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Degeneracy of turbulent states in
two-dimensional channel flow
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We revisit two-dimensional channel flow with fixed volume flux for Reynolds
numbers Re ∈ [7000, 72 000] via direct numerical simulations and uncover a region
of multistability of turbulent states. New asymmetric states (based on comparing the
time-averaged mean shear on each of the channel walls) exist for at least 32 000 h/U
when Re ∈ [21 000, 42 000] alongside the known symmetric solution (2h is the channel
height and U is the mean flow rate). Both the symmetric and asymmetric states resemble
a travelling wave even at Re an order of magnitude above the primary bifurcation at
Re = 5772 with the asymmetric state showing heightened turbulent behaviour near one
of the channel walls. These asymmetric states display up to 22 % reduction in pressure
gradient compared with their symmetric counterparts. The saddle state between the two
apparent attractors is shown to be the travelling wave solution which originates from
the primary bifurcation. By Re = 43 000, the symmetric solution has become unstable
leaving only the asymmetric state and its reflected counterpart as attractors until at least
Re = 46 875. At Re = 60 000, the pair of asymmetric states become connected so that the
‘turbulent’ wall switches apparently randomly and infrequently. In this way, the symmetry
of the flow is then restored but only after averaging over extremely long times (� 105h/U).

Key words: transition to turbulence

1. Introduction

This paper considers two-dimensional (2-D), constant-volume-flux channel flow for
Reynolds numbers Re ≤ 72 000 ≈ 12.5Rec, where the one-dimensional plane Poiseuille
base flow famously becomes linearly unstable at Rec := 5772.22 (Orszag 1971). The
motivation for considering this simplified flow was a wish to re-examine the statistical
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stability of turbulent flows using an approach incorporating more statistical information
than that originally proposed in Malkus’s seminal work (Malkus 1956). Malkus suggested
that turbulent mean flows should be statistically marginally stable and proposed that an
Orr–Sommerfeld eigenvalue problem constructed around the turbulent mean could be used
to assess this. However, a simple parametrisation of some turbulent mean profiles was later
found to be quite stable (Reynolds & Tiederman 1967), which caused the general idea to
be largely ignored. The success of recent work assuming the mean flow profile to then
predict the structure of the accompanying fluctuation fields – known latterly as ‘resolvent
analysis’ (McKeon 2017) – has highlighted the significance of finding a predictive theory
for the mean flow if at all possible. Given this, a 2-D channel flow was chosen to revisit the
theory because it offers a computationally-accessible environment which contains (2-D)
turbulence. Preliminary computations of the turbulent mean profile as a function of Re
revealed some unexpected non-uniqueness, which is the subject of this paper.

Channel flow is a canonical shear flow (along with plane Couette and pipe flows) which
has been well studied, as the base flow experiences a subcritical Hopf bifurcation at
Re = Rec where a family of travelling waves is borne (e.g. Chen & Joseph 1973; Zahn et al.
1974; Orszag & Kells 1980; Pugh & Saffman 1988; Mellibovsky & Meseguer 2015). These
(lower branch) waves extend down to Re ≈ 2900 (Herbert 1979) before turning back (the
upper branch) to higher Re. More importantly, however, the presence of the bifurcation
leads to ever more complicated 2-D dynamics as Re increases, in contrast to 2-D plane
Couette (Falkovich & Vladimirova 2018) and axisymmetric pipe flows (Willis & Kerswell
2009). One of the few studies by direct numerical simulation (DNS) of volume-flux-driven
2-D channel flows was conducted by Jiménez (1990) who showed that the (upper branch)
travelling wave solutions undergo further bifurcations into a limit cycle at Re = 5400 and
into a two-frequency torus at Re = 9200. Owing to resolution limitations, only Reynolds
numbers Re ≤ 104 ≈ 1.73Rec were studied in these simulations with full ‘turbulence’
suspected beyond Re = 105 ≈ 17.3Rec. Umeki (1994) investigated the wall-layer of the
mean turbulent velocity profile of 2-D channels, however, the time scale over which the
statistical data was collected turned out to be much shorter than the time scale over which
the flow was evolving. More recently, a DNS study of thin fluid layers by Falkovich &
Vladimirova (2018) (hereafter FV18) explored a 2-D channel flow driven by a constant
pressure gradient up to very high Reynolds numbers (Re = 3.2 × 105 ≈ 55.4Rec). A
thorough description of the flow evolution in short channels with increasing Re was given
along with the relationship between the driving pressure gradient and resultant mass flux.
Most notably, they found that the turbulent mean flow at higher Re was remarkably similar
to that of the travelling wave found at lower Re.

