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ABSTRACT

We consider families of Siegel eigenforms of genus 2 and finite slope, defined as local
pieces of an eigenvariety and equipped with a suitable integral structure. Under some
assumptions on the residual image, we show that the image of the Galois representation
associated with a family is big, in the sense that a Lie algebra attached to it contains
a congruence subalgebra of non-zero level. We call the Galois level of the family the
largest such level. We show that it is trivial when the residual representation has full
image. When the residual representation is a symmetric cube, the zero locus defined by
the Galois level of the family admits an automorphic description: it is the locus of points
that arise from overconvergent eigenforms for GLg, via a p-adic Langlands lift attached
to the symmetric cube representation. Our proof goes via the comparison of the Galois
level with a ‘fortuitous’ congruence ideal. Some of the p-adic lifts are interpolated by
a morphism of rigid analytic spaces from an eigencurve for GLs to an eigenvariety for
GSp,, while the remainder appear as isolated points on the eigenvariety.

1. Introduction

Drawing inspiration from earlier work of Hida and Lang, the paper [CIT16] studied the image
of the Galois representations associated with p-adic families of modular forms, more precisely
eigenforms of finite slope for the action of a Hecke algebra unramified outside of a fixed tame
level. Such a family is defined by equipping a local piece of the eigencurve of the given tame level
with an integral structure. A result of [CIT16] states that the Galois representation attached to
a family has big image in the following sense: there is a ring B and a Lie subalgebra & of gly(B)
attached to Im p, in a meaningful way, such that & contains [ - sla(B) for a non-zero ideal [ of B.
This can be seen as an analogue, for a p-adic family, of a classical result of Ribet and Momose on
the image of the p-adic Galois representation attached to a classical eigenform [Rib75, Mom81].
We call the Galois level of the family the largest ideal [ with the above property. The arguments
in [CIT16] rely heavily on the work of Hida and Lang for ordinary families [Hid15, Lan16], in
particular on the study by Lang of the conjugate self-twists of the Galois representations attached
to families. A new ingredient in the positive slope case is relative Sen theory, that replaces
ordinarity in some crucial steps. Another result of [CIT16] is an automorphic description of
the Galois level of a family: the geometric points of its zero locus are the p-adic CM points
of the family. This is also a generalization of a theorem of Hida in the ordinary case. The proof
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goes via the comparison of the Galois level with a fortuitous congruence ideal, that encodes the
information on the CM specializations of the family. We call this ideal ‘fortuitous’ because, in
contrast to what happens in the ordinary case, the CM specializations of a non-CM family do
not correspond to congruences with CM families, that do not exist when the slope is positive.

In this paper we find analogous results for p-adic families of Siegel modular forms of genus
2 and finite slope. We think that our work in this setting shows that the big image properties
of Galois representations and their relations to congruences are part of a picture that can be
extended to more general reductive groups. We remark that Hida and Tilouine already have some
results for ordinary p-adic families of GSpy-eigenforms that are residually of ‘twisted Yoshida
type’ [HT15]. Their arguments rely on the Galois ordinarity of the families and on R = T
results, both of which are not available when the slope is positive. They obtain congruences
between families that are lifts from GLy,p, for a quadratic field F', and families that are not;
their congruence ideals are then traditional and not fortuitous. In light of the results of the
present paper, we think that fortuitous congruences should be regarded as general phenomena,
that appear whenever we consider families of eigenforms for a reductive group that arise as p-adic
Langlands lifts from a group of smaller rank.

The paper can be divided in two parts. In the first part (§§1-8), we define two-parameter
families of GSp,-eigenforms of finite slope and we attach Galois representations to them; we then
prove that the image of these representations is big in a Lie theoretic sense, assuming that the
residual representation is either of full image or a symmetric cube. In the second part (§§9-11),
we prove that the size of the Galois representation attached to a two-parameter family is related
to the congruences of the family with lifts of eigenforms for a smaller group, constructed via
a p-adic Langlands transfer. In the first half, we need to solve many technical problems when
passing from genus 1 to genus 2, whereas the second half is substantially different from its genus
1 counterpart. We present our results and arguments in more detail in the following.

Fix a prime p and an integer M not divisible by p. Let Hé” be an abstract Hecke algebra
unramified outside Mp and of Iwahoric level at p. In their paper [AIP15], Andreatta, Iovita
and Pilloni constructed a rigid analytic object Do, that we call the GSp,-eigenvariety, and
a map from Hé\/l to the ring of analytic functions on Ds, interpolating the systems of Hecke
eigenvalues associated with the p-stabilized Siegel modular forms of genus 2 and tame level M.
The eigenvariety Ds is equipped with a map to the two-dimensional weight space W, that is the
rigid analytic space associated with the formal scheme Spf Zy[[(Z)} )?]] by Berthelot’s construction
[deJ95, §7]. For our purposes, it is important that families be defined integrally, so we cannot
work globally on irreducible components of the eigenvariety. We consider instead an admissible
domain Dy, on Ds consisting of the points of slope bounded by a rational number h and of weight
in a wide open disc in the weight space. If the radius of this disc is sufficiently small with respect
to h, the restriction of the weight map to Dj, is a finite map thanks to a result of Bellaiche
(Proposition 4.1). A suitably chosen integral structure on the weight disc induces an integral
structure on Djy. This means that we can define a local profinite ring I° and a map ’Hé\/[ — I°
that interpolates the systems of Hecke eigenvalues of the classical eigenforms appearing in Dy,.
An argument by Chenevier gives a Galois pseudocharacter on Dy, that we lift to a representation
p: Gg — GSp,(I°) (Lemma 4.7). We define the ‘conjugate self-twists’ of p as automorphisms of
I° that induce an isomorphism of p with one of its twists by a Dirichlet character (Definition 5.1).
We write I[j for the subring of elements of I° fixed by all the conjugate self-twists. We define a
certain completion B of I§[1/p] and a Lie subalgebra Lie(Im p) of gsp,(B) attached to Imp (see
§7.1). We assume that p is Z,-regular (Definition 3.10) and that the residual representation p is
either full or of symmetric cube type (Definition 3.11). Our first main result is the following.
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THEOREM 1.1 (Theorem 8.1). There exists a non-zero ideal | of B such that [-sp,(B) C Lie(Im p).

We call the Galois level of the family the largest ideal [ satisfying the inclusion of Theorem 1.1.
We give here a summary of the proof of Theorem 1.1. We first show that, under our assumptions
on p, there exists a classical weight such that p specializes to a representation with big image at all
points of this weight appearing on the family (Theorem 3.12). Here we need the recent classicality
result contained in [BPS16, Theorem 5.3.1]. Another essential ingredient is a result of Pink
(Theorem 3.13) that we use to show that the representation associated with a GSp,-eigenform
that is not a lift from a smaller group has big image with respect to the ring fixed by its conjugate
self-twists. This is an analogue of the result of Ribet and Momose for GLs-eigenforms. We prove
some results that are needed in the second part of the paper (in the proof of Theorem 1.2) and
that yield as a corollary the fact that a form which is not a lift satisfies the assumptions of Pink’s
theorem (Corollary 3.9).

Once a classical weight with the desired properties is chosen, we follow a strategy of Lang to
obtain some information on the image of p. As a first step we need to show that a big image result
holds for the product of the specializations of p of a given weight, rather than just for a single
one (Proposition 6.10). The argument here relies on Goursat’s lemma and on the classification of
subnormal subgroups of symplectic groups by Tazhetdinov. Afterwards, we use the result of the
first step to construct some non-trivial unipotent elements in the image of p. To do this, we need
to prove an analogue of [Lanl6, Theorem 3.1] that allows us to lift the conjugate self-twists of
the specializations of p at our chosen weight to conjugate self-twists of p itself. The arguments
of Lang about the lifting of the conjugate self-twists to automorphisms of a suitable deformation
ring can be translated into the genus 2 case with little effort, but descending to a conjugate
self-twist of the family requires some specific ingredients. Precisely, we prove that we can twist a
family of GSp,-eigenforms by a Dirichlet character to obtain a new family (Lemma 5.8) and we
rely on the étaleness of the eigenvariety above our chosen weight.

In §7, we show how the relative Sen theory of [CIT16, §5| can be extended to the group
GSp,, to associate a Sen operator with p. The eigenvalues of this operator are given explicitly
by the interpolation of the Hodge-Tate weights of the classical specializations of the family
(Proposition 7.12). The exponential of the Sen operator induces by conjugation a structure of
Zp|[T1, T5])-Lie algebra on Lie(Im p), so that the special elements we constructed generate a
non-trivial congruence subalgebra. This proves Theorem 1.1.

When 7 has full image, the Galois level of the family is trivial (Corollary 11.5), so the main
focus of the rest of the paper is the case where p is a symmetric cube. We can give two definitions
of a symmetric cube locus on the eigenvariety: an automorphic definition, as the locus of points
whose system of Hecke eigenvalues is obtained from that of an overconvergent GLo-eigenform via
a symmetric cube morphism of Hecke algebras; and a Galois definition, as the locus of points
whose Galois representation is the symmetric cube of that associated with an overconvergent
GLg-eigenform. An important result is the following.

THEOREM 1.2 (Theorem 10.1). The automorphic and Galois definitions of the symmetric cube
locus are equivalent.

Theorem 1.2 plays an essential role in describing the Galois level of the family by automorphic
means. Note that this result and its role in our work are completely new with respect to the genus
1 case: there the only possible congruences are of CM type and it is trivial to see that a point
of small Galois image, contained in the normalizer of a torus, is a p-adic CM point (see [CIT16,
Remark 3.11]).
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The proof of Theorem 1.2 goes via the theory of (¢, I')-modules. It is known from the work
of Kisin and Emerton that a two-dimensional p-adic representation of G is associated with an
overconvergent GLs-eigenform, up to a twist, if and only if it is trianguline. Thanks to the recent
work of Kedlaya, Pottharst and Xiao on triangulations over eigenvarieties, we know that the ‘only
if’ part also holds for overconvergent GSp,-eigenforms (Theorem 3.2). We combine their results
with some arguments of Di Matteo [DiM13b] that relate the triangulinity of a representation to
that of its symmetric cube, giving the desired result. As a corollary we deduce that if a p-old
point of symmetric cube type of Dé\/f is classical, then it is obtained from a classical point of an
eigencurve for GLo, via the classical Langlands lift attached to the symmetric cube representation
by Kim and Shahidi [KS02].

We study further the symmetric cube locus and show that it is Zariski-closed with zero-
and one-dimensional irreducible components. The one-dimensional part of the locus can be
constructed as the image of a morphism from an eigencurve for GLo, of a suitable tame level,
to D). This morphism is obtained by interpolating p-adically the classical symmetric cube
Langlands lift, via an argument that goes back to Chenevier’s work on the p-adic Jacquet—
Langlands correspondence [Che05| and is now quite standard. We assume the existence of this
morphism (Proposition 9.11) and refer to [Conl16, §§3.6-3.9| for a construction of the morphism
that relies on the results of [BC09, §7.2.3].

The zero-dimensional components of the symmetric cube locus are given by isolated p-adic
Langlands lifts, that cannot be interpolated owing to the fact that their slopes do not vary
analytically. The appearance of such points is related to the existence of more than one crystalline
period for the corresponding Galois representation (Proposition 3.4).

Restricting once again our attention to a local piece of the eigencurve describing a family,
we define a symmetric cube congruence ideal that measures the locus of symmetric cube
specializations of the family (Definition 11.1). We call it a fortuitous congruence ideal: since
there are no two-parameter families of symmetric cube type, the congruences detected by this
ideal are symmetric cube specializations of a family that is not globally a symmetric cube. Thanks
to Theorem 1.2, that serves as a bridge between the automorphic and Galois sides, we can relate
the congruence ideal with the Galois level of the family.

THEOREM 1.3 (Theorem 11.4). The sets of prime divisors of the Galois level and of the
symmetric cube congruence ideal coincide outside of a finite and explicit bad locus.

We think that the results of this paper can be generalized by allowing for different residual
representations, hence different types of congruences, or by replacing GSp, by other reductive
groups for which an eigenvariety has been constructed. We hope to come back to this problem in
a later work.

Notation. We fix some notation and conventions. In the text, p will always denote a prime
number strictly larger than three. Most arguments work for every odd p; we specify when this
is not sufficient. We choose algebraic closures Q and @p of Q and Q,, respectively. If K is a
finite extension of Q or Q,, we denote by Gk its absolute Galois group. We equip G with its
profinite topology. We denote by O the ring of integers of K. If K is local, we denote by mg
the maximal ideal of O. For every prime p, we fix an embedding ¢,: Q — @p, identifying Gg,
with a decomposition group of Gg. We fix a valuation v, on @p normalized so that v,(p) = 1. It
defines a norm given by |- | = p~%(). We denote by C, the completion of @p with respect to this
norm.
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All rigid analytic spaces will be considered in the sense of Tate (see [BGR84, Part C]). Let
K/Q, be a field extension and let X be a rigid analytic space over K. We denote by O(X)
the K-algebra of rigid analytic functions on X, and by O(X)° the Og-subalgebra of functions
of norm bounded by 1 (we often say ‘functions bounded by 1’ meaning that they are bounded
in norm). When f: X — Y is a map of rigid analytic spaces, we denote by f*: O(Y) - O(X)
the map induced by f. There is a Grothendieck topology on X, called the Tate topology; we
refer to [BGR84, Proposition 9.1.4/2] for the definition of its admissible open sets and admissible
coverings. There is a notion of irreducible components for X; see [Con99| for the details. We say
that X is equidimensional of dimension d if all its irreducible components have dimension d.

We say that X is wide open if there exists an admissible covering {X;}ien of X by affinoid
domains X; such that, for every i, X; C X;;; and the map O(X;4+1) — O(X;) induced by the
previous inclusion is compact.

Let S be any subset of X(C,). We say that S is:

(i) a discrete subset of X(C,) if SN A is a finite set for any open affinoid A C X (C,);
(ii) a Zariski-dense subset of X(C,) if, for every f € O(X) vanishing at every point of S, f is
identically zero;
(iii) an accumulation subset of X(C,) if for every = € S there exists a basis B of affinoid
neighborhoods of z in X such that for every A € B the set S N A(C,) is Zariski-dense
in A (this term is borrowed from [BC09, §3.3.1]).

We denote by A? the d-dimensional rigid analytic affine space over Qp. Given a point
z € AYC,) and r € p@, we denote by Bg(z,r) the d-dimensional closed disc of centre x and
radius 7. It is an affinoid domain defined over C,. We denote by Bg(z,r~) the d-dimensional
wide open disc of centre x and radius r, defined as the rigid analytic space over C, given by the
increasing union of the d-dimensional affinoid discs of centre = and radii {r;};eny with r; < r and
limjs 4o i =7

For every n > 1 we denote by 1, the n X n unit matrix. Let g > 1 be an integer and let s
be the g x g antidiagonal unit matrix (0;n—i(%,7))1<ij<g- Let Jq be the 2g x 2¢g matrix (BS o)-
We denote by GSpy, the algebraic group of symplectic similitudes for Jy, defined over Z; for
every ring R the R-points of this group are given by

GSpy,(R) = {A € GL4(R)|3v(A) € R™ s.t. PAJA = v(A)J}.

The map A — v(A) defines a character v: GSp,(R) — R*. We refer to v as the similitude factor
and we set Spo,(R) = {A € GSpy,(R)|v(A4) = 1}.

We denote by By the Borel subgroup of GSpy, such that for every ring R the R-points of
By are the upper triangular matrices in GSpQQ(R). We let T, be the maximal torus such that
for every ring R the R-points of T are the diagonal matrices in GSpy,(R). We write U, for the
unipotent radical of By. We have By, = TyU,. We will always speak of weights and roots for GSpy,
with respect to the previous choice of Borel subgroup and torus. For every root «, we denote by
U® the corresponding one-parameter unipotent subgroup of GSp,,. For every prime ¢, we write
Iy for the Iwahori subgroup of GSpy,(Q¢) corresponding to our choice of Borel subgroup, and
we define some compact open subgroups of GSpQg(A@) by:

(i) DO (") = {h € GSpyy(Z) | he = 1oy (mod £")};
(i) T (") = {h € GSpy,(Z) | ke (mod (M) € Uy(Z/0"Z)};
(iii) T (6") = {h € GSpyy(Z) | he (mod £7) € By(Z/¢"Z)}.
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Let N be an arbitrary positive integer. Write N = [, £ for some distinct primes ¢; and some
n; € N. For a positive integer N factoring as [[, £;", we set Fgg)(N) =), I‘gg) (€' for 7 =0,0,1.
For g = 1, we will omit the upper index (1).

List of notation
In addition to the notation described above, we give the references to the pages where the following
notation is introduced.

Wi W o 781
A 782
Hg P 1Y 782
2 783
D 791
A A = A D 792
B b et 792
O 792
D 793
P 793
L 793
L e 794
I e 795
S e 806
O e £ 807
BB e et 808
By B0 808
Brrs e e e 811
DB, et 811
L0 814
ANP NP NP N Y S W 817
L = N 820
2 A Y Y 824
C - e ettt 825

2. Preliminaries on eigenvarieties

In this section, we define the basic objects we are going to work with: weight spaces, Hecke
algebras and eigenvarieties. We recall some of their properties.

2.1 The weight spaces

We choose once and for all u = 1+p as a generator of Z; . This choice determines an isomorphism
Zy = (Z/(p—1)Z) x Zy. Let g be a positive integer. Consider the Iwasawa algebra Z,|[(Z, )?]].
A construction by Berthelot [de]95, §7| attaches to the formal scheme Spf Zy[[(Z,;)]] a rigid
analytic space that we denote by W, .If A is a Qp-algebra, the A-points of W, are the continuous
characters (Z, )9 — A*. Denote by (Z/(p — 1)Z)"9 the group of characters of (Z/(p — 1)Z)7.
The following map gives an isomorphism from Wj to a disjoint union of g-dimensional open discs
By(0,17) indexed by (Z/(p — 1)Z)"9:
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g Wy = (Z/(p — 1)Z)™ x B,y(0,17),
k= (Klz/p-1z)9, (K(u, 1,0 1) = L(Lu,1,.001) = 1,00 k(1,0 Lu) — 1),

We denote by W, the connected component of W, that maps to 0 € (Z/(p — 1)Z)7. We write
A, for the algebra Z,[[Th, T, . .., T,]] of formal series in g variables over Zj,. It is the ring of rigid
analytic functions bounded by 1 on a connected component of the weight space. The weight space
W, carries a universal character kyy, : Z; — Zp[[(Z, )?]]*.

We call arithmetic primes the primes of Ay of the form P, = (141 — uFt 14+ Ty — k2,
1 + T, — u*9) for a g-tuple of integers k = (k1,ka,...,k,) (in the usual definition an auxiliary
character can appear, but we will never need it). We say that a Qp-point x: Z; — Q, of Wy is
classical if it is the specialization of the universal character of W, at Py, for some k € Z9.

2.2 The abstract Hecke algebras

Let ¢ be a prime. Let G be a Z-subgroup scheme of GSpy, and let K C G(Qy) be a compact
open subgroup. For v € G(Qy) we denote by 1([KvK]) the characteristic function of the double
coset [KvK]|. Let H(G(Qy),K) be the Q-algebra generated by the functions 1([K~K]) for
v € G(Qy), equipped with the convolution product. We call spherical (or unramified) Hecke
algebra of GSpy, at £ the Q-algebra H(GSpy,(Qr), GSpay(Ze)). It is generated by the elements
T(9 = 1(|GSpyg(Ze) diag(Ls, (laog—2i, £21;) GSpay(Zy))), for i = 0,1,... g, and (T, )",

The Hecke algebra H(T,(Qg), T4(Z¢)) carries a natural action of the Weyl group W, = .7, x
(Z/2Z)9 of GSpy,, where .7, is the group of permutations of {1,2,...,g}: on an element
diag(vty, ... ,I/tg,tgl, o ,tfl) of the torus, ., acts by permuting the t; and the non-trivial
element in each Z/2Z sends t; to t; '. We denote the action of w € W, on t € T(Qy) by t > w.t.
Via the twisted Satake transform, the algebra H(7,(Qy),Ty(Z¢)) obtains a structure of Galois
extension of H(GSpay(Qr), GSpey(Ze)). Its Galois group is Wy.

For i =0,1,...,g, let t{2) = 1([diag(1;, (aga:, (*1;)Ty(Z)]). Note that £ = Si& (T7,).

’ ’ g )
The set (té,gi))izl,._,,g generates the extension H (T, (Qy), Ty(Z¢)) over H(GSpy,(Qr), GSpyy(Zy))-

We call an element v € Ty(Z,) dilating if v,(a(y)) < 0 for every positive root . Let T, (Z)~
be the subset of Ty(Z,) consisting of dilating elements and let H(74(Qy),Ty(Z¢))~ be the Q-
subalgebra of H(Ty(Qy), Ty(Z¢)) generated by the functions 1([y7Ty(Z,)]) with v € T4(Q,)~. The
functions 1([vT4(Z¢)]) with v € T4(Qg)™ also form a basis of H(T4(Qy), Ty(Z¢))™ as a Q-vector
space.

