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CARLESON MEASURES ON SPACES 
OF HARDY-SOBOLEV TYPE 

CARME CASCANTE AND JOAQUIN M. ORTEGA 

ABSTRACT. We study positive measures on B" satisfying that JB" \f(z)V dp(z) < 
cll/llrf. f o r a ny/ e fl£> w h e r e tfa is the Hardy-Sobolev space in the unit ball. We 

"a 

obtain several computable sufficient conditions as well as some necessary conditions 
and establish their sharpness. We study the same problem for Besov-Sobolev spaces 
and give some applications to multipliers. 

1. Introduction. Let IB" be the unit ball in Cw, and §" its boundary. We will de­
note by dV the normalized Lebesgue volume measure on Bw, and by da the normalized 
Lebesgue measure on S". For a £ R and 0 < p < +00, the Hardy-Sobolev space l¥a 

consists of holomorphic functions/ in W so that Raf G IF(En), where iff — Y,kfk is its 
homogeneous expansion, Raf = T,k(k + 1)°14. 

For n — 1, a = 0, and p > 1, Carleson [C] proved that the finite positive Borel 
measures on B1 = ID such that 

jB\f(z)\PdKz)<C\\f\\p
Hm, 

are characterized by what is now known as Carleson condition: there exists a constant 
K > 0 with n(T(!)) < K\I\ for any interval / in the unit circle, where T(I) is the corre­
sponding "Carleson box" over /. 

If G is a region, /i a finite positive Borel measure and B a Banach space of continuous 
functions in G, we say that [i is a Carleson measure for B if there exists a constant O 0 
such that for any/ in B, 

(1-1) fG\f(z)Y>dn(z)<C\\f\\p
B. 

The purpose of this work is to study Carleson measures for Hardy-Sobolev spaces 
and other related spaces. 

In some particular cases, these measures have been treated by different authors, ([C], 
[St], [Lu2], [N-R-S], [A-Bo], [A-J], [F-S], [Ke-S]), as well as their connection with prob­
lems about multipliers, interpolation, solution of the ë-problem and duality theory for Hl. 
We will mention briefly the results closely related to our work. 
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1178 C. CASCANTE AND J. M. ORTEGA 

For n — 1, and/7 > 1, Stegenga [St] characterized the Carleson measures for //£(B>), 
ap < 1 (when ap > 1 these spaces consist of continuous functions on D>, and any finite 
Borel measure is then Carleson for //£(D>)). He showed that those measures are the ones 
satisfying that /i(r(i4)) < KCap(A) for any open set A in the unit circle, where Cap is 
an appropriate Bessel capacity depending on a and/?. If/? < 1, the characterization in 
[A-J] is simpler: any finite positive Borel measure is Carleson for /^ (0) if and only if 
V>{T(Ij) < K\I\x~ap, for every open interval / in the unit circle. Since Cap(I) ~ \I\x'ap, 
the condition in [A-J] is Stegenga's condition only for intervals. The proof in [St] goes 
roughly in the following way: in dimension one, Carleson measures for /^(D>) coincide 
with Carleson measures for the space of Poisson transforms of Bessel potentials of If 
functions. The key point in the argument is then a strong type capacity inequality. 

In fact, Hansson's theorem extending this strong capacitary inequality to dimension 
n > 1, shows ([N-R-S]) that Stegenga's theorem extends to measures /i on Wl+l, for the 
spaces B = P[Ja *If], where P is the Poisson kernel on R++1 and Ja is the Bessel kernel 
inR". 

In [A-C] it is introduced a non-isotropic Bessel kernel given by 

where 0 < a < n. For 1 < p < +oo, and / E If (da), the non-isotropic convolution is 
denoted by 

Ka */(z) - f Ka(z,Qf(Qda(0, z G B". 

It is also introduced a non-isotropic Bessel capacity, Cap, associated to these kernels, 
and a non-isotropic version of Hansson's theorem is proved. If P[Ka *Z/7] is the space of 
Poisson-Szegô transforms of convolutions of If functions with Ka, following the meth­
ods of Stegenga, it is easy to show that a positive finite Borel measure \x in B" is a 
Carleson measure for P[Ka * If], if and only if there exists a constant M > 0 so that 
v{T(A)) < MCap(A) for any open set ,4 C §". Here T(A) is an admissible tent over A. 

The paper is organized as follows. In Section 2 we study Carleson measures for 
P[Ka * If]. As we have already said, Stegenga's condition still characterizes, but be­
ing difficult to check, the purpose is to find computable sufficient conditions. We have 
found several such conditions in terms of duality, moduli of continuity and geometric es­
timates. Those last kind of conditions improve the one obtained in [N-R-S] for P[Ja *If] 
in Wl+l. We also give some examples which show, in a certain sense, the "sharpness" of 
the sufficient conditions, as well as the relations among them. 

In Section 3 we deal with the holomorphic case, where, in general, no necessary and 
sufficient size conditions are known. We begin proving the non equivalence, for n > 1, 
of the problems for P[Ka * If] and ¥fa, and observing that the sufficient conditions for 
the first space are also sufficient for the second one. We give a necessary and sufficient 
condition for a measure to be Carleson for Ifa, in terms of atomic representation of those 
spaces. Some particular cases are presented where Stegenga's condition is necessary and 
sufficient. 
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CARLESON MEASURES ON SPACES 1179 

We also study the problem for Ap
qs, the holomorphic Besov-Sobolev space, and give 

similar sufficient conditions. Finally, we apply the previous theorems giving examples 
of multipliers for Aqs, which could not be obtained as a consequence of the sufficient 
condition in [N-R-S]. 

As final remarks on notation, we will adopt the usual convention of writing by the 
same letter various absolute constants whose values may differ in each occurrence. Also 
A <B will mean that there exists C so that A < CB. 

2. Carleson measures for P[Ka * LP], As we have already said in the introduction, 
Stegenga's condition characterizes Carleson measures for P[Ka * LP], p> \,ap <n\ a 
finite positive Borel measure \i in W is a Carleson measure for P[Ka * LP], if and only if 
there exists K > 0 such that 

(2.1) ti(T(A))<KCap(A)9 

for any open set̂ 4 C § \ where T(A) is the admissible tent over ,4 given by 

(2.2) T(A) = Tp(A) = W\\jDp(Q9 
CgA 

Dp(Q = {z ; 11 — zC\ < /3(\ — \z\)}, and Cap is the non-isotropic Bessel capacity defined 
by 

(2.3) Cap(A) = inf{||/1|£ ; / € Lp
+(dcr),Ka *f > 1 on^} . 

