1),

E|Gx,s, f ,φ
0 | · |g(x + Xs,0)| = Eχ{x+Xs,0∈A}|G

x,s, f ,φ
0 |

≤ Eχ{x+Xs,0∈A}[(|Gx,s, f ,φ
0 | − Lp,q)+ + Lp,q]

≤ E(|Gx,s, f ,φ
0 | − Lp,q)+ + Lp,qP(x + Xs,0 ∈ A)

≤ E|Fx,s, f
0 |q + Lp,qP(x + Xs,0 ∈ A).

(4.5)

Thus, by Fubini’s theorem,∫
A
|Ts f (x)| dx =

∫
Rd

Ts f (x)g(x) dx

=

∫
Rd

E[Gx,s, f ,φ
0 g(x + Xs,0)] dx

≤
∫

Rd

[E|Fx,s, f
0 |q + Lp,qP(x + Xs,0 ∈ A)] dx

= ‖ f ‖q
Lq(Rd) + Lp,q|A|,

which is (4.4). On the other hand, if p > 1, then using Hölder’s inequality and
Fubini’s theorem, we obtain

∫
A
|Ts f (x)|p dx =

∫
Rd

Ts f (x)g(x) dx

=

∫
Rd

E[Gx,s, f ,φ
0 g(x + Xs,0)] dx

≤
[∫

Rd

Eχ{x+Xs,0∈A}|G
x,s, f ,φ
0 |p dx

] 1/p[∫
Rd

E|g(x + Xs,0)|p
′

dx

] 1/p′

=

[∫
Rd

Eχ{x+Xs,0∈A}|G
x,s, f ,φ
0 |p dx

] 1/p

‖g‖Lp′ (Rd)

=

[∫
Rd

Eχ{x+Xs,0∈A}|G
x,s, f ,φ
0 |p dx

] 1/p

‖Ts f ‖p/p′

Lp(Rd).

(4.6)
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Here, as usual, p′ = p/(p − 1) denotes the harmonic conjugate to p. A similar
argument to that in (4.5) gives that for any x,

Eχ{x+Xs,0∈A}|G
x,s, f ,φ
0 |p ≤ E|Fx,s, f

0 |q + Lp,qP(x + Xs,0 ∈ A),

and therefore the expression in the last square brackets in (4.6) is bounded from

above by
∫

Rd | f (x)|q dx + Lp,q|A|. It suffices to divide throughout by ‖Ts f ‖p/p′

Lp(Rd), and
(4.4) follows.

Next, let us use a homogenization argument: apply (4.4) to λ f , divide throughout
by λ and optimize over this parameter. We get

‖Ts f ‖Lp(A) ≤ C p,q‖ f ‖Lq(Rd) |A|1/p−1/q.

Now if we let s → −∞, then Ms converges pointwise to the multiplier Mφ,ν given
by (4.3). By Plancherel’s theorem, Ts f → TMφ,ν

f in L2 and hence there is a sequence
(sn)∞n=1 converging to −∞ such that limn→∞ Tsn f → TMφ,ν

f almost everywhere.
Thus Fatou’s lemma yields the desired bound for the multiplier TMφ,ν

.

Step 3. Let us still keep p, q between 1 and 2. Now we deduce the result for the
general multipliers as in (1.1) (in particular, involving the measure µ) and drop the
assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in polar
coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ),

where δε denotes Dirac measure on {ε}. Next, consider a multiplier mε as in (4.3),
in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is given by
1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). If we let ε→ 0, we see that∫

Rd

[1− cos〈ξ, x〉]ψ(x/|x|)νε (dx) =

∫
S
φ(θ)

1− cos〈ξ, εθ〉
ε2

µ (dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ (dθ).

This yields the claim by the similar argument as above, using of Plancherel’s theorem
and the passage to the subsequence which converges almost everywhere.