Let H(GSpy,(Qr), Iy¢)~ be the subalgebra of H(GSpy,(Qr), Iy¢) generated by the functions
L([Ly,ev1ye]) with v € T(Zg)~. We call H(GSpay(Qr), Iy)~ the dilating Iwahori-Hecke algebra
at £. It is generated by the elements Uég) = 1([1,¢ diag(1L;, €Log_2;, £21;) 1, 4]), for i = 0,1,...,9,
and (Ue(%))_l.

We define a morphism of Q-algebras Li‘ié: H(GSpay(Qr), Ige)™ — H(Ty(Qe), Ty(Ze))~ by
sending 1 (g ev1g ) to 1(Ty(Ze)YT4(Zy)) for every v € T(Z¢)™. The map nge is an isomorphism;

this can be proved as [BC09, Proposition 6.4.1].
Let p be a prime and N be a positive integer such that (V,p) = 1. Set

HYP = (R H(GSpay(Qr). Gy, (Zi) @
Q.éNp
”Hi]v = ’Hi]vP Qg H(Gspgg(Qp)7lg,P)_' (2)
782
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We call ’Hév the abstract Hecke algebra spherical outside N and Iwahoric dilating at p. With an
abuse of notation, we will consider the elements of one of the local algebras as elements of Hév
by tensoring with 1 at all the other primes.

2.2.1 The Hecke polynomials. We record here some explicit formulas for the minimal
polynomials Pmin(t%.); X) of the elements tgi.) over H(GSpay(Qr), GSpy,(Z¢)) when g is 1 or 2.

For g = 1, the element t&) = 1([diag(1,¢)T1(Z¢)]) generates the degree two extension
H(T1(Qp), T1(Zy)) of H(GL2(Qy), GL2(Z¢)). Let w be the only non-trivial element of the Weyl
group of GLy. The minimal polynomial of t((g,ll) is Pmin(tgl))(X ) = (X — téll))(X — (téll) ™).
An explicit calculation gives

1 1 D\ w 1 1
Puin(t; X) = (X —t{)(X = (#{))*) = X2 - TV X + 4T}y, (3)

For g = 2, the degree eight extension H(72(Qy),T2(Z¢)) over H(GSp4(Qr), GSpy(Zy)) is
generated by ¢y = 1([diag(1, £, £, (2)T5(Z)]) and t;y = 1([diag(1, 1,¢,0)T5(Z)]). Each of them
has an orbit of order four under the action of the Weyl group. If ¢ = diag(vt;, I/tQ,tl_l,tQ_ by is
an element of the torus we denote by wp, wi, we the generators of the Weyl group satisfying
two = diag(vty, vty ty 1 t7 1), 91 = diag(vty !, vt  th,t, 1), t¥2 = diag(vty, vty 17, t2). Note

that t%) is invariant under wy. The calculation in the proof of [And87, Lemma 3.3.35] gives

Pain(t; X) = (X — t0)(X — (#5)") (X — (52)2) (X — ()" "2)

2 2
2 2 2 2 2) (2 2
= X' - T)XP 4+ (T2~ T, — T X2 — CT)T X + (T3 (4)
2.2.2 Normalized systems of Hecke eigenvalues. Let f be a classical GSpy,-eigenform of
level I't (N) Ny (p) and weight k& = (ki, k2, ..., kg). Let x: ”Hév — @p be the system of Hecke
eigenvalues associated with f.

DEFINITION 2.1. For g € {1,2}, let x"™: Hf]\f — @p be the character defined by:

- X

norm|’Hévp — X|’HéVp;

- Xnorm(UIS?) = piE?;i(kjfj) fori=1,2,...,g (where the exponent of p is 0 for i = g).

We call x™°™ the normalized system of Hecke eigenvalues associated with f.

2.3 The cuspidal GSp,,-eigenvariety

Let g be a positive integer. Let p be an odd prime and N a positive integer such that (N,p) = 1.
Let Hév be the abstract Hecke algebra for GSpy,, spherical outside N and Iwahoric dilating
at p. Let W, be the g-dimensional weight space. For every affinoid A = Spm R C W, and
every sufficiently large rational number w, Andreatta, Iovita and Pilloni [AIP15, §8.2] defined
a Banach R-module My (A, w) of w-overconvergent cuspidal GSpyg-modular forms of weight x4
and tame level I'1 (V). For each pair (A, w) there is an action ¢f]47w: Hév — Endp cont My(A,w).

Set UY = [19_, Us%. Tt is shown in [AIP15, §8.1] that (W,, HY, (My(A, w)) 4w, (69) A, Up?)
is an eigenvariety datum in the sense of [Buz07, §5|. Buzzard’s ‘eigenvariety machine’ [Buz07,
Construction 5.7] produces from this datum a rigid analytic variety over Q,, equidimensional of
dimension g. We call it the GSpy,-eigenvariety of tame level N and we denote it by Dév. It is
equipped with a weight morphism wy, : Dév — W, and a homomorphism ), : Hév — O(Dév ), that
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interpolates the normalized systems of Hecke eigenvalues of classical cuspidal GSpy,-eigenforms
of tame level 'y (V). The images of the elements Ti(j) and Ui(;), 1 <i < g, belong to (’)(Dév)o.

When g = 1 we call Di¥ the eigencurve. It was constructed by Coleman and Mazur in [CM98]
for N =1 and p > 2, building on earlier ideas of Coleman. Their construction was extended to
all N and p by Buzzard in [Buz07].

We call a point = € Dév (Cp) classical if the evaluation of 1, at x is the Hecke eigensystem a
classical GSpy -eigenform f of level I't (N) NT'g(p) and weight wy(x). In this case, wy(x) is clearly
a classical weight.

There is a slope function sl: Dév (Cp) — RT defined as the p-adic valuation of %(Uéi)). Let
z be a @p—point of Dév of weight k = (k1,ko,...,kg) € Z9, so that ki > ko > -+ > k. We recall
the following result.

PROPOSITION 2.2 (Coleman [Col96, Theorem 6.1] when g = 1; Bijakowski, Pilloni and Stroh
[BPS16, Theorem 5.3.1, see also Remark 1 in the Introduction| when g > 1). If sl(z) < kg —
g(g +1)/2, then the point z is classical.

2.3.1 The non-CM eigencurve. We say that a classical point of DY is a CM point if it
corresponds to a classical CM modular form. We say that an irreducible component of D{V is a
CM component if all its classical specializations are CM points.

Remark 2.3. By [Hid15, Proposition 5.1|, if an ordinary irreducible component of the eigencurve
contains a classical CM eigenform of weight k > 2, then the component is CM. In contrast, the
CM classical points of the positive slope eigencurve form a discrete set. This is a consequence
of [CIT16, Corollary 3.6], where it is shown that the eigencurve D <" contains a finite number of
CM classical points.

Let D{V’g be the Zariski-closure in DIV of the set of non-CM classical points. We call D{V’g
the non-CM eigencurve. The upper index G stands for ‘general’, because CM components are
exceptional among the irreducible components of DiV.

Remark 2.4. 1t follows from Remark 2.3 that Di\/,g is the union of all the non-CM irreducible
components of DJ. In particular, D{V’g is equidimensional of dimension 1 and it contains the
positive slope eigencurve. Moreover the set of non-CM classical points is a Zariski-dense and
accumulation subset of D{V’g.

2.4 The Galois pseudocharacters on the eigenvarieties

In this section, p is a fixed prime, M is a positive integer prime to p and ¢ is 1 or 2. For
a point x € Dé”((cp), we denote by ev,: (’)(Dé\/[) — C, both the evaluation at z and the
map GSpQQ((’)(DéVI )) = GSpy,(Cp) induced by ev,. Recall that the GSp, -eigenvariety Déw is
endowed with a morphism 1), : HS/I — (’)(Dé‘/f ) that interpolates the normalized systems of Hecke
eigenvalues associated with the cuspidal GSpy -eigenforms of level I'1 (N) Mo (p). Also recall that
the images of Ti(j) and Ui(;), 1 < < g, are elements of O(Dé\/[)o. Let S denote the set of classical
@p—points of Dé\/f . For z € S let 1, = ev, othy. Let f; be the classical GSpy -eigenform having
system of Hecke eigenvalues 1,. Let p,: Gg — GSpQQ(@p) be the p-adic Galois representation
attached to f, and let T, be the pseudocharacter defined as the trace of p,. When x varies,
the traces T, can be interpolated by a pseudocharacter with values in O(Dg/")o. This is stated
precisely in the following proposition.
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For every ring R, we implicitly extend a character of the Hecke algebra ’Hé” — R* to a
morphism of polynomial algebras ’Hé” [X] — R[X] by applying it to the coefficients. Recall that
we fixed an embedding G, — G for every prime ¢, hence an embedding of the inertia subgroup
I; in Gg. As usual Frob, denotes a lift of the Frobenius at ¢ to Gg,.

PROPOSITION 2.5. There exists a pseudocharacter Ty : Gg — (’)(Déw) of dimension 2g with the
following properties:

(i) for every prime ¢ not dividing Np and every h € I;, we have Ty(h) = 2, where 2 € (’)(Dé\/[)
denotes the function constantly equal to 2;

(ii) for every prime ¢ not dividing Np, we have Peyar(Ty)(Frobg; X) = 1g(Pumin (té:qg); X));

(iii) for every x € S, we have ev, 0T, = Tj.

Proof. The pseudocharacter Ty is constructed via the interpolation argument of [Che04,
Proposition 7.1.1]. Its properties are a consequence of those of the classical representations. See
[Con16, Theorem 3.5.10] for a detailed proof of the proposition. O

Remark 2.6. (i) Let = € Dé\/f (@p). Consider the 2g-dimensional pseudocharacter T;.: Gg — @p
defined by T, = ev, oT,. By a well-known theorem of Taylor (see [Tay91]) there exists a Galois
representation p,: Go — GL4(@p) satisfying T, = Tr(p,). We show in §4.2 that, when p, is
absolutely irreducible, p, is isomorphic to a representation Gg — GSp4(@p).

(ii) When z varies in a connected component of Dé\/[ , the residual representation p,: Gg —
GSpQQ(@p) is independent of z. We call it the residual representation associated with the
component.

3. Image of Galois representations attached to GSp,-eigenforms

Let N be a positive integer and let p be a prime not dividing N. Let F' be an overconvergent
GSpa,-eigenform of level 'y (V). Let pry: Gg — GSpy, (@p) be the p-adic Galois representation
associated with F. It is defined over a p-adic field K. Under the technical condition of
‘Zp-regularity’ of pr, and an assumption on the associated residual representation, we prove
that the image of pr, is ‘big’ when g = 2 and F is a classical eigenform that is not a lift of
a GLa-eigenform (Theorem 3.12). On our way towards this result, we prove a theorem that is
needed in § 10 (Theorem 3.8).

3.1 Trianguline parameters of overconvergent GSp,-eigenforms

We refer to [Ber02, Col08| for the definitions and results that we need from the theory of (¢, I')-
modules and trianguline representations. Let F' be as in the beginning of the section. Part (i) of
the following theorem is a classical result of Faltings [Fal89]. Part (ii) is a combination of [Kis03,
Theorem 6.3| and [Col08, Proposition 4.3|, as Berger observed in [Berll, §4.3|.

THEOREM 3.1.

(i) If F is a classical eigenform of cohomological weight, then ppyp\(;@p is crystalline.

(ii) If g =1 and the slope of F s finite, then ppp|ag, is trianguline.

785

https://doi.org/10.1112/50010437X19007048 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007048

A. CoONTI

If g =2, an analogue of Theorem 3.1(ii) for pg, can be deduced from the work of Kedlaya,
Pottharst and Xiao [KPX14|. Moreover, the results of [KPX14| allow us to write the parameters
of the triangulation of pr, in terms of a Hecke polynomial, as for classical points. Recall that we
are working on an eigenvariety D3! with a fixed residual Galois representation p. Suppose that
p is irreducible. By lifting pseudocharacters to representations and considering the associated
(¢, T)-modules we can define a family of (¢, I')-modules over D} in the sense of [KPX14, §2.1].
For € D}(C,), let py: Gg — GL4(Q,) and ¢,: HY — Q, be the Galois representation
and the system of Hecke eigenvalues, respectively, attached to z. Let M, be the (¢, I')-module
over @p attached to p,. Denote by ev, the evaluation of rigid analytic functions on Dé\/f at x.
We identify the Weight of x with a character (k1(x),ka(x)): (ZX) — C;. Let id: Z) — Z,; be
the identity. Let d;, 1 <7 < 4 be the characters Z; — (9(DM)X defined by

il =1, Gulp) = <;> bl = mafid,  Sa(p) = v((U3)™);
)"

Ol = mafid®, G5(p) = Vu((US2)™);  dulge = muma(p)/id®,  da(p) = hu((US3)"122),

For z € DY(Cp), let §;p = evy06;: QF — Q.

PROPOSITION 3.2.

(i) For every x € DY (C,), the (¢,T')-module M, is trianguline.

(ii) There exists a Zariski-open rigid analytic subspace DM of DM such that for every
z € DY (C,) the (p,T')-module M, is triangulable with parameters ev, o d; Q — Q,.

Proof. The first statement follows immediately from [KPX14, Corollary 6.3.13]. The second
follows from [KPX14, Theorem 6.3.10] after checking that the functions d;, 1 < i < 4, interpolate
the parameters of the triangulations at the classical points. This is true because the parameters
of the filtration correspond to the eigenvalues of the crystalline Frobenius at a crystalline point
by [Col08, Proposition 1.8] (that restates a result of Berger), and these are identified with the

roots of Pmin(Ulg?g) ) by [Urb05, Théoréme 1]. O

Now let N be a positive integer prime to p and let M = N 3. Let F be an overconvergent
GSp,-eigenform corresponding to a point of Dé\/[ . Suppose that there is a GLo-eigenform f of level
N such that ppj, = Sym? pf.p, with the usual notation. Let XF HY — Qp and Xf: HY — Q, be
the systems of Hecke eigenvalues of the two forms. For 1 < < 8, define Xz " as in Proposition 9.7
by replacing x5' by x .

PROPOSITION 3.3. There exists i € {1,2,...,8} such that xp = x3"".

Proof. The proof is completely analogous to that of Proposition 9.7, once we replace Deris(py,p)
and Deis(py,p) by the (p,I')-modules Dyig(py,p) and Dyig(pF,p), respectively, and we use the result
of Proposition 3.2. |

Let F' be a finite slope overconvergent GSp,-eigenform of tame level M.

PROPOSITION 3.4. There are at most 2 dim@ Diis(prp) points of DM whose associated Galois
P
representation is isomorphic to ppy.
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Proof. The accumulation and Zariski-dense set Z of classical points of D) satisfies the
assumptions (CRYS) and (HT) of [BC09, §3.3.2]. Then [BC09, Theorem 3.3.3] implies that,

for every Cp,-point x of DM, ¢w(U7§,22) ) is an eigenvalue of the crystalline Frobenius acting on
Dais(pz). There are exactly two characters of the Iwahori-Hecke algebra giving the same value

for wx(UIS?Q)), hence the desired result. O
Now let f be a finite slope overconvergent GLo-eigenform of tame level N.

COROLLARY 3.5. There are at most 2 dim@ Dais(p) points of Déw whose associated Galois
P
representation is isomorphic to Sym? p F.p-

3.2 Representations with symmetric cube of automorphic origin
Let V' be a two-dimensional representation of Gg over a p-adic field. We recall a special case of
a result of Di Matteo.

PROPOSITION 3.6 [DiM13a, Theorem 2.4.2|. If the representation Sym®V is de Rham, then V
is the twist by a character of a de Rham representation.

When ‘de Rham’ is replaced by ‘trianguline’, the techniques of [DiM13b] can be modified to
prove the following result.

PROPOSITION 3.7. If the representation Sym®V is trianguline, then V is either trianguline or
the twist by a character of a de Rham representation.

We refer to [Conl6, Proposition 3.10.25] for the proof. We only remark here that to obtain
triangulinity, rather than potential triangulinity, we need a result of Berger and Chenevier [BC10,
Théoréme Al.

Given a two-dimensional modulo p representation 7 of Gg, we list here for future reference
some assumptions that we need in applying the results of [Emel4|. Here x denotes the modulo p
cyclotomic character:

ﬂ@(gp) is absolutely irreducible

e
T is not equivalent to a twist by a character of ((1) ’{) or ((1) ;) (x7)

For convenience we also restate the symmetric cube of the above assumptions, for a four-
dimensional modulo p representation 7 of Gg:
?|@(Cp) is not the symmetric cube of a non-absolutely irreducible representation

*k=
7 is not equivalent to a twist by a character of Sym? ((1) I) or Sym? ((1) ;) ™)

We will always replace the subscript 7 with the representation we are making the above
assumptions on.

Let p1: Gg — GL2(Q,) and p2: Gg — GSp,(Q,) be two continuous representations. We will
deduce the following theorem from the two previous propositions.

THEOREM 3.8. Suppose that:

(1) p2 = Sym?® py;
(2) p2 is odd and unramified outside a finite set of primes;
(3) the residual representation p, associated with py satisfies assumptions (x, ).
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Then the following conclusions hold.

(i) If po is associated with an overconvergent cuspidal GSp,-eigenform, then p;y is associated
with an overconvergent cuspidal GLg-eigenform.

(ii) If po is associated with a classical cuspidal GSp,-eigenform, then p; is associated with a
classical cuspidal GLg-eigenform.

Proof. Suppose that py is associated with an overconvergent cuspidal GSp,-eigenform F'. Now po
is trianguline by Proposition 3.2(i), so Proposition 3.7 implies that the representation p; is either
trianguline or the twist by a character of a de Rham representation. Thanks to assumptions (2)
and (3) we can apply [Emel4, Theorem 1.2.4(2)| to deduce that p; is a twist of a representation
associated with a cuspidal overconvergent GLo-eigenform. A study of the Hodge—Tate—Sen weights
of p1 and po shows that the twist occurring here can be taken to be trivial, giving conclusion (i).

We prove conclusion (ii). Since po is associated with a classical cuspidal GSp,-eigenform, it is
a de Rham representation. Then Proposition 3.6 implies that p; is also a de Rham representation
up to a twist by a character. As in the previous paragraph, we conclude that p; is attached to
a classical cuspidal GLg-eigenform from [Emel4, Theorem 1.2.4(1)] and a study of the Hodge—-
Tate—Sen weights of p; and ps. O

COROLLARY 3.9. If p1, po satisfy the assumptions of Theorem 3.8 and psy is associated with a
classical cuspidal GSp,-eigenform F', then there exists a GLg-eigenform f such that F' is the
symmetric cube lift Sym® f given by Corollary 9.2.

Proof. The representation p; is attached to a classical cuspidal GLs-eigenform f by
Theorem 3.8(ii). Then po is the p-adic Galois representation attached to the form Sym? f.
We conclude that F = Sym? f. |

3.3 A big image result for classical GSp,-eigenforms

In the following definitions, let £ be a finite extension of Q. Let R be a local ring with maximal
ideal mp and residue field F. Let 7: Gg — GSp4(R) be a representation. Let PGSp,(R) =
GSpy4(R)/R*, where R* is identified with the subgroup of scalar matrices. We denote by 7: Gg —
GSp4(F) the reduction of 7 modulo mpg. Recall that T5 is the torus consisting of diagonal matrices
in GSp,. We give a notion of Z,-regularity of 7, analogous to that in [HT'15, Lemma 4.5(2)|.

DEFINITION 3.10. We say that 7 is Zy,-regular if there exists d € Im 7N T5(Z,,) with the following
property: if @ and o are two distinct roots of GSp,, then a(d) # o/(d) (mod mpg). If d has
this property we call it a Z,-reqular element.

From now on we focus on representations that are either ‘residually full’ or ‘residually of
symmetric cube type’, in the sense of the following definition. Note that these two types
of representations appear in [Pil12, §5.8] as examples of those for which Pilloni can construct a
sequence of Taylor—Wiles primes.

DEFINITION 3.11. We say that 7 is:

(i) residually full if there exists a non-trivial subfield F’ of F and an element g € GSp,(F) such
that
Sp4(F’) C g(Im7)g™" C GSpy(F);
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(i) residually of symmetric cube type if there exist a non-trivial subfield F of F and an element
g € GSpy(IF) such that

Sym? SLy(F') € g(Im7)g~! € Sym? GLy(F').
We also say that 7 is full in case (i) and of symmetric cube type in case (ii).

We write sp,(K) for the Lie algebra of Sp,(K) and Ad: GSp,(K) — End(sp,(K)) for the
adjoint representation. Let F' and pp,: Gg — GSpy(Ok) be as in the beginning of the section.
Let E be the subfield of K generated over Q, by the set {Tr(Ad(p(g)))}¢ecy- Let Op be the
ring of integers of E. For a GLg-eigenform f, we denote by py, the associated p-adic Galois
representation. We will prove the following result.

THEOREM 3.12. Assume that pr,, is Z,-regular and that one of the following two conditions is
satisfied:

(i) pryp is residually full;
(ii) F is not a p-stabilization of the symmetric cube lift of a GLg-eigenform, defined by
Corollary 9.2, and pr,, satisfies the assumptions (**pr).