If A = #(£, r) is a non-isotropic ball, Cap(B(C), r)) ^ r"-0^, and then the condition 

li(T(B(Çr))<Kr»~ap, 

is necessary but not sufficient (see [St]). 
It is easy to see that if we define "weak" Carleson measures for P[Ka *LP] as the finite 

positive Borel measures /i on B" such that 

(2.4) supA/i({z G B" ; \F(z)\ > \})l/p < C\\F\\p,a, 
A>0 

then [i is a Carleson measure for P[Ka * LP] if and only if it is a weak Carleson measure. 
Indeed, let A be any open set in Sw and le t / be any test function for Cap(A). Then, (see 
[N-R-S, Lemma 3.4]) there exists b > 0, depending only on n but not on A, with 

P\f\(z)>b, for zeT(A). 

Thus T(A) Ç {z ; P[Ka */](z) > b}9 and if// satisfies (2.4), ^(T(A)) < C\\f\\p
p. Taking 

infimum on/ , we get the desired conclusion. 
In this section we will study the Carleson measures for P[Ka *LP],p > 1 and ap <n. 
Our first result gives a first sufficient condition, which is deduced using duality, and 

does not involve capacity. 
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THEOREM 2.1. Let 1 < p < +oo, 0 < a, ap < n. If a positive Borel measure \i in 
W satisfies that 

(2.5) sup I * [ [ H ^ - l ^ MO < +oo, 

then [i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.1. We begin with the following simple lemma: 

LEMMA 2.1. Suppose 0 < a < n. Then 

P[Ka *f](z) ~ Ka */(z) for each z <E B", andf G L\(da). 

PROOF OF LEMMA 2.1. Lemma 1.7 in [A-C] shows that Ka */(z) < P[Ka */](z). 

The other estimate will hold if we check that 

(1 - \z\2)n da(cj) 1 
is* 11 — zô)|2w 11 - o<|M-a ~ 11 - zC|w_a ' 

This will be obtained by breaking the integral in two pieces corresponding to 11 — CJ£| > 
e\ 1 — zC\ and 11 — UJC\ < e\ 1 — z£|, with e > 0 to be chosen. Then 

/ , 
(1 - |z|2)" da{ui) < 

|l-o<|>£|l-zC| |1 -ZÛ\2n |1 -<d£|"-« ~ |1 -zC\n-a' 

andife > 0 is small enough, we obtain that if |1—OJ£| < e\\— z£|,then|l — zQ>\ ~ |1— zC\. 
Thus 

(1 - \z\2f d(j(uj) r (i - \z\~y acjyu)) 
I - - T: 7Z--, =; daiuj) 

J|l-a<|<e|l-2C| 1 -ZLJ\2n 1 - a < " - a 

< _ } _ f dajui) „ 1 
~ |1 - z ( | w i|i-a<|<e|i-2C| |1 - a < | w - a |1 -zC|"-« ' 

and we obtain the lemma. • 
Returning to the proof of the theorem, we just need to show that the linear operator 

given by 
/(C) Tf{z)= f , -, do{Q, 

J v ' 7s» h - zC\"~a 

is bounded from If (do) to If{d\i). This is equivalent to show that the adjoint operator 
T* defined by 

r / ( o = f , ^(z-,— </M(Z), 
^ ^ JIB" M — z(\n~a 
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theorem, 
is bounded from If (dfi) to If (da), \ + h = 1. Apply ing Holder's inequality and Fubini's 

l/"(w)K 
<f r J / W MJ( -JH® VM0 

./n»^ " lis* |i -uC\n-aV®n |1 -zC|"-«J ) 

Now (2.5) finishes the proof. 

REMARK 2.1. When/7 = 2, it is easy to see that condition (2.5) is equivalent to 

a;<EB" * " " 

just because 
da(Q 

(2.6) s u p / - ^ _ < + o o , 

7s« 11 - u^\n~a 11 - zC\n~a 11 - zâ;|w-2a ' 

REMARK 2.2. It is also easy to show that condition (2.6) can be rewritten in terms 

of the function ifcHf) — \i[ T{B(C^, r)) ], as 

r+oo ipAf) dr 
sup / -^V — < +°°-

But if/? ^ 2 there is no a similar expression of (2.5) in terms of (^. Instead, we will see 
in the following theorem a sufficient condition involving a modulus of continuity of \i. 

THEOREM 2.2. Let /i be a finite positive Borel measure in W. For 0 < S < 2, let 

<p(S) = sup JT(B(<;,6))). 

Assume 1 < p < +00, m = n — ap >0, a > 0 and that 

-±jd5 
Jo v v - / s 

Then \i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.2. In [M-K, Theorem 6.1 ] it is proved that 

r°° / \ — db 

rfr diL{z) \ '- ' dy <Ct°°{ "&> 6A *~l db 

where o;(/i,<5) = supx ç r ji({y ; \x — y\ < <5}). Their methods can be used to show that 

rfr dfi(z) \ ~l da(Q r+™ ( (f(S) \^d8 

ueE» J&['®n \\-zC\n-a) \\-uC\n~a ~ Jo {6n-aPJ T' 
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REMARK 2.3. There are many examples of functions ip satisfying (2.7): 
(1) <p{S) = ffn(\og\)l-*,q>p. 
(2) <p(8) = 8m(\og ^ " ' ( l og log i ) 1 ^ , q >p. 

The following proposition will show that, in terms of modulus of continuity, (2.7) is 
sharp. 

PROPOSITION 2.1. Let (/?:[0,+oo) —> R be a non-decreasing function such that 
(p(0) = 0, constant for x > xo, and 

Assume that ij G [0,+oo) defined by <p(£j) = ^J— 1,2,..., satisfies 2lj+\ < lj. 

Then there exists a finite positive Borel measure v in Bw, so that 

i/(r(fi(c,«)))<^(5), Ce§w, £>o, 

but i/ is not a Carleson measure for P[Ka * Z/7]. 

REMARK 3.4. It is easy to show that if jJTp is strictly concave on [0, +oo), the con­
dition on the sequence (£J)J holds. 