The expectation for a 2-D flow where the boundaries and forcing (either pressure
gradient or imposed mass-flux) are symmetric about a midline is that the ensuing mean
flow response should also be symmetric and unique, at least at sufficiently high Re.
Certainly, FV18 does not mention finding any asymmetric mean flows – quantified in
the following as the normalised difference between the two average wall shear stresses
– in their study, although at least one of their plots hints at such (see § 3.1). Here, we
report such states coexisting with the expected symmetric state for mass-flux-driven 2-D
channel flows over the range Re ∈ [21 000, 42 000] (the asymmetric state was also found in
a constant pressure-driven 2-D channel). This ‘asymmetric’ range in Re can be subdivided
into regions of low asymmetry, high asymmetry and a transition region in between where
the asymmetry intermittently switches between the two levels. The asymmetric states
are shown to persist over 48 000 time units (= 32 000 h/U), which indicates that even
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if they are only metastable, they are metastable over such a long time scale for this to
be significant (e.g. Jiménez (1990) gathered statistics over periods up to 6000 time units
while Umeki (1994) used a window of only 32 time units). Our results then add 2-D
channel flow to the list of other turbulent flows where multistability has also been observed
such as Rayleigh–Bénard convection (Xi & Xia 2008), von Kármán flow (Ravelet et al.
2004; Faranda et al. 2017), Taylor–Couette flow (Huisman et al. 2014), rotating spherical
Couette flow (Zimmerman, Triana & Lathrop 2011), spanwise-rotating plane Couette flow
(Xia et al. 2018), 2-D forced shear flow (Dallas, Seshasayanan & Fauve 2020), flow in a
T-mixer (Schikarski et al. 2019) and the flow past a pendular disk in a wind tunnel (Gayout,
Bourgoin & Plihon 2021).

Finally, by exploring the basin boundary between the attracting symmetric and
asymmetric turbulent states, a travelling wave solution is found as an unstable ‘edge’ state
sitting between the two turbulent attractors in phase space. This travelling wave solution
originates from the primary bifurcation in the computational domain near Rec. The end
product of this work is that two stable turbulent states parametrised by Re are obtained as
data for an investigation of theoretical approaches to assess statistical stability.

2. Set-up

We consider a 2-D channel of height 2h along which a pressure gradient G is applied to
drive a constant volume flux 2hU. Using h and 3

2 U (see directly below (2.2a,b) for why)
to non-dimensionalise the system, the computational domain is (x, y) ∈ [0, 8)× [−1, 1]
with periodic boundary conditions in x and no-slip walls at y = ±1, as was studied by
Falkovich & Vladimirova (2018), and time is measured in units of = 2h/3U. We impose
constant volume flux by insisting that∫ 1

−1
u(x, y, t) · x̂ dy = 4

3 . (2.1)

Two Reynolds numbers are defined as

Re := 3Uh
2ν

and ReP := Gh3

2ν2 , (2.2a,b)

where ν is the kinematic viscosity. Here, Re is the control parameter based upon the
constant mass flux and ReP is an output which measures the pressure gradient needed to
maintain this mass flux. These are equal when the flow is laminar because the centreline
speed Uc := Gh2/2ν = 3

2 U for the laminar parabolic flow profile. Using a streamfunction
ψ , so that (u, v) = (ψy,−ψx) reduces the system down to a scalar vorticity (ω) equation,

ωt + ψyωx − ψxωy = 1
Re

∇2ω, ω = −∇2ψ (2.3)

with boundary conditions

ψ (−1) = 0, ψ (1) = 4
3 , ψy (−1) = 0, ψy (1) = 0. (2.4a–d)

For turbulent flows, ReP > Re, because more pressure is required to drive a turbulent
flow than a laminar flow with the same volume flux. FV18 found that ReP � Re3/2 for
the solutions they computed. In this paper, we describe a new stable branch of solutions
asymmetric with respect to the midplane of the channel which has a different ReP–Re
relationship.
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As an output of the flow, ReP is found by bulk-averaging the x-momentum equation,

ReP(t) = −Re
4

[
∂ ūx

∂y

∣∣∣∣
y=1

− ∂ ūx

∂y

∣∣∣∣
y=−1

]
(2.5)

(where ūx indicates a streamwise average of u) as the time derivative of the bulk
x-momentum is zero by constant mass flux. Finally, to quantify the asymmetric behaviour
of the newly found states, we define the asymmetry coefficient A ∈ [−1