Then the image of pr,), contains a principal congruence subgroup of Sp,(OF).
For use in the proof of Theorem 3.12 we state a result of Pink.

THEOREM 3.13 [Pin98, Theorem 0.7|. Let L be a local field and let H be an absolutely simple
connected adjoint group over L. Let I be a compact Zariski-dense subgroup of H(L). Suppose
that the adjoint representation of I is irreducible. Then there exists a closed subfield E of L and
a model Hg of H over E such that I" is an open subgroup of Hg(FE).

We also need the following lemma, that results from an application of Theorem 5.12. We refer
to [Conl6, Lemma 3.11.5] for a detailed proof.

LEMMA 3.14. Let G be a profinite group and let G; be a normal open subgroup of G. Let L be
a field. Let 7: G — GSp,(L) be a continuous representation. Suppose that:

(i) there exists a representation 7, : G — GLa(L) such that 7|g, = Sym?®7{;

(ii) the image of T{ contains a principal congruence subgroup of SLa(L);
(iii) there exists a character n: G — L* such that det T = 75,
Then there exists a finite extension v: L — L' and a representation 7': G — GLa(L') such that

o1 22 Sym3 7.

The rest of the section is devoted to the proof of Theorem 3.12. Let (Im pp,)’" be the derived
subgroup of Im pp, and let G = (Im ppgyp) N Spy(K). We denote by G the Zariski-closure of G
in Sp,(K). As in [HT15, §3|, we will show first that under the hypotheses of Theorem 3.12 we
have G = Sp,(K), and second that G is p-adically open in G. We will replace the ordinarity
assumption in [HT15, §3| by that of Z,-regularity. Let G denote the connected component of
the identity in G.

Let H be any connected, Zariski-closed subgroup of Sp,, defined over K. As in [HT15, §3.4],
we have six possibilities for the isomorphism class of H over K:
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(i)
(i)
(iii) SLs embedded in a Klingen parabolic subgroup;
(iv) H = SLg embedded in a Siegel parabolic subgroup;

)

(v) H = SLjy embedded via the symmetric cube representation SLo — Sp, (in this case we write
H= Sym SLQ),

(vi) H 2 {1).

We show that only choice (i) is possible for H = G".
LEMMA 3.15. If condition (i) or (ii) in Theorem 3.12 holds, then G° = Sp,.

Proof. Let mg be the maximal ideal of Ok and let Fx = Og/mg. The group (Imppp) is
contained in G°(O). By reducing modulo my we obtain that the derived subgroup (Im prp) of
Impp, is contained in éo(IF k). If prp is residually full, then the only choice for the isomorphism
class of G is G~ Sps. If prp is residually of symmetric cube type, then either G Spy or
ao = Sym3 SL2

Suppose that G~ = Sym?®SLy. We show that there exists a GLg-eigenform f such that
PEp = Sym? p #p- This will contradict the second part of condition (ii) of Theorem 3.12, concluding
the proof of Lemma 3.15. As G (K) is of finite index in G(K), Lemma 3.14 implies that G(K) C
Sym? SLy(K), so Im prp C Sym?® GLy(K). Hence, there exists a representation p’ satisfying
prp = Sym® p'. As pr, is associated with a GSp,-eigenform, Corollary 3.9 implies that p’ is
associated with a GLs-eigenform f. O

We equip all groups with their p-adic topology. The proof of Theorem 3.12 is completed by
the following proposition.

PROPOSITION 3.16. Suppose that G = Sp,(K). Then the group G contains an open subgroup

Proof. Consider the image G®! of G under the projection Sp,(K) — PGSp,(K). It is a compact
subgroup of PGSp,(K). Since G = Sp,(K), the group G®! is Zariski-dense in PGSp,(K). By
Theorem 3.13 there is a model H of PGSp, over E such that G*? is an open subgroup of H(E).
By the assumption of Zj-regularity of p, there is a diagonal element d with pairwise distinct
eigenvalues. The group H(FE) must contain the centralizer of d in PGSp,(E), which is a split
torus in PGSp,(E). As H is split and H xp K = PGSpy /i, H is a split form of PGSp, over E.
Then H must be isomorphic to PGSp, over E by unicity of the quasi-split form of a reductive
group. Hence, G* is an open subgroup of PGSp,(F). As the map Sp,(K) — PGSp,(K) has
degree 2 and G N Sp,(E) surjects onto G* N PGSp,(E), G must contain an open subgroup of
Sp,(E). In particular, G contains a principal congruence subgroup of Sp,(Og). O

Theorem 3.12 states that, when pp, is either full or of symmetric cube type, the image of pg,,
is large if and only if F' is not a lift of an eigenform from a smaller group, the only possible such
lift under these assumptions being associated with the symmetric cube representation of GLs.
We think that a similar result should hold under more general assumptions on the residual
representation, and that it would follow from Pink’s theorem together with an analogue of
Corollary 3.9 for the other possible Langlands lifts to GSpy.
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4. Finite slope families of GSp,,-eigenforms

In this section, we define families of finite slope GSpy,-eigenforms of level T'y(N)NTo(p),
extending the definitions given in [CIT16, §3.1| for ¢ = 1. Our goal is to define such families
integrally. In the following sections, we only use families of genus 1 or 2, but we can give the
definitions for general genus with no extra effort.

Let p be a prime number and let N be a positive integer prime to p. For g > 1 let ngv’h

be the GSp,,-eigenvariety of tame level T'y(N). Let h € Q™*. As the slope sl: DéV(Cp) — R>?

N
g

sl(z) < h admits a structure of rigid analytic subvariety of Dév . We denote it by Dév’h. We write

is the valuation of a rigid analytic function on D', the locus of C,-points x € Dév satisfying

wg for the restriction of the weight map to Dév’h. Recall that we always identify the g-dimensional
weight space W, with a disjoint union of open discs of centre 0 and radius 1. A standard way
to obtain an integral structure on an admissible domain of an eigenvariety is to pull back the
integral structure on the weight space via the weight map. The restriction of the weight map
to Dév’h is not, in general, finite if A > 0, but it becomes finite when restricted to a sufficiently
small admissible domain in Dév’h. This is assured by a result of Bellaiche that we recall in the

following proposition. For every affinoid subdomain V' of Wy, let Dé\[{f = Dév’h Xwe V and let

h  _ . .h . PN
wg,V = w9|D£];”‘f' Dg,V — V.

PROPOSITION 4.1 (Bellaiche [Bel12]).

i) For every k € W2(Q,) there exists an affinoid neighborhood V}, , of k in W such that the
g\ep : g
map w;Vh s finite.

(ii) When h varies in Q** and r varies in Wy, the set {(wg’vhﬁ)*l(vhﬁ)}hﬁ is an admissible

affinoid covering of Dév .

In Bellaiche’s terminology, a pair (V}, ., k) such that V. has the property described in part (i)
is called an adapted pair. Part (i) of Proposition 4.1 follows from the fact that the characteristic
power series of UIEQ) acting on modules of overconvergent eigenforms is strictly convergent, in
particular from the calculation in [Bell2, Proposition I1.1.12| and the fact that the map from
the eigenvariety to the spectral variety is finite. Part (ii) follows from part (i) together with
the admissibility of Buzzard’s covering of the spectral variety [Buz07, Theorem 4.6] and the
construction of the eigenvariety (see [Bell2, Theorem I1.3.3]).

Remark 4.2. (i) By Proposition 4.1 there exists a radius rp, ., € p@ such that

Z,Bg(fﬁ,'r,:ﬁ): Dé\fgg(n,@n) — By(k, rh,n)

is a finite morphism. By the results of Hida theory for GSp,,, we can take o, =1 for every k.
(ii) We would like to have an estimate for 7, independent of x and with the property

that 75, — 1 for h — 0, to recover the ordinary case in this limit. This is not available at

the moment for the group GSpy,. An estimate of the analogue of this radius is known for the

eigenvarieties associated with unitary groups compact at infinity by the work of Chenevier [Che04,

Théoréme 5.3.1].
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4.1 Families defined over Z,

For our purpose of studying the images of Galois representations, we will need to have our
finite slope families defined over Z,. For this reason we specialize to families over weight discs for
which we can construct a Z,-model. For simplicity we only work on the connected component W'
Recall that we defined coordinates 77,75, ...,T, on Wy Let k be a point of W with coordinates
(K1, K2, ..., kKg) In Zg; for instance, we can take as x the arithmetic prime Py for some k € Z9.

N,h

Hng(”vT;,K) : ngg(’f’T};n)
finite. Such a radius is non-zero thanks to Remark 4.2(i). Let s;, be a rational number satisfying
r, = p°*. We define a model for By(x,r; ) over Q, by adapting Berthelot’s construction for the
wide open unit disc (see [deJ95, § 7]). Write sj, = b/a for some a,b € N. Fori > 1, let s; = s, +1/2°
and r; = p~%. Set

Let rp, . be the largest radius in p@ such that the map w — By(k,1, ) is

A =Tp(tr ta, g, Xi) /(85— p" P20 X ) 10,

and A,, = A9 [p~']. Set B; = Spm A,,. Then B; is a Q,-model of the disc of centre x and radius ;.
We define morphisms A7, ~— A7 by

Tit1

Xi+1’_>ani27
ti—>1t; forj=1,2,...,9.

They induce compact maps A, , — A, which give open immersions B; — B;;1. We define
By = h_r)nZBz where the limit is taken with respect to the above immersions. Let Ay, = O(By1)°.
Then Ay = LigliO(Spm B;)° = LﬂnzA% We call Ay, the genus g, h-adapted Iwasawa algebra;
we leave its dependence on x implicit. We define t1,%2,...,t5 € Ay as the projective limits of
the variables 1,1, ..., t4, respectively, of A7

There is a map of Z,-algebras L;h: Ay — Ay p defined by T +— tj+kj for j =1,2,...,g. The
inclusion ¢gp: Bgp — Wy induced by L;h makes By, into a Qp-model of By(k,r; ), endowed
with the integral structure defined by Ag .

Let 75, be an element of Q, satisfying v,(n,) = si. Let Kj = Qp(n,) and let O, be the ring of
integers of K},. The algebra A j, is not a ring of formal series over Zj,, but there is an isomorphism
Ag,h ®z, O, = Oh[[tl, to,... ,tg]].

We say that a prime of A, is arithmetic if it lies over an arithmetic prime of A;. By an
abuse of notation we will write again P, for an arithmetic prime of A, lying over the arithmetic
prime Py of A,.

Remark 4.3. Let k = (k1, k2, ..., ky) be a cohomological weight for GSp,,. There exists a prime
B of Ay lying over the prime Py of Ay if and only if the classical weight £ belongs to the disc
Bgy(0,7,); otherwise, we have PyAy = Ag4. This happens if and only if v,(k;) > —vp(rp) — 1 for

1=1,2,...,9, as we can see via a simple calculation.

Let Dé\j 5, be the rigid analytic space fitting in the following Cartesian diagram.

N N,h
Dm —Dy

i iws 5)

Byp 2= WE
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The rigid analytic space Dév »is a model of pNh over a p-adic field, but it is not necessarily

g,Bg(’{f”;’,@)
defined over Q, since the map ¢, may not be. We say that a C,-point of Dé\f ,, 1s classical if it is
N,h

g7B9(K‘vT‘}:’K)'

Let Ty = (’)(Dé\fh)o. We call T, the genus g, h-adapted Hecke algebra; we leave its

dependence on x implicit again. The weight map induces a morphism wy , : Dé\’] n — Bg.n, hence

a classical point of D

a morphism w; n: Ngn — Tg4p. Thanks to our choice of 7y, w; 5 gives Ty p, a structure of finite
Ag4 p-algebra. The Dix n > Dév’h appearing in the diagram induces a map (’)(Dév’h)o — Ty n, that
we compose with ), Hév — (’)(Dév’h)o to obtain a morphism ), p : ”Hév — Typ.

For a prime B of T, 5, we denote by evq: Ty — Zp the evaluation at 3. We say that ¥ is
a classical point of SpecTy j, if evep 0ty Hév — Zy is the system of Hecke eigenvalues attached

to a classical GSpy,-eigenform. These systems of eigenvalues also appear at classical points of
DN,
g,h

DEFINITION 4.4. We call the family of GSpy,-eigenforms of slope bounded by h an irreducible

N

component [ of D,y

equipped with the integral structure defined by T, 5.

We will usually refer to an I as in Definition 4.4 simply as a finite slope family. Let I° = O(I).
Then I° is a finite A, ,-algebra that is also profinite and local. The component I is determined by
the surjective morphism 6: T, — I°. We sometimes refer to ¢ as a finite slope family. The family
I is equipped with maps wg: I — By j, and vy: Hév — I induced by wg , and 1, respectively.
Here ° denotes the fact that we are working with integral objects. When introducing relative Sen
theory in § 7, we will need to invert p and we will drop the ° from all rings.

Proposition 2.2 implies that every family I contains at least a classical point. By the
accumulation property of classical point and the irreducibility of I, the classical points are
a Zariski-dense subset of I. Hence, the set of classical points of SpeclI® is Zariski-dense in
SpecI®. Every classical point of Specl® lies over an arithmetic prime of Spec Ay . For a family
0: Ty — I°, we give the following.

DEFINITION 4.5. We call an arithmetic prime P, C Ay j, non-critical for 1° if:

(i) every point of Specl® lying over Pj is classical;
(ii) the map wZ,BQ . Agn — I° is étale at every point of SpecI® lying over Pj.

We call Py, critical for I° if it is not non-critical. We also say that a classical weight & is critical
or non-critical for I° if the arithmetic prime P, has that property.

Remark 4.6. (i) By Proposition 2.2, if k£ is a classical weight belonging to B, and h < kg —
g(g + 1)/2 then k satisfies condition (i) of Definition 4.5. We do not know of a simple assumption
on the weight that guarantees that the second condition is also satisfied.

(ii) The set of non-critical arithmetic primes is Zariski-dense in Ay 5. This follows from part (i)
of the remark and the fact that the locus of étaleness of the morphism A, j, — 1° is Zariski-open
in I°.

4.2 The Galois representation associated with a finite slope family

Let xk be a point of Wy with Zj-coordinates. Let Tg; be the genus 2, h-adapted Hecke
algebra of centre k. As before, we will leave the dependence on x implicit. For simplicity, let
Ap = Ay, Ty, = Ty j. We implicitly replace T}, by one of its local components. Let §: T, — I° be
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a finite slope family of GSp,-eigenforms. Let Fr, be the residue field of T},. The pseudocharacter
Ty: Gg — (’)(Dév)o induces pseudocharacters T, : Gg — Tj, and T'r, : Gg — Fr,. By [Rou96,
Corollary 5.2 the pseudocharacter T, is associated with a representation py, : Gg — GL4(Fp),
unique up to isomorphism. We call py, the residual Galois representation associated with Tj.
We assume from now on that

the representation pr, is absolutely irreducible.

By the compactness of Gg there exists a finite extension F’ of Fr, such that pr,, is defined
on F'. Let W(Fr,) and W(F’) be the rings of Witt vectors of Fr, and ', respectively. Let
T), =Th QW (Fy, ) W (F’). We consider T, as a pseudocharacter Gg — T/, via the natural inclusion
T, — T}. Then Tr, satisfies the hypotheses of [Rou96, Corollary 5.2, so there exists a
representation pyr : Gg — GL4(T},) such that Trpry = Tr,,. By Proposition 2.5, for every prime
¢ not dividing Np we have

Tr(Tr, ) (Froby) = ¢2(T€<’22>)\D%h : (6)
»Bp,

In particular, Tr(Tr, )(Frob,) is an element of Tj. As T} is complete, Chebotarev’s theorem
implies that Tr,(g) is an element of T}, for every g € Gg. By a theorem of Carayol [Car94,
Théoréme 1] there exists a representation pr, : Gg — GL4(T},) that is isomorphic to pr, over T} .

The morphism #: Tj — I° induces a morphism GL4(T,) — GL4(I°) that we still denote
by 6. Let pro: Gg — GL4(I°) be the representation defined by pre = o pr,. Recall that we set
g = e(wz\pz%): HY — T°. Let

[Ty = An[{Tr(pa(9)) }gecol-

As Aj, C I3, C I°, the ring I3, is a finite Aj-algebra. In particular, I3, is complete. We keep our
usual notation for the reduction modulo an ideal ‘B of I7,. We say that a point ‘B of Spec Iy, is
classical if it lies under a classical point of SpecI°.

By Proposition 2.5 we have Peyar(Tr(pre))(Froby) = wg(Pmm(th);X)), so we deduce that
[5 = Au[{Tr(pe(9))}gecy)- As the traces of pro belong to I, another application of Carayol’s
theorem [Car94, Théoréme 1| provides us with a representation

PO G@ —> GL4(H9H)

that is isomorphic to pro over I°. Thanks to the following lemma we can attach to 6 a symplectic
representation.

LEMMA 4.7. There exists a non-degenerate symplectic bilinear form on (I3,)? that is preserved
up to a scalar by the image of py.

Proof. The argument of the proof is similar to that in [GTO05, Lemma 4.3.3] and [Pill2,
Proposition 6.4]. We show that pp is essentially self-dual by interpolating the characters
that appear in the essential self-duality conditions at the classical specializations. We deduce that
Im py preserves a bilinear form on (]I?FI)4 up to a scalar. Such a form is non-degenerate by
the irreducibility of pg and it is symplectic because its specialization at a classical point is
symplectic. |
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Thanks to the lemma, up to replacing py by a conjugate representation, we can suppose that
it takes values in GSp,(I%,). We call pg: Gg — GSp,(I5,) the Galois representation associated
with the family 6: Tj — I7,. In the following, we work mainly with this representation, so we
denote it simply by p. We write F for the residue field of I3, and p: Gg — GSp,(F) for the
residual representation associated with p.

Remark 4.8. Let € be the Nebentypus of the family 6. By interpolating the determinants of the
classical specializations of p, we obtain

det plg) = £(9)(u (1 + T1)(1 + T))2EO/19800) € 7y
for every g € Gg.

5. Conjugate self-twists of Galois representations attached to finite slope families

Given a ring R, we denote by Q(R) its total ring of fractions and by R"™ its normalization.
Now let R be an integral domain. For every homomorphism o: R — R and every v € GSp,(R),
we define 77 € GSp,(R) by applying o to each coefficient of the matrix . This way o induces a
group automorphism [-]7: G(R) — G(R) for every algebraic subgroup G C GSp, defined over R.
For such a G and any representation p: Gg — G(R), we define a representation p?: Gg — G(R)
by setting p?(g) = (p(g))? for every g € Gg.

Let S be a subring of R. We say that a homomorphism ¢: R — R is a homomorphism of R
over S if the restriction of o to S is the identity. The following definition is inspired by |Rib85,
§3] and |[Lan16, Definition 2.1].

DEFINITION 5.1. Let p: Gg — GSpy(R) be a representation. We call conjugate self-twist
for p over S an automorphism o of R over S such that there is a finite-order character
ne: Gg — R* and an isomorphism of representations over R:

p7 =1 @ p. (7)
We list some basic facts about conjugate self-twists. The proofs are straightforward.
PROPOSITION 5.2. Let p: Gg — GSp,(R) be a representation.

(i) The conjugate self-twists for p over S form a group.
(ii) Suppose that the identity of R is not a conjugate self-twist for p over S. Then for every
conjugate self-twist o the character n, satisfying the equivalence (7) is uniquely determined.
(ili) Under the same hypotheses as part (ii), the association o + 1, defines a cocycle on the
group of conjugate self-twists with values in R*.

(iv) Let S[Tr Ad p| denote the ring generated over S by the set {Tr(Ad(p)(g))}gec,- Then every
element of S[Tr Ad p)] is fixed by all conjugate self-twists for p over S.

Let 6: T, — I° be a family of GSpy-eigenforms as defined in §4. Let p: Gg — GSpy(I5,) be
the Galois representation associated with 6. Recall that I3, is generated over Ay by the traces of p.
We always assume that p is absolutely irreducible. Let I' be the group of conjugate self-twists for
p over Ap. We omit the reference to A from now on and we just speak of the conjugate self-twists
for p.

Remark 5.3. An argument completely analogous to that of [Lanl6, Proposition 7.1] proves that
the only possible prime factors of the order of I" are 2 and 3.

We denote by Igthe subring (]I%T)F of I3, consisting of the elements fixed by every o € I'.
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5.1 Lifting conjugate self-twists from classical points to families

Keep the notation as above. Let P, C Aj, be any non-critical arithmetic prime, as in
Definition 4.5. The representation p can be reduced modulo P;I7, to a representation pp, : Gg —
GSp,(I5,/Pkl,). Let 0 € I and let 17: Gg — (I3,)* be the character associated with o. The
automorphism ¢ induces a ring automorphism op, of I3, /FPlT,. The character 7: Gg — I3,
induces a character np, : Gg — (I%,/PelT,)*, satisfying

op, .