PROOF OF PROPOSITION 2.1. In [M-K, Lemma 7.2] it is shown that the «-dimensional 
Cantor set Ë c Rn associated to the sequence (lj)j (see [K-S] for a construction of such 
sets), has zero Bessel capacity in Rn, and that there exists a measure /Ï, supported in Ë 
so that for any r > 0, xo G Rn, p,({x G Rn ; \x — JCO| < r}) < </?(r), whereas if xo G Ë, 
/X({JC G Rn ; |JC - jc0| < r}) ~ cp(r). 

Identifying Ë with a compact subset of an «-dimensional transverse variety included 
in Sw, we obtain a set E C Sw of zero non-isotropic Bessel capacity. The measure \i 
defined in §" by transporting p,, has its support in E and satisfies similar estimates than 
/2, with non isotropic balls. 

Now, for 8 > 0 let Es — {( G Sn,d(C,E) < 8} where d(ÇE) is the non-isotropic 
Koranyi distance from £ to E. Since Cap(E) — 0, and Cap is an outer capacity ([Me]), we 
obtain that the increasing function g(8) = Cap(Eè) tends to zero as 5 —> 0. It is easy to 
construct an integrable positive function h on [0,1) satisfying that for any m G N, 

JUh(r)dr-igÙ-
We define now a positive finite Borel measure in En by 

r1 

which will be the desired measure. If C £ B" and 5 > 0, anyz e T(B(ÇS)) satisfies 
^GB(C^).Then 

I / (T , (B(C,6))) < j j ' h(r)n(B(C,S)) dr < <p(S), whereas 

"0 ) = [ jjiOKr) dKQ dr, for any / G C(B"), 

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-060-4


CARLESON MEASURES ON SPACES 1183 

'(7T£i)) > Jl^ h(r)j^ xsAQdKQdr = [ ^ h{r)^{E)dr 

^cisU=cic°»N 
Thus v does not satisfy Stegenga's condition. • 

The third kind of sufficient conditions will be of geometric type. Before stating them 
we need some more definitions. Let 1 < p < +00, m = n — ap > 0, and 1 < r < ^. If 
CGS"and/î>01et 

a ( 0 = ^ ( 0 = {z G B" ; 11 - zCT < (3(1 - \z\)} 

and for any E C §", the "tangential" tent over E is defined by 

TT(E) = 10(E) = En \ (J a « ) . 
CgE 

(whenr = 1,Q{(Q = D(0, 7*1 (£) = r(£)). 

In [N-R-S] it is shown that the geometric condition, when r = - , 

r" = r^S is sufficient for a measure /i to be Carleson for P[Ka * / /*] . The same condition, 

whenr = 1, // ( 7f(i?(£, r)) ] < r™ is the necessary condition we have already mentioned. 

It is then natural to ask whether the "intermediate" conditions // ( Tf(jB(Ç r)) j < r™7, are 

necessary or sufficient. 
The next theorem establishes that these conditions are also sufficient for a measure 

to be Carleson. Since HausdorfY content is not additive, the proof of the theorem needs 
a completely different approach of the one used in [N-R-S] for r = ^. In that case, the 
corresponding Hausdorff content is just Lebesgue measure. 

Before stating it, if/: B" —> C, we will denote by Nf the admissible maximal function 
given by Nf(Q = supzGD(0 \f(z)\. 

THEOREM 2.3. Let 1 < p < +00, m = n — ap > 0, and let \x be a finite positive 
Borel measure [i in W so that there exists 1 < r < ~ and O 0 with 

(2.8) / i ( 7 f ( 5 « , r ) ) ) < / ^ . 

Then [i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.3. We need the following: 

PROPOSITION 2.2. Let0<p< +00, 0 < a and m = n - ap > 0. Let n be a 
finite positive Borel measure in W1 satisfying that there exists C > 0, K > 0, (3 > 0, and 
1 < r < - with 

— m 

(i) supp/i C {z ; (1 - \z\) < EC±}, (e = \ ^ \ 
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Then there exists M > 0 so that for anyf: Un —-> C 

/B„d - k i r W dii(z) < MC\\Nf\\p„m-

REMARK 2.4. Observe that the above proposition gives that if \i satisfies (i) and (ii), 
then (1 — \z\)ap d[i{z) is a Carleson measure for 7/^(0"), with a control on the constant 
expressing the continuity of the mapping from IF(Un) to If((\ — \z\)ap rf/i(z)). 

It suffices to prove the proposition for/? = 1, since HATII^a) = WNfWway We 
claim that 

a 

(2.9) j ^ ( l - | z | ) a | / - ( z ) | ^ (z )< j f o Jo p({z;\f(z)\>t,(\-\z\r>l})dtdt. 

In fact, similar inequalities were treated in [Ci-Do-Su], and we briefly sketch the proof 
of (2.9). If t > 0 and £ > 0, let E(tJ) = /x({z ; \f{z)\ > t9(\ - \z\)a > £}). Let 
z G suppjii satisfying that |/*(z)|(l — \z\)a > t. There exists j G ~L~,k G Z so that 
2/eC^ < (l-\z\)a < TxeC^,2k < \f(z)\ < 2k+\ and in particular z G E(2k,2feC&), 
2Lndt<42k+J£C^.Thus 

roo +oo - 1 r2
J+k+2eC^ 

H({z;(l-\z\f\f(z)\>t})dt< £ £ /n n(E{2k,2feC^))dt 
k=-ooj=-oo J0 

+oo - 1 

< £ 2* £ 2>C*n(ECLk,yeC*j) 
k=—oo J——00 

+oo r e c A 
/o n{E(t,tj)dldt, 

which gives (2.9). 
Next, since (2.9) holds, in order to prove the proposition, we just need to check that 

a 

(2.10) /o
£CT_1 /X({Z ; \f(z)\ >t,(l- \z\f > I})dl < CV({C ; Nf(Q > t}). 

LetS = (Bk)k9wiÛiBk = B{(j^rk) be a Whitney decomposition of the set {( ; A//{0 > t}. 
Thus: (a) {A//~ > t} = \JkBk; (b) there exists /z G N, only depending on n, so that no 
point in S" lies in more than h distinct balls Bk\ (c) #(<^, hrk) <f_ {Nf > t} for each k. 

Let z G W with (1 - \z\) < eC^ and \f{z)\ > t. Then there exists M > 0 with 
Z?(zo,M(l — |z|)) C {A/f > /} , where zo = o . In particular there exists k G N and 
zo G Bk, and by property (c) of the Whitney decomposition (1 — |z|) < rk. We want to 
show that there exists m > 0 and 

(2.11) z G 7f (B(Ct,m(dr | + r t))) n 7* (*(<», « ( d r * + r t ) ) ) . 