Step 4. Now, assume that 2 ≤ p < q <∞. We will use duality and the fact that for
a symbol m as in (1.1), its conjugate m̄ also belongs to this class. For any f as in (1.3),
put g = |Tm f |p−2Tm f and write∫

A
|Tm f (x)|p dx =

∫
Rd

Tm f (x)g(x)χA(x) dx

=

∫
Rd

m(ξ) f̂ (ξ)ĝχA(ξ) dξ

=

∫
Rd

f (x)Tm̄(gχA)(x) dx

=

∫
Rd

f (x)χA(x)Tm̄(gχA)(x) dx
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≤ ‖ f ‖Lq(Rd) ‖Tm̄(gχA)‖Lq′ (A)

≤ Cq′,p′‖ f ‖Lq(Rd) ‖gχA‖Lp′ (A) |A|
1/q′−1/p′

= C p,q‖ f ‖Lq(Rd)

(∫
A
|Tm f (x)|p dx

) 1/p′

|A|1/p−1/q.

It remains to divide throughout by
(∫

A |Tm f (x)|p dx
) 1/p′

to get the claim.

Remark 4.3 We have shown above that if f is supported on A, then

‖Tm f ‖Lp(A) ≤ C p,q‖ f ‖Lq(Rd) |A|1/p−1/q.

A careful inspection of the above proof (Steps 1–3) shows that if p ≤ 2, then this
estimate holds for all f ∈ Lq(Rd), that is, the condition f ≡ 0 on Rd \ A can be
removed. Unfortunately, this is no longer true for p > 2, and we do not know the
optimal values of C p,q in this case.

In the remainder of this section we discuss the possibility of extending the asser-
tion of Theorem 1.2 to the vector-valued multipliers. For any bounded function m =
(m1,m2, . . . ,mn) : Rd → Cn, we may define the associated Fourier multiplier acting
on complex valued functions on Rd by the formula Tm f = (Tm1 f ,Tm2 f , . . . ,Tmn f ).
As we shall see, the reasoning presented above can be easily modified to yield the
following statement.

Theorem 4.4 Let ν, µ be two measures on Rd and S, respectively, satisfying the as-
sumptions of Theorem 1.2. Assume further that φ, ψ are two Borel functions on Rd

taking values in the unit ball of Cn and let m : Rd → Cn be the associated symbol given
by (1.1). Then for any Borel subset A of Rd and any f ∈ Lp(Rd) that vanishes outside A
we have

‖Tm f ‖Lp(A) ≤ C p,q‖ f ‖Lq(Rd) |A|1/p−1/q.

Proof Suppose first that ν is finite. For a given C∞ function f : Rd → C, we in-
troduce martingales F and G = (G1,G2, . . . ,Gn) by the formula (4.1). It is easy to
check that G is differentially subordinate to F, arguing as in [4] or [5]. Applying
the representation (4.2) to each coordinate of G separately, we obtain the associ-
ated multiplier T = (T1,T2, . . . ,Tn), where T j has symbol Mφ j ,ν j defined in (4.3).
Now we repeat the reasoning from (4.5) and (4.6), with a vector valued function
g = χA|Ts f |p−2Ts f : Rd → Cn. An application of (3.1) gives (4.4) and hence, by
homogenization, the result follows.

5 Sharpness

In this section we show that the constant C p,q in (1.3) is the best possible. This, of
course, will immediately imply that the constant Lp,q is optimal in (3.1) (otherwise,
its improvement would lead to a smaller constant in (1.3)). As explained in the in-
troductory section, we will be done if we establish the sharpness of (1.4) and (1.5).
One easily checks that the multipliers corresponding to the operators R2

j − R2
k and
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2R`Rm are isometric; i.e., if T1, T2 are two such multipliers and m1,m2 denote the
corresponding symbols, then there is an isometry I : Rd → Rd such that m1 ◦ I = m2.
Consequently, in view of Parseval’s identity, the optimal constants in (1.4) and (1.5)
are the same for all j, k. Hence it is enough to focus on the sharpness of the bound

(5.1) ‖(R2
1 − R2

2) f ‖Lp(A) ≤ C‖ f ‖Lq(A) |A|1/p−1/q.