Pp. =P, ® ppy- (8)
As P, is non-critical, I° is étale over Ap at Py, so I3, is also étale over Ay at Pj. In
particular, P is a product of distinct primes in If; denote them by Pi,Ba,..., B4 As
op, is an automorphism of If,/Pyl3, = le I5,/%i, there is a permutation s of the set
{1,2,...,d} and isomorphisms &g, : I3, /B — I3,/PBs) for i = 1,2,...,d such that olp /p,
factors through oy, The character ﬁgpk can be written as a product Hle nip; for some characters

g, s Go — (I5,/%)*. From the equivalence (8), we deduce that

G’q}i ~ ~
Py, = ey © PPy

The goal of this subsection is to prove that if we are given, for a single value of i, data s(i), oy,
and 7y, satisfying the isomorphism above, then there exists an element of I' giving rise to
oy, and 7jp, via reduction modulo Pj. This result is an analogue of [Lanl6, Theorem 3.1].
We state it precisely in the following proposition.

PROPOSITION 5.4. Let i,j € {1,2,...,d}. Let o: I3, /B; — 13,/%B; be a ring isomorphism and
let ny: Gg — (I3,/B;)* be a character satisfying

PP = Mo @ pop;- 9)

Then there exists o € I with associated character 77: Gg — (I,)* such that, via the construction
of the previous paragraph, s(i) = j, o, = o and Tjp, = 7.

To prove the proposition, we first lift ¢ to an automorphism ¥ of a deformation ring for p
and then we show that ¥ descends to a conjugate self-twist for p. This strategy is the same as
that of the proof of [Lanl6, Theorem 3.1], but there are various complications that have to be
taken care of. We refer to [Conl6, §4.4] for the technical lemmas that generalize Lang’s result,
and we report here only the core elements of the proof.

Before proving Proposition 5.4 we give a corollary. Let ‘B € {B1,Be,...,Ba}. Let pp: Gg —
GSp,(I5,/B) be the reduction of p modulo B and let I'y be the group of conjugate self-twists
for pg over Zy,. Let I'(P) = {o € I'| o(P) = P}. The reduction of the elements of I'(P) modulo
B defines a morphism of groups I'(B) — I'p. Choosing PB; = P; = P in Proposition 5.4 gives
the following result.

COROLLARY 5.5. The morphism I'() — D'y is surjective.

5.1.1 Lifting conjugate self-twists to the deformation ring. We keep the notation of the
beginning of this section. We write n = n, for simplicity. Let QP denote the maximal extension
of Q unramified outside Np and set Ggp = Gal(Q™P/Q). Then we can and do consider p and 7

as representations of Ggp by Proposition 2.5 and (9).
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Recall that we denote by mye the maximal ideal of I, and by F the residue field I7, /Mo

Let W be the ring of Witt vectors of F. The residual representation p: Ggp — GL4(F) is
absolutely irreducible by assumption. By the results of [Maz89], the problem of deforming p to a
representation with coeflicients in a Noetherian W-algebra is represented by a universal couple
(R5, p"™V) consisting of a Noetherian W-algebra R, and a representation p"™i: Ggp — GL4(Rp).

By the universal property of R, there exists a unique morphism of W-algebras ay: R; — I3,
satisfying p & ayop"V. Let ev;: I3, — 15, /%; and ev;: I3, — I3, /%, be the two projections.
The following proposition follows from arguments completely analogous to those of [Lan16, § 3.1].
The details of the proof can be found in [Conl6, §4.4.1].

PROPOSITION 5.6.

(i) The automorphism @ of F is trivial.
(ii) There is an isomorphism p =7 ® p.

(iii) There exists an automorphism ¥ of Ry such that:

(a) X is a lift of o in the sense that oo ev;0 af = evjo oo ;
(b) Yo puniv = no puniv.

We set p” = ajo Yo p"V. Recall that p is the Galois representation associated with the
finite slope family 6. Our next step consists of showing that p* is associated with a family of
GSp,-eigenforms of a suitable tame level and slope bounded by h. Note that equality (b) in
Proposition 5.6(iii) implies p™ = 7 ® p, so it is sufficient to show that the representation n ® p is
associated with a family with the prescribed properties.

5.1.2 Twisting families by finite-order characters. We show that the twist of the Galois
representation associated with a family of GSp,-eigenforms is again associated with such a family.
We deduce this by the analogous result for a single classical Siegel eigenform, proved in [Conl6,
§4.5).

Let f be a cuspidal GSp,-eigenform of weight (kq,k2) and level I'y (M) and let pf,: Gg —
GSp, (@p) be the p-adic Galois representation attached to f. Let n: Gg — @; be a character of
finite order mg prime to p. We see n as a Dirichlet character when convenient.

PROPOSITION 5.7 [Conl6, Corollary 4.5.5]. Let M’ = lem(mq, M)?. Let = be a classical p-old
point of D! having weight (k1, ko), slope h and associated Galois representation p,. Then there
exists a classical p-old point x, of DéW having weight (ki, ko), slope h and associated Galois
representation py, =1 ® pg.

We remark that the proof relies on the calculations made by Andrianov in [And09, §1]. He
only considers the case ki = ko, but his work is easily adapted to vector-valued forms.

Now consider the family 0: T;, — I° fixed in the beginning of the section. For every p-old
classical point x of 6, let z,, be the point of the eigenvariety Dé\/l " provided by Proposition 5.7. Let
7y, be a radius adapted to h for the eigenvariety Dé” " Let A} be the genus 2, h-adapted Iwasawa
algebra for DY " and let T), be the genus 2, h-adapted Hecke algebra of level M’. Note that
ry, < T, so there is a natural map ¢j,: Ap, = A} All tensor products with A} over Ay, will be taken
with respect to ¢,. We can see pg as an I, ® A, A} -valued representation via I, — I3, ® Ay N
a— a® 1. We do this implicitly in the following.
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LEMMA 5.8. There exists a finite A} -algebra J°, a family 6': T) — J° and an isomorphism
a: I3, ®a, A, — J9, such that the representation pg: Gg — GSp,(JS,) associated with ¢
satisfies pgr =1 ® (ao py).

Remark 5.9. With the notation of the proof of Lemma 5.8, all points of the set 5’;] belong to the

family ¢, because of the unicity of a point of D3’ " given its associated Galois representation and
slope.

By combining Lemma 5.8 and Proposition 5.6(iii) we obtain the following.

COROLLARY 5.10. There exists a finite A} -algebra J°, a family ¢': T) — J° and an isomorphism
a: I3, ®p, A}, — J3, such that the representation pg: Go — GSpy(J3,) associated with ¢’
satisfies pgr = oo Yo p™™V,

5.1.3 Descending to a conjugate self-twist of the family. We show that the automorphism
Y of R5; defined in the previous subsection induces a conjugate self-twist for p. This will prove
Proposition 5.4. Our argument is an analogue for GSp, of that in the end of the proof of [Lan16,
Theorem 3.1]; it also appears in similar forms in [Fis02, Proposition 3.12] and [DG12, Proposition
A.3]. Here the non-criticality of the prime Py plays an important role.

Proof of Proposition 5.4. Let p: Gg — GSpy(F) be the residual representation associated with
p. Let R; be the universal deformation ring associated with p and let ™Y be the corresponding
universal deformation. As before let a;: R; — I3, be the unique morphism of W-algebras
ar: Ry — 17, satisfying p = ajo Uiy,

Consider the morphism of W-algebras a? = ajoX: Rz — I7,. We show that there exists an
automorphism o : I3, — I7, fitting in the following commutative diagram.

ag °
Rﬁ ]ITr

b

I o
RﬁHHTr

We use the notation of the discussion preceding Lemma 5.8. Consider the morphism
0 @ 1: Ty ®n, A}, — [°®4, A}, For every Ap-algebra A we denote again by ¢, the map 4 —
A @Ah A}, a+— a®1. The natural inclusion DM — Dé”/ induces a surjection sp,: Tj, — T}, ®Ah A
We define a family of tame level T';(M’) and slope bounded by h by

oM = (0 @1)osy: T — I°Qn, A}

The Galois representation associated with M is pomr = tpop: Gg — GSpy (I, ®n, A}). Let
¢': T} — J° be the family given by Corollary 5.10. We identify I, ®, A} with J, via the
isomorphism « given by the same corollary; in particular, the Galois representation associated
with 0’ is pgr = p~: Gg — GSpy(I3, @, A).

Recall that we are working under the assumptions of Proposition 5.4. In particular, we are
given two primes B; and PB; of I5,, an isomorphism o: I3, /PB; — I3,/PB; and a character
No: Gg — (If,/P;)* such that pf = 1, ® pyp,;. Let P, be the image of P; via the map
th: Iy, = Iy ® An Ay, The specialization of py at 9B} is pyp,. Let f' be an eigenform corresponding
to 9P;. By Remark 5.9, there is a point of the family ¢’ corresponding to the twist of f by n; let 3;
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be the prime of I3, @, A} defining this point. The specialization of py at P, 18 1 ® py,, which
is isomorphic to p, by assumption. Let f be an eigenform corresponding to the prime ;. The
forms f’ and f,’] have the same slope by Proposition 5.7 and their associated representations are
obtained from one another via Galois conjugation (given by the isomorphism o). Hence, f’ and
f,’7 define the same point of the eigenvariety D)/ ". Such a point belongs to both the families '
and ¢'. As Py, is non-critical, T}, is étale at every point lying over Py, so the families 6 "and ¢’
must coincide. This means that there is an isomorphism

-~ ~ ;) o~ ~ ,
o H’(i“r ®Ah Ah - ]19[‘1" ®Ah Ah

such tha‘g por = oopM'. The isomorphism/ o’ induces by restriction an isomorphism
A} [Tr(p™M")] — A}, [Tr(per)]. Note that A [Tr(p™)] = 11 (I3,) and

A4 [Tr(pg)] = Aj[Te(&0 p™)] = &' (AL [Tr(p™"))])
= & (AL [Te(140 p)]) = & (tr (An[Trp])) = & (14 (13,))-

In particular, ¢’ induces by restriction an isomorphism ¢ (I3,) = ¢ (I5,). As ¢y is injective, we
can identify ¢’ with an isomorphism o : I3, — I3,. By construction, & fits in diagram (10). O

5.2 Rings of conjugate self-twists for representations attached to classical eigenforms
Let f be a classical GSpy-eigenform and py,: Gg — GSp4(@p) the p-adic Galois representation
associated with f. Up to replacing py, with a conjugate we can suppose that it has coefficients
in the ring of integers O of a p-adic field K. Suppose that f satisfies the hypotheses of
Theorem 3.12, i.e. that pg,, is of Sym? type, but f is not the symmetric cube lift of a GLg-

eigenform. Let I'y be the group of conjugate self-twists for p over Z, and let C’)Ir(f be the subring
of elements of Ok fixed by I'¢. As in § 3.3, we define another subring of O by Op = Z,[Tr(Ad p)].
We prove the following.

PROPOSITION 5.11. There is an equality (’)g(f =0Og.

Before proving Proposition 5.11, we recall a result of O’Meara about isomorphisms of
congruence subgroups. We denote by PSpy, and PGSpy, the projective symplectic groups
of genus g. The following is a rewriting of [OMe78, Theorem 5.6.4| for the situation we are
interested in.

THEOREM 5.12. Let F' and Fy be two fields. Let A and Ay be subgroups of PGSpy,(F) and
PGSpy, (F1), respectively, satisfying Fpsp2g(F)(a) C A and Fpsp2g(F1)(a) C Ay. Let ©: A —
Ay be an isomorphism of groups. Then there exists an automorphism ¢ of F' and an element
v € PGSpy,(F1) satistying

Oz = vz~ !
for every x € A.

We fix some notation. Let End(sp,(K)) be the K-vector space of K-linear maps sp,(K) —
sp,(K) and let GL(sp,(K)) be the subgroup consisting of the bijective ones. Let Aut(gsp,(K)) be
the subgroup of GL(sp,(K)) consisting of the Lie algebra automorphisms of sp,(K). Let maq
be the natural projection GSp,(Or) — PGSp,(Ok) and let Ad: PGSp,(K) — GL(sp,(K)) be
the injective group morphism defined by the adjoint representation. As sp, admits no outer
automorphisms, Ad induces an isomorphism PGSp,(K) = Aut(sp,(K)). For simplicity, we write
p = pfp in the following proof (but recall that in the other sections p is the Galois representation
attached to a family).
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Proof of Proposition 5.11. The inclusion O C (’)if follows from Proposition 5.2(5). We prove
that (’)g(f C Op. As (’);(f and O are normal, it is sufficient to show that an automorphism of

Ok over OF leaves O;f fixed. Consider such an automorphism o. As Op is fixed by o, we have
(Tr(Ad p)(g))? = Tr(Ad p(g)) for every g € Gg, hence Tr(Ad p?(g)) = Tr(Ad p(g)). The equality
of traces induces an isomorphism Ad p” = Ad p of representations of Gg with values in GL(sp,).
This means that there exists ¢ € GL(sp,(K)) satisfying

Adp® = ¢o Ad pop~ L. (11)

We show that ¢ is actually an inner automorphism of sp,(K).

Clearly Ad induces an isomorphism maq(Im p) = Im Ad p. For every x € GL(sp,(K)), we
denote by ©, the automorphism of GL(sp,(K)) given by conjugation by z. In particular,
we write (11) as Adp” = ©4(Adp). By combining Theorems 3.12 and 5.12, we show that we
can replace ¢ by an element ¢ € Aut(sp,(K)) still satisfying Ad p7 = Oy (Ad p(¢')).

We identify PGSp,(OFg) with a subgroup of PGSp4((’)§(f ) via the inclusion O C (’)Ef given
in the beginning of the proof. Consider the group A = (waqIm p) N PGSp,(Op) C PGSp,(Ok)
and its isomorphic image Ad(A) C GL(sp,). As f satisfies the hypotheses of Theorem 3.12,
Im p contains a congruence subgroup I'p,, (a) of GSp,(OFg) of some level a C Op. It follows that
mad Im p contains the projective congruence subgroup PT'o, (a) of PGSp4(OF), so A also contains
PT'o,(a). In particular, A satisfies the hypotheses of Theorem 5.12. As Adp? = O4(Adp),
we have an equality (Ad(A))? = ©4(Ad(A)), where we identify both sides with subgroups
of PGSp,(OFg). Now o acts as the identity on PGSp,(OF), so the previous equality reduces
to Ad(A) = O4(Ad(A)). Let © = Ad 10040 Ad: A — A. As Ad is an isomorphism, the
composition © is an automorphism. Moreover, it satisfies

O4(Ad(9)) = Ad(6(9)) (12)

for every 6 € A. By Theorem 5.12 applied to FF = Fy = K, A1 = A and ©: A — A, there exists
an automorphism 7 of K and an element v € GSp,(K) such that ©(8) = y67y~! for every 6 € A.
We see from (12) that 7 is trivial. It follows that ©4(y) = Ad(y)oyo Ad(y)~! for all y € Ad(A).
By K-linearity, we can extend O, and ©4q(y) to identical automorphisms of the K-span of
Ad(A) in End(sp,(K)). As A contains the projective congruence subgroup PT'o, (a), its K-span
contains Ad(GSp,(K)); in particular, it contains the image of Ad p. Hence, ©4 and © ,4(,) agree
on Ad p, which means that (11) implies Ad p” = ©q4(,)(Ad p). Then, by the definition of © 5q(,),
we have Ad p° = Ad(vy)o Ad po (Ad(7))~! = Ad(ypy~!). We deduce that there exists a character
ne: Gg — OF satisfying p?(g9) = n,(9)vp(g)y~" for every g € Gg, hence that p” = n, ® p. We
conclude that o is a conjugate self-twist for p. In particular, o acts as the identity on oL , as
desired. O

Remark 5.13. Let p: Gg — GSpy4(I7,) be the big Galois representation associated with a family
0: Tj, — I°. We can define a ring Ap[Tr(Ad p)] analogous to the ring O defined above. We have
an inclusion Ap[Tr(Adp)] C I given by Proposition 5.2(5). However, the proof of the inclusion
OIFJ C Og in Proposition 5.11 relied on the fact that Im ps,, contains a congruence subgroup of

GSp,(Op). As we do not know if an analogue for p is true, we do not know whether an equality
between the normalizations of Ap[Tr(Ad p)] and I holds.

Suppose that the GSp,-eigenform f appears in a finite slope family 6: T; — I°. Let B be
the prime of I3, associated with f and suppose that P N Ay, is a non-critical arithmetic prime
Py. Let PBo =P NI5. The following is an analogue of [Lanl6, Proposition 6.2|, that results from
a straightforward application of Corollary 5.5.
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PROPOSITION 5.14. There is an inclusion I /Py C O;f.
The results of this section admit the following corollary.

COROLLARY 5.15. Let p = Gg — GSpy(I5,) be the representation associated with the family 6.
Let B be a prime of 17, corresponding to a classical eigenform f that is not a symmetric cube
lift of a GLg-eigenform. Let By = P NIG. Then the image of pp: Gg — GSpy(I5,/B) contains a
non-trivial congruence subgroup of GSp,(I§/%o).

Proof. As before, let Op = Z,[Tr Ad py]. By Theorem 3.12, the image of py contains a congruence
subgroup of GSp,(Of). By combining Propositions 5.11 and 5.14, we obtain I§ /B C OF, hence
the corollary. O

6. Constructing bases of lattices in unipotent subgroups

In this section, we show that the image of the Galois representation associated with a family of
GSp,-eigenforms contains a ‘sufficiently large’ set of unipotent elements.

6.1 An approximation argument

We recall a simple generalization of the approximation argument presented in the proof of [HT15,
Lemma 4.5]. We refer to [Conl6, §4.7] for the details of the proof, because there is an imprecision
in the argument of [HT15]. In particular, [HT15, Lemma 4.6] does not give the inclusion (4.3)
in [Conl6, §4.7]; it needs to be replaced by [Conl6, Lemma 4.7.2]. Let G be a reductive group
defined over Z. Let T and B be a torus and a Borel subgroup of G, respectively. Let A be the
set of roots associated with (G, T).

PROPOSITION 6.1 [Conl6, Proposition 4.7.1]. Let A be a profinite local ring of residual
characteristic p endowed with its profinite topology. Let G be a compact subgroup of the
level p principal congruence subgroup I'g(a)(p) of G(A). Suppose that:

(i) the ring A is complete with respect to the p-adic topology;
(i) the group G is normalized by a diagonal Z,-regular element of G(A).

Let a be a root of G. For every ideal () of A, let mg: G(A) — G(A/Q) be the natural projection,
inducing a map 7g.q: U*(A) - U%(A/Q). Then no(G) NU¥(A/Q) = mo(GNU*(A)).

We give a simple corollary.

COROLLARY 6.2. Let p: Gg — GSpy(I7,) be the Galois representation associated with a finite
slope family 0: Ty, — I°. For every root a of GSpy, the group Im p N U%(I,) is non-trivial.

Proof. Let B be a prime of I° corresponding to a classical eigenform f that is not the symmetric
cube lift of a GLo-eigenform. Let O = Z,[Tr(Ad pg)]. By Theorem 3.12 Im pg contains a non-
trivial congruence subgroup of Sp,(Og). In particular, Im pp NU“ (I3, /%) is non-trivial for every
root a. Now we apply Proposition 6.1 to G = GSpy, T' =T, B = By A =13, G = Imp and
@ =B. We obtain that the projection Im pNU*(I5,) = Im ppNU*(I5, /%) is surjective for every
a. In particular, Im p N U*(I3,) must be non-trivial for every . O

6.2 A representation with image fixed by the conjugate self-twists

Let 6: T, — I° be a finite slope family with associated representation p: Gg — GSp,(If,).
As before, we assume p is residually irreducible and Z,-regular. Let I be the group of conjugate
self-twist of p and let I be the subring of I3, consisting of the elements fixed by I'. By restricting
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the domain of p and replacing it with a suitable conjugate representation, we obtain a Zj-regular
representation with coefficients in I[j. This is the content of the next proposition.

We write 7), for the finite-order Galois character associated with o € T'. Let Hy = (¢ ker 7.
As T is finite Hy is open and normal in Gg. Note that Tr(p(Hp)) C GSpy(I5). If olm, is
irreducible, then by Carayol’s theorem [Car94, Théoréme 1] there exists g € GL4(I%,) such that
the representation p? = gpg~! satisfies Im p9|p, C GL4(I3). The hypothesis of irreducibility of
p|H, can probably be checked in the residually full or symmetric cube cases, but it would be too
restrictive if we wanted to generalize our work to other interesting cases (for instance, to lifts
from GLy,p with F'/Q real quadratic or from GL;,p with F//Q CM of degree 4). For this reason
we do not make the above assumption and we follow instead the approach of [CIT16, Proposition
4.14], that comes in part from the proof of [Lanl6, Theorem 7.5|.

PROPOSITION 6.3. There exists an element g € GSp,(I%,) such that:

(1) gpg™"(Ho) C GSpy(lo);
(ii) gpg~'(Ho) contains a diagonal Z,-regular element.

Proof. Let V' be a free, rank-four I7,-module. The choice of a basis of V determines an
isomorphism GL4(I%,) = Aut(V), hence an action of p on V. Let d be a Z,-regular element
contained in Im p. We denote by {ei}izl,_,_A a symplectic basis of V such that d is diagonal. Until
further notice, we work in this basis.

