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Compactness of Hardy-Type Operators
over Star-Shaped Regions in R

N

Pankaj Jain, Pawan K. Jain and Babita Gupta

Abstract. We study a compactness property of the operators between weighted Lebesgue spaces that

average a function over certain domains involving a star-shaped region. The cases covered are (i) when

the average is taken over a difference of two dilations of a star-shaped region in R
N , and (ii) when the

average is taken over all dilations of star-shaped regions in R
N . These cases include, respectively, the

average over annuli and the average over balls centered at origin.

1 Introduction

In [4], Heinig and Sinnamon have given a weight characterization for the bounded-
ness of the so called “Hardy-Steklov operator” T : Lp

(

(0,∞),U
)

→ Lq
(

(0,∞),V
)

defined by

(1.1) (T f )(x) =

∫ b(x)

a(x)

f (t) dt

where p ∈ (1,∞), q ∈ (0,∞) and a = a(x), b = b(x) are strictly increasing differ-
entiable functions on [0,∞] satisfying a(0) = b(0) = 0, a(x) < b(x) for 0 < x < ∞
and a(∞) = b(∞) = ∞. Further, Sinnamon [10] has considered a higher dimen-
sional Hardy-Steklov operator TE : Lp(E, u) → Lq(E, v) defined by

(1.2) (TE f )(x) =

∫

b(αx)S\a(αx)S

f (t) dt

that averages a function over a difference of two dilations of a star-shaped region S in

R
N (the term star shaped region and other symbols in 1.2 are defined in Section 3).

In fact, in a remarkable result (Theorem 2.1, [10]), Sinnamon has shown that the
boundedness of the operator TE can be characterized in terms of the boundedness of
the one dimensional operator T.

In this paper, we complement Sinnamon’s result by considering the compactness
property of the operator TE. In fact, we show (see Theorem 3.1) that as in the case
of boundedness, the compactness of TE can also be characterized in terms of the
compactness of T. Then to obtain the precise necessary and sufficient conditions for

the compactness of TE, one can use any known criterion for the compactness of T,
e.g., the following result from [6] can be used:

Theorem A Consider the operator T : Lp
(

(0, ∞),U
)

→ Lq
(

(0,∞),V
)

defined by

(1.1) and let U ,V be weight functions on (0,∞).
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(a) If 1 < p ≤ q < ∞, then T is compact if and only if

sup
0<t≤s

a(s)≤b(t)

B(s, t) < ∞,

lim
t→s−

B(s, t) = lim
t→b−1(a(s))+

B(s, t) = 0, for every s > 0

and

lim
s→t+

B(s, t) = lim
s→a−1(b(t))−

B(s, t) = 0, for every t > 0

where

(1.3) B(s, t) =

(

∫ b(t)

a(s)

U 1−p ′

)
1

p ′
(

∫ s

t

V
)

1

q

.

(b) If 1 < q < p < ∞, then T is compact if and only if A = max(A1, A2) < ∞, where

(1.4) A1 =

(

∫ ∞

0

(
∫ t

b−1(a(t))

(

∫ b(s)

a(t)

W
)

r
p ′
(

∫ t

s

V
)

r
p

V (s) ds

)

σ(t) dt

)

1

r

and

(1.5) A2 =

(

∫ ∞

0

(
∫ a−1(b(t))

t

(

∫ b(t)

a(s)

W
)

r
p ′
(

∫ s

t

V
)

r
p

V (s) ds

)

σ(t) dt

)

1

r

with W = U 1−p ′

, 1
r

=
1
q
− 1

p
and where σ is a normalizing function defined in

Section 3 after the proof of Theorem 3.2.

It is observed that for the case 1 < q < p < ∞, the conditions for the bound-

edness and compactness of the operator T are same. In fact, this is quite expected,
which can be seen from a general principle of Anto [1] in this regard. However, in
[6], the authors gave a direct proof of Theorem A(b).

Further, as a special case of the operator TE, one can obtain an operator that av-

erages over the annuli. Consequently, we derive results (see Corollaries 3.4, 3.5 and
3.6) for such operators.