Indeed let ( e S " with z G Qr(Q (the condition 1 — \z\ < eC~ with £ = -Vr gives that 
is always possible to find such Q. Then, 

| i -Câl< | i -a i+( i -N 2 ) + | i -^oâ |<c^( i - | z | )Ur,<d^+^ 
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Thus if ( is any point such that z G Qr(()> C £ #(Cb m{cSr\ + r*)), and we deduce from 

the definition thatz G 7^ (# (&,m(C^ + r*))Y 

The other inclusion in (2.11) is proved in a similar way. 
Now we decompose <B = *Bl U #2 , where any ball Bk in (B1 satisfies rk < (0>) 7 , and 

if Bk G <B\ (Crk)i < rk. Applying (2.10) we get 
a 

/JCT_1 /X({Z ; \f(z)\ > f,(l - \z\f > £})dl 

< E j ( ^ | i ( 7 f ( f i ( a , 2 i n d r * ) ) n ^ ( f i ( & 

r,C^T 
£ jT T" / x ( 7 f ( 5 ( a , 2 m r , ) ) n ^ ( 5 ( a , 2 m r , ) ) ) ^ , + 

where in the first estimate we have also used that if £ < (1 — \z\)a and (1 — |z|) < rk, 

then I <r?. Finally, we use the hypothesis on u to obtain that the last sums are bounded 

by 

c"1 E >fa + cm E c^-w^r<cwa({^>4). 

Here we have used that if Bk e<B2,C< r\~\ and then C^~m < r^
(T-l)m. Thus we 

have seen (2.10), and that finishes the proof of the proposition. • 
Going back to the proof of the theorem, Lemma 2.1 gives that we just need to show 

that there exists M > 0 such that if 

F(z)= [ — ^ da(Q, 
w M" 11 - zC\n-a 

with/ G ti&do), then 

(2.12) jjFfdii<MJsfdcj. 

Since 
1 (1 _ ff-CL-X 

1«-of ~ Jo M -tzC\2n |1 -zC\n-a ~Jo |1 -tzC\2 

we then have: 

r f(Q r r1 (1 - z2)"-^-1 

F(z)=I \T^MO $ Lfi0L W * ^ ( 0 

£ /o'(1 ~ ' r ' i T i ^ r ^ ^ 0 * = /o'(1 " ̂ ^ 
where g = P[f]. Breaking up the integral in the right hand side in two pieces, from 0 to 
A and from A to 1 (0 < A < 1 to be chosen), we denote the corresponding integrals by 
gi andg2- We will show that both functions satisfy an estimate like (2.12). 
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First, since the supremum of g over any compact in Bw is bounded by the If-norm of 
g, we may assume that supp/x C {z ; 1 — \z\ < min(£C~, 4)}, where (3 > 2 will be 
chosen later. By the same argument the estimate for gi is immediate. So we need only to 
deal with the contribution of gi to (2.12). Let 1 = t0 > t\ > • • • > fy, where £ G N is 
the first integer so that 2^(1 — \z\) > 1, and where for each k < l,\—tk\z\ = 2k(\ — \z\). 
If we choose^ = (1 — |)(1 — 4)_ 1 , then t£ < A, and 

gi(z) < /'(i - ty-l
g(tz)dt < E f (i - tf-lgntz)dt 

Jh k==Q k+l 

< / ( i - f l z | y W ; dt 
~ Jh (1 — t\z\)a 

l~x rh dt 

+ £ / V-t\z\Tg(tz)-f-(1-0 ' 
We denote by g2jdz\ k — 0 , . . . , I — 1, the integrals that appear on the right hand side. 
Let /io, • • •, M̂  be the measures in W defined by: 

wW = M^V^)g^*) 
iik(h) = / x ^ Ktz)-^-^ ], * = l • • • i, h G C(Bn). 

/** . , dt 

0 ^ 0 
Each /i£ is a finite measure. Indeed, for k = 0, and since 1 — t\ \z\ = 2(1 — |z|), we have 
that if tx < t < 1, 1 - f|z| ~ 1 - |z| and 

(2.13) / )- f—- A - r-— / (1 - t)a~l dt ~ 1, 
V } k (1 - *|z|)a (1 - \z\f Jh ' 

and if 1 <k< £, 

dt , 1 - fc+i . 1 - fjt+i |z| - tk+l(l - \z\) rtk at l — tk+{ 

/ 71—Â == l o g 1—7~ = l o g 
^*+i ( 1 — n 1 — h tk+l ( 1 - 0 1 - tk 1 - fc|z| - tk(\ - |z|) 

2*+1(l - Izl) 

< 2 - 1 4 ) ^ l o g 2»(i - N ) - 2^( i - N ) = l o g 4 ' 

where in the last inequality we have used that since k>l,tk< 2k~x. 
We check that the measures fik, 0 < k < £, are in the hypothesis of Proposition 2, 

for appropriate constants. We first check the size estimate. We will show that there exists 
M > 0 so that 

(2.15) )ik(TÏ-kM(B(to,r)) H 7*(2?(<b,r))) < ^ 

for any Co G § V > 0 . 
Indeed, let z G supp/i and assume *z G T^'kM{B(Co,r)) n 7^ (fl«b,r)), f < ft- Let 

£ G S" so that z G Qf (O (again, since supp \i C {z ; 1 — \z\ < eC~ } there exists such 
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point). If tz G D(Q, we have since tz G ^(^((o, rfj that 11 - (oC| < r a n d consequently 
that z G T^(B(($, r)). Widening, if necessary, the aperture of the admissible region D(Q, 
it is immediate to show that if k < I - 1, t < tk and if tz <£ D(Q, then tz G ̂ f *M(0-
Hence, since tz G 7?"*M(#(Co, r)), we have that 11 - (oC| < r, and z G 7f (fl«b, r)). Now, 
this inclusion, (2.13), (2.14) and the hypothesis on /i gives that in any case: 

/ i 0 (7 f (fl«b,r)) n 7*(tf«b,r))) < /i(x7?W<b,)) sup / 0=1^* 
and if 1 < k < t 

Mt(7?"*M(i?«o,r)) n 7*(fl«b,r))) < M(X7- W 4 , , ) ) 

•z67f(£(Cb,r)) •" (1- ' IZI) ' D <rm T , 

sup jf* 
( 1 - 0 ]) < r w r . 