By definition of conjugate self-twist, for each o € I" there is an equivalence p® = 1, ® p. This
means that there exists a matrix C, € GSp,4(I7,) such that

p°(9) = 1oCop(9)C5 1. (13)

Recall that we write mye for the maximal ideal of I3, and F for the residue field of I7,. Let C,
be the image of C; under the natural projection GSp,(I7,) — GSpy(F). We prove the following
lemma.

LEMMA 6.4. For every o € I' the matrix C, is diagonal and the matrix C,, is scalar.

Proof. Let o be any root of GSp, and u® be a non-trivial element of Im p N U%(I%,). Such a u®
exists thanks to Corollary 6.2. Let g be an element of Gg such that p(¢g®) = u®. By evaluating
(13) at g* we obtain C,u®C, ! = (u®)?, which is again an element of U%(I3,). We deduce that
Cy normalizes U*(Q(I7,)). This holds for every root a, so Cy normalizes the Borel subgroups of
upper and lower triangular matrices in GSp,(Q(I,)). As a Borel subgroup is its own normalizer,
we conclude that C, is diagonal.

By Proposition 5.6(i) the action of I' on I, induces the trivial action of I" on F. By evaluating
(13) at g* and modulo mye , we obtain, with the obvious notation, Cou® (Co)™t = (u¥)° = u".
As C, is diagonal and u® € U%(FF), the left-hand side is a(C,)u®. We deduce that a(C,) = 1.
As this holds for every root «, we conclude that C, is scalar. O

We write C' for the map I' — GSp,(I7,) defined by C(c) = C,. We show that C' can be
modified into a 1-cocycle that still satisfies (13). For every o € " and every i, 1 <i < 4, let (Cy);
denote the scalar matrix whose entries coincide with ith diagonal entry of C,. Define a map
C!: T — GSpy(I3,) by Ci(o) = (Cy); 'C,. A simple check using (13) and the cocycle identity for
the elements 7, (Proposition 5.2(iii)) shows that C] is a 1-cocycle.
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Set C! = C}(o). We have

p°(9) = 16Cop(9)Cs ' = 15Clp(g)(CH) . (14)

By Lemma 6.4 C, is scalar, so we obtain CT’T = (60);160 = 14 with the obvious notation.
Recall that {e;}i—1,... 4 is our chosen basis of the free I3,-module V', on which Gg acts via p. For
every v € V, we write as v = 2?21 Ai(v)e; its unique decomposition in the basis (e;)i=1,... 4, with
Ai(v) € 13, for 1 < i < 4. For every v € V and every o € T, we set vl7l = (€)1 30 | \i(v)7e;.
This defines an action of I on V because C, is a 1-cocycle. Let VI denote the set of elements of
V fixed by I'. The action of I' is clearly Ig-linear, so VI has a structure of Ig-submodule of V.
Let v € V'l and h € Hy. Then p(h)v is also in VI as we see by a direct calculation using
(14). We deduce that the action of Gg on V via p induces an action of Hy on VI, We will

conclude the proof of the proposition after having studied the structure of V[,
LEMMA 6.5. The [j-submodule VI of V is free of rank four and its [7,-span is V.

Proof. Choose i € {1,...,4}. We construct a non-zero, I'-invariant element w; € I, e;. The
submodule I5,e; is stable under I' because C!, is diagonal. The action of I' on If,e; induces
an action of I' on the one-dimensional F-vector space IT,e; ®pe F. Recall that the conjugate

self-twists induce the identity on F by Proposition 5.6(i) and that the matrix C” is trivial for
every o € I', so I' acts trivially on I3, e; Qe F.
For = € I7,e;, we let T be the image of x via the natural projection I7,e; — I3,e; Q2. F.

Choose any v; € Ig,e; such that v; # 0. Let w; = ZUGF UZ[»U]. Clearly w; is invariant under the
action of I'. We show that w; # 0. Then w; = > @Ea} =Y yer Ui = card(I") - 7; because I' acts
trivially on I7,e; ®pe F. By Remark 5.3, the only possible prime factors of card(I") are 2 and 3.
As we supposed that p > 5, we have card(I") # 0 in F. We deduce that w; = card(I")v; # 0 in F,
so w; # 0.

Note that {w;}i=1,. 4 is an IJ-basis of V because w; # 0 for every i. In particular, the
I5-span of the set {w;}i=1 .4 is a free, rank-four I§-submodule of V. As VI has a structure of
IS-module and w; € VI for every i, there is an inclusion Z?:l sw; C VT We show that this is
an equality. Let v € VI, Write v = Z?:l Aiw; for some A; € I5,. Then, for every o € I, we have
v=oll = Z?:l )\;-’wl[-a] = Z?:l A w;. As {w; }i=1,.. 4 is an [7,-basis of V', we must have \; = A7 for
every ¢. This holds for every o, so we obtain \; € I for every ¢. Hence, v = 2?21 Aw; € Z?:l oW; -

The second assertion of the lemma follows immediately from the fact that the set {w;}i=1,.. 4
is contained in VI and is an [7,-basis of V. O

Now let h € Hy. Let {w;}i=1,.. 4 be an I§-basis of VI satisfying w; € I, €i, such as that
provided by the lemma. As I3, - vl = v, {w;}i=1,.. 4 is also an I3,-basis of V. Moreover,
{wi}i=1,. 4 is a symplectic basis of V', because w; € I3, e; for every i and {e;} is a symplectic
basis. By construction, the basis {w;}i=1,.. 4 has the two properties we desire. O

From now on we always work with a Z,-regular conjugate of p satisfying p(Hy) C GSp4(I§).

6.3 Lifting unipotent elements

We give a definition and a lemma that will be important in the following. Let B — A be an
integral extension of Noetherian integral domains. We call an A-lattice in B an A-submodule of
B generated by the elements of a basis of Q(B) over Q(A).
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LEMMA 6.6 [Lanl6, Lemma 4.10|. Every A-lattice in B contains a non-zero ideal of B.
Conversely, every non-zero ideal of B contains an A-lattice in B.

Let §: Tj, — I° be a finite slope family of GSp,-eigenforms and let p: Gg — GSpy(I7,) be
the representation associated with 6. For every root «, we identify the unipotent group U“(If)
with I§ and Im p N U*(I3) with a Z,-submodule of I. The goal of this section is to show that,
for every a, Im p N U® contains a basis of a Ap-lattice in Ij. Our strategy is similar to that of
[CIT16, §4.9|, which in turn is inspired by [HT15] and [Lan16]. We proceed in two main steps,
by showing that:

(i) there exists a non-critical arithmetic prime Py C Ay such that Imppgs N U*(I5/PLI5)
contains a basis of a Aj,/Py-lattice in I§/Pyl5;

(ii) the natural morphism Im p N U*(I§) — Tm ppge N U*(I5/PI) is surjective, so we can lift
a basis as in point (i) to a basis of a Aj-lattice in I§.

Part (i) is proved via Theorem 3.12 and a result about the lifting of conjugate self-twists from
pp,1g to p (Proposition 5.4). Part (ii) will result from an application of Proposition 6.1.

We start by stating that we can choose an arithmetic prime with special properties. The
following lemma follows from a simple Zariski-density argument, relying on the fact that
the weights of the symmetric cube lifts are contained in a two-dimensional (that is, one-parameter)
subscheme of Spec Ay,.

LEMMA 6.7. Suppose that p is either full or of symmetric cube type. Then there exists an
arithmetic prime Py, of Ay, such that:

(i) Py is non-critical for I° in the sense of Definition 4.5;

(i) for every prime B C I° lying above Py, the classical eigenform corresponding to 3 is not
the symmetric cube lift of a GLg-eigenform.

Let mg denote the maximal ideal of If. Let H = {g € Hy|p(g) = 1 (mod myp)}, that is a

normal open subgroup of Hy. We define a representation pg: H — Sp,(I) by setting
po = plu @ det(plu) /.

Here the square root is defined via the usual power series, that converges on p(H). Even though
our results are all stated for the representation p, in an intermediate step we will need to work
with pp and its reduction modulo a prime ideal of I. We now show how it will be possible to
transfer our results back to pg.

For the rest of this section, we fix an arithmetic prime Py of A}, satisfying conditions (i) and
(ii) in Lemma 6.7. By the étaleness condition in Definition 4.5, P,I° is an intersection of distinct
primes of I°, so Pl is an intersection of distinct primes of I§. Let 91,95, ...,Q4 be the prime
divisors of Pyl. Let J be either Pl or Q; for some i € {1,2,...,d}.

LEMMA 6.8. The group p(H) contains a non-trivial congruence subgroup of Sp,(I§/J) if and
only if the group po(H) does.

Proof. The lemma is proved in the same way as [CIT16, Proposition 4.22|, by replacing
Tazhetdinov’s result on subnormal subgroups of symplectic groups of genus 1 with his result
in genus 2 [Taz85, Theorem]|. O
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The following is a consequence of Proposition 5.15 and Lemma 6.8, together with our choice
of Pk.

LEMMA 6.9. Let Q be a prime of I§j lying over Pj,. Then the image of py q contains a non-trivial
congruence subgroup of Sp,(I5/Q).

Proof. By Proposition 5.15, the image of pg contains a non-trivial congruence subgroup of
Sp4(I5/9Q). As H is a finite index subgroup of G, the same is true if we replace pg by palm.
Now the conclusion follows from Lemma 6.8 applied to J = . O

6.4 Big image in a product
Lifting the congruence subgroup of Lemma 6.9 to I° does not provide the information we need
on the image of pg. We need the following fullness result for pp, .

PROPOSITION 6.10. The image of the representation pp, contains a non-trivial congruence
subgroup of Sp,(1§/PI3)-

6.5 Unipotent subgroups and fullness

Recall that for a root a of GSp,, we denote by U the corresponding one-parameter unipotent
subgroup of GSp, and by u® the corresponding nilpotent subalgebra of gsp,(R). For an ideal a
of R, we call ‘congruence subalgebra of level a’ of sp,(R) the Lie algebra a-sp,(R). The following
lemma admits two versions, for Lie algebras and for groups, that can be proved via a computation
with Lie brackets and commutators, respectively.

LEMMA 6.11. Let R be an integral domain. Let & be a Lie subalgebra of sp,(R) and let G be a
subgroup of Sp,(R). The following are equivalent:

(1) the Lie algebra & contains a congruence Lie subalgebra (the group G contains a congruence
subgroup, respectively) of level a non-zero ideal a of R;

(2) for every root « of Spy,, the nilpotent Lie algebra & N u®(R) (the unipotent subgroup

~

GNU“(R), respectively) contains a non-zero ideal a,, of R via the identification u*(R) = R
(GNUY(R) = R, respectively).

Moreover:

(i) if condition (1) is satisfied for an ideal a, then condition (2) is satisfied if we choose a, = a
for every a;

(i) if condition (2) is satisfied for a set of ideals {a,}q, then condition (1) is satisfied for the
ideal a =[], a®, where the product is over all roots « of Spy.

Remark 6.12. In both versions of Lemma 6.11, if there is an ideal a’ of R such that the choice
a, = a for every a satisfies condition (2), then the choice a = (a’)? satisfies condition (1).

By applying Proposition 6.10 and Lemma 6.11 to R = I§/P;lj and G = Im pg p, we obtain
the following corollary.

COROLLARY 6.13. For every root a of GSp, the group Im pp, N U*(I§/ P,lj) contains the image
of an ideal of Ifj/ PI.
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6.6 Lifting the congruence subgroup
If « is a root of GSp,, G is a group, R is a ring and 7: G — GSp,(R) is a representation,
let U%(1) = 7(G) N U*(R). We always identify U*(R) with R, hence U®(7) with an additive
subgroup of R.

Recall that p: Hy — GSpy(If) is the representation associated with a finite slope family
0: Ty, — I° and that pp, is the reduction of p modulo P,Ij. We use Corollary 6.13 together with
Proposition 6.1 to obtain a result on the unipotent subgroups of the image of p.

PROPOSITION 6.14. For every root « of GSp,, the group U%(p) contains a basis of a Ap-lattice
in Ij.

Proof. Let my: I§ — 15/P,I§ be the natural projection. We denote also by 7 the induced
map GSp,(I5) — GSpy(I5/Pkl5). For a root a of GSpy, let nf: UY(I5) — U*(I5/Plj) be
the projection induced by 7. Let G = Imp N FGSp4(H8)(p) and Gp, = m,(G). The choices
A=15, G =GSpy, T =15, B= By, G=1ImpnN Iggp,az)(p) and Q@ = Py satisfy the
hypotheses of Proposition 6.1, hence 7j induces a surjection GNU(I§) — GNU*(15/PI5). Let
G =GNUXI) and G¢ = G NUY(I5/Pl3). As usual, we identify them with Z,-submodules
of I§ and I§/PIS, respectively.

By Corollary 6.13 there exists a non-zero ideal aj of I§/P,Ij such that az C Impp, N
U*(I§/PelG). Set by = pag. Then by C G¢. By the result of the previous paragraph, the map
G* — G¢ induced by 7 is surjective, so we can choose a subset A of G* that surjects onto by.
Let M be the Ap-span of A in I. Let b be the pre-image of by via 7: I§ — I3/ P,I5. Clearly
A C b, s0 M is a Ap-submodule of b. Moreover, M/PyM = b, by the definition of A. As A is
local, Nakayama’s lemma implies that the inclusion M < b is an equality. In particular, the
Ap-span of G* contains an ideal of Ij. By Lemma 6.6, this implies that G* contains a basis of a
Ap-lattice in I§. O

7. Relative Sen theory

Let 6: T;, — I° be a finite slope family. We keep the notation of the previous sections. Recall
that the image of the family in the connected component of unity of the weight space is a disc
Bs(k,rh,) adapted to the slope h. To guarantee the convergence of a certain exponential series
(see §7.4), from now on we make the following assumption:

Ba(k,mh,) C Ba(0,p~ /P71, (exp)

In §4, we defined a family of radii {r;},>1 and we let A, be the ring of rigid analytic
functions bounded by 1 on Bs(0,r;). For every i > 1, there is a natural injection ¢,.: Aj, — A,,.
Set I, o = I§ ®n, A7, We endow ID. ; with its p-adic topology.

Remark 7.1. (i) The ring If admits two inequivalent topologies: the profinite topology and the
p-adic topology. The representation p is continuous with respect to the profinite topology on I,
but it is not necessarily continuous with respect to the p-adic topology.

(i) As I§ is a finite Ap-algebra, r:,0 1s a finite A7 -algebra. There is an injective ring morphism
L;,i : I§ = I}, o sending f to f ® 1. This map is continuous with respect to the profinite topology
on [§ and the p-adic topology on I, ;: this can be seen by looking at the definition of A7 in §4.1
(for g = 2) and remarking that the p-adic valuation of the variables ¢1, to is positive over any disc
of radius strictly smaller than 1.
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We associated with 6 a representation p|p,: Hyo — GSp,(I§) that is continuous with respect
to the profinite topologies on both its domain and target. By Remark 7.1(i), p|p, needs not be
continuous with respect to the p-adic topology on GSp,(I§). This poses a problem when trying
to apply Sen theory. For this reason, we introduce for every ¢ the representation p,,: Hy —
GSpy (I}, o) defined by py, = ¢;.0 p|u,. We deduce from the continuity of ¢}, that p,, is continuous
with respect to the profinite topology on Hy and the p-adic topology on I} . It is clear from the
definition that the image of p,, is independent of i as a topological group.

There is a good notion of Lie algebra for a pro-p group that is topologically of finite
type. For this reason, we further restrict Hp so that the image of p,, is a pro-p group. Let
H, = {9 € Ho|pr,(9) = 14 (mod p)} and set H,, = H, for every i > 1. The subgroup
{M € GSpy(I7, o) |M = 14 (mod p)} is of finite index in GSpy(I7, o). Note that this depends
on the fact that we extended the coefficients to I, o, because {M € GSp,(I3) | M = 14 (mod p)}
is not of finite index in GSp,(Ip). We deduce that H,, is a normal open subgroup of Gg. Let
Ky, be the subfield of Q fixed by H,.. It is a finite Galois extension of Q.

Recall that we fixed an embedding Gg, — Gq, identifying Gg, with a decomposition
subgroup of Gq at p. Let H,,, = Hy, N Gq,. Let Ky, , be the subfield of @p fixed by H,, .
The field Ky, , will play a role when we apply Sen theory. For every i, let G,, = pr, (Hy,) and
Glrfc = pTi(HT‘zyp)'

Remark 7.2. The topological Lie groups G, and G}?C are independent of r, in the following sense.
For positive integers ¢,j with ¢ < 7, let L:;Z I, 0 = Iy, 0 be the natural morphism induced by
the restriction of analytic functions A,, — A,,. As H,, = H,, = H,, by definition, L:; induces

~

isomorphisms ¢;%: Gy, — Gy, and v G}fj’,c — G}fl?c.

7.1 Big Lie algebras
As before, let r be a radius among the 7, i € N>, We will associate with pr(H,) a Lie algebra
that will give the context in which to apply Sen’s results. Our methods require that we work with
Qp-Lie algebras, so we define the rings A, = A2[p~!] and I,.o = o [p~1].

Let a be a height-two ideal of I, o. The quotient L, o/a is a finite-dimensional Q,-algebra. Let
Ta: Ir0 = I 0/a be the natural projection. We still denote by 7, the induced map GSp, (I, o) —
GSpy(Ir0/a). Consider the subgroups G, o = m,(G,) and Gi,?g = ma(GY°) of GSp,(I,0/a). They
are both pro-p groups and they are topologically of finite type because GSpy(L.o/a) is. It
makes sense to consider the logarithm of an element of G, because this group is contained in
{M € GSpy(Iro/a) | M = 14 (mod p)}.

We attach to G4 and G;f’g the Q,-vector subspaces &, 4 and Qﬁlﬁcof gsp4 (I, 0/a) defined by

a

Gra=Qp-logG,, and @}?g =Qyp - log Gl;’g
The Q,-Lie algebra structure of gsp, (L. o/a) restricts to a Q,-Lie algebra structure on &, 4 and
QS}S& These two Lie algebras are finite-dimensional over Q, because gsp, (I, o/a) is.

Remark 7.3. The Lie algebras &, , and (’5}5?5 are independent of r, in a sense analogous to that
of Remark 7.2.

Recall that there is a natural injection Ay < A, hence an injection Ag[p~!] — Ap[p~?]. For
every k = (ki, k2), the ideal PyAp[p~1] is either prime in Aj[p~!] or equal to Ap[p~1]. We define
the set of ‘bad’ ideals SR of As[p~!] as

SR = (14 Ty — ), (1 4+ Ts — w?), (1 4+ T5 — u(l + T1), (1+ T)(1 +Tp) — u*)}.
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Then we define the set of bad prime ideals of Ay[p~!] as
SPad — £P prime of Ap[p~']| PN Ag[p!] € 5§43,

We will take care to define rings where the images of the ideals in SP®d consist of invertible
elements. The reason for this will be clear in Proposition 7.13. Let So be the set of ideals a of I, o
of height two such that a is prime to P for every P € SP2d. Let S} be the subset of prime ideals
in Sy. We define the ring
B, = lim I, p/a
T GZEQ r,O/ )

where the limit of finite-dimensional Q,-Banach spaces is taken with respect to the natural
transition maps I, o/a; — I, o/as defined for every inclusion of ideals a; C as. We equip L, /a
with the p-adic topology for every a and B, with the projective limit topology. There is a natural
injection ¢p, : [0 = B, with dense image.

Now consider the sets

SRI={PNA |Pes™} Sya={anA|acS}, S, ={anA,|ac S5}

For later use, we define a ring
B, = l(in A, /a,
CIESQ’A

where the limit of finite-dimensional Q,-Banach spaces is taken with respect to the natural
transition maps A,/a; — A, /ag defined for every inclusion of ideals a; C as. We equip A,/a
with the p-adic topology for every a and B, with the projective limit topology. There is a natural
injection ¢p, : A, — B, with dense image. The natural inclusion B, — B, gives B, a structure
of finite B,-algebra, as we can deduce from the fact that I, o is a finite A,-algebra.

Remark 7.4. For every P € S”*d we have P-B, = B,, because the limit defining B, is over ideals

prime to P. In the same way, we have P - B, = B, for every P € S}Zﬁd.

We attach to the groups G, and GI°¢ two Q,-Lie subalgebras of gsp,(B,). Let

loc

G, = lim &,, and ®°° = lim B
<~ ’ <~ )

aES2 aeSs

where &, and ®l¢ are the Lie algebras we attached to Gr,q and Gif,’g The Qp-Lie algebra

r,a
structures on &, ; and @L‘?g
®lo¢ with the p-adic topology induced by that on gsp,(B,).

When we introduce the Sen operators, we will have to extend the scalars of the various rings
and Lie algebras to C,. We denote this operation by adding a lower index C, to the objects
previously defined. We still endow all the rings with their p-adic topology. Clearly I.oc, has a

structure of finite A, c,-algebra and B, ¢, has a structure of finite B, ¢ -algebra.

induce Q,-Lie algebra structures on &, and 05}99 We endow &, and

Remark 7.5. The Qp-Lie algebras &, and ®°¢ do not have a priori any B, or B,-module
structure. As a crucial step in our arguments we will use Sen theory to induce a B c,-vector
space (hence a B,.c,-Lie algebra) structure on suitable subalgebras of &, c, .
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7.2 The Sen operator associated with a p-adic Galois representation

Let L be a p-adic field and let R be a Banach L-algebra. Let K be another p-adic field, m be
a positive integer and 7: Gal(K/K) — GL,,(R) be a continuous representation. We recall the
construction of the Sen operator associated with 7, following [Sen93|.