Our approach will be based on the properties of certain special probability measures,
the so-called laminates. For the sake of convenience and clarity, we have decided to
split this section into a few separate parts.

5.1 Necessary Definitions

Let Rm×n denote the space of all real matrices of dimension m × n and let Rn×n
sym be

the class of all real symmetric n× n matrices.

Definition 5.1 A function f : Rm×n → R is said to be rank-one convex if t 7→
f (A + tB) is convex for all A,B ∈ Rm×n with rank B = 1.

Let P = P(Rm×n) stand for the class of all compactly supported probability mea-
sures on Rm×n. For ν ∈ P, we denote by ν =

∫
Rm×n Xdν(X) the center of mass or

barycenter of ν.

Definition 5.2 We say that a measure ν ∈ P is a laminate (and denote it by ν ∈ L),
if

f (ν) ≤
∫

Rm×n

f dν

for all rank-one convex functions f . The set of laminates with barycenter 0 is denoted
by L0(Rm×n).

Laminates arise naturally in several applications of convex integration, where they
can be used to produce interesting counterexamples, see, e.g., [1], [15], [21], [26]
and [32]. We will be particularly interested in the case of 2 × 2 symmetric matrices.
The important fact is that laminates can be regarded as probability measures that
record the distribution of the gradients of smooth maps, see Corollary 5.6 below and
compare it with the discussion in 5.6. Let us briefly explain this; detailed proofs of
the statements below can be found for example in [20], [26] and [32].

Definition 5.3 Let U ⊂ R2×2 be a given set. Then PL(U ) denotes the class of
prelaminates generated in U , i.e., the smallest class of probability measures on U
which

(i) contain all measures of the form λδA + (1− λ)δB with λ ∈ [0, 1] and satisfying
rank(A− B) = 1;

(ii) are closed under splitting in the following sense: if λδA + (1 − λ)ν̃ belongs to
PL(U ) for some ν̃ ∈ P(R2×2) and µ also belongs to PL(U ) with µ = A, then
also λµ + (1− λ)ν̃ belongs to PL(U ).
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It follows immediately from the definition that the class PL(U ) contains atomic
measures only. Also, by a successive application of Jensen’s inequality, we have the
inclusion PL ⊂ L. Let us state two well-known facts (see [1], [20], [26], [32]).

Lemma 5.4 Let ν =
∑N

i=1 λiδAi ∈ PL(R2×2
sym ) with ν = 0. Moreover, let 0 < r <

1
2 min |Ai−A j | and δ > 0. For any bounded domain Ω ⊂ R2 there exists u ∈W 2,∞

0 (Ω)
such that ‖u‖C1 < δ and for all i = 1, . . . ,N∣∣{x ∈ Ω : |D2u(x)− Ai | < r}

∣∣ = λi |Ω|.

Lemma 5.5 Let K ⊂ R2×2
sym be a compact convex set and ν ∈ L(R2×2

sym ) with

supp ν ⊂ K. For any relatively open set U ⊂ R2×2
sym with K ⊂ U there exists a sequence

ν j ∈ PL(U ) of prelaminates with ν j = ν and ν j
∗
⇀ ν.

Combining these two lemmas and using a simple mollification, we obtain the fol-
lowing statement, proved by Boros, Shékelyhidi Jr., and Volberg [8]. It links laminates
supported on symmetric matrices with second derivatives of functions, and will play
a crucial role in our argumentation below. Throughout, B will denote the unit ball
in R2.

Corollary 5.6 Let ν ∈ L0(R2×2
sym ). Then there exists a sequence u j ∈ C∞0 (B) with

uniformly bounded second derivatives, such that

1

|B|

∫
B

φ
(

D2u j(x)
)

dx→
∫

R2×2
sym

φ dν

for all continuous φ : R2×2
sym → R.