2 ,
1
2 ] as

A(t) := 1
2

∣∣∣∣dūx

dy
|y=1

∣∣∣∣ −
∣∣∣∣dūx

dy
|y=−1

∣∣∣∣∣∣∣∣dūx

dy
|y=1

∣∣∣∣ +
∣∣∣∣dūx

dy
|y=−1

∣∣∣∣
. (2.6)

A definition of (statistically) symmetric flows as those with Ā
t ≈ 0 to within ±0.01

proved a simple and robust way to distinguish between symmetric and asymmetric states
for the time period chosen for averaging. The kinetic energy averaged over the domain

E(t) := 1
16

∫ 1

−1

∫ 8

0

1
2
(u2 + v2) dx dy (2.7)

was also considered with an accompanying variable Ek(t) used to represent the
contribution to E from the (4k/π)th streamwise Fourier mode (the smallest wavenumber
for the computational domain is π/4).

2.1. Numerical procedure
Equation (2.3) was solved numerically together with the boundary conditions (2.4a–d)
using the open-source partial differential equation solver Dedalus (Burns et al. 2020).
The solver uses a Fourier–Chebyshev decomposition in the x and y directions respectively
with resolutions (Nx,Ny) given in table 1. For time integration, an implicit-explicit
Runge–Kutta RK443 time stepper with an adaptive time step was chosen. The Courant
number was set to a low value of 0.6 with the fractional change threshold for changing the
time step set to 0.1 to increase simulation speed.

The asymmetric states were initiated at Re = 36 300 by perturbing the laminar profile
as

ψ0 = ψlam + ψpert =
(

y − 1
3

y3 − 2
3

)
− 4

3π2 sin2 πy sin
π

4
x, (2.8)

which satisfies the boundary conditions and has an antisymmetric (in y) streamwise
velocity perturbation (subsequently, other asymmetric perturbations were also found
which lead to the asymmetric turbulent state). The newly-found asymmetric branch was
then explored by using a snapshot of this new state as the initial condition in DNS at higher
and lower Re.

Unless otherwise stated, the time averaging procedure was as follows. The data for
the asymmetric states were collected in the time window t ∈ [0, 48 000] and averaging
performed over t ∈ [t1 = 9000, t2 = 48 000] to avoid transient behaviour, i.e.

Āt := 1
t2 − t1

∫ t2

t1
A(t) dt, ReP

t
:= 1

t2 − t1

∫ t2

t1
ReP(t) dt. (2.9a,b)
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Symmetric States
Region Re

104 (Nx,Ny)
ReP
104 Δ% Ā

t
σA Reτ

S1 0.695 (512, 512) 1.67 0.2 0.00 0.000 183
S1 0.904 (512, 512) 2.51 0.4 0.00 0.000 224
S1 1.42 (512, 512) 5.01 0.3 0.00 0.000 317
S1 2.00 (1024, 256) 8.44 −0.1 0.00 0.002 411

SA1 2.24 (1024, 256) 9.99 −0.1 0.00 0.000 447
SA2 2.63 (1024, 256) 12.7 2.1 0.00 0.001 504
SA3 3.63 (1024, 256) 20.6 3.0 0.00 0.001 640

EDGE 3.63 (1024, 256) 6.06 — 0.00 0.002 348
SA3 4.20 (1024, 256) 28.7 — 0.00 0.001 718
S2 6.00 (2048, 512) 39.0 — −0.10 0.100 879
S2 7.20 (2048, 512) 53.0 6.1 0.02 0.107 1030

Asymmetric States
Region Re

104 (Nx,Ny)
ReP
104 Δ% Ā

t
σA Reτ

SA1 2.10 (1024, 256) 8.94 −0.3 0.05 0.000 422
SA1 2.24 (1024, 256) 9.95 −0.04 0.08 0.034 445
SA2 2.40 (1024, 256) 11.1 0.0 0.08 0.024 471
SA2 2.40 (1024, 512) 10.9 −0.03 0.09 0.039 471
SA2 2.63 (1024, 256) 11.1 −10.7 0.15 0.048 466
SA2 3.00 (1024, 256) 12.2 −20.9 0.23 0.043 482
SA3 3.38 (1024, 256) 14.0 −22.6 0.27 0.004 509
SA3 3.38 (512, 512) 14.0 −22.7 0.27 0.004 508
SA3 3.63 (1024, 256) 15.6 −21.8 0.28 0.005 540
SA3 4.30 (1024, 256) 22.2 −11.2 −0.28 0.012 603
SA3 4.69 (2048, 512) 22.2 −11.2 0.30 0.029 631