Observe that the operator T is, in some sense, more general than the classical
Hardy operator (H f )(x) =

∫ x

0
f (t) dt . However, H can not be obtained from T

since for this, the natural choice of the functions a and b in the operator T would be
a(x) = 0 and b(x) = x, but then we would not have a(∞) = ∞. Already necessary
and sufficient conditions are available (see e.g. [8]) under which H is compact. Thus
the natural question arises: if we consider an N-dimensional Hardy operator that

averages over the dilations of a star-shaped region, can its compactness be obtained
in terms of the compactness of H? The answer is affirmative and the correspond-
ing results are discussed in Section 4. The boundedness of such operators has been
characterized, again, by Sinnamon [9].
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Finally, we also discuss the corresponding results for all the conjugate operators
that we deal with in this paper.

The paper is organized in the following way. In Section 2, we collect certain pre-
liminaries which are standard but will ease the reading of the paper. Section 3 con-
tains the results involving the operator that averages over difference of two dilations
of a star-shaped region, while in Section 4 we deal with the operator that averages

over all dilations of a star-shaped region. Also, in that section, we discuss the com-
pactness of conjugates of all the operators that we deal with in Sections 3 and 4.

2 Preliminaries

Let X be a normed linear space and X∗ denote its conjugate space. We say that a
sequence {xn} in X is strongly convergent (or simply convergent) to x ∈ X, written
xn → x, if ‖xn − x‖ → 0 as n → ∞. A sequence {xn} in X is said to converge weakly

to x ∈ X, written xn
w
→x, if f (xn) → f (x), for each f ∈ X∗. A sequence { fn} in X∗

is said to be weak∗ convergent to f ∈ X∗, written fn
w∗

→ f , if fn(x) → f (x) for each
x ∈ X. Note that the strong convergence implies the weak convergence which in turn

implies the weak∗ convergence. The implications in the reverse direction do not hold
in general. However, if X is a reflexive space then the weak∗ convergence implies the
weak convergence.

Let Ω ⊆ R
N . A weight function on Ω is a function which is measurable and

positive almost everywhere (a.e.) on Ω. For a weight function u, Lp(Ω, u), 1 ≤ p <
∞, denotes the weighted Lebesgue space which is the set of all measurable functions
f defined on Ω such that

‖ f ‖p,Ω,u :=
(

∫

Ω

| f (x)|pu(x) dx
)

1

p

< ∞.

Note that for 1 ≤ p < ∞, Lp(Ω, u) is a Banach space and for 1 < p < ∞, it
is reflexive. If the duality on the weighted Lebesgue space Lp(Ω, u), 1 < p < ∞, is
defined by

〈 f , g〉 =

∫

Ω

f (x)g(x) dx, g ∈ Lp(Ω, u)

then we can identify the conjugate space of Lp(Ω, u) by Lp ′

(Ω, u1−p ′

), p ′
=

p
p−1

being the conjugate index to p, i.e.,

[Lp(Ω, u)]∗ = Lp ′

(Ω, u1−p ′

).

For a bounded linear operator A between two normed linear spaces X and Y , we
denote by A∗ the conjugate of A acting between Y ∗ and X∗.

The proofs of the theorems presented in this paper require some well known as-
sertions which are collected in the following:

Theorem B Let X and Y be Banach spaces.

(a) A bounded linear operator A : X → Y is compact if and only if its conjugate A∗ is

compact.
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(b) If A : X → Y is compact and {xn} is a sequence in X such that {xn}
w
→x, for some

x ∈ X, then Axn → Ax.

(c) An operator A : X → Y is compact if A∗ : Y ∗ → X∗ is weak∗-norm sequentially

continuous i.e., for each sequence { fn} in Y ∗ with { fn}
w∗

→ f , for some f ∈ Y ∗, we

have A∗( fn) → A∗ f .

Finally, the word conjugate has been used in connection with the index, the space
and the operator. But there should not be any ambiguity as it will be used according
to the context. The preliminaries collected here can be found in any standard book

on functional analysis e.g., [2], [3], [5]. In particular, Theorem B(c) is taken from
([2], p. 15).

3 Hardy-Steklov Operator

We call a region S ∈ R
N to be smoothly starshaped, if there exists a nonnegative,

piecewise-C1 function Ψ defined on the unit sphere in R
N with

S =
{

x ∈ R
N \ {0} : |x| ≤ Ψ(x/|x|)

}

.