We deal now with the condition on the support of the measures //*, 0 < k < I. Let h be 
i 

any continuous function supported in {z ; (1 — \z\) > e^-}, 0 < k < L For any t <tk 

we have 1 — t\z\ > 1 — tk\z\ = 2k(\ — \z\) > eC~^, and consequently tz $ supp/x and 
fik(h) = 0. Thus if k<£, 

supp/x* C \z ; (1 - |z|) < e - ^ r ). 

Assuming first that ^ < 1, we finish the proof of the theorem. We can choose M > 0 

big enough so that ~jjr < (^^^k < I, and we then have that the measures /i£ are in 
the hypothesis of Proposition 2.2 with constant 2~kM. Holder's inequality together with 
(2.12) and (2.13) gives 

||g2||lP(«/ji) < J2 \\g2Jt\\v(dn) = 
k>0 

,0-0' a - 1 

+ E 
k>\ 

B» 

eh dt f V 
Jh+\ 1 — 11 J 

( 1 - 0 ' 

* <fc(z) 

ALLv-towtoT^**** •)! (1 - f|z|)« 

= ç(/B„d-Nr^)^(z) 
Applying now Proposition 2.2 to each Hk we deduce that the above sum is bounded by 

T - l — < 1. £!=o(2 ^^O^ I I^ I IP < ll/llz f̂o)» a n ( l w e n a v e ended the proof when 

If ^ f > 1, we may choose &o so that for k > ko, 2~kM < (^)T_1 C. Applying Propo­
sition 2.2 to /i£, k > ko, now with constant (^)T_1 C, a similar argument would give that 

I m(r-l) 

E Mb*» < E (=E) ' 11/11 LP{do)-
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Finally for 0 < k < ko, (jk)T~~l C < 2~kM and we proceed as in the case ^ j < 1. 

Before going further we give a definition of tangential "Carleson box". 

DEFINITION. For k > 0 and 1 < r < ^-, Co G S" and r > 0, 

Vk
T(B(Co,r)) = z ; 

\z\ 
<r\ - \z\ <krT . 

We then have 

LEMMA 2.2. $ Letk> 0 and 1 < r < ^. 77*e« /Aere exw/ £i > 1, fe < 1 so rta/ 
/or awy r > 0, Co G S", 

^(fl«b,fer))cfî(5«b,r)) . 

(7/) Analogously, let k > 0 a«d 1 < r < ^. 77zew //*ere exist k\ > 0, k2 > 0 so that 

for any r< 1, Co G Sw, 

^ (2?«b,*2r) )c7; (5«b, r ) ) . 

PROOF OF LEMMA 2.2. Let z e T^(B(Ç0,k2r)), where ifci > 1, k2 > 0 are to be 
chosen. Since z G Q*1 (zo), zo = A, we must then have 11 — Cô o| < k2r < r if k2 < 1. 

Now choose C G Sw so that 11 — CCo| = 2k2r (ifk2 is small enough it always exists). 
Then since C ^ #(Co, k2r), we have that z ^ Q*1 (C). Thus 

i - M < £ | i - < I T < £ ( 0 - N) + |i -zoCol + |i -<oCI)r < £ ( 0 - N) + rT), 

and if k\ is big enough, 1 — \z\ < krT, and we have proved (i). 
The proof of (ii) goes similarly. • 

COROLLARY 2.1. Let [i be a finite positive Borel measure in W. Then the following 
are equivalent: 

(i) There exists k,C{>0 such that J 7^(#(Co, r)j\ < dr™ for any Co G S V > 0. 

(ii) There exists k, C2> 0 such that 

/ i ( ^ (5«b , r ) ) ) < C2r^ for any Co G Sw, r > 0. 

We can now show that any measure satisfying the sufficient condition of [N-R-S], 
also satisfies the sufficient condition in Theorem 2.3, for any 1 < r < - . Nevertheless, 
there are measures satisfying such sufficient condition, but do not satisfy the condition 
of [N-R-S]. 
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PROPOSITION 2.3. Assume 1 < p < +oo and m = n - ap > 0. Then: 
(i) Let [i be a finite positive Borel measure in En, so that, there exists O 0 with 

/ i ( r s (5 (Co , r ) ) )<C^, foranyC0eSn,r>0. 

Then for any 1 < r < ^, there exists C\ > 0 so that for any Co G S", r > 0 

/x ( r T (* (<o , r ) ) )<Ci^ 

(7z) For a«y r < ^ //zere exlsto a positive Borel measure \i in W satisfying 

M ( r T ( f i ( C , r ) ) ) < ^ , but / i ( r , (S (C , r ) ) )^ r " . 

PROOF OF PROPOSITION 2.3. By Corollary 2.1 it is enough to show the proposition 
with tents changed for the equivalent regions VT. Since Kr(i?(Co, r)) C Fi(Z?(Co,r^)), 
we have (i). For the proof of (ii), let v be a m-measure on §", /.e., there exists £ C §" so 
that for any Co G F, r > 0 i/(#(Co,r)) ~ r"1, whereas for any Co G S" i/(#(Co,r)) < r™ 
(for the existence of such measures, see [K-S] and the argument in Proposition 2.1). 

Let fi be the measure in B" defined by 

for/ G C(B") and where t> —1 is to be chosen later. 
Next, let Co G S", r > 0. Then 

/*(*(*<b,r))) = / > -,)'X (4r ) rftfO* < ^+1)+m 

If Co G F, r > 0 we have 

M(^(5(<o,r)))~^<<+ 1 ) + m 

Since r < - we can choose t > — 1 so that rw < r(t + 1) + m but -(f + 1) + m < n, and 
that finishes the proof. • 

The following two examples will show the "sharpness" of the sufficient condition 
of Theorem 2.3 as well as the relation between the different sufficient conditions. As a 
consequence we will see that none of them are necessary. 

