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ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS IN
NONDIFFERENTIABLE PROGRAMMING

FUAN ZHAO

Some generalised invex conditions are given for a nondifferentiable constrained
optimisation problem, generalising those of Hanson and Mond for differentiable
problems. Some duality results are obtained.

1. INTRODUCTION

Let / , gi, gi > • • • i 9m be local Lipschitz functions defined on an open subset C of
Rn. Consider the problem

(P) MIN /(z) subject to gi{x) sj 0 (i = 1, 2, . . . , m), x 6 C.

Several necessary conditions have been established for a local optimal solution of (P) to
satisfy Kuhn-Tucker conditions, for example [6, 7, 2]. Denote by f°(x;d) the Clarke
generalised directional derivative of / at x in the direction d (see [2]), and by df(x)
the Clarke generalised subgradient of / at x. Then assuming a constraint qualification,
the Kuhn-Tucker necessary conditions for a minimum at x are:

m

(KT) (3A,- ^ 0 , 1 = 1,2 m ) 0 € df(x) + £ Wgi{x), (Vi)A,-5i(x) = 0.

If all the functions are continuously differentiable, then df(x) = {V/(a;)} and dgi[x) —
{Vgi(x)}. These necessary conditions at a feasible point x become also sufficient if all
the functions are convex, or under weaker conditions given by Hanson [4], or by Hanson
and Mond [5].
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2 . A SIMPLE PROOF OF HANSON AND MOND'S THEOREM

Hanson and Mond [5] say that the objective / and the constraint functions
</i(i = 1, 2, . . . , m) are Type I invex with respect to r) at ic if there exists a function
77: Rn -» Rn such that, for all x feasible for (P),

(1) / (*) - / (*) £ [V/(*)]Tr?(*) and - 9i(x) > [V9i(x)]T
V(x).

Ben-Israel and Mond [1] have characterised such functions r\.

LEMMA 1. If vo, vi, vi, . . . , v* are vectors in iZn, with k < n, and
ti (i = 0, 1, . . . , k) are nonnegative real numbers, then the linear inequality system
v?x ^ ti (i = 0, 1, . . . , k) has a nonzero solution x.

PROOF: It is sufficient to prove the case when all t j=O. If A: = n — 1 and the WJ
are linearly independent, then the matrix M whose columns are the Vi is invertible.
Let e = (1, 1, . . . , 1); then x = -M^e ^ 0 satisfies (Vi) v?x = - 1 < 0. Suppose
that the Vi axe linearly dependent, say v, — ^ XjVj for some numbers Xj. There is

a nonzero x satisfying vjx — 0 (t = 0,1, 2, . . . , k, i ^ a) since k < n; then vfx = 0
also. A nonzero x is found in either case. U

THEOREM 2 . [5, Theorem 2.2]. If(P) has k <n active constraints at an optimal
point x {or (P), then f and gi (i = 1, 2, . . . , m) are Type I invex with respect to a
common vector function r\ ̂  0.

PROOF: At a feasible point x, t0 = f(x) — f(x) ^ 0 and each U = — gi(x) ^ 0. Let
vo = V/(x) and V{ = V^;(x}. By Lemma 1, (1) has a nonzero solution TJ = f){x). 0

3. SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS

H (KT) holds, then

(KT2) (3<o G 8f(x), Ci G d9i{x)) (0 + ^ *i<H (Vi > 0) A,- ̂  0, Xigi(x) = 0;
»>o

thus A{ = 0 for inactive constraints. The function / and gi will now be called Type I

invex with respect to a vector function r\ at x if, for each feasible x,

(2) f{x) - f(x) > £r,{x) and - 9i(x) > (Tr,{x) (i = 1, 2, . . . . m ) .

Inactive constraints may be omitted from (2).

THEOREM 3 . Let (KT2) hold at a feasible point x of (P), where the number of
active constraints is k < n. Then x is optimal if and only if f and g, are Type I invex
with respect to a common vector function rj.
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PROOF: If (2) holds, and x is feasible, then

f(x) - /(*) = f(x) - f{x) + J2 Xi(-gi{x)) 2 (Co + £ Ci) Vi*) = 0)
»>0 V »>0 /

using (KT2) and (3). Conversely, if x is a minimum, then (2) is proved in the same
manner as Theorem 2. U

REMARKS. The first part of this proof does not use the hypothesis k < n.

The vectors Co and £t cannot be replaced here by arbitrary elements of df(x) and

dgi(x) respectively, because then Co + 53 C« *s n o longer zero.
»>o

In [3], a generalised invex property was defined in terms of Clarke generalised
directional derivatives, namely

(3) /(*) - f(x) > f(x; ,(*)), 9i(x) - 9i(x) > ff?(x; V(x)) (i = 1, 2, . . . , m).

It was shown in [3] that (KT2) at a feasible point x , together with (3), imply a minimum
at x. Consider now a weakened version of (3), that for all feasible x,

(4) f{x)-f(x)>f{x;T,{x)),gi(x)2 g°i{x;r,{x)) {i = 1,2, ... ,m).

However, (4) is not a consequence of (2), whether or not k < n.

THEOREM 4 . If (KT2) and (4) hold at a feasible point x, then x is a minimum
of(P).

PROOF: If x is feasible for (P), then

/(*) - f{x) = fix) - /(*) + Y, M-*(30) by (KT2)
»>o

^ fix; r,ix)) + X) ^ix; Vix)) by (4)
t > 0

t>0

for all 0O G dfix) and all 6i £ dgi(x)

JO by (KT2), substituting 6{ = ({(i J 0).
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4. SUBGRADIENT DUALITY

Schechter [8, 9] proposed a dual problem for convex nondifFerentiable problems,
and proved a subgradient duality result. This dual to (P) has the form

(D) MAX/(z) + ] T Oigi(z) subject to (Vi) 0 ^ 0 , 0 6 df(z) + ^ 6idgi(z).
i i

If (z, 0) is feasible for (D), then there exist w0 G df(z) and u>{ G dgi(z) (i > 0) such
that 0 — wo + X) »̂a>> • Consider the modified invex property, generalising the Type II

/ *
t>0invex of Hanson and Mond [5], that for some function TJ(., .),

(5) f(y) - f(z) > ufviv, *), (Vi > 0) - 9i{z) > UTr,{y, z).

REMARK. The definition in [5] assumes the more restrictive r\{z).

THEOREM 5 . Assume that (2) holds whenever x is feasible for (P), and (5) holds
whenever is feasible for (P) and (z, 9) is feasible for (D). Then weak duality holds:

If also (KT2) holds for (P) at x, with multipliers Xi, then zero duality gap holds: (x, A)
is feasible for (D), and f(x) - f(x) + $2\igi(x).

PROOF: Weak duality

/, *) - E °*i{*) by (5)

9i(z) by a constraint of (D)

5 > £ « < * ( * ) by (5)
= 0.

Zero duality gap The statements follow from (KT2). D

THEOREM 6 . Let (x, A) be feasible for (D), let (5) hold at y = x, and let
XTg(x) = 0. Then (x, A) is optimal for (D).

PROOF: There are w0 G df(z) and Wi G dgi(z) such that 0 = w0 + Yl ^»w»-
t>0

A similar calculation to the weak duality proof of Theorem 5 shows that, if (z, 0) is
feasible for (D), then

[f(x) + XTg(x)\ - [/(z) + eTg{z)\ > XTg(x) - 0 by hypotheses.

D
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