Let S be a smoothly star-shaped region in R
N and

B =
{

x ∈ R
N \ {0} : |x| = Ψ(x/|x|)

}

.

We note that B is contained in the boundary of S and since Ψ is not assumed to be

continuous B may not be the whole boundary of S. Let E be the union of all dilations
of S, i.e., E =

⋃

α>0 αS. Note that E = R
N whenever 0 is in the interior of S. For

a non zero x ∈ E, since S is star-shaped, there is a least positive dilation αxS which
contains x. We write Sx = αxS and note that x/αx ∈ B so that x is on the boundary

of Sx.
Throughout, a and b will denote strictly increasing differentiable functions on

[0,∞] satisfying a(0) = b(0) = 0, a(x) < b(x) for 0 < x < ∞ and a(∞) = b(∞) =

∞. Clearly a−1 and b−1 exist and are also strictly increasing.

For weight functions u, v on E, define the higher dimensional Hardy-Steklov op-
erator TE : Lp(E, u) → Lq(E, v) by

(TE f )(x) =

∫

b(αx)S\a(αx)S

f (y) dy.

It can be seen that the operators TE and

T∗
E : Lq ′

(E, v1−q ′

) → Lp ′

(E, u1−p ′

)

defined by

(T∗
E g)(x) =

∫

a−1(αx)S\b−1(αx)S

g(y) dy

are mutually conjugate, i.e.,

〈TE f , g〉 = 〈 f , T∗
E g〉.
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Also, we shall be dealing with the one-dimensional Hardy-Steklov operator
T : Lp

(

(0,∞),U
)

→ Lq
(

(0,∞),V
)

defined by

(T f )(x) =

∫ b(x)

a(x)

f (t) dt, x ∈ (0,∞).

Here U and V are the weight functions defined on (0,∞). As above the operators T

and T∗ : Lq ′
(

(0,∞),V 1−q ′
)

→ Lp ′
(

(0,∞),U 1−p ′
)

defined by

(T∗ f )(x) =

∫ a−1(x)

b−1(x)

f (t) dt

are also mutually conjugate.

Now, we prove our first main result that characterizes the compactness of the N-
dimensional operator TE in terms of the compactness of the one-dimensional oper-

ator T.

Theorem 3.1 Let S be a smoothly star-shaped region in R
N and B, E, αx be as defined

above. Suppose 1 < p, q < ∞ and u, v be weight functions on E. Then the operator

TE : Lp(E, u) → Lq(E, v) is compact if and only if the operator T : Lp
(

(0,∞),U
)

→

Lq
(

(0,∞),V
)

is compact with

(3.1) U (t) =

(

∫

B

u1−p ′

(tτ )tN−1 dτ
) 1−p

, t ∈ (0,∞)

and

(3.2) V (t) =

∫

B

v(tσ)tN−1 dσ, t ∈ (0,∞).

Proof First assume that T : Lp
(

(0,∞),U
)

→ Lq
(

(0,∞),V
)

is compact. It suffices

to show that T∗
E : Lq ′

(E, v1−q ′

) → Lp ′

(E, u1−p ′

) is weak∗-norm sequentially contin-
uous since then, the result follows from Theorem B(c). Let { fn} be a sequence in

Lq ′

(E, v1−q ′

) such that fn
w∗

→0. Without any loss of generality, we may assume that
each fn is non negative. Define

(3.3) Fn(t) =

∫

B

fn(tτ )tN−1 dτ , n ∈ N, t ∈ (0,∞).