EXAMPLE 2.1. Let 1 < p < +00, m = n - ap > 0, and let Y: [0,2) —> R+ be a 

differentiable function such that ¥(0) = 0 and ^ —» +00, as r —» 0. Then there exists 
a finite positive Borel measure \i in Bw satisfying: 

M ( r r (5 (Co , r ) ) )<^(CO, 

but n is not a Carleson measure for P[Ka * LP]. 
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Let Co G §M be a fixed point, and define d\i = *F'(1 - r)drb^ where 6^ is the Dirac 

measure at Co- Then /z(rT(5(Ç,r))) < V(CrT)9 but for any r > 0, fj,(T(B((0,r))) ~ 

¥ ( 0 ) . This last estimate, the condition of growth of *F at zero, and the fact that 

Cap(B(Q), r)) ^ r™ shows that // does not satisfy Stegenga's condition. • 

EXAMPLE 2.2. Let (p be the modulus of continuity of/x defined in Theorem 2.2. 
(i) For 1 < r < ^, there exists a finite Borel measure /i in W such that 

M ( r r ( S ( C , r ) ) ) < ^ , 

but 

f W ) A f = +-

(ii) There exists a positive finite Borel measure /x in W so that 

and there exists £ G Sw, so that for any 1 < r < - , 
M ( r T ( 5 ( C , r ) ) ) ^ ^ T . 

For (i) it is enough to take dfi = (1 — r ) m _ 1 ^ , £o G§". For the second example, let 

E C Sw, be an m-set and v be a measure on S", supported in is satisfying: v{B((^ r)) ~ r™ 

for each £ G £, r < 1, and i/(5«, r)) < r"1, VÇ € S", r > 0. Let <? > /? be fixed, and let 

/ (r) = (log \)x~q, and define /x by 

Mfe) = /0 ' X / ( l - r)gir)dV(Qdr, for any / G C(B"). 

It is then immediate to show that /x is the desired measure. 

REMARK 2.5. In [A-Bo] the so-called /3-Carleson measures are studied. They are 
defined as the finite positive Borel measures /x in B" so that there exists O 0 with 

p(T(AJ) < Ca(Af, for any open set A C Sw. 

Following [Me, Theorem 20] it is easy to show that there exists M > 0 so that aiA)^ < 
MCap(A). Thus any ^^^-Carleson measure /x satisfies Stegenga's condition and is a 
Carleson measure for P[Ka * lP\p > 1. The following example will show that there are 
Carleson measures for P[Ka * If] which are not ^^^-Carleson. Consider a transverse 
curve in S", 7: I = [a, b] —» Sw, and denote by dx the unidimensional Lebesgue measure 
on 7. Let /x be the positive measure in B", supported in {r7(x) ; x G 7, r < 1} given by 
dy,(r9x) = (log \)x-v drdx, with q > p. Then for any < G S", r > 0, /x(r(£(Ç,r))] < 

r(log ^y-*7, whereas /x(T(B(%t)9rj)) ~ r(log ±)1_*. Theorem 2.2 shows that /x is a 
Carleson measure for P[Ka * Z/*], if 1 = n — ap. 
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Assume that \i is also an i-Carleson measure, let e > 0 and consider Ae = 
Uf=15(7(x,),e)the union of a maximal number of disjoint non-isotropic balls centered 
at points in 7. Since A£ is open and we have 

£ M(r(5(7(x,), £))) = n{T(AE)) < C(Nee")K 
i— 1 

this estimate together with the fact that /if r(#(7(jc;), s))) ~ e(log \)x~q and N£ ~ ± 
gives a contradiction. 

3. Carleson measures for holomorphic spaces. In this section we will study con­
ditions on a measure \i in W to be Carleson for Hardy-Sobolev and Besov-Sobolev 
spaces. The first example, which is based on one included in [A-C, p. 448] shows that, 
unlike what happens in dimension one, Stegenga's condition is, in general, not necessary 
for a measure /i to be Carleson for lfa, n > 1. 

PROPOSITION 3.1. If \ < p < 2, n — ap > I, there exists a finite positive Borel 
measure ji in W, such that ji is a Carleson measure for tfa, but fi is not Carleson for 
P[Ka*If\ 

PROOF OF PROPOSITION 3.1. By Theorem 3.1 and Corollary 3.1 in [A-C] there exists 
a compact set E C Sn with Cap(E) — 0, and an invariant positive measure v in Sw, 
supported in E so that 

(3.1) JjNfrdv<C\\Raf\\Pp for any/ G H<JT). 

For any S > 0, let E6 = {Ç e §n ; d(CE) < 8}, and g(6) = Cap(E8). This function 
tends to zero as 6 tends to zero since Cap(E) = 0. Let h be the function constructed in 
Proposition 2.1, and define a measure \x in W given by $%nfd[i = JQ J§r>f(rQh(r) dv(Q dr. 

Then (3.1) gives that // is a Carleson measure for lfa. Indeed, if/ G lfa 

l X \f(rQ\PKr)dv{Qdr < / J £ \NMth(r)du(Qdr 

<\\Raf\\P
p = \\f\\P

p,a-

Now the same argument given in Proposition 2.1 shows that ji does not satisfy Stegenga's 
condition. 

REMARK 3.1. Since any/ G lfa satisfies that there exists g G Lp+{dcr) with \f(z)\ < 
P[Ka * g](z) and \\f\\p,a — WgW^^ ([A-C, Lemma 1.7]), all the sufficient conditions in 
Section 2 also hold for the Hardy-Sobolev spaces. 

From the following representation theorem for //£, ([Lui, Theorem 5.5]), follows an 
equivalent formulation of the definition of a Carleson measure. 
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THEOREM [Lui]. There exists 6 > 0, e > 0, so that for any (r„)„ C (0,1), with 
rn —> 1, and for any n G N, a finite sequence (ank)k^x C {z G Bw ; \z\ = rn}, n > 1, 
satisfying 

(1) \Jk{z ; p(z,ank) < ( 5 } D { Z G B M ; \Z\ = rn} (here p(z9u) is the pseudohyperbolic 
metric in W, that is, p(z,u) — \hu{z)\), where hu is the automorphism ofW taking 0 to 
00. 

(2) JfkJ € {1 ' ' ' *(")} and k¥j then P(anj> ank) > £> 
Then anyf G IF can be written as 

(1 - IflrfD*1"^ 

(\-zânkf 

where E ^ i ( E ^ { I^PO' < +oo- Furthermore the mapping *F defined by ^ ( Q 
K«0-i) 

*¥((Cnk)nk) = ^nMCnk{X~(\lfànk)n- « COntinUOUS. 