5.2 Sharpness in the Case 2 ∈ [p, q] and d = 2

We are ready to exploit the above tools; first we study the easier case in which 2 lies
between p and q. In what follows, we will often use the notation

diag(x, y) =

[
x 0
0 y

]
∈ R2×2

sym .

Consider the probability measure ν = 1
2δdiag(0,1) + 1

2δdiag(0,−1) on R2×2
sym . Directly

from the definition, this measure is a prelaminate. Let us introduce the continuous
functions

φ1(A) = |A11 − A22|p and φ2(A) = |A11 + A22|q,

for which we easily check that (∫
R2×2

sym
φ1 dν

) 1/p

(∫
R2×2

sym
φ2 dν

) 1/q
= 1.
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Consequently, if we fix ε > 0, Corollary 5.6 guarantees the existence of u ∈ C∞0 (B)
such that

(1− ε)|B|1/p−1/q ≤

(∫
B
φ1

(
D2u(x)

)
dx
) 1/p

(∫
B
φ2

(
D2u(x)

)
dx
) 1/q

=

(∫
B
|∂2

11u(x)− ∂2
22u(x)|p dx

) 1/p(∫
B
|∂2

11u(x) + ∂2
22u(x)|q dx

) 1/q
.

Thus, if we put f = ∆u, the inequality becomes

‖(R2
1 − R2

2) f ‖Lp(B) ≥ (1− ε)‖ f ‖Lq(B) |B|1/p−1/q.

Since ε was arbitrary, the sharpness follows.

5.3 Biconvex Functions and a Special Laminate

We turn to the much more difficult case when 2 /∈ [p, q]. To study it, we need some
additional notation. A function ζ : R × R → R is said to be biconvex if for any fixed
z ∈ R, the functions x 7→ ζ(x, z) and y 7→ ζ(z, y) are convex. We start with the
following inequality for biconvex functions in the plane. Some heuristic arguments
that lead to this particular statement are presented in Section 5.6 below. Let 1 ≤ p <
q ≤ 2 be fixed and let h be the solution to (2.1), described in Theorem 2.1.

Lemma 5.7 Suppose that ζ : R × R → R is biconvex. Then for any T > h(0)/2,

ζ
( h(0)

2
,

h(0)
2

)
≤ exp

[
−
∫ 2T

h(0)

du
h(H(u))

]
ζ(T,T)(5.2)

+

∫ T

h(0)/2

ζ
(

s − h
(

H(2s)
)
, s
)

+ ζ
(

s, s − h
(

H(2s)
))

h
(

H(2s)
) exp

[
−
∫ 2s

h(0)

du

h
(

H(u)
) ] ds.

Proof By a standard regularization argument, it suffices to show the inequality for
ζ ∈ C1(R2). Fix s ≥ h(0)/2. Using biconvexity, we may write, for δ < h(0)

ζ(s, s) ≤ δ

h
(

H(2s)
)

+ δ
ζ
(

s− h
(

H(2s)
)
, s
)

+
h
(

H(2s)
)

h
(

H(2s)
)

+ δ
ζ(s + δ, s)

and

ζ(s + δ, s) ≤
h
(

H(2s + 2δ)
)
− δ

h
(

H(2s + 2δ)
) ζ(s + δ, s + δ)

+
δ

h
(

H(2s + 2δ)
) ζ( s + δ, s + δ − h

(
H(2s + 2δ)

))
.
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Plugging the latter estimate into the former, subtracting ζ(s+δ, s+δ) from both sides
and dividing throughout by δ gives

ζ(s, s)− ζ(s + δ, s + δ)

δ

≤ −
h
(

H(2s)
)

+ h
(

H(2s + 2δ)
)(

h
(

H(2s)
)

+ δ
)

h
(

H(2s + 2δ)
) ζ(s + δ, s + δ)

+
ζ
(

s− h
(

H(2s)
)
, s
)

h
(

H(2s)
)

+ δ
+
ζ
(

s + δ, s + δ − h
(

H(2s + 2δ)
))

h
(

H(2s + 2δ)
) .