We fix embeddings of K and L in @p. The constructions that follow will depend on these
choices. We suppose that the Galois closure L& of L over Qp is contained in K. If this is
not the case, we restrict 7 to the open subgroup Gal(K/KL%!) c Gal(K/K). We denote by
x: Gal(L/L) — Z, the p-adic cyclotomic character. Let Lo, be a totally ramified Zy-extension
of L. Let v be a topological generator of I' = Gal(Ls/L). For a positive integer n, let I, C T
be the subgroup generated by 4*" and L,, = Lézp ) be the subfield of L fixed by I',. We have
Loo =U,, Ln. Let LI, = L, K and G, = Gal(L/L}).

Write R™ for the R-module over which Gal(K/K) acts via 7. We define an action of
Gal(K/K) on R™®p,C, by letting 0 € Gal(K/K) send z ® y to 7(c)(z) ® o(y). Then by
[Sen93|, there exists a matrix M € GL,, (R R (Cp), an integer n > 0 and a representation
5: Ty, = GL, (R ® L) such that for all o € G}, we have

M1 (o)o(M) = (o). (15)

DEFINITION 7.6. The Sen operator associated with 7 is the element

L los(3(0))
o—1 log(X(O'))

of M, (R &1, Cp).

The limit in the definitions always exists and is independent of the choice of § and M.

Now suppose that R = L and that 7 is a Hodge—Tate representation with Hodge—Tate weights
hi,ha, ..., hy. Let ¢ be the Sen operator associated with 7; it is an element of M,,(Cp). The
following theorem is a consequence of the results of [Sen80].

THEOREM 7.7. The characteristic polynomial of ¢ is [[;~, (X — hy).

We restrict now to the case L = R = Q,, so that 7 is a continuous representation Gal(K /K ) —
GL,,(Q,). Define a Q,-Lie algebra g C M,,(Q,) by g = Q, - log(7(Gal(K/K))). We say that g is
the Lie algebra of 7(Gal(K/K)). Let ¢ be the Sen operator associated with 7.

THEOREM 7.8 [Sen73, Theorem 1]|. The Sen operator ¢ is an element of g @Qp Cp.

Remark 7.9. The proof of Theorem 7.8 relies on the fact that 7(Gal(K /K)) is a finite-dimensional
Lie group. It is doubtful that this proof can be generalized to the relative case.

7.3 The relative Sen operator associated with p,

Fix a radius 7 in the set {r;};cn>0. Consider as usual the representation p,: Hy — GSpy(I0).
We defined earlier a p-adic field Kp,. . Write G, for its absolute Galois group. We look at the
restriction pT’GKHT,p: Gry, , = GSpy(l-o) as a representation with values in GL4(Il.0). Recall

that &!°¢ is the Lie algebra associated with the image of Pr’GKH L The goal of this section is to
prove an analogue of Theorem 7.8 for this representation, i.e. to attach to Pr’GKH , A ‘B,-Sen

operator’ belonging to (’5}?&1). We start by constructing various Sen operators via Definition 7.6.
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(i) The Qp-algebra I, is complete for the p-adic topology. We associate with pT|GKH a
7P
Sen operator ¢, € My (I 0.c,).

(ii) Let a € Sa. Then I, o/ais a finite-dimensional Q,-algebra. As usual write mq: I.0 — L. /a
for the natural projection. Denote by p;. o the representation 70 pr|GKHr,p : Gky, , = GL4(Ir0/a).
We associate with p,. o a Sen operator ¢, € My((L,o/a) @Qp C,).

(iii) Let a € Sy. Let d be the Q,-dimension of I o /a. Let k be a positive integer. An I, o /a-linear
endomorphism of (I,0/a)* defines a Q,-linear endomorphism of the underlying Q,-vector space
@’;d. This gives natural maps ag,: Mg(I.0/a) = Mpq(Q,) and aép: GL(L0/a) = GLka(Qp)
(we leave the dependence of these morphisms on k& implicit). Choose k = 4 and consider
the representation pgﬁ = aapo pra: Gg = GL4g(Qp). We associate with p% a Sen operator
6% € Maa(Cy).

The operators constructed in constructions (i), (i) and (iii) are related by the following
lemma. We write mqc, = 7a®1: I 0c, = Iro,c,/al0,c,. As above, we let d be the Q,-dimension
of I..0/a. For every positive integer k, we set ac, = ag, ® 1: Mg(l.oc,/al.0c,) = Mira(Cp) and
ag, = ag, ® 1: GLy(Ioc,/aloc,) > GLra(Cp).

LEMMA 7.10. For every a € Sa, the following relations hold:
(i) ¢'r,a = Wa,Cp(¢r);
(ii) ¢9§ = ag, (d’r,a)-

Proof. This can be checked directly from the construction of the Sen operator presented in
§7.2. O

Recall that there is a natural inclusion LfBT,Cp : Lro,c, = By c,. We define the B,-Sen operator
attached to p’"|GKHT,p as

¢Br = LfB,-,(Cp (¢r)

By definition, ¢p, is an element of My(B,.c,). Since B.c, = 1(1_111(1e SQH"O /a, it is clear that

B, = l(iglaes Ta,c,(¢r). Then Lemma 7.10(i) implies that
2
(bIBT = Lln ¢r,a- (16)
aEeSs

Note that Theorem 7.8 can be applied only to representations with coefficients in @, hence to
construction (iii) above. However, we can use Lemma 7.10(ii) to show the following.

PROPOSITION 7.11. The operator ¢p, belongs to the Lie algebra QSL‘?(EP. In particular, it belongs
to 67,7@1).

Proof. For every a € Sy, let dy be the degree of the extension I, o/a over Q. Let ler?g’(@p be the Q-
Lie subalgebra of Myq, (Q,) associated with the image of p%, defined by Qﬁi?g @ _ Qp-log(Im pgﬁ).

Let &°9% — (’5}2&’@” ®g, Cp. As Im pi‘?fg = aap (Im pyq), we can write

7,a,Cp

610C7Qp — Od(cp((‘ﬁloc ) (17)

r,a,Cp r,a,Cp

810

https://doi.org/10.1112/50010437X19007048 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007048

GALOIS LEVEL AND CONGRUENCES FOR SYMPLECTIC GROUPS

Qp

The representation p, 4 satisfies the assumptions of Theorem 7.8, so the Sen operator ¢Qp

7,0,a

belongs to 6:”05,(%' By Lemma 7.10(ii) ¢r¢ = ac,(¢r,a). Then (17) and the injectivity of ac, give

bra € B . (18)

®loc . (16) and (18) imply that ¢p, € BIE . .
, »~p

r,a,Cp?

As Qj}"?ép - 1<iI—nClES
7.4 The exponential of the Sen operator

We use the work of the previous section to construct an element of GL4(B,) that has some specific
eigenvalues and normalizes the Lie algebra @%f?ép. Such an element will be used in § 8 to induce a
B,.c,-module structure on some subalgebra of &,.c,, thus replacing the matrix ‘p(c)’ of [HT15]
that is not available in the non-ordinary setting.

Let ¢ € My(I,0,c,)be the Sen operator defined in the previous section. We rescale it to define
an element ¢/ = log(u)¢,, where u = 1 + p. Let (71,T%) be the images in A, of the coordinate
functions on the weight space. The logarithms and the exponentials in the following proposition
are defined via the usual power series, that converge because of the assumption (exp) we made
in the beginning of § 7.

LEMMA 7.12. The eigenvalues of ¢!. are 0, log(u=2(1 + T3)), log(u=1(1 + T1)) and log(u=3(1 +
T1)(1 4 T3)). In particular, the exponential series defines an element exp(¢,) € GL4(I,oc,), of
eigenvalues 1, u=2(1 +Ty), u (1 + T1) and u=3(1 + T1)(1 + T3).

Proof. The p-adic Galois representation p; associated with a classical eigenform f of weight
(k1, k2) is Hodge—Tate with Hodge-Tate weights (0, ky — 2, k1 — 1, k1 + ko — 3). By Theorem 7.7
these weights are the eigenvalues of the Sen operator ¢ associated with ps. By Lemma 7.10(i),
the eigenvalues of ¢, interpolate those of the operators ¢ when f varies in the set of classical
points of A,.. As such points form a Zariski-dense subset of Spec A,, the interpolation is unique
and can be easily computed. The lemma follows from this. O

Let ®p, = g, ., (exp( +0))- By definition, ®p, is an element of GL4(B,c,). We show that it
has the two properties we need. We define a matrix Cr, 1, € GSpy(B,c,) by

Crym, = diag(u (1 +T1) (1 + 12),u (1 + T1), u 2 (1 + 13),1).

PROPOSITION 7.13.

(i) There exists v € GSpy(By.c,) satisfying g, = vCr, 7,7 "
(ii) The element ®p, normalizes the Lie algebra &,.c,.

Proof. The matrices ®p, and Cr, 1, have the same eigenvalues by Lemma 7.12. Hence, there
exists v € GL4(B,c,) satisfying the equality of part (i) if and only if the difference between any
two of the eigenvalues of ®p _ is invertible in B,. We check by a direct calculation that each of
these differences belongs to an ideal of the form P-B, with P € SP2d hence it is invertible in B, by
Remark 7.4. As both @, and Cr, 1, are elements of GSp,(B,.c,), we can take v € GSp,(B,.c, )

Part (ii) follows from Proposition 7.11. a
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8. Existence of a Galois level in the residual symmetric cube and full cases

We have all the ingredients we need to state and prove our first main theorem. Let h € Q™*.
Let Tj, be a local component of the h-adapted Hecke algebra of genus 2 and level T'1(M) N
I'o(p). Suppose that condition (exp) of § 7 is satisfied and that the residual Galois representation
pr, associated with Tj, is either full or of symmetric cube type in the sense of Definition 3.11.
Let 6: T, — I° be a family, i.e. the morphism of finite Aj-algebras describing an irreducible
component of Tj,. Let p: Gg — GSpy(I5,) be the Galois representation associated with 6. Suppose
that p is Zy-regular in the sense of Definition 3.10. For every radius r in the set {r;};cn>0 defined
in §4, let &, be the Lie algebra that we attached to Imp in §7.1.

THEOREM 8.1. There exists a non-zero ideal | of Iy such that
[-sp,(B,) C &, (19)
for every r € {r;};en>o.

Let A be the set of roots of GSp, with respect to our choice of maximal torus. Recall that
for o € A we denote by u® the nilpotent subalgebra of gsp, corresponding to «. Let r be a radius
in the set {r;}i>1. We set U¢ = &, Nu*(B,) and e, = Gre, Nus (B/,c,), which coincides with
Uy @Q Cp. Via the isomorphisms u®(B,) = B, and u®(B,c,) = B, c,, we see L as a Q,-vector
subspace of B, and ﬂac as a Cp-vector subspace of B,.c,

Recall that U® denotes the one- parameter unipotent subgroup of GSp, associated with the
root a. Let H, be the normal open subgroup of Gg defined in the beginning of §7. Note that
Proposition 6.14 holds with p|g, replaced by p|m, because H, is open in Gg. Let U%(p|n,) =
U*(15)Np(H,) and U*(p,) = U*N pr(H,). Via the isomorphisms U%(Iy) = Iy and U*(I,.0) = 1,9
we identify U(p|n,) and U(p,) with Zy-submodules of Iy and L, o, respectively. Note that the
injection I§ < I7 induces an isomorphism of Z,-modules U (p|n,) = U*(pr).

We define a nilpotent subalgebra of gsp,(L,. o) by ugyo = Qp - log(U%(pr)). We identify 8 0
with a Qp-vector subspace of I, p. Note that the natural injection ¢p, : I,o — B, induces an
injection ilﬁ’no — U< for every a.

LEMMA 8.2. For every o« € A and every r, there exists a non-zero ideal [* of 1y, independent of
r, such that the B,-span of U contains [“B,.

Proof. Let d be the dimension of Q(I) over Q(Ap). Let a € A. By Proposition 6.14 the unipotent
subgroup U*(p|y, ) contains a basis E = {e;}i=1,... 4 of a Ap-lattice in I§. Lemma 6.6 implies that
the Ay[p~!]-span of E contains a non-zero ideal [* of Iy. Consider the map +*: U%(Ip) — u®(B,)
given by the composition

log

U%(Ip) — U%(Lp) N Iy 0) = u*(B,),

where all the maps have been introduced above. Note that :*(U*(p|m,)) C U. Let Ep, = 1*(E).
As 1* is a morphism of Iy-modules we have

B, 4D B,-Eg, =B, - (Ap[p '] E,) = B, - 1*(Ap[p~ '] - E) D B, - :2(1%) = [°B,..

By construction and by Remark 7.2, the ideal [* can be chosen independently of 7. O
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Let v be an element of GSpy(B,.c,) such that ®5, = vCr, 17,7~ it exists by Proposition
7.13(i). Let 62&7 = fy*l@n(cp'y. For each o € A, let iln’gp = u*(B,c,) N 6;’7%. We prove the
following lemma by an argument similar to that of [HT15, Theorem 4.8|.

LEMMA 8.3. For every o € A, the Lie algebra ﬂ::gp is a By c,-submodule of B, c,.

Proof. By Proposition 7.13(ii), the operator ®g, normalizes &,.c,, hence Cr, 1, normalizes Qiz(cp
Let a1 and ag be the roots sending diag(ty, t2, Vt2_1, th_l) € Ty to t1/ty and v~ 1#2, respectively.
With respect to our choice of Borel subgroup, the set of positive roots of GSpy is {1, aa, a1 + ag,
201 + az}. Conjugation by Cr, 1, on the Cp-vector space u® (B,.c,) induces multiplication by
o1 (Crp) = w2(1+To). As w2 € Z¥ and ilr’g; is stable under Ad(Cr, 1,), multiplication
by 1+ T3 on u®(B,c,) leaves 4Lz’ stable. Now we compute

(1+13) .u;Yg:Jraz = (1+T)- [i,[r:gl’u :012] =[(1+ 1) -ﬂrv(glaiﬂ a2] [ilzjgj,ilz,gj] = il:ﬁ:ra?’
where the inclusion (1 + T3) - &)¢’ C Uc" is the result of the previous sentence. Similarly,
conjugation by Cr, 1, on the Cp- vector space u®?(B,.c,) induces multiplication by as(Cr 1,) =
w- (1+T1)/(1+T2). As u € Z,; and il:’(gj is stable under Ad(C'r, 1), multiplication by 1 + T
on u*?(B,c,) leaves MZ’(?Z stable. The same calculation as above shows that multiplication by
(1+T1)/(1 +T2) on u**2(B,.c, ) leaves il:’(g; +92 stable. We deduce that multiplication by 1+1}
also leaves LLV’O“JFQQ stable. As iﬂ’aﬁo@ is a C,-vector space, the C,[11, Tz]-module structure on
ute (B, o) mduces a C,[T! 1,T2] module structure on ¢! 2192 With respect to the p-adic

1011 +a2

topology 4,

ute (B, ¢, ) induces a B;c,-module structure on £’ a1+a2
If 8 is any root, we can write

is complete and C,[T1, T3] is dense in B, C,» 80 the B, ¢, -module structure on

_ v.a1taz ((v,8—a1—az
T(Cp i’l =B, Cp [L(T(C i’[7“,((:1, ]
’YOf +az ((v,f—a1—a Va1t 75 ar—a2) _ (1.8
c[B C, - L( 1+az ur,(cp 1702 [Ll o2 g 1ma2) = ur,(Cp’
where the inclusion B,.c, - iﬂ’al+a2 u}gf"‘? is the result of the previous paragraph. O

Proof of Theorem 8.1. Let Egp, C U be the set defined in the proof of Lemma 8.2. Let
Eg,c, ={e®1lle € Eg.} C ﬂﬁcp. Consider the Lie subalgebra B, c, - &, c, of gsps(B;,c,).
For every o € A we have B,.c, - &,.c, Nu*(B.c,) = B¢, - 4. By Lemma 8.2 there exists
an ideal [* of Iy, independent of 7, such that [* - B.c, C B¢, - . Let [p = HaE A ¢ Then
Lemma 6.11 gives an inclusion

[0 -5p4(Br,@p) C BT,‘Cp . @r,(cp. (20)

As before, let v be an element of GSp,(By.c,) satisfying ®g, = vCrp, 1,7 '. The Lie algebra

lo-5py(Brc,) is stable under Ad(y~1), so (20) implies that ly-spy(Brc,) =~ (lo-sp,(Brc,))y C
fy_l(Br,(Cp -&,)y = B¢, TG,y = B¢, &;. We deduce that, for every a € A,

lo -uo‘(IB%T,(Cp) = ua(Bncp) Nl '5]34(1537«7(31)) C u*(B,, (cp) N B¢, 67“ Cyp
= Br,(Cp : (ua(Br,(Cp) N 63,(Cp) = BT,(Cp : ur,(Cp‘ (21)
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By Lemma 8.3 ﬂfgp is a By.c,-submodule of u,.(B,c,), so B.c, -Ll:v’gp =4 ’gp. Hence, (21) gives

o - u*(Brc,) CE (22)

for every a. Set [} = [(2). By Lemma 6.11 and Remark 6.12, applied to the Lie algebra &,.c, and
the set of ideals {l1B,}aca, (22) implies that [1 - sp,(B,.c,) C (’SZCP. Observe that the left-hand
side of the last equation is stable under Ad(7), so we can write

- 5ps(Brc,) = (h - 5py(Brc,)y ' C&)c v ! = Eig,. (23)

The same argument as in the end of the proof of [CIT16, Theorem 6.2] shows that the
extension of scalars to C, in (23) is unnecessary, up to restricting the ideal [;. This amounts
essentially to consider the inclusion [y -B,. ¢, C il;ficp modulo an ideal a of I, o, for every root «, and
rewrite it in terms of well-chosen Q,-bases for the QQ)-structures of the two sides. The projective
limit over a then gives the inclusion [; - B, C 4. For [ = [%, Lemma 6.11 and Corollary 6.12 give

[-sp,(B,) C &,.

By definition, we have [ = I? = [é = (HaeA [O‘)4. For every a the ideal [¢ provided by
Lemma 8.2 is independent of r, so [ is also independent of r. This concludes the proof of
Theorem 8.1. |

DEFINITION 8.4. We call Galois level of # and denote by [ythe largest ideal of Iy satisfying the
inclusion (19).

8.1 The Galois level of ordinary families
We explain how, for an ordinary family of GSp,-eigenforms, we can use our arguments to prove
a stronger result than Theorem 8.1. Let M be a positive integer. Let T4 be a local component
of the big ordinary cuspidal Hecke algebra of level T'y (M) N To(p) for GSpy; it is a finite and
flat Ag-algebra. With the terminology of §4 we consider T as the genus 2, 0-adapted Hecke
algebra of the given level. Suppose that the residual representation prowa associated with T is
absolutely irreducible and of Sym?® type in the sense of Definition 3.11. Let #: T4 — I° be a
family, i.e. the morphism of finite Ay algebras describing an irreducible component of T, By
taking h = 0 and 7, = 1 in the construction in §4 we obtain T, = T°"4. Note that all of our
arguments and constructions are valid for this algebra; none of them relied on the fact that the
slope of the family was positive.

We keep all the notation we introduced for the family 6. Let p: Gg — GSp4(I5,) be the Galois
representation associated with 6. Suppose that p is Z,-regular in the sense of Definition 3.10. Then
we have the following.

THEOREM 8.5. There exists a non-zero ideal | of I§ and an element g of GSp,(I§) such that
gl (Dg™! C Imp. (24)

The main difference with respect to the proof of Theorem 8.1 is that relative Sen theory is not
necessary anymore, because the exponential of the Sen operator defined in § 7.4 is replaced by an
element provided by the ordinarity of p. This is the reason why we do not need the Lie-theoretic
constructions and we obtain a group-theoretic result. Note that this also makes the inversion of
p unnecessary. Theorem 8.5 is an analogue of [Lan16, Theorem 2.4], which deals with ordinary
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families of GLy-eigenforms, and a generalization to the case where I° # Ay of [HT'15, Theorem
4.8] for n = 2 and families of residual symmetric cube type.

We only sketch the proof of the theorem, pointing out the differences with respect to that of
Theorem 8.1.

Proof. Let u=1+p, let x be the p-adic cyclotomic character and, for o € Iy, let ur(o): Go, —

]IS’X be the unramified character sending a lift of the Frobenius automorphism to o. By Hida
theory, the ordinarity of 6 implies the ordinarity of the Galois representation p, in the sense
that the restriction of p to a decomposition group at p is a conjugate of an upper triangular
representation with diagonal entries given by

(P (L T (1 + Tp)) 8008 wr(), x 1 - (14 1) 0001080 ur(B), 2
(1 4 Ty)'os00/108(%) yir (4) ur(6))

for some «,f,v,8 € I7™. Consider a conjugate of p that has the form displayed above. Up
to conjugation by an upper triangular matrix, we can suppose that Imp contains a diagonal
Zy-regular element. By Proposition 6.3, we can further replace the representation with a conjugate
by a diagonal matrix such that p(Hy) C GSp,(If). This is true because the basis we start with
in the proof of Proposition 6.3 is replaced by a collinear one.