Table 1. Numerical data generated. S1 is the region where only symmetric states were detected; SA1, SA2,
SA3 are the regions with degeneracy of symmetric and asymmetric states; EDGE denotes the edge state
at Re = 36 300; S2 is the region where symmetry is obtained but only over very long times. For further
information, refer to the text in § 3.2. Here, (Nx,Ny) is the gridpoint resolution used in the simulation; ReP
is the pressure-gradient-based Reynolds number (see (2.2a,b)); Δ% is the percentage difference in ReP values
between our results and the corresponding states from FV18 if such states are available, otherwise, an estimated
value of ReP is taken by interpolating between two FV18 data points. Ā

t
is the time-averaged asymmetry

parameter (see (2.9a,b)); σA is the standard deviation of asymmetry fluctuations in time, also used as the error
bars in figure 2; Reτ is the friction Reynolds number (see (2.11)).

Symmetric states exhibited much shorter transient periods and were oscillating on much
shorter time scales so data were collected in the time window t ∈ [0, 21 000] and the
averaging was conducted for t ∈ [t1 = 3000, t2 = 21 000] instead. This applies to all runs
of symmetric states except for Re = 60 000 and 72 000, where large fluctuations were
observed over a long period and the more extensive averaging procedure of the asymmetric
states was used. The edge tracking technique (Itano & Toh 2001; Skufca, Yorke & Eckhardt
2006; Schneider, Eckhardt & Yorke 2007) was used to find an unstable (saddle) state on
the basin boundary separating the asymmetric and symmetric turbulent attractors.

2.2. Near-wall rescaling
Owing to the possible asymmetric nature of the flow, viscous effects near the two channel
walls may differ on average. Hence, two sets of viscous units were used to rescale the
velocity profiles and other quantities near the two channel walls (see § 3.2 for relevant
plots).
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A friction velocity near the top (bottom) channel wall was defined in the usual way as

u±
τ =

√∣∣∣∣ 1
Re
∂ ūx,t

∂y

∣∣∣∣
y=±1

. (2.10)

Here, ūx,t indicates the streamwise and time average of u. We plot the rescaled quantities
against the rescaled distance from the top (bottom) wall, y+ = Re(1 − y)u+

τ (y− = Re(1 +
y)u−

τ ), and evaluate the (averaged) friction Reynolds number (see table 1) as

Reτ = 1
2 (u

+
τ +u−

τ )Re. (2.11)

3. Results

Perturbing the laminar flow at Re = 36 300, as defined by (2.8), results in an
asymmetric state. The asymmetry is clearly visible from the mean velocity profile ūx,t

and root-mean-square velocity profiles, uRMS := u2x,t − (ūx,t)2, vRMS := v2x,t − (v̄x,t)2,
plotted in figure 1. The mean profiles of the asymmetric and symmetric states are quite
different (see solid lines in figure 1a): the asymmetric profile has clearly visible asymmetry
with respect to the centreline of the channel. It also has larger maximum velocity at
the nose (= 1.005) of the profile compared with the symmetric profile (= 0.902) at the
expense of slower velocity near the top channel wall (recall both profiles have the same
volume flux and the centreline speed for the Poiseuille base flow is 1). Finally, while the
wall layer near the bottom wall is similar in both of the profiles, significantly less shear
is observed near the top wall of the asymmetric profile. The difference in the shear at
the top and bottom channel walls motivates the definition of the asymmetry (2.6). Similar
observations can be made when considering the RMS velocities of both of the states: while
the overall magnitude of the RMS profiles is of comparable size in both states, the RMS
profiles of the asymmetric state are noticeably suppressed near the top wall.

In this section, we first investigate how the asymmetry changes with Reynolds
number and outline where these states coexist with the symmetric state. Then, we
compare the turbulent properties of the symmetric and asymmetric states. Finally, we
explore the unstable manifold between symmetric and asymmetric states at Re = 36 300,
where the difference between the two stable states is the most significant.