Letting δ → 0 yields

− d

ds
ζ(s, s) ≤ − 2

h(H(2s))
ζ(s, s) +

ζ
(

s− h
(

H(2s)
)
, s
)

+ ζ
(

s, s− h
(

H(2s)
))

h
(

H(2s)
) .

Multiply both sides by exp[−
∫ 2s

h(0)
du

h(H(u)) ] and work a little bit to obtain

d

ds

{
exp

[
−
∫ 2s

h(0)

du

h
(

H(u)
) ]ζ(s, s)

}

≥ −
ζ
(

s− h
(

H(2s)
)
, s
)

+ ζ
(

s, s− h
(

H(2s)
))

h
(

H(2s)
) exp

[
−
∫ 2s

h(0)

du

h
(

H(u)
) ] .

It suffices to integrate this inequality over s from h(0)/2 to T to get the claim.

Let µ = µT ∈ P(R2×2) be defined by the right-hand side of (5.2); that is, for any
f ∈ C(R2×2), let∫

f dµT := exp

[
−
∫ 2T

h(0)

du

h
(

H(u)
) ] f

(
diag(T,T)

)
+

∫ T

h(0)/2
L(s) exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ds,

where

L(s) =

f

(
diag

(
s− h

(
H(2s)

)
, s
))

+ f

(
diag

(
s, s− h

(
H(2s)

)))
h
(

H(2s)
) .

Then µT is a probability with barycenter µT = diag
(

h(0)/2, h(0)/2
)

. Moreover, ob-

serve that if f is rank-one convex, then (x, y) 7→ f
(

diag(x, y)
)

is biconvex. There-
fore, using Lemma 5.7 we see that µT is a laminate. Consequently, the measure µ̃T ,
defined by the identity µ̃T(A) = µT(−A), is also a laminate, and has barycenter
diag

(
−h(0)/2,−h(0)/2

)
. Introduce another probability measure νT on R2×2 by

νT :=
1

4
µT +

1

4
µ̃T +

1

4
δdiag(−h(0)/2,h(0)/2) +

1

4
δdiag(h(0)/2,−h(0)/2).
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Obviously, the barycenter of νT equals 0. Furthermore, νT is a laminate: indeed,
µT , µ̃T have this property, so if f is a rank-one convex function on R2×2, then∫

R2×2

f dνT ≥
1

4

[
f

(
diag

( h(0)

2
,

h(0)

2

))
+ f

(
diag

(
−h(0)

2
,−h(0)

2

))
+ f

(
diag

(
−h(0)

2
,

h(0)

2

))
+ f

(
diag

( h(0)

2
,−h(0)

2

))]
≥ f

(
diag(0, 0)

)
= f (ν̄T).

Here the latter estimate follows directly from rank-one convexity of f . Next, consider
the function φ : R2×2

sym → R given by

(5.3) φ(A) = |A11 − A22|p − |A11 + A22|q − Lp,q.

We have∫
R2×2

sym

φ dµT

= exp

[
−
∫ 2T

h(0)

du

h(H(u))

](
−(2T)q − Lp,q

)

+

∫ T

h(0)/2

2

((
h
(

H(2s)
)) p
−H(2s)q − Lp,q

)
h
(

H(2s)
) exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ds

= exp

[
−
∫ 2T

h(0)

du

h(H(u))

](
−(2T)q − Lp,q

)
+

∫ 2T

h(0)

(
h
(

H(s)
)) p
−H(s)q − Lp,q

h
(

H(s)
) exp

[
−
∫ s

h(0)

du

h
(

H(u)
) ] ds.