We work from now on with the last one of the conjugates of the original p mentioned in the
previous paragraph; this choice gives the element g appearing in Theorem 8.5. It is clear from
the form of p that there exists an element o in the inertia subgroup at p such that p(c) = Cp, 1,
where Cp, 1, is the matrix defined in §7.4. Hence, Im p is stable under Ad Cr, 7,. The same
argument as in Lemma 8.3, with the nilpotent algebra 1137’&) replaced by the unipotent subgroup
U%(Im p) and the extension of rings B, C B, replaced by Ay C I, gives U%(Im p) a structure of
As-module for every root a of Sp,. By Proposition 6.14, U%(Im p) contains a basis of a Ag-lattice
in I for every a.. Hence, by Lemma 6.6, U®(Im p) contains a non-zero ideal of Ij for every a. By
Lemma 6.11 the group Im p contains a non-trivial congruence subgroup of Sp,(Ig). O

9. The symmetric cube morphisms of Hecke algebras

Let Sym3: GLy — GSp, be the morphism of group schemes over Z defined by the symmetric cube
representation of GLq. If R is a ring, we still denote by Sym? the morphism GLa(R) — GSpy(R)
induced by the morphism of group schemes. For every representation p of a group with values in
GLy(R), we set Sym® p = Sym?® o p.

Kim and Shahidi [KS02, Theorem B| proved the existence of a Langlands functoriality transfer
from GLg to GL4 associated with Sym®: GLg(C) — GL4(C). Thanks to an unpublished result
by Jacquet, Piatetski-Shapiro and Shalika [KS02, Theorem 9.1], this transfer descends to GSp,.
If 7 is an automorphic representation of GLs, then the automorphic representation II = Sym? 7
of GSp, given by the above construction is globally generic. In particular, it does not correspond
to a holomorphic modular form for GSp,. However, Ramakrishnan and Shahidi showed that,
when 7 is associated with a modular form, the component at infinity Il of II can be replaced
by a holomorphic representation IT2' such that IT F® 129! belongs to the L-packet of II. This
is the content of [RS07, Theorem A’[, that we recall below. Note that in [RS07, Theorem A'],
the theorem is stated only for 7 associated with a form f of level I'g(/V) and even weight k > 2,
but Ramakrishnan pointed out that the proof also works when f has level I'1 () and arbitrary
weight k& > 2.
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Let 7 be the automorphic representation of GL2(Ag) associated with a cuspidal, non-CM
eigenform f of weight £ > 2 and level I'; (V) for some N > 1. Let p be a prime not dividing N
and let pr, be the p-adic Galois representation attached to f.

If K is a compact open subgroup of GSp4(i), we call the level of K the smallest integer
M such that K contains the principal congruence subgroup of GSp4(Z) of level M. Given an
automorphic representation IT of GSp4(Ag), we call the level of II the smallest integer M such
that the finite component of IT admits an invariant vector by a compact open subgroup of GSp4(z)

of level M.

THEOREM 9.1 (See [RS07, Theorem A’]). There exists a cuspidal automorphic representation
el = @, 1! of GSp,(Ag), satisfying:

1 Is In the holomorphic discrete series;

(i) L(s, 11" = L(s, 7, Sym®);

111 Is unramified at primes not dividing N ;

(iv) TIh°! admits an invariant vector by a compact open subgroup K of GSp,(Ag) of level

N (Sym? py,).
A simple computation of Hodge-Tate weights gives the following corollary.

COROLLARY 9.2. Let f be a cuspidal, non-CM GLy-eigenform of weight k > 2. For every prime
¢, let pyy be the (-adic Galois representation associated with f. There exists a cuspidal GSpy-
eigenform F of weight (2k — 1,k + 1) with associated (-adic Galois representation Sym?® p ¢ for
every prime {. For every prime p not dividing N, the level of F is a divisor of the prime-to-p
conductor of Sym? Pfp-

We denote by Sym?® f the cuspidal Siegel eigenform given by the corollary. Let N(f) and
N(Sym? f) be the levels of f and Sym?® f, respectively. We give an upper bound for N(Sym? f)
in terms of N(f). Let N(f) = H?Zl ¢7" be the decomposition of N(f) in powers of distinct prime

factors. For i € {1,2,...,d} set

7

, 1 if f is Steinberg at ¢; and a; = 1,
3a; otherwise.

We define M(f) = JT°, £

i=1"1
COROLLARY 9.3. We have N (Sym? f) | M(f). In particular, N(Sym? f) | N(f)3.

Proof. At places where the automorphic representation 7 giving rise to f is Steinberg and Iwahori-
spherical, we look at regular unipotent elements in the image of an inertia subgroup at p to check
that the symmetric cube of 7 is also Iwahori-spherical. At the other places, we give a bound on
the conductor of the local Galois representation via Livné’s formula [Liv89, Proposition 1.1] and
apply Theorem 9.1(iv). O

Borrowing the terminology of [Lud14, §4.3|, we say that Fgl) (N) and F(12) (N?3) are compatible
levels for the symmetric cube transfer for all N € N.
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9.1 Constructing the morphisms of Hecke algebras

As usual, we fix an integer N > 1 and a prime p not dividing N. We work with the abstract Hecke
algebras HYY, HLY spherical outside N and Iwahoric dilating at p. Let M = N3. If f is a non-CM
GLs-cigenform of level T'y (N), we denote by Sym? f the classical, cuspidal GSp,-eigenform of level
'y (M) given by Corollary 9.2. In the following, we define some morphisms of Hecke algebras that
allow to recover the system of Hecke eigenvalues of the p-stabilizations of Sym? f in terms of that
of a p-stabilization of f. If x is a system of Hecke eigenvalues, we write x, for its local component
at the prime /.

DEFINITION 9.4. For every prime £ { Np, let

At H(GSpy(Qr), GSpy(Ze)) — H(GL2(Qy), GL2(Zy))

be the morphism defined by

TG = (1)
T = —(T)° + (40 = 2T () + (60 = 4) (T (1Y) = 30 (T3
T35 = (T)) = AT Ty

Let AVP: ”HéVp — ’Hf[pbe the morphism defined by AP = ®€%Np Ag.

DEFINITION 9.5. For i € {1,2,...,8} we define morphisms

Aip: H(T2(Qp), Ta(Zp)) ™ — H(T1(Qy), T1(Zyp)).
For i € {1,2,3,4}, the morphism \;, is defined on a set of generators of H(T2(Qy), T2(Zy))~ as

follows:

(1) Apmaps  t5) > (1003, 12— 01, 1) e (1)
(2) dopmaps o) > (t00)3, 1 > (B2 £ (1)
(3) Mspmaps  toy > (G0)% ) = oty oy tat:
(4) Aipmaps o) = (03t @02 6

For i € {5,6,7,8}, the morphism \; ,: H(T2(Qp), T2(Zyp)) — H(T1(Qp), T1(Z,)) is given by
)\i,p = Jo )\i74,p7

where 0 is the automorphism of H(71(Qy), T1(Z,)) defined on a set of generators of the subalgebra
H(T1(Qp), T1(Zy)) ™~ by

Wy =210, ol =gl h (25)

P, P,0\"p
and extended in the unique way.

Let f be as in the beginning of the section and let f5' be one of its p-stabilizations. Let
X1p: H(GL2(Qp), GL2(Zy)) — Q, and x§',: H(GLa(Qy), [15)” — Q, be the systems of Hecke
eigenvalues at p of f and f**, respectively. Note that x1 , is the restriction of Xﬁt’p to the abstract
spherical Hecke algebra at p.

Recall from §2.2 that for g = 1,2 there is an isomorphism of Q-algebras

02 H(GSPag(Qy), Iy p) ™ — H(Ty(Qy), Ty(Z,)) ™
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Let L%’p be its inverse. Then xj'o L%}”’ is a character H(Ty(Qp),Ty(Zy))~ — Q,, that can be

extended uniquely to a character (x§',° Lgﬂ ) H(TY(Qp), Ty(Zy)) — Q.
The morphism Ay, factors as ¢; ,0 Ay, for some morphism

)‘1_,p: H(GSpy(Qyp), L2p)” — H(GL2(Qp), 1)~
gp’ H(T5(Qp), Ty(Zp))™ — H(GSpay(Qp), I p)-

DEFINITION 9.6. We set \; = AP @ A,

and the natural inclusion ¢

Let X;t & HY — Qp be the character defined by:

(i) X;tg = X5 40 A; for every prime £ { Np;

T

.. I
(i) th,pl = (x{'p0 ‘. )eXtO AipO L”

PROPOSITION 9.7. For every i € {1,2,...,8}, the form Sym?® f has a p-stabilization (Sym? f)s*
with associated system of Hecke eigenvalues x3"*. Conversely, if (Sym? ) is a p-stabilization of
Sym? f with associated system of Hecke eigenvalues x3', then there exists i € {1,2,...,8} such

that x5 XSt ot

Proof. In this proof, we leave the composition with the isomorphism Lﬁp and L};Q’p implicit and we
consider x3', and x3', as characters of H(T1(Qp), T1(Zy))~ and H(T2(Qp), T2(Zy)) ™, respectively,
for notational ease. Let py,: Gg — GLz (Qp) be the p-adic Galois representatlon associated with
f, so that the p-adic Galois representation associated with Sym? f is Sym?® p t.p- Via p-adic Hodge
theory, we attach to py ), a two-dimensional Qp -vector space Deis(pfp) endowed with a Q -linear

Frobenius endomorphism @eis(pf,p) satisfying det(1 — X oeris(pfp)) = X1,p(Pumin (tg%; X)).
We use the notation of § 2.2.1 for the elements of the Weyl groups of GLs and GSp,. Let o, and
Bp be the two roots of x1 ,( mm(tz(f%; X)), ordered so that Xﬁfp(tg%) = oy and B, = Xﬁfp((tl(ﬁ)w).
Let Dms(psym f,p) be the four-dimensional @p—vector space attached to PSym? f.p by p-adic
Hodge theory. Denote by %ris(psymS f7p) the Frobenius endomorphism acting on Dcris(psym3 fm)' It

satisfies det(1 — X @eris(Pgyms £.5)) = X2,p(Prin(t ]()2%, X)) by [Urb05, Théoréme 1|. The coefficients

of Puin(t I(D%, ) belong to the spherical Hecke algebra at p, so we have X;‘jp(Pmin(tS%;X ) =
X2,p(Pm1n(t1(3%; X)). From the relation pg,3 ¢, = Sym?® p;,, and (4) we deduce that

(X = 812 (X = X, ((1,2)")) - (X = X3, (1)) (X = X3, (1))
= (X — @) (X = a3B) (X — ap B)(X = )

In particular, the sets of roots of the two sides must coincide. As tg (tg)“’””2 = (t%))wl (tg)“’2
we have eight possible choices. Four choices for the 4-tuple

O (1) X (1)) X ((13) ), X8 ((13) 1))

are
2 2 3 2 2 3 2 3 3 2 2 3 3 2
(OZ « ﬁpvapﬁpaﬁ ) (Oép?apﬂp?apﬂpaﬁp)a (Oépﬂpaaznﬂp?apﬁp)v (ap/B}h p?apvapﬁp)'

The other four choices are obtained by exchanging a,, with §, in the above.
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By writing o, = Xl,p( » 1) By = Xl,p((t(l)) ) and recalling the relations t;(fi =t

t](f()) = tg%(tg%)w””?, we find that the first four choices for the triple

S35 and

2 2 5 2
O (B ) XS5 (), X3, ()

are
(¢t (1)) xl,p<t<”<t§i>4> (2, (e (602 X ()2 () 2) st (1)),
O ()3, DM st (0, Ot (3 3, (A ) =), X3, (0. (26)

(1)

The four other choices are obtained by replacing tg()) and t,, 1 in the triples above by their images
via the automorphism ¢ of H(71(Qy), T1(Zy)) defined by (25).
Let A\p: H(T2(Qp), T2(Zy))~ — H(T1(Qp),T1(Z,)) be a morphism satisfying x5 =

()
paragraph, this happens if and only if the triple ()\i7p(t§)?3)), )‘i,p(t;(fi)a Ai,p(tl(f%)) coincides with one
of the four listed in (26) or the four derived from those by applying §. A simple check shows that

these triples correspond to the choices A, = \; , for i € {1,2,...,8}. a

0 ApO Ly, (recall that we leave the maps ng’p implicit). By the arguments of the previous

Let f5' be a p-stabilization of a classical, cuspidal, non-CM GLa-eigenform f. Let h be the
slope of f. For i € {1,2,3,4}, denote by Sym3(fs!); the GSpy-eigenform (Sym?® f)5t given by
Proposition 9.7. The forms (Sym? f)5* with 5 < i < 8 coincide with (Sym? f3)i, 1 <i < 4, where
f;t is the p-stabilization of f different from f5'. Let k and h be the weight and slope, respectively,
of f5. The following corollary is derived from Proposition 9.7 via some simple calculations.

COROLLARY 9.8. The slopes of the forms Sym3(fst);, with 1 <i < 4, are

«

sI(Sym3(£5)1) = Th, sl(Sym®(f3)3) = sl(Sym3(f3)3) = k — 1 + 5h,
sl(Sym” (fzt)4> =4(k—1) — h.

If £ is a p-old GLg-eigenform of level I'y (V) NTy(p), we write Xé, sse for the system of Hecke
eigenvalues of Sym3(f%!);, 1 < i < 4. For a @p point  of DM let x,: HY — @p be the system
of Hecke eigenvalues associated with z. For 1 < ¢ <4, let §; Y% e the set of Qp points x of D}

defined by the condition

x € Sisymg <= Ja p-old GLy-eigenform f** of level I';(N) N Ty(p) such that y, = X;fst'

By combining Corollary 9.8 with the fact that the slope is bounded on an affinoid domain, we
obtain the following.

. Sym3 . . . M
COROLLARY 9.9. Ifi # 1, then the set S is discrete in Dy" .

Remark 9.10. As a consequence of Corollary 9.9, the only symmetric cube lifts that we can hope

3
to interpolate p-adically are those in the set S’IS yme
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9.2 The symmetric cube morphism of eigenvarieties

We fix until the end of the paper a continuous representation p: Gg — GLa(F,). We let D{\%
be the union of the connected components of DY having 5 as associated residual representation.
From now on we replace D{V implicitly with D{Yﬁ (that is, we write D{V for D{Yﬁ). The only purpose
of this choice is to assure that the symmetric cube morphism of eigenvarieties of Proposition 9.11
is a closed immersion. We also replace implicitly Déw with D%ym%, because the symmetric cube

morphism from D{\’% will land into this connected component of D3,
There is a map Sym? from the set of classical, non-CM, p-old points of D{Yﬁ to the set

Sls ym® of Corollary 9.9; it maps a point z corresponding to an eigenform f to the point of Sls ym?
corresponding to (Sym? f2)it. As we are fixing the residual representation p, the map Sym? is
injective. Indeed, one has Sym? p = Sym? p’ for p, p': Gg — GLo (@p) if and only if p is a twist
of p/ with a character of order 3, but this can be checked to be incompatible with them having
the same residual representation.

We remind the reader that we only work on the connected components of identity of the
various weights spaces. The association k +— (2k — 1,k + 1) is interpolated by the morphism of
rigid analytic spaces

L: Wi — Wy,
T (w1 +T) —1ul+T)-1).

Recall the morphism \; : H5 — HA of Definition 9.6. The following proposition gives a morphism
of eigenvarieties that interpolates the map Symi’.

PROPOSITION 9.11 [Conl6, Propositions 3.9.5-7 and Definition 3.9.8]. There exists a closed
immersion &: Div’g — Dé\/l of rigid analytic spaces over QQ, such that the following diagrams

commute.
A1

e My

. o

Wi Wi o(y) 0D}
The proof of Proposition 9.11 presented in [Conl6| relies on the results of [BC09, §7.2.3|.
One can give an alternative proof using [Han17, Theorem 5.1.6] instead.

Remark 9.12. Let f be a classical, cuspidal, CM GLg-eigenform of level T'1(N). As f is CM,
the GSp,-eigenform Sym? f provided by Corollary 9.2 may not be cuspidal. Suppose that it is
not. Let x be a point of D) corresponding to a positive slope p-stabilization of f. By [CIT16,
Corollary 3.6], = is a CM point of a non-CM component I of D¥. Then £(z) belongs to the
cuspidal eigenvariety D2/, but it is not cuspidal since Sym? f is not. This means that £(z) is a
non-cuspidal specialization of a cuspidal family of GSp,-eigenforms. Brasca and Rosso [BR16]
constructed an eigenvariety for GSp, parametrizing the systems of Hecke eigenvalues associated
with the non-cuspidal overconvergent eigenforms and they glued it with D3. It should be possible
to show that a cuspidal and a non-cuspidal component of this glued eigenvariety cross at &(x).

10. The symmetric cube locus on the GSp,-eigenvariety

The goal of this section is to give two definitions (a Galois-theoretic one and an automorphic
one) of a symmetric cube locus on the GSp,-eigenvariety and to show that they coincide. This is
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the content of Theorem 10.1. The main ingredient of the proof is Theorem 3.8. To apply it, we
assume from now on that the representation p fixed in the beginning of §9.2 satisfies conditions
(%5)-

In the following, p is a prime number, N is a positive integer prime to p and M = N3. Let
Ti: Gg — O(DY) and Tz: Gg — O(DY) be the pseudocharacters provided by Proposition 2.5.
By an abuse of notation, if V; and V, are subvarieties of DY and D, respectively, we still
write ¥1: HY — O(V1) and ¥g: HY — O(V,) for the compositions of 17 and 1, with the
restrictions of analytic functions to V; and Vs, respectively. We also write Ty, : Gg — O(V1) and
Ty, : Gg — O(Vs) for the compositions of T and T with the restrictions of analytic functions
to V1 and Vs, respectively.

THEOREM 10.1. Let Vy be a rigid analytic subvariety of D). Consider the following four
conditions.

(la) There exists a morphism of rings wél): ’Hf[p — O(V3) such that the following diagram

commutes.

Np
/HéVp A inVP

28
iw % (28)
O(V2)
(1b) There exists a pseudocharacter Ty, 1: Gg — O(V2) of dimension two such that
Ty, = Sym> Ty, ;. (29)

(2a) There exists a rigid analytic subvariety V; of DI¥ and a morphism of rings ¢: O(V1) — O(Vs)
such that the following diagram commutes.

b2
(30)

P 2 e 0() - O(W)

(2b) There exists a rigid analytic subvariety V1 of DY and a morphism of rings ¢: O(V1) — O(Vz)
such that
TVQ = Sym3(¢o TV1 ) (31)

Then:

(i) conditions (1a) and (1b) are equivalent;
(i)
(iii) condition (2b) implies condition (1b);
(iv)

conditions (2a) and (2b) are equivalent;

when Vs is a point, the four conditions are equivalent.

Proof. We prove statements (i), (i) and (iii) for an arbitrary rigid analytic subvariety V5 of DJ!.

(la) = (1b). Let 1/151): HJle — O(V2) be a morphism of rings making diagram (28)
commute. By the argument in the proof of Proposition 9.7, the commutativity of diagram (28)
gives an equality

Va(Prin (8 X)) = Sym® (@5 (Pain (18 X))). (32)
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Choose a character ¢; satisfying € = ¢. For every £ not dividing Np, let P; be a polynomial
in ’I—té\[p[X]deg:2 satisfying

Sym® Py(X) ¢2< Pain(t5: X)) (33)
P(0) = &1 - (1 4 T)losx(9)/los(w) (34)

Such a polynomial exists thanks to (32) and to Remark 4.8, and it is clearly unique. The roots
of P, differ from those of 1o (P, mm(t%), X)) by a factor equal to a cubic root of 1. The map

P: {yFroby ™ Yunprecqy = O(Va)[X]98=2,
v Frobyy =t — P,
is continuous with respect to the restriction of the profinite topology on Gg. This follows from

the fact that the maps

{7 Froby v Yonprec, = O(Va)[X]48=

7 Frobey ™! > (Pain(tV9; X)) = Sym® P(y Frobgy™1)(X)

and

{~ Froby 7_1}15’(1\[17;760@ — O(W)*
v Frobyy ' > P(y Frobyy 1) (0) = e - (1 + T)18(x(9)/log(w)

are continuous on {7 Froby, ’y‘l}@(preG@. By Chebotarev’s theorem P can be extended to a
continuous map P: Gg — O(V2)[X]4&=2. Now define a map Ty, 1: Gg — O(Va) by Ty, 1(g) =
(P(g9)(—=1)P(g)(1))/2. We can check that Ty, ; is a pseudocharacter of dimension two. Its
characteristic polynomial is P, so the fact that T}, = Sym?> T}, ; follows from (33).