3.1. Degeneracy of turbulent states
The Re range over which the pair of asymmetric turbulent states coexists with the
symmetric state described in FV18 (at least for 48 000 time units) is designated as region
SA. In contrast, region S1 indicates where only the symmetric state is stable and region S2
indicates where the state also looks to be symmetric when averaged over an extremely
long time. Investigation of the asymmetry parameter A(t) for the states in this region
revealed the existence of two discrete asymmetry levels: higher and lower. This feature
suggests further dividing the region SA into three sub-regions: SA1, where the asymmetry
is low; SA2, where the asymmetry is repeatedly jumping between the lower and higher
levels; and SA3, where the asymmetry is high. Typical time signals of the asymmetry
parameter in these three regions are shown in figure 2. Further significance of the three
subregions is revealed by investigating the relationship between the pressure gradient and
volume flux of the asymmetric states and comparing the resulting asymmetric solution
branch to the solution branch of the symmetric state. Figure 3(a) shows the symmetric and
asymmetric states in terms of Re and their ReP. While for laminar flows, ReP = Re (shown
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Figure 1. Velocity profiles of Re = 36 300 symmetric (light blue), asymmetric (light pink) and laminar (black)
states. (a) Streamwise mean velocity profile ūx,t (solid line) and uRMS (dashed line); (b) streamwise uRMS
(dashed line) and wall-normal vRMS (dotted line). Time averaging is over Δt = 5000 time units.

as black dashed line in the diagram), the symmetric turbulent state obeys a ReP ∝ Re3/2

relationship, as was first shown by FV18. Figure 3(b) shows the time-averaged asymmetry
parameter Ā

t
at different Reynolds numbers together with the error bars indicating the

standard deviation of the temporal fluctuations.
In region SA1, where Re ∈ [21 000, 24 000), the asymmetric states have a relatively

steady asymmetry signal of Ā
t ≈ 0.05 with only very small fluctuations around this value,

as shown in figure 2 and the error bars in in figure 3(b). In contrast, figure 2(b, inset) shows
that A fluctuates around 0 with an amplitude ≈ 0.001 for the symmetric state. While the
asymmetric states possess significant asymmetry, their corresponding ReP value is very
close to the symmetric flow value being within 1 % of each other (see figure 3a). As a
consequence, in this region, the asymmetric states are hard to detect. At Re = 20 000,
only monotonic decay of asymmetry was found: see figure 2(b).

Region SA2, where Re ∈ [24 000, 33 750), is the transitional region because the
asymmetry signal of the asymmetric states repeatedly jumps between the lower and higher
asymmetry levels. The ratio of the time spent at the higher level to the time spent at the
lower level increases with Reynolds number Re. When time averaging, this results in large
asymmetry fluctuations around an increasing average asymmetry value, as is indicated
in figure 3 (bottom). Conditional averaging instead, by only using the highest 10 % and
the lowest 10 % of the asymmetry signal, indicates how the higher and lower asymmetry
branches extend across this region (see the dashed lines in 3b). In terms of ReP, region
SA2 in figure 3(a) shows the asymmetric solution branch detaching from the symmetric
solution branch with a gradually growing gap in the ReP value.

In region SA3, where Re ∈ [33 750, 46 875+] (the region extends past 46 875 but not
as far as 60 000), the asymmetry signal of the asymmetric states stays at a higher level –
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(c)
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0

0 5000

0.001

0

–0.001
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0.20

0.15
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0.05

0

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

10 000 20 000

t
30 000 40 000 50 0000

10 000 20 000 30 000 40 000 50 0000

10 000 20 000 30 000 40 000 50 0000

A

A

A

0

Figure 2. Time evolution of the asymmetry parameter A(t). (a) Asymmetric states in: region SA1 – Re =
21 000 (dark green), Re = 22 350 (light green); region SA2 – Re = 24 000 (yellow), Re = 26 250 (orange),
Re = 30 000 (brown); region SA3 – Re = 33 750 (red), Re = 36 300 A (light pink), Re = 46 875 (dark pink).
(b) Comparison of A(t) of a symmetric state, Re = 36 300 S (light blue; see the inset on the right for zoomed-in
fluctuations) with A(t) of the unstable (initially) symmetric state at Re = 43 000 (dark purple) resulting in
an asymmetric state. Black solid line in the left inset also shows the instability of the asymmetric state at
Re = 20 000. (c) Region S2 states at Re = 60 000 (light grey) and Re = 72 000 (dark grey) together with the
representative states of regions SA1 (Re = 22 350, light green) and SA3 (Re = 33 750, red).
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10–2

(a)

(b)

Re
p/
Re
3
/2

Ā t

0.3

0.2

0.1

0

–0.1
1.0 2.1

Re ×10–4
2.4 3.3 4.7 6.0

1.0

S1 SA1 SA2 SA3 S2

S1 SA1 SA2 SA3 S2

2.1 2.4 3.3 4.7 6.0

Figure 3. Degeneracy of turbulent states in 2-D channels: blue and grey squares, symmetric states; coloured
circles, asymmetric states (colours as in figure 2); black open circle, edge state at Re = 36 300. (a) The ReP as a
function of Re. Here, ReP = Re is marked by the black dashed line and results from FV18 are marked by black
crosses. (b) The Ā

t
as a function of Re. The error bars signify σA (see table 1). Black dashed lines correspond

to asymmetry averaging over the highest and the lowest 10 % of values.