Now we let T go to∞. Using the substitution r = H(u), we get that

exp

[
−
∫ 2T

h(0)

du

h
(

H(u)
) ] = exp

[
−
∫ H(2T)

0

h′(r) + 1

h(r)
dr

]
=

h(0)

h
(

H(2T)
) exp

[
−
∫ H(2T)

0

dr

h(r)

]
.

(5.4)

Furthermore, by (2.1) and the concavity of h, we have that if r > 1, then

q(q− 1)rq−2h(r)2−p ≤ p + p(2− p)h′(1),

that is, h(r) ≤ cr(2−q)/(2−p), where c2−p =
(

p + p(2 − p)h′(1)
)
/
(

q(q − 1)
)

. This
implies that for large T,∫ H(2T)

0

dr

h(r)
≥ 1

c

∫ H(2T)

1
r(q−2)/(2−p)dr = O(T(q−p)/(2−p)),

since

lim
T→∞

H(T)

T
= lim

T→∞

T

h(T) + T
= 1.
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Therefore,

lim
T→∞

exp

[
−
∫ 2T

h(0)

du

h
(

H(u)
) ](−(2T)q − Lp,q

)
= 0.

In addition, using the calculations from (5.4), we may write

∫ ∞
h(0)

(
h
(

H(s)
)) p
−H(s)q − Lp,q

h
(

H(s)
) exp

[
−
∫ s

h(0)

du

h
(

H(u)
) ] ds

= h(0)

∫ ∞
h(0)

(
h
(

H(s)
)) p
−H(s)q − Lp,q(

h
(

H(s)
)) 2 exp

[
−
∫ H(s)

0

dr

h(r)

]
ds

= h(0)

∫ ∞
0

h(u)p − uq − Lp,q

h(u)2
exp

[
−
∫ u

0

dr

h(r)

](
h′(u) + 1

)
du,

where the latter passage follows from the substitution u = H(s). Now, since

d

du

(
1

h(u)
exp

[
−
∫ u

0

dr

h(r)

])
= −h′(u) + 1

h(u)2
exp

[
−
∫ u

0

dr

h(r)

]
,

integration by parts gives

h(0)

∫ ∞
0

−uq − Lp,q

h(u)2
exp

[
−
∫ u

0

dr

h(r)

](
h′(u) + 1

)
du

= −Lp,q − h(0)q

∫ ∞
0

uq−1

h(u)
exp

[
−
∫ u

0

dr

h(r)

]
du

= −Lp,q − h(0)q(q− 1)

∫ ∞
0

uq−2 exp

[
−
∫ u

0

dr

h(r)

]
du.

By (2.1), we have q(q− 1)uq−2 = ph(u)p−2 + p(2− p)h(u)p−2h′(u) and therefore,

h(0)

∫ ∞
0

h(u)p − uq − Lp,q

h(u)2
exp

[
−
∫ u

0

dr

h(r)

](
h′(u) + 1

)
du

= −Lp,q + h(0)

∫ ∞
0

h(u)p−2 exp

[
−
∫ u

0

dr

h(r)

]
[h′(u) + 1− p − p(2− p)h′(u)] du

= −Lp,q + h(0)(p − 1)

∫ ∞
0

(
h(u)p−1 exp

[
−
∫ u

0

dr

h(r)

]) ′
du

= −Lp,q − (p − 1)h(0)p = − p

2
h(0)p.

Summarizing, we have proved that

lim
T→∞

∫
R2×2

sym

φ dµT = − p

2
h(0)p

and since φ(−A) = φ(A) for any A ∈ R2×2, we also have

lim
T→∞

∫
R2×2

sym

φ dµ̃T = − p

2
h(0)p.
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Consequently,∫
R2×2

sym

φ dνT =
1

2

∫
R2×2

sym

φ dµ +
1

2

(
h(0)p − Lp,q

) T→∞
−−−−→ 2− p

2
h(0)p − Lp,q = 0.