Then

Fn(t) =

∫

B

fn(tτ )v−
1

q (tτ )(tN−1)
1

q ′ v
1

q (tτ )(tN−1)
1

q dτ

≤
(

∫

B

f q ′

n (tτ )v1−q ′

(tτ )tN−1 dτ
)

1

q ′
(

∫

B

v(tτ )tN−1 dτ
)

1

q

,
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and therefore using (3.2) and making change of variable tτ = y, we have

(

∫ ∞

0

Fq ′

n (t)V 1−q ′

(t) dt
)

1

q ′

≤
(

∫ ∞

0

∫

B

f q ′

n (tτ )v1−q ′

(tτ )tN−1dτ dt
)

1

q ′

=

(

∫

E

f q ′

n (y)v1−q ′

(y) dy
)

1

q ′

< ∞,

which gives that {Fn} is a sequence in Lq ′
(

(0,∞),V 1−q ′
)

. Next we note that if G is
any function in Lq((0,∞),V ) and g : E → R is defined by

g(x) = G(t), x = tτ ,

then g ∈ Lq(E, v), since by using (3.2) and making change of variable x = tτ , we have
∫

E

gq(x)v(x) dx =

∫ ∞

0

∫

B

gq(tτ )v(tτ )tN−1dτ dt

=

∫ ∞

0

Gq(t)V (t) dt < ∞.

Thus by using (3.3), we have
∫ ∞

0

Fn(t)G(t) dt =

∫ ∞

0

(

∫

B

fn(tτ )tN−1 dτ
)

G(t) dt

=

∫ ∞

0

∫

B

fn(tτ )g(tτ )tN−1 dτ dt

=

∫

E

fn(x)g(x) dx → 0 as n → ∞,

i.e., Fn
w
→0. Further, since T is compact, by Theorem B ((a) and (b)),

‖T∗Fn‖p ′,(0,∞),U 1−p ′ → 0 as n → ∞.

Now, making change of variables y = tτ , x = sσ so that for σ ∈ B, αx = s, and using
(3.1), (3.3), we have

‖T∗
E fn‖p ′,E,u1−p ′ =

(
∫

E

(

∫

a−1(αx)S\b−1(αx)S

fn(y) dy
) p ′

u1−p ′

(x) dx

)
1

p ′

=

(
∫ ∞

0

∫

B

(

∫ a−1(s)

b−1(s)

∫

B

fn(tτ )tN−1 dτ dt
) p ′

× u1−p ′

(sσ)sN−1 dσ ds

)
1

p ′

=

(
∫ ∞

0

(

∫ a−1(s)

b−1(s)

Fn(t) dt
) p ′

U 1−p ′

(s) ds

)
1

p ′

= ‖T∗Fn‖p ′,(0,∞),U 1−p ′ ,
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and we are done.

Conversely, assume that TE : Lp(E, u) → Lq(E, v) is compact. Let {Fn} be a se-

quence in Lq ′
(

(0,∞),V 1−q ′
)

such that Fn
w∗

→0. Without any loss of generality we
may assume that each Fn is non-negative. Define

(3.4) fn(tτ ) = Fn(t)v(tτ )V−1(t), n ∈ N, t ∈ (0,∞), τ ∈ B.

Then

(3.5)

∫

B

fn(tτ )tN−1 dτ = Fn(t), n ∈ N, t ∈ (0,∞).

Now using (3.2) and (3.4), we have

(

∫

E

f q ′

n (x)v1−q ′

(x) dx
)

1

q ′

=

(

∫ ∞

0

∫

B

f q ′

n (tτ )v1−q ′

(tτ )tN−1 dτ dt
)

1

q ′

=

(
∫ ∞

0

Fq ′

n (t)
(

∫

B

vq ′

(tτ )v1−q ′

(tτ )tN−1 dτ
)

×V−q ′

(t) dt

)
1

q ′

=

(

∫ ∞

0

Fq ′

n (t)V 1−q ′

(t) dt
)

1

q ′

< ∞,

which means that { fn} is a sequence in Lq ′

(E, v1−q ′

). Thus (3.1) and (3.5) yield

‖T∗Fn‖p ′,(0,∞),U 1−p ′ = ‖T∗
E fn‖p ′,E,u1−p ′ .