Ā
t ≈ 0.28 – with the level of chaotic fluctuations indicating a more turbulent behaviour.

The asymmetric states follow the new solution branch with differences between the ReP
values of symmetric and asymmetric states being as high as 22 % for Re = 36 000.

In regions S1, SA1, SA2 and SA3 up to Re = 42 000, the symmetric states are in
good qualitative (travelling wave structure) and quantitative (see table 1 for Δ% values)
agreement with FV18. The asymmetry fluctuations of these states are at most 0.001, as
shown in figure 2(b). However, the symmetric branch cannot be tracked beyond Re =
42 000: using the symmetric state at Re = 42 000 in a simulation at Re = 43 000 results in
an asymmetric SA3 region state (see figure 2b).

In region S2, which starts somewhere between Re = 46 875 and 60 000, the asymmetric
state also changes its qualitative behaviour: the asymmetry parameter A experiences large
fluctuations in time and changes sign on a time scale which decreases as the Reynolds
number increases (see figure 2c). These asymmetry fluctuations should plausibly cancel
out to give a new type of symmetric state when averaged over an extremely long time
window.
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These states showing non-trivial asymmetric behaviour are the only states we found in
S2 region, which raises the question whether the asymmetric behaviour was also observed
by FV18, as figure 4 in their paper might suggest. At Re = 1.5 × 105, the time-averaged
vorticity appears to have a significantly larger absolute value at the negative than at the
positive vortex. Additionally, the proximity of a FV18 data-point to our asymmetric state
at Re = 46 875 (which is beyond the symmetric state instability point at Re = 43 000) in
figure 3 also suggests asymmetry.

3.2. Asymmetric path to turbulence
The symmetric state first observed by FV18 was considered to have reached turbulence at
approximately Re = 30 000, when small vortices created at the channel wall were observed
to be swept into the main vortex. The asymmetric states, however, show higher turbulence
levels to their symmetric counterparts, with early signs of turbulence appearing at much
lower Reynolds numbers, which suggests the asymmetric states undergo a different path
to turbulence to their symmetric counterparts. To compare turbulent properties of the
symmetric and asymmetric states, the mean velocity ūx,t, Reynolds stress uvx,t and
production of turbulent kinetic energy P = uvx,t dūx,t/dy, rescaled with viscous wall units
as explained in § 2.2, are shown in figure 4 (all time-averaged over Δt = 5000 time units).
Asymmetric states show larger turbulence production and Reynolds stress peaks near the
‘turbulent’ wall than near the ‘quiet’ wall, and, more importantly, than their symmetric
counterparts. For all states, the power spectrum Ek/E (see (2.7) for definition), shows
evidence of the direct cascade scaling law k−3 for 2-D turbulence (Kraichnan 1967) (see
figure 5).

The difference in turbulent activity between the symmetric and asymmetric states
manifests itself in the vorticity field. Figure 6 shows sample instantaneous vorticity
fields (See supplementary movies available at https://doi.org/10.1017/jfm.2021.336 for
full videos). Like all symmetric states in regions S1 and SA, the symmetric state at
Re = 36 300 (figure 6a) consists of an almost steady travelling wave with two vortices
at each of the channel walls: the vortices are all the same magnitude and experience only
minor fluctuations. The asymmetric state at Re = 22 350 in region SA1 (figure 6b) has
one of the two vortices near the bottom channel wall starting to break up, displaying
larger amplitude chaotic fluctuations which causes the asymmetry. By region SA3, the
chaotic behaviour has spread into both the bottom wall vortices resulting in a higher
level of asymmetry (figure 6c). Presumably, a longer (computational) channel harbouring
more vortices would give rise to a corresponding larger number of asymmetry levels. The
asymmetry fluctuations of the asymmetric state are also larger than those of the symmetric
state at Re = 36 300 (see figure 2a). Hence, more irregular, ‘turbulent’ behaviour is
observed at much lower Reynolds numbers for the asymmetric than symmetric states.