5.4 Sharpness for 2 /∈ [p, q] and d = 2

By duality, it suffices to show that C p,q is optimal in the case 1 ≤ p < q < 2. By
the above reasoning, if ε > 0 is a given number, then we can pick T > 0 such that∫

R2×2
sym

φ dνT > −ε. Therefore, an application of Corollary 5.6 yields the existence of

a C∞ function u, supported on B, such that
∫
B
φ
(

D2u(x)
)

dx > −2ε|B| or, by the
definition of φ,∫

B

|∂2
11u(x)− ∂2

22u(x)|p dx ≥
∫
B

|∆u(x)|q dx + (Lp,q − 2ε)|B|.

Therefore, if we put f = ∆u, we obtain the bound

(5.5)

∫
B

|(R2
1 − R2

2) f (x)|p dx ≥
∫
B

| f (x)|q dx + (Lp,q − 2ε)|B|.

Now suppose that C is a constant such that

‖(R2
1 − R2

2) f ‖Lp(B) ≤ C‖ f ‖Lq(B) |B|1/p−1/q

for all integrable f which vanish outside B. Then, by Young’s inequality,∫
B

|(R2
1 − R2

2) f (x)|p dx ≤
∫
B

| f (x)|q dx +
q− p

q

( p

q

) p/(q−p)
C pq/(q−p)|B|.

Combining this with (5.5) and the fact that ε was arbitrary, we see that

q− p

q

( p

q

) p/(q−p)
C pq/(q−p) ≥ Lp,q,

which is equivalent to C ≥ C p,q. This proves the desired sharpness of (1.4) and (1.5)
in the case d = 2.

5.5 The Case d ≥ 3

Suppose that for fixed 1 ≤ p < q <∞ and some positive constant C we have

(5.6)

(∫
A
|(R2

1 − R2
2) f (x)|p dx

) 1/p

≤ C

(∫
A
| f (x)|p dx

) 1/p

|A|1/p−1/q

for all Borel subsets A of Rd and all Borel functions f : Rd → R supported on A. For
t > 0, define the dilation operator δt as follows: for any function g : R2×Rd−2 → R,
we let δt g(ξ, ζ) = g(ξ, tζ); for any A ⊂ R2 × Rd−2, let δt A = {(ξ, tζ) : (ξ, ζ) ∈
A}. If f is supported on A, then δt f is supported on δ−1

t A and hence, by (5.6), the
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operator Tt := δ−1
t ◦ (R2

1 − R2
2) ◦ δt satisfies(∫

A
|Tt f (x)|p dx

) 1/p

=

(
td−2

∫
δ−1

t A
|(R2

1 − R2
2) ◦ δt f (x)|p dx

) 1/p

≤ C

(
td−2

∫
δ−1

t A
|δt f (x)|q dx

) 1/q

(td−2|δ−1
t A|)1/p−1/q

= C

(∫
A
| f (x)|q dx

) 1/q

|A|1/p−1/q.

(5.7)

Now fix f ∈ Lq(Rd) ∩ L2(Rd). It is straightforward to check that the Fourier trans-
form F satisfies the identity F = td−2δt ◦ F ◦ δt , so the operator Tt has the property
that

T̂t f (ξ, ζ) = − ξ2
1 − ξ2

2

|ξ|2 + t2|ζ|2
f̂ (ξ, ζ), (ξ, ζ) ∈ R2 × Rd−2.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂t f (ξ, ζ) = T̂0 f (ξ, ζ)

in L2(Rd), where T̂0 f (ξ, ζ) = (ξ2
2 − ξ2

1) f̂ (ξ, ζ)/|ξ|2. By Plancherel’s theorem and
Fatou’s lemma, we see that (5.7) implies(∫

A
|T0 f (x)|p dx

) 1/p

≤ C

(∫
A
| f (x)|q dx

) 1/q

|A|1/p−1/q.