We now show that fn
w
→0. For any function g ∈ Lq(E, v), using (3.4) we have

∫

E

fn(x)g(x) dx =

∫ ∞

0

∫

B

Fn(t)v(tτ )V−1(t)g(tτ )tN−1 dτ dt

=

∫ ∞

0

Fn(t)
(

∫

B

v(tτ )g(tτ )tN−1 dτ
)

V−1(t) dt

=

∫ ∞

0

Fn(t)G(t) dt → 0 as n → ∞,

where

G(t) =

(

∫

B

v(tτ )g(tτ )tN−1 dτ
)

V−1(t), t ∈ (0,∞),
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and it can be easily verified that G ∈ Lq
(

(0,∞),V
)

. Indeed, using (3.2), we have

∫ ∞

0

Gq(t)V (t) dt =

∫ ∞

0

(

∫

B

v(tτ )g(tτ )tN−1 dτ
) q

V 1−q(t) dt

=

∫ ∞

0

(

∫

B

g(tτ )v
1

q (tτ )(tN−1)
1

q v
1

q ′ (tτ )(tN−1)
1

q ′ dτ
) q

V 1−q(t) dt

≤

∫ ∞

0

(

∫

B

gq(tτ )v(tτ )tN−1 dτ
)

×
(

∫

B

v(tτ )tN−1 dτ
) q−1

V 1−q(t) dt

=

∫

E

gq(x)v(x) dx < ∞.

Now as TE is compact, by Theorem B((a) and (b)), ‖T∗
E fn‖p ′,E,u1−p ′ and hence

‖T∗Fn‖p ′,(0,∞),U 1−p ′ converges to 0 as n → ∞. Now the compactness of T follows

from Theorem B(c).

As remarked in Section 1, to give the precise necessary and sufficient conditions

for the compactness of the operator TE, one can use any known criterion for the com-
pactness of the operator T, e.g., Theorem A. We give below two theorems respectively,
for 1 < p ≤ q < ∞ and 1 < q < p < ∞ to characterize the compactness of TE

precisely.

Theorem 3.2 Let all the hypothesis of Theorem 3.1 be satisfied with the additional

condition that 1 < p ≤ q < ∞. Then the operator TE : Lp(E, u) → Lq(E, v) is compact

if and only if

sup
0<t≤s

a(s)≤b(t)

S(s, t) < ∞,(3.6)

lim
s→t+

S(s, t) = lim
s→a−1(b(t))−

S(s, t) = 0, for every t > 0(3.7)

and

(3.8) lim
t→s−

S(s, t) = lim
t→b−1(a(s))+

S(s, t) = 0, for every s > 0

where

S(s, t) =

(

∫

b(t)S\a(s)S

u1−p ′

)
1

p ′
(

∫

sS\tS

v
)

1

q

.

Proof The proof is immediate in view of Theorems 3.1 and A(a), once we show that
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S = B. Indeed, using (3.1) and (3.2), we have

B(s, t) =

(

∫ b(t)

a(s)

U 1−p ′

(ξ) dξ
)

1

p ′
(

∫ s

t

V (ξ) dξ
)

1

q

=

(

∫ b(t)

a(s)

∫

B

u1−p ′

(ξτ )ξN−1 dτ dξ
)

1

p ′
(

∫ s

t

∫

B

v(ξτ )ξN−1 dτ dξ
)

1

q

=

(

∫

b(t)S\a(s)S

u1−p ′

(x) dx
)

1

p ′
(

∫

sS\tS

v(x) dx
)

1

q

= S(s, t).

To give the corresponding result for the case 1 < q < p < ∞, we define a
normalizing function σ as

σ(t) =

∑

k∈Z

χ(Mk,Mk+1)(t)
d

dt
(b−1oa)k(t), t ∈ (0,∞).

Here (b−1oa)k denotes k times repeated composition and the numbers Mk come from
the sequence {Mk}k∈Z which is defined as follows:

M0 = b−1(1)

Mk+1 = a−1
(

b(Mk)
)

, if k ≥ 0

Mk = b−1
(

a(Mk+1)
)

, if k < 0.

Note that a(Mk+1) = b(Mk), k ∈ Z.