With the same notations we then have 

PROPOSITION 3.2. Zef 1 < p < +oo, ap < n. Then \i is a Carleson measure for tfa 

if and only if there exists M> 0 so that for any finite sequence (cnk)nk C C, 

(3-2) lilS^(i-z^-« I <H ^ M Ç ( S ^ ) • 

PROOF OF PROPOSITION 3.2. It is proved in [Ca-O, Theorem 2.1] that the linear 
functional <j>\IF —» Ifa given by 

<j){f)(z)= [ — ^ 9 da(Q 

is onto. Thus the composition with *F is also onto. But for any ank G B", Cauchy 's formula 
gives 

1 do{Q 1 hrYz)=L K(\-ànk'Y) Js" (1 - C^)" (1 - zQ»~ a (1 -za„kY-a ' 

and we obtain the desired conclusion. • 

REMARK 3.2. If we just take one term in (3.2) we deduce a necessary condition, 
namely \i ( T{B(C^, r)) J < r™, which, as is shown in [St] is not sufficient. 

We have seen that, in general, Stegenga's condition is no longer necessary for a mea­
sure to be Carleson for tfa. Nevertheless there are some particular cases where it still 
characterizes. The first case is given by the following proposition. 

PROPOSITION 3.3. Assume p > 1, ap < n and n — a < 1. Then a finite positive 
Borel measure \i in W is Carleson for FPa if and only if 

p(T(AJ) < kCap{A\ 
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for any open set A C Sw. 

PROOF OF PROPOSITION 3.3. Applying again [Ca-O, Theorem 2.1], any F e ffa can 
be written as 

F(z) = L (i -%-«da{0' with m»-a - m^°y 
Since \i is Carleson for lfa, there exists C > 0 such that 

( l - zC)" - a 

But since « — a < 1, this is equivalent to 

[\[ K} MQ d»(z) < C\\ft, f&Lp
+(da). 

JM-ûM^dai0îMz)-cm 

and since the integral on the left is equivalent to fan(P[Ka * l/lJ/Cz) d\i(z), we are done. • 
Before giving our next result we need some definitions. If/ = [a\, b{\ x • • • x [a^, bk], 

and 7: / —» S" is a smooth non-singular map, T — 1(1) is complex-tangential if and only 
if l'(x)(h) • 7(x) = 0 for any x el and he Rk. Let 7r(r) = {< ; Ç G T 0 < r < 1}, and 
denote by dv the A:-dimensional Lebesgue measure on T. 

PROPOSITION 3.4. If \i is a finite positive Borel measure in En, supported in ir(T), 
then \i is a Carleson measure for EPa if and only if there exists 8 > 0, M > 0 so that for 
any open set A C ^ = {( ; d((,, T) < 8}, 

li(T(A))<MCap(A). 

PROOF OF PROPOSITION 3.4. The proof is based in Lemma 2.7 and Theorem 2.8 
in [A-C], where it is proved that if E is a subset of a complex tangential manifold with 
Cap(E) = 0, E is an exceptional set for ¥Pa. For the sake of completeness, we give a brief 
sketch of the proof. 

Let \x be a measure supported in 7r(T), which is Carleson for Ifa, and let A Ç Yb, 8 > 0 
to be chosen. Take g e L^.(da) any test function. Then Ka * g > 1 on 4̂, and there exists 
C > 0 so that P[Ka *g]>C, on 7(^). Since ^ * g - P[A:a * g], we deduce that 

(3.3) p(T(AJ) < CJnA)(Ka*gy(z)dn(z) = C J^^K^gfirQd^rQ. 

Now the argument in Lemma 2.7 in [A-C] can be adapted to show that Ka * g(rQ < 

k{T)P\É\(^)Ka(K^)dv(r]\ where v is the measure in 7r(r) defined by di/(rQ = 

(1 - rf--2-1 dv(Q. Thus (3.3) is bounded by 
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Given < G ?r(r), let VK = {q G 7r(0 ; 11 - <T/| < 6}. In [A-C, (2.6)] is shown that for 

any 77 G V^, Re (1 * _a > n_J-i„-«, and breaking the inner integral in two pieces we 

obtain 

<LIn^]W?r= 7r(n|A(r) ^ J V " ( i -r^ay-" 

dv(n) f 

JirÇT) \JTT 
+ J L«„ ^bKî?)ï 

rfi/fa) ^ 
^ « ) -M r ) ^ *** "\l - rÇrj\n~a 

Next, Corollary 2.6 in [A-C] shows that the function 

dvjrj) 
Tr(r)* ">JV"(i -Zfjy 

is in Ifa, and ||#aG||£ < JB« ^[gF <M*/)- Then the above is bounded by 

G(z) = / r r / f e ] ( , ) 7 r ^ | z , 
A ( n (1 — Z7?r a 

i.w dv, 

which in turn is bounded by \\g\\p
p, since di/ satisfies by Proposition 2.3 in [A-C] that 

Je» |/*| t/z/ < /§« TVTz dcr. • 

The last case is also based in [A-C] with slight modifications, and we refer there for 
the proof. 

PROPOSITION 3.5. Letp = 2,n — 2a< 1. Then a finite positive Borel measure in W 
is a Carleson measure for Ifa if and only if 

Li(T(A))<KCap(A), 

for any open set A in Sw. 

In the following, we will deal with Carleson measures for Besov-Sobolev spaces. If 
1 < p < +00, q > 0 and s G N, the Besov-Sobolev space AqS is given by 

Ap
qs = [f G H(B") ; | | / 1 | ^ = |/1(0)| + £ ( 1 - \z\f~l \Rsf{z)f dV(z) < +00). 

It is well known ([Be, Theorem 1.2]) that if sj G N, qj > 0,y = 1,2 and 0 < p < +00, 
and if qi — q\ = p(si — s\\ then Ap

qxS{ = Ap
q2S2, with equivalent norm. In particular 

Ap
qs = ^q+ps+i and we may always assume that q > 1. It is also known ([Be]) that if 

P < 2, Ap
qs C If' 2, whereas if 2 < p < +00, If_g C Ap

qs. In what follows, we will 
s p s p 

denote a = s — ^,m = n — ap. 
From the following representation theorem for Ap

qS9 ([O-F, Theorem 4.1]) we deduce 
an equivalent formulation for a measure /1 to be Carleson for Ap

qs. 