Now pick an arbitrary function g : R2 → R supported on the unit ball B and define
f : R2 × Rd−2 → R by f (ξ, ζ) = g(ξ)1[0,1]d−2 (ζ). Denoting by R1 and R2 the planar
Riesz transforms, we have T0 f (ξ, ζ) = (R2

1 − R2
2)g(ξ)1[0,1]d−2 (ζ), because of the

identity

T̂0 f (ξ, ζ) = −ξ
2
1 − ξ2

2

|ξ|2
ĝ(ξ)1̂[0,1]d−2 (ζ).

Plug this into (5.5) with the choice A = B× [0, 1]d−2 to obtain(∫
B

|(R2
1 − R2

2)g(ξ)|p dξ

) 1/p

≤ C

(∫
B

|g(ξ)|q dξ

) 1/q

|B|1/p−1/q.

As we have computed in the previous subsections, this implies C ≥ C p,q. The proof
is complete.

5.6 On the Search of an Appropriate Laminate

The inequality that appears in the statement of Lemma 5.7 is strictly related to the
extremal example in (3.1). Suppose that d = 2 and let us look at the inequality (5.1)
in the nonhomogeneous form (which follows easily from Young’s inequality)∫

A
|(R2

1 − R2
2) f (x)|p dx ≤

∫
A
| f (x)|p dx + Lp,q · |A|,
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or, since R2
1 + R2

2 = Id,

1

|A|

∫
A
|(R2

1 − R2
2) f (x)|p dx − Lp,q ≤

1

|A|

∫
A
|(R2

1 + R2
2) f (x)|p dx.

On the other hand, a slightly weaker form of inequality (3.1) can be rewritten in the
form E|Ft − Gt |p − Lp,q ≤ E|Ft + Gt |q, or

(5.8) Eφ
(

diag(Ft ,Gt )
)
≤ 0,

where φ is given by (5.3) and the martingale F − G is differentially subordinate to
F + G. Thus Corollary 5.6 suggests the following approach: find the extremal mar-
tingale pair (F,G) (for which the equality in (5.8) is attained, or almost attained);
then the distribution of the random variable diag(Ft ,Gt ) is the desired laminate.

The paper [27] contains the description of the extremal pairs of martingales
(F − G, F + G) such that E|Ft − Gt |p − E|Ft + Gt |p − Lp,q is almost 0 for large t and
such that F−G is differentially subordinate to F + G. We recall here the construction
and express it in terms of the pair (F,G) (which is more convenient to us, in the light
of the above remarks). Namely, fix δ > 0, T > h(0)/2 and consider the discrete-time
Markov martingale ( f , g) whose transition function is uniquely determined by the
following conditions:

(i) ( f , g) starts from (0, 0).
(ii) The state (0, 0) leads to

(
0, h(0)/2

)
or
(

0,−h(0)/2
)

.

(iii) For ε ∈ {−1, 1}, the state
(

0, εh(0)/2
)

leads to
(
−εh(0)/2, εh(0)/2

)
or to(

εh(0)/2, εh(0)/2
)

.

(iv) For ε ∈ {−1, 1} and h(0)/2 ≤ s ≤ T, the state (εs, εs) leads to
(
ε
(

s −
h(H(2s))

)
, εs
)

or to
(
ε(s + δ), εs

)
.

(v) For h(0)/2 ≤ s ≤ T, the state
(
ε(s + δ), εs

)
leads to

(
ε(s + δ), ε(s + δ)

)
or to(

ε(s + δ), ε
(

s + δ − h(H(2s + 2δ))
))

.
(vi) All the remaining states are absorbing.

It is not difficult to check that if we let δ → 0, then the distributions of the point-
wise limits diag( f∞, g∞) converge weakly to the laminate νT exploited in Subsec-
tion 5.3. This explains the use of this particular probability measure. See also [8] for
a similar discussion.
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[26] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity.
Ann. of Math. (2) 157(2003), 715–742. http://dx.doi.org/10.4007/annals.2003.157.715
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