Another important feature of the flow is the jet separating the counter-rotating vortices
near the top and bottom walls. FV18 discuss this feature in deriving a scaling prediction
for the flux given the pressure gradient. This jet is located at equal distances from both of
the walls in the symmetric case, while it separates from the quiet wall and moves towards
the turbulent wall in the asymmetric case. This creates an extra viscous barrier which
fluctuations created near the turbulent wall need to cross to reach the quiet half of the
channel. This helps explain how turbulent fluctuations can stay localised at one wall in
the asymmetric states. If Re is sufficiently increased, vorticity fluctuations become large
enough to overcome the jet barrier and all the vortices become contaminated with chaotic
fluctuations restoring symmetry on average. Figures 6(e) and 6( f ) show vorticity snapshots
for the Re = 72 000 state where symmetry is restored on average. Interestingly, the main
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Figure 4. (a,b) Mean profile ūx,t; (c,d) Reynolds stress uvx,t; and (e, f ) turbulence production P. All quantities
are shown in viscous wall units as defined in § 2.2 and u∗

τ corresponds to u+
τ (u−

τ ) used for rescaling near the
top (bottom) channel wall. (a,c,e) Reynolds number Re = 22 350 (light green); (b,d, f ) Re = 36 300 (light pink)
and Re = 43 000 (purple). Solid lines correspond to symmetric states (note, for Re = 43 000, the symmetric
state at Re = 42 000 is shown instead), dashed lines correspond to asymmetric states near the ‘turbulent’ wall
and dotted lines correspond to asymmetric states near the ‘quiet’ wall.

travelling wave structure persists despite the highly turbulent behaviour near both of the
channel walls, as also noticed by FV18. Analysing the vorticity snapshots in the regions
where asymmetry is either positive or negative, it is seen that the separating jet becomes
less rigid and starts fluctuating towards one of the two channel walls. In this manner,
the viscous barrier, which existed in asymmetric states at lower Reynolds numbers, can
be broken allowing the turbulent vortices to move freely between the two halves of the
channel without dissipating.
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Figure 5. Velocity power spectrum Ek/E, see (2.7). (a) Reynolds number Re = 22 350 (light green); (b)
Re = 36 300 (light pink) and Re = 43 000 (purple). Solid lines correspond to symmetric states (note, for
Re = 43 000, the symmetric state at Re = 42 000 is shown instead) and dashed lines correspond to asymmetric
states. Dashed black line shows the direct cascade scaling of k−3 for 2-D turbulence.

3.3. Unstable (saddle) state
In the Re range where the asymmetric and symmetric states are stable, it is natural to
look for an unstable or ‘saddle’ state embedded in the manifold or ‘edge’ separating
the basins of attraction of the two attractors in phase space. To this end, an edge
tracking procedure was performed at Re = 36 300 (Itano & Toh 2001; Skufca et al. 2006;
Schneider et al. 2007) over 10 000 time units in total, with the last 5000 units revealing
a travelling-wave solution. This travelling wave only has non-zero energy Ek at the
second-lowest wavenumber and its higher harmonics indicate that it originates in a primary
travelling wave bifurcation when Re � Rec (the bifurcation only occurs at Rec = 5772 for
channel lengths which allow the critical wavenumber 1.02056 Orszag 1971). Figure 7(b)
shows E(t) for selected edge tracking results, which reveal the constant energy level of the
travelling wave edge state. The vorticity field of the numerical approximation to the edge
state is shown in figure 6(d), which reveals very small but non-zero vorticity fluctuations.
States started ‘just above’ the edge separate from the edge with rapid exponential growth
towards the symmetric state, while states started ‘just below’ the edge separate from
the edge with the same exponential growth, visit the (unstable) laminar state and then
converge to the asymmetric state. A simple phase-space portrait is shown in figure 7(a) to
rationalise the likely situation (note that the states shown are all turbulent states except for
the edge and laminar states). Finally, in terms of ReP values, the edge state is in between
the asymmetric and laminar states, as is shown in figure 3(b).