(1b) = (la). Suppose that there exists a pseudocharacter Ty, 1: Gg — Oy, such that

= Sym? Ty,1. Then Popar(Ty,) = Sym? Pehar(Ty,1). By evaluating the two polynomials at
Frobg we obtain

2 (Punin (£ 9: X)) = Petiar(T0,) (Froby) = Sym® Pepyar(Ty,1) (Froby)
Tv271(F1“Obg)2 — Tv271(Fr0b§)>
2

= Sym?® <X2 — Ty, 1(Froby) X + , (35)
where the first equality is given by Proposition 2.5 and the last one comes from a trivial
calculation. Let 1/1(1) Hin — O(Vz2) be a morphism of rings satisfying

Ty, 1(Frobg)? — Ty, 1 (Frob?)

X2 Ty, 1 (Frobg) X + 22 = = X2 = @)X + 1) 36)

for every £ 1 Np. It is clear that such a morphism exists and is unique. Note that the right-hand
side of (36) is 1/1(1)( mm(tél) X)). Then (35) gives

V3 Parin(t9; X)) = Sym® (5" (Pin (1) X))).

Exactly as in the proof of Proposition 9.7, by developing the two polynomials and comparing
their coefficients we obtain that 1, = Qpél)o AP Hence ¢§1) fits into diagram (28).
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(2a) <= (2b). Let V; be a subvariety of DIV and let ¢: O(V;) — O(V2) be a morphism of
rings. We show that the couple (V1, ¢) satisfies condition (2a) if and only if it satisfies condition
(2b). For g = 1,2 and every prime ¢ { Np Proposition 2.5 gives

Pear (T, ) (Froby) = 1y (Puin (t); X)). (37)

The argument in the proof of Proposition 9.7 gives an equality
ANP(Proin (855 X)) = Sym®(Pain ()] X)). (38)

As the set {7 Froby ’y_l}@(Np;,YGGQ is dense in G, the pseudocharacters Sym?(¢o Ty,) and Ty,
coincide if and only if their characteristic polynomials coincide on Frob, for every ¢ 4 Np. By
(37), the condition above is equivalent to

Sym3(¢o ¢1 (Pmin (té}l)v X))) = ¢2 (Pmin(tfz); X))

for every ¢ { Np. Thanks to (38) the left-hand side can be rewritten as
Sym® (60 1 (Panin (1 X)) = ¢o 61 (Sym®(Pin(tg'}: X)) = 60 10 AN (P (15 X)),

When ¢ varies over the primes not dividing Np the coefficients of the polynomials Pmin(tgé); X)

generate the Hecke algebra Hé\[p . Hence, the equality of the right-hand sides of the last two
equations holds if and only if o110 ANP = 4hy.

(2b) = (1b). Suppose that condition (2b) is satisfied by some closed subvariety V; of
DY and some morphism of rings ¢: O(V;) — O(V). Consider the pseudocharacter Ty, 1 =
po Ty, : Gg = O(Va). Clearly Ty, 1 satisfies condition (1b).

It remains to prove that condition (1b) == condition (2b) when V; is a Q,-point of D/
Here, we need to apply Theorem 3.8. Write x5 for the point Vs; the system of eigenvalues 1),
is that of a classical GSp,-eigenform. By Remark 2.6(i) Ty, is the pseudocharacter associated
with a representation pg,: Gg — GL4(Q,). Let E be a finite extension of Q) over which p,, is
defined. Suppose that zy satisfies condition (1b). Let Ty, 1: Gg — @p be a pseudocharacter
such that Ty, = Sym®T,, ;1. By Taylor’s theorem in |[Tay91| there exists a representation
Py Gg = GL2(Q,) such that Ty, 1 = Tr(ps,,1). From the definition of the symmetric cube
of a pseudocharacter, we deduce that p,, = Sym? Pzo.1- As pg, is attached to an overconvergent
GSpy-eigenform, Theorem 3.8(ii) implies that pg, 1 is the p-adic Galois representation attached
to an overconvergent GLg-eigenform f. Such a form defines a point x; of the eigencurve DI.
Thus, the subvariety V; = x; satisfies condition (2b). O

In light of Theorem 10.1, we give the following definitions.

DEFINITION 10.2.

(i) We say that a subvariety V5 of D37 is of Sym? type if it satisfies the equivalent conditions
(2a) and (2b) of Theorem 10.1.

(ii) The Sym3-locus of DI is the set of points of DY of Sym? type.
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Recall the closed immersion ¢: Wi — Wy defined in §9.2. Let D% be the one-dimensional

subvariety of Dé\/f fitting in the following Cartesian diagram.

M M
Dy, — D

|k

LWVF) ——= W3

The following lemma follows from a simple computation involving the generalized Hodge—Tate
weights of a point of Sym? type.

LEMMA 10.3. The Sym?3-locus of D) is contained in the one-dimensional subvariety D%.

The Sym3-locus of D} admits a Hecke-theoretic definition thanks to condition (2b) of
Theorem 10.1.
We define an ideal Zg 3 of O(DY) by

ISym3 = 1z (ker(thr0 /\Np)) : O(,Déw)'

We denote by Dé\/fsymg, the analytic Zariski subvariety of Dé‘/f defined as the zero locus of the ideal
IsymS .

ProposiITION 10.4.
(i) The Sym?3-locus of DY is the set of points underlying Dé\/lsymg,.
(ii) The variety D%ymg is of Sym? type.

(iii) A rigid analytic subvariety Vo of DY is of Sym?® type if and only if it is a subvariety of
M

DQ,SymS'

(iv) A rigid analytic subvariety Vo of D) satisfies conditions (1a) and (1b) of Theorem 10.1 if

and only if it is a subvariety of D%ym3-

Proof. Statements (i) and (ii), together with the ‘if’ implications of statements (iii) and (iv),
follow immediately from the definition of Dé\/fsymg. If Vs satisfies condition (2a) of Theorem 10.1,

then one has 15 = ¢o )10 ANP for some ¢: O(V1) — O(Vz), s0 1o must vanish on ker(¢p10 AVP),
giving the ‘only if” implication of statement (iii).

For the remaining direction of statement (iv), let V2 be a rigid analytic subvariety of D}
satisfying conditions (la) and (1b) of Theorem 10.1. Let z2 by a point of Va. Then xo satisfies
conditions (1a) and (1b). By Theorem 10.1, 25 also satisfies conditions (2a) and (2b), so it is a
point of D%ym3. We conclude that Vs is a subvariety of D%ym3. O
Remark 10.5. By Proposition 10.4 the Sym3-locus in Dé\/l can be given the structure of a Zariski-
closed rigid analytic subspace. From now on, we will always consider the Sym3-locus as equipped
with this structure and we will identify it with the subvariety Dé\/lsymg of DI

Proposition 10.4(i) and Lemma 10.3 give the following.

COROLLARY 10.6. The Sym3-locus intersects each irreducible component of D} in a proper
analytic subvariety of dimension at most 1.

824

https://doi.org/10.1112/50010437X19007048 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007048

GALOIS LEVEL AND CONGRUENCES FOR SYMPLECTIC GROUPS

Propositions 10.4(iii) and (iv) allow us to improve the result of Theorem 10.1.

COROLLARY 10.7. For every rigid analytic subvariety Vo of D!, conditions (1a), (1b), (2a) and
(2b) of Theorem 10.1 are equivalent.

11. An automorphic description of the Galois level

11.1 The fortuitous Sym3-congruence ideal of a finite slope family

Let 6: T, — I° be a finite slope family and let p: Gg — GSp,(I3,) be the representation
associated with 6 in the previous section. Recall that p is absolutely irreducible by assumption.
We also assume that p is Z,-regular and of residual Sym? type, as in Definitions 3.10 and 3.11.
In this section, we define a ‘fortuitous congruence ideal’ for the family 6. It is the ideal describing
the intersection of the Sym?®-locus of D! with the family 6. Recall that the Sym3-locus is the
zero locus of the ideal Zg, s of O(DJ1)° defined in § 10 and that rpMh O(D)° — T}, denotes

»Ph

the restriction of analytic functions.

DEFINITION 11.1. The fortuitous Sym?>-congruence ideal for the family : T), — I° is the ideal
of I§j defined by

g = (90 T.pM,h )(ISymS) I°N HS.

2,By,

In most cases, we will simply refer to ¢y as the ‘congruence ideal’. The next proposition
describes its main properties. Let J be an ideal of I° and let Jp, = J N I5,. Let p3: Ggo —
GSp4 (I3, /J1:) be the reduction of p modulo J. If 6;: Ty 1 — I is a finite slope family of GLo-
eigenforms we denote by pp, : Go — GLza(J) the associated Galois representation. For an ideal J
of J we let pg, 7: Gg = GL2(J/J) be the reduction of pg, modulo J.

For an ideal J of I§ we denote by p5: Hy — GSp,(I§/T) the reduction of p|m, modulo J. We
give the following characterization of ¢y.

LEMMA 11.2. Let Py be a prime ideal of I§j. The following are equivalent:

(i) Py D cg;
(ii) there exists a finite extension I' of I, /Poly, and a representation ppyis 1: Gg — GLa(I')
such that ppys. = Sym? p Pyls, 1 Over I';
(iii) for one prime P of I3, lying above Py, there exists a finite extension J' of I3, /P and a
representation pp;: Gg — GLa(I') such that pp = Sym? ppa over I;
(iv) there exists a representation pp, 1: Hy — GLg2(I3/J) such that pp, = Sym? pp, 1 over I3/7.

Note that we did not specify the image in the weight space of the admissible subdomain of
DY associated with the family 6;. It is the preimage in WY of the disc By j, via the immersion
t: Wi — Wy defined in §9.2.

Proof. As all the coefficient rings are local and all the residual representations are absolutely
irreducible, we can apply the results of § 10 by replacing pseudocharacters everywhere with the
associated representations, that exist by [Rou96, Corollary 5.2] and are defined over the ring of
coefficients of the pseudocharacter by Carayol’s theorem [Car94, Théoréme 1].

825

https://doi.org/10.1112/50010437X19007048 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007048

A. CoONTI

Now the equivalence (i) <= (ii) follows from Proposition 10.4(iv) applied to the rigid analytic
variety Vo = I. The equivalence (ii) <= (iii) follows from Proposition 10.4(iii) by checking that
the slopes satisfy the required inequality: this is a consequence of Corollary 9.8 and Remark 9.10.

If condition (iii) is satisfied by some pp, 1, then pp,1 = pp1|H, satisfies condition (iv). If
condition (iv) holds, then the image of pp, is contained in Sym?® GLo(I5/3). As pp, = PRoIS, | Hy
Lemma 3.14 implies that, after extending the coefficients to a finite extension Iy of I, /Py, the
image of ppy1ois contained in Sym?® GLg(I})). This gives condition (i), completing the proof. O

We gather some information on the congruence ideal.

LEMMA 11.3.

(i) The ideal ¢q is of height one. In particular, it is non-zero.
ii) If there is no representation p,: Gg — GLy(F,) satisfying p = Sym® 75, then ¢y = IS.
1-VQ p 1 0
iii) Suppose that there exists a non-CM classical point x € DY of weight k such that sl(z) < h/7
1

and v(k) € Bap, and k > h — 4. Then there exists a family 0 of GSp,-eigenforms of slope
bounded by h such that ¢y has a prime divisor of height 1.

Proof. Part (i) is an immediate consequence of Corollary 10.6. Part (ii) follows trivially from
the definition of ¢y. We prove part (iii). Let « be a point satisfying the assumptions of part (iii)
and let f be the corresponding classical GLy-eigenform. Let Sym?®z be the point of DM that
corresponds to the form (Sym?® f)$¢ defined in Proposition 9.7. Let &: D{V’g — DY be the map
of rigid analytic spaces given by Proposition 9.11. The image of an irreducible component J of
D{V’g containing x is an irreducible component of D) that contains £(J). By Corollary 9.8, we
have sl(Sym3z) < h. As k+ 1 > h — 3, the weight map is étale at the point Sym?®x, so there
exists only one irreducible component of Dé‘/[ containing Sym? z. We denote by  the finite slope
family supported in such a component and containing Sym? z, and by I the support of 8. By our
last remark, the space £(J) intersects the admissible domain [ in a one-dimensional subspace.
The ideal of I° = O(I)° consisting of elements that vanish on £(J) is a height-one ideal of I that
divides the congruence ideal ¢y. In particular, ¢y admits a height-one prime divisor. a

The fortuitous Sym3-congruence ideal is an analogue of the congruence ideal of [CIT16,
Definition 3.10]. There is an important difference between the situation studied here and in
[CIT16] and those treated in [Hid15, HT15]. In [Hid15, HT15|, the congruence ideal describes
the locus of intersection between a fixed ‘general’ family (i.e. such that its specializations are not
lifts of forms from a smaller group) and the ‘non-general’ families. Such non-general families are
obtained as the p-adic lift of families of overconvergent eigenforms for smaller groups (e.g. GLy/x
for an imaginary quadratic field K in the case of CM families of GLy-eigenforms, as in [Hid15],
and GLy,p for a real quadratic field F' in the case of ‘twisted Yoshida type’ families of GSpy-
eigenforms, as in [HT15]). In our setting, there are no non-general families: the overconvergent
GSp,-eigenforms that are lifts of overconvergent eigenforms for smaller groups must be of Sym?
type by Lemma 3.15 and Theorem 3.8, and we know that the Sym?>-locus on the GSp4-eigenvariety
does not contain any two-dimensional irreducible component by Lemma 11.3(i). Hence, the ideal
¢g measures the locus of points that are of Sym? type, without belonging to a two-dimensional
family of Sym? type. For this reason, we call it the ‘fortuitous’ Sym®-congruence ideal. This is a
higher-dimensional analogue of the situation of [CIT16]|, where it is shown that the positive slope
CM points do not form one-dimensional families, but appear as isolated points on the irreducible
components of the eigencurve (see [CIT16, Corollary 3.6]).
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11.2 Comparison of the Galois level with the congruence ideal
In §8, we attached a Galois level to a family of finite slope GSp,-eigenforms. The goal of this
section is to compare this Galois theoretic objects with the congruence ideal introduced in §11.1,
that is an object defined in terms of congruences of overconvergent automorphic forms.

We work in the setting of Theorem 8.1. In particular, h is a positive rational number, 6: T} —
I° is a family of GSp,-eigenforms of slope bounded by h and p: Gg — GSp,(I7,) is the Galois
representation associated with 8. We make the same assumptions on 8 and p as in Theorem 8.1;
in particular, p is Zy,-regular and the residual representation p is either full or of symmetric cube
type. With the family 6 we associate two ideals of Ij:

— the ideal ¢g - Iy, where ¢4 is the fortuitous (Sym?, I$)-congruence ideal (see Definition 11.1);
— the Galois level Iy (see Definition 8.4).

To simplify notation, we write ¢y for cg-Iy. For every ring R and every ideal J of R, we denote
by Vgr(J) the set of primes of R containing J. The theorem below is an analogue of [CIT16,
Theorem 6.2]. The set S** of ‘bad’ primes of I§ was defined in §7.1. Note that Vi, (Ip) N SP* is
empty because the property defining the Galois level only involves Iy - B,., and the primes in SP2d
are invertible in B,..

THEOREM 11.4. There is an equality of sets Vi, (cg) — SP3 = Vi, (Ig).
Recall that there is a natural inclusion ¢, : Iy < I, .

Proof. First we prove that Vi, (cg) — S C V4, (Iy) — 5L, Choose a radius 7 in the set {r;};ey>o0
defined in §4. Let P € Vi,(cg) — SP2d and let pp be the reduction of p|g,: Ho — GSp,(Ip)
modulo P. By Proposition 11.2 there exists a representation pp;: Hy — GL2(Ip/P) such that
pp = Sym3 pp1. Let p.p = v,opp and p, p1 = t0pp1. The isomorphism above gives p, p =
Sym® pr. p1.

Suppose by contradiction that [y ¢ P. By the definition of Iy, we have &, D ly-sp, (B, ). Recall
that B, /P = I, o/P by the construction of B,. By looking at the previous inclusion modulo P,
we obtain

&,.p D (lIg/(PN1y)) - spy(ly0/P). (39)

As lg ¢ P, we have lp/(P N1lp) # 0. By definition, &, p = Q, - logIm p, p. By our previous
argument Im p, p C Sym? GL2(L0/PL, ), so log Im p, p cannot contain a subalgebra of the form
J-spy(L,0/PL,o) for a non-zero ideal J of I, o/ PL, o. This contradicts (39).

We prove the inclusion Vi, (lg) — SP*d € V4, (cp) — SP2d. Let P be a prime of Iy. We have
to show that if P ¢ SP® and [y C P, then ¢y C P. Every prime of I is the intersection of the
maximal ideals that contain it, so it is sufficient to show the previous implication when P is a
maximal ideal.

Let P be a maximal ideal of Iy such that P ¢ SPad and [y ¢ P. Let kp be the residue field
Io/P. We define two ideals of I.o by lp, = ¢,(Ip)l,.0 and P, = ¢,.(P)IL,o. Note that ¢, induces an
isomorphism Iy/P = I, o/P,. In particular, P, is maximal in I, and L, o/P, = kp, which is a
local field.

As before, let p.p = ,0pp. The residual representation p, p: Ho — GSpy(I7,/ mﬂgﬂo)
associated with p, p coincides with p|p,. In particular, p, p is of residual Sym3 type in the
sense of Definition 3.11. Let G, p = Im p, p and G;f, p be the connected component of the identity
in G, p. Let @

Zar

be the Zariski-closure of G} p in GSpy(I0/Pr). As py p is residually either
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full or of symmetric cube type, by the classification preceding Lemma 3.15 one of the following
must hold:

. . —o —Zar . . .
(i) the algebraic group G p * is isomorphic to Sym?® SLy over L.o/Pr;
(ii) the algebraic group G? PZar is isomorphic to Spy over I,/ P;.

In both cases, let H° denote the normal open subgroup of Hy satisfying Im pr.p|go = G, p-
As Hy is open and normal in Gg, H? is also open and normal in Gg. In case (i), there exists a
representation pg’ p: H® — GLy(I,0/P,) such that p, p|go = Sym? ,09’ p- As the image of p, p|go
is Zariski-dense in the copy of SLa(I,o/P,) embedded via the symmetric cube map, the image
of pgp is Zariski-dense in SLy(l,o/P,). From Lemma 3.14, we deduce that Im p(T)P contains
a coﬁgruence subgroup of SLa(I,o/P,). Now the hypotheses of Lemma 3.14 are satisfied by
the representation pg’ p and the group H 0 so we conclude that there exists a representation
p}IO’T’P: Hy — GLy(I,0/P;) such that pg,,p = Sym? p}Io,r,P' By Lemma 11.2, the prime P
must contain ¢y, as desired.

We show that case (ii) never occurs. Suppose by contradiction that Gj’qo,r’ Pzar = Sp, over
L.o/P,. By Propositions 5.11 and 5.14, we know that the field Iy/P is generated over Q, by
the traces of Ad(pp|n,). Hence, the field I, /P, is generated over Q, by the traces of Ad p, p.
By Theorem 3.13 applied to Im p, p, there exists a non-zero ideal [, p of 1,o/P, such that G, p
contains the principal congruence subgroup I'y,  /p, (I p) of Spy(I.o/P:). By definition &, p =
Qp - log(Im p, p|H, ), where H, is open in Gg, so up to replacing [, p by a smaller non-zero ideal
we have

rp - 84 (Iro/ ) Clog(T'y, /e, (Inp)) C log(tro(Gp)) C &y p. (40)

The algebras &, p are independent of r in the sense of Remark 7.3, so there exists an ideal [p of
llp/ P such that, for every r in the set {r;};>1, the ideal [ p = ¢,(Ip) satisfies (40). We choose the
ideals [ p of this form.

As before, A is the set of roots of GSp, with respect to the chosen maximal torus. Let a € A.
Let U and 47 Dbe the nilpotent Lie subalgebras of &, and &, p,, respectively, corresponding
to o. We denote by mp, the projection gsp,(B,) — gsp,(B,/P.B,). Clearly &, p. = np, (8,), so
Ut p = mp, (UY). Equation (40) gives [ pu(L.o/F) C U p . Choose a subset A% of u®(lp) such
thét, for every r, 1,(A%) C U and 7p, (4, (AD)) = [npua(’]lr,o/PT). Such a set exists because the
algebras 4" are independent of r by Remark 7.3 and the ideals [, p have been chosen of the form
tr(Ip). Let Ap be the ideal generated by Ap in u®*(Iy) and set Ap = (HaeA 2[%)4. By the same
argument as in the proof of Theorem 8.1, the ideal 2p satisfies

tr(Ap) - spy(B,) C &,
As [y - spy(B,) C &, for every r, we also have (Ig + A% )sp,(B,) C &, for every r.
By assumption [y C P, so mp(ly) = 0. By the definition of 2p, we have 7p(Ap) D 7p(Ap) = Ip,

so mp(lg +2Ap) = [p. We deduce that [y + Ap is strictly larger than [y. This contradicts the fact
that [y is the largest among the ideals [ of Iy satisfying [ - sp,(B,) C &,. O

By combining Theorem 11.4 and Lemma 11.3(ii), we obtain the following.

COROLLARY 11.5. When the residual representation p is full, the Galois level ly is trivial.
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