Theorem 3.3 Let 1 < q < p < ∞ and assume all the hypothesis of Theorem 3.1

are satisfied. Then the operator TE : Lp(E, u) → Lq(E, v) is compact if and only if

B = max(B1, B2) < ∞, where

B1 =

(
∫ ∞

0

∫

tS\b−1(a(t))S

(

∫

b(αx)S\a(t)S

u1−p ′

)
r

p ′
(

∫

tS\αxS

v
)

r
p

v(x) dxσ(t) dt

)
1

r

and

B2 =

(
∫ ∞

0

∫

a−1(b(t))S\tS

(

∫

b(t)S\a(αx)S

u1−p ′

)
r

p ′
(

∫

αxS\tS

v
)

r
p

v(x) dxσ(t) dt

)
1

r

,

with 1
r

=
1
q
− 1

p
and σ the normalizing function defined above.
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Proof Using (1.4), (3.1), (3.2) and making change of variable ξτ = z and sτ = x, we
have

A1 =

(
∫ ∞

0

∫ t

b−1(a(t))

(

∫ b(s)

a(t)

U 1−p ′

(ξ) dξ
)

r
p ′
(

∫ t

s

V (ξ) dξ
)

r
p

V (s) dsσ(t) dt

)
1

r

=

(
∫ ∞

0

∫ t

b−1(a(t))

(

∫ b(s)

a(t)

∫

B

u1−p ′

(ξτ )ξN−1 dτ dξ
)

r
p ′

×
(

∫ t

s

∫

B

v(ξτ )ξN−1 dτ dξ

)
r
p
∫

B

v(sτ )sN−1 dτ dsσ(t) dt

)
1

r

=

(
∫ ∞

0

∫

tS\b−1(a(t))S

(

∫

b(αx)S\a(t)S

u1−p ′

(z) dz
)

r
p ′

×
(

∫

tS\αxS

v(z) dz
)

r
p

v(x) dxσ(t) dt

)
1

r

= B1.

Similarly, it can be shown that A2 = B2. The result now follows by Theorems A(b)

and 3.1.

Now, as mentioned in Section 1, we can derive the special case of the operator TE

when the star-shaped region S is replaced by the unit ball in R
N with center as origin.

In such a situation, the differences of the star-shaped regions become anulli, E = R
N

and αx = |x|. The operator TE takes the shape of

(TN f )(x) =

∫

a(|x|)<|y|<b(|x|)

f (y) dy, x, y ∈ R
N .

With this special case, we immediately obtain the following corollaries of Theo-
rems 3.1, 3.2 and 3.3 respectively:

Corollary 3.4 Let 1 < p, q < ∞ and let u, v be weight functions on R
N . Then

the operator TN : Lp(R
N , u) → Lq(R

N , v), defined above is compact if and only if

T : Lp
(

(0,∞),U
)

→ Lq
(

(0,∞),V
)

is compact, with

U (t) =

(

∫

∑

N

u1−p ′

(tτ ), tN−1 dτ
) 1−p

, t ∈ (0,∞),

and

V (t) =

∫

∑

N

v(tτ )tN−1 dτ , t ∈ (0,∞),

where
∑

N is the surface of unit ball in R
N .
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Corollary 3.5 Let 1 < p ≤ q < ∞ and u, v be weight functions on R
N . Then

TN : Lp(R
N , u) → Lq(R

N , v) is compact if and only if

sup
0<t≤s

a(s)≤b(t)

B(s, t) < ∞,

lim
s→t+

B(s, t) = lim
s→a−1(b(t))−

B(s, t) = 0, for every t > 0,

and

lim
t→s−

B(s, t) = lim
t→b−1(a(s))+

B(s, t) = 0, for every s > 0,

where

B(s, t) =

(

∫

a(s)<|z|<b(t)

u1−p ′

(z) dz
)

1

p ′
(

∫

t<|z|<s

v(z) dz
)

1

q

.

Corollary 3.6 Let 1 < q < p < ∞ and u, v be weight functions on R
N . Then

TN : Lp(R
N , u) → Lq(R

N , v) is compact if and only if K = max(K1, K2) < ∞, where

K1 =

(
∫ ∞

0

∫

b−1(a(t))<|x|<t

(

∫

a(t)<|z|<b(|x|)

u1−p ′

(z) dz
)

r
p ′

×
(

∫

|x|<|z|<t

v(z) dz
)

r
p

v(x) dxσ(t) dt

)
1

r

and

K2 =

(
∫ ∞

0

∫

t<|x|<a−1(b(t))

(

∫

a(|x|)<|z|<b(t)

u1−p ′

(z) dz
)

r
p ′

×
(

∫

t<|z|<|x|

v(z) dz
)

r
p

v(x) dxσ(t) dt

)
1

r

,

with 1
r

=
1
q
− 1

p
and σ is the normalizing function as defined earlier.