4. Conclusions

In this paper, a volume-flux-driven flow through a streamwise-periodic two-dimensional
channel with a length-to-height ratio of 4 was studied by direct numerical simulations.
A degeneracy of turbulent states was discovered for Re ∈ [21 000, 42 000]. In this region,
symmetric states resembling travelling waves with a wavelength of half the channel length
were found to coexist with asymmetric states which maintain the same travelling wave
structure but show heightened turbulent behaviour near one of the channel walls. Both of
these states were found to be stable for at least 48 000 time units (or 32 000 h/U).
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Figure 6. Snapshots of: (a,b) the vorticity field ω(t); (c,d) time-averaged vorticity field ω̄t in the travelling
wave frame; and (e, f ) the fluctuation field ω(t)− ω̄t for (a) the symmetric state at Re = 36 300, (b) the
asymmetric state at Re = 22 350 (‘lower-level’ asymmetry), (c) Re = 36 300 (‘higher level’ asymmetry), (d)
numerical approximation to the edge state at Re = 36 300, (e) Re = 72 000 (positive asymmetry region) and
( f ) Re = 72 000 (negative asymmetry region). For Re = 72 000, time averaging is done in a window of 150
time units to preserve the asymmetric behaviour. There are 100 contour levels between −4 (dark blue) and 4
(yellow). In the ω(t)− ω̄t diagram of (d), green contours correspond to the value 0.016, showing very small but
non zero vorticity fluctuations. (a) Reynolds number Re = 36 300 S; (b) Re = 22 350 A; (c) Re = 36 300 A;
(d) Re = 36 300 Edge; (e) Re = 72 000, t = 33 000, A(t) > 0; and ( f ) Re = 72 000, t = 45 000, A(t) < 0.
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Figure 7. Edge tracking results. (a) Schematic representation of the energy, which presents an asymmetry
projection of phase-space showing relative positions of asymmetric A−,A+ and symmetric S stable states
together with unstable edge E and laminar L states. Red curves indicate edge tracking trajectories for states
‘just above’ the edge (λ+) leading to the S state, and ‘just below’ the edge (λ−) leading to the asymmetric A+
state. Shaded regions represent the basins of attraction of S (blue), A+ (red) and A− (brown) states. (b) Kinetic
energy, E(t), evolution for selected edge-tracking results. Average energy levels of the symmetric (light blue),
asymmetric (light pink), edge (grey) and laminar (black) states are marked by dashed lines.

At lower Reynolds numbers, Re ∈ [21 000, 24 000), the asymmetric states are largely
indistinguishable from their symmetric counterparts in terms of their ReP value, while at
higher Reynolds numbers, the difference in ReP can reach 22 %. There, asymmetric states
form a separate branch to the original solution branch characterised by the ReP ∝ Re3/2

law. In the chosen geometry, the asymmetric states follow an interesting path to turbulence.
Chaotic behaviour originates first at one of the travelling vortices near the turbulent
channel wall. Then, as the Reynolds number is increased, turbulence spreads to both of
the travelling vortices near the turbulent channel wall before, at some Re, the vortices
at the other wall become similarly chaotic. In a longer channel fitting n vortices along
the wall, there should be n discrete asymmetry levels observed with increasing Reynolds
number. As the Reynolds number is increased even further, the symmetric states are found
to become unstable by Re = 43 000, which leaves the asymmetric states as the only states
observed up to approximately Re = 60 000, when chaotic asymmetry fluctuations and sign
changes indicate that the overall symmetry of the states can be recovered when averaged
over extremely long times (� 105h/U).

While our study is limited to one specific domain and a relatively narrow window of Re,
owing to the computational cost of simulating for long times, it offers new insight into the
complexity of turbulent 2-D flows. The first signs of turbulent behaviour in 2-D channels
were found by Jiménez (1990), but it was not until 2018 that the truly turbulent regime
was reached by FV18, who showed the robustness of the travelling wave structure at high
Reynolds numbers. Even at Re = 3.2 × 105, the signature of the initial bifurcation is still
clear. We have extended the story by discovering at least a metastability of states if not
the degeneracy of turbulent attractors at relatively low Reynolds numbers which possess
different symmetry properties yet still exhibit the same robust travelling wave structure.
Moreover, we have also shown that the saddle state sitting on the basin boundary of the two
attractors corresponds to a simple travelling wave which can trace its origin to an initial
bifurcation off the basic unidirectional steady state. In terms of our initial motivations,
which was to generate turbulent flows in a numerically-accessible shear flow as data for
revisiting the idea of marginal statistical stability (Malkus 1956), this work has been more
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fruitful than envisaged. We have twice the amount of data we expected for stable turbulent
states (the asymmetric as well as the symmetric states). This then provides a good basis for
testing different approaches for assessing the statistical stability, which we hope to report
on in the near future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.336.
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