4 Final Results and Remarks

For x ∈ E, write Sx = αxS and define the operator HE : Lp(E, u) → Lq(E, v) by

(HE f )(x) =

∫

Sx

f (y) dy.

Clearly, the operator HE is N-dimensional analogue of the classical Hardy operator
(H f )(x) =

∫ x

0
f (t) dt , where the average is taken over the dilations of a star-shaped

region S. As mentioned already, the operator H can not be obtained from the opera-
tor T. Similarly, HE can not be obtained from TE. However, the compactness of HE
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can be characterized in terms of the compactness of H. Since the proof is very similar
to the proof of Theorem 3.1 (with some obvious modifications), we state the result

only.

Theorem 4.1 Under the hypothesis of Theorem 3.1, the operator HE : Lp(E, u) →
Lq(E, v) is compact if and only if the classical Hardy operator H : Lp

(

(0,∞),U
)

→

Lq
(

(0,∞),V
)

is compact with U and V as defined respectively by (3.1) and (3.2).

Remark To obtain the precise necessary and sufficient conditions for the compact-

ness of HE (results corresponding to Theorems 3.2 and 3.3), one can use any known
criterion for the compactness of H, see e.g., ([8], Theorems 7.3 and 7.5).

Remark Analogous to the discussion after Theorem 3.3, we can derive special case
when, in HE, the star-shaped region S is replaced by the unit ball in R

N .
It is natural to study the compactness of the conjugate operators T∗

E , T∗
N and H∗

E .
For the sake of conciseness, we only deal with T∗

E . The remaining can be dealt with

exactly on the similar lines.
For the case 1 < p ≤ q < ∞, we have the following result

Theorem 4.2 Let the hypothesis of Theorem 3.2 are satisfied. Then the operator

T∗
E : Lp(E, u) → Lq(E, v) is compact if and only if

sup
0<t≤s

a(s)≤b(t)

S
∗(s, t) < ∞,

lim
s→t+

S
∗(s, t) = lim

s→a−1(b(t))−
S
∗(s, t) = 0, for every t > 0,

lim
t→s−

S
∗(s, t) = lim

t→b−1(a(s))+

S
∗(s, t) = 0, for every s > 0,

where

S
∗(s, t) =

(

∫

b(t)S\a(s)S

v
)

1

q
(

∫

sS\tS

u1−p ′

)
1

p ′

.

Proof By Theorems B(a) and 3.2, T∗
E : Lq ′

(E, v1−q ′

) → Lp ′

(E, u1−p ′

) is compact

if and only if (3.6), (3.7) and (3.8) hold. Now the result is obtained by replacing
q ′, p ′, v1−q ′

, u1−p ′

respectively by p, q, u and v.
On the similar lines we have the result for the case 1 < q < p < ∞ also.

Theorem 4.3 Let the hypothesis of Theorem 3.3 are satisfied. Then the operator

T∗
E : Lp(E, u) → Lq(E, v) is compact if and only if

(
∫ ∞

0

∫

tS\b−1(a(t))S

(

∫

b(αx)S\a(t)S

v
)

r
q
(

∫

tS\αxS

u1−p ′

)
r

q ′

u1−p ′

(x) dxσ(t) dt

)
1

r

< ∞

and
(
∫ ∞

0

∫

a−1(b(t))S\tS

(

∫

b(t)S\a(αx)S

v
)

r
q
(

∫

αxS\tS

u1−p ′

)
r

q ′

u1−p ′

(x) dxσ(t) dt

)
1

r

< ∞

with 1
r

=
1
q
− 1

p
and σ, the normalizing function as defined in Section 3.
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Remark The results in Theorems 4.2 and 4.3 can also be obtained by a different
approach. One can first formulate a result corresponding to Theorem 3.1 relating the

compactness of T∗
E and T∗ and then apply Theorems 5.1, 5.2 from [6], which give

necessary and sufficient conditions for the compactness of T∗ for the cases 1 < p ≤
q < ∞ and 1 < q < p < ∞, respectively.
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