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press

file:///z/f~
https://doi.org/10.4153/CJM-1995-060-4


CARLESON MEASURES ON SPACES 1195 

THEOREM [O-F]. If 0 < r\\ < r/o are small enough, and s < 1, there exists a lattice 
(akj) C B" so that 

(i) \atg\ = l-£k,j= l , . . . j * . 

^ UkjW ; p ( % ^ ) < ^0} = Bn. 
(Hi) {a; ; (fay, J) < r]\} D {UJ ; p(ak>f,u)) <rn}^$iffk = k*,j = / ; 50 fAaf fAe 

mapping 

T:[C= {Ckj)kj ; j : | c * / ^ < +cx)} — ^ S*ve#i 6y 

^ A (i _ |fl fy^B-r <7 
r ( Q = J2 E ^ ' 7 1 , yVH-m * ™'°' provided! > - . 

With the above notations we then have: 

PROPOSITION 3.6. Let 1 < p < +00, q > 0 a«ds G N 50 //*<# 0 < a = s - *, 
m = n — ap > 0. TTiew a finite positive Borel measure \i in W is a Carleson measure for 
AqS, if and only if there exists M > 0 such that 

mn E% (i - M2)' 2yi+l+7 

d/i(z)<MX;i^rÊ*", 
| # " * ( 1 -%z)" + 1 + 7 

ybr any finite sequence (c^j C C. 

Our next type of results will be obtained, as in the previous cases, by duality. 

THEOREM 3.1. Assume 1 < p < +00, q > 0 and s e N so that 0 < a = s - | , 
m = n — ap > 0. Let \i be a finite Borel positive measure in W satisfying 

d7ioiy^7r w f JF(0<+oo, 
2GB« ̂  11 - ZC|W+^ \ > 11 - 0 < | ^ J VV 

where - + A = 1. TTie/z M ^ 0 Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.1. In [Be, Corollary 2.3] it is shown that any/ e A1^ can be 
written as 

m = E fsff(OKj(z9Q(i - K\2rs~l dV(Q, 

where the kernels Kj are holomorphic in z, and satisfy for any (3 E Nn, 

1^(^01 < Cf> 
1 _ z£|"+<7+|/3| " 

The above estimates on the kernel, and Theorem 3.1 in [Be-Bu] gives that the operator 
defined by 

w = /B»(1 - \Ct2rs-lKj(Z,of(Qdv(o 

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-060-4


1196 C. CASCANTE AND J. M. ORTEGA 

is bounded from Lp = If((l- \z\f~l dV{z)) to itself. 

On the other hand, there exists a linear bounded operator, </>: Lq —» Lp x • • • x Lp
9 

<j>(h) = (ho, ...,hs) with hs = /*, and Rht-\ = ht. All together, the operator T: Lp
q —» ^ 5 

defined by 

W = L E ¥0^(^0(1 - ICI2)̂ "1 </r(0 
•/B"y=0 

is bounded and onto. Thus /x is a Carleson measure for ̂  if and only if T is bounded 
from Ifq to LP (dpi). Equivalently, the adjoint operator T*:LP'(d^i) —* Lp

q , ^ + A = 1, 
given by 

r/(o = L J:AZ)KJ{Z,Q{\ - ici2/^(4 

must be bounded. Now, Holder's inequality and the hypothesis on \i give 

\P 
(\-\z\2f-Uv{Q 

~ M» U V 7 | V7B« 11 - z(\n+q KM» 11 - ^ | ^ / V 

</B>(z)r> (z), 

which together with the estimates on Kj(z, Q, show that 7* is bounded. • 

REMARK 3.2. As we have already said H2
a = ^ 5 with q = 2(s — a). It is easy to 

check that in that case the sufficient condition (2.5) given in Remark 2.1 and the one in 
that theorem coincides. In fact, a change to polar coordinates shows that 

M» M 

(1_|C |2)2^1 dV(Q j 

- Z(\n+1 11 - L0C\n+q I ! - ZÛ\"~2a ' 

which gives the desired equivalence. 
We also can state, as in the case of potentials, a sufficient condition in terms of a 

modulus of continuity of /i. 

THEOREM 3.2. Assume 1 < p < +oo, q > 0 and s e N so that 0 < a = s - j , 
m = n — ap > 0. Let \i be a finite Borel measure in W satisfying. 

0,0)6-)-'y<4oo, 

wzY/z <£>(£) = sup^GB„ [i ( T(B((S, £)) Y Then \x is a Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.2. An integration in polar coordinates gives 

f (1 - ICI2/^-1 ( r dnid) \ A 

JV | i-zcr« y^"\\-uK\n+v 

~JSP 11 - zrj|w-a \ > " 11 ~ r]LJ\n-aJ 
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4T- I ' 

The main estimate in Theorem 2.2 shows that the integral on the right hand side is 
bounded. Hence, Theorem 3.1 finishes the proof. • 

THEOREM 3.3. Let 1 < p < +oo, q > 0 and s eMso that a = s — g,m = n — ap> 
0. Let \i be a finite positive Borel measure in W satisfying that there exist C > 0 and 
1 < r < *• with 

— m 

/x(7f(B(Cr)))<^, 

for any £ G S", r > 0. 77ie« // w a Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.3. The proof is similar to Theorem 2.3 replacing Proposi­
tion 2.2 by 

PROPOSITION 3.7. Let \ibea positive finite Borel measure in W, and assume there 
exists [3 > 2, C> 0 and 1 < r < - so that 

(i) supp/i C {z ; (1 — \z\) < sC~}, wherez — — 

(ii) n(lf(B(Çr)) fl P(B(Cr))) < T>". 

Then 

JBn(l - \z\2)sP\f{zt drfz) < C" /Bn(l - | z | 2 r * |/-(z)r </F(z), 

/ora«y/G//(Bw) . 

PROOF OF PROPOSITION 3.7. Let £p(z,r) = {u G Bw ; p(z,o;) < r}, where z G 
Bw, r > 0 and p(z, LU) is the pseudodistance in Bw. It is then easy to show that there exist 
constants k, K > 0 so that for any z G Bw, and if z = zo|z|, 1 — \z\ < eC~^, 

(3.4) Bp(z,*(l - |z|)) C 7f (2?(zo,tfd(l - |z|)*)) H 7*(*(z 0 , t fd( l - |z|)*)), 

and that if UJ G #p(z,A:(l - |z|)) then 1 - \u\ ~ 1 - |z|. 
Now the mean-value inequality gives that for any z G Bw 

Applying Fubini's theorem, the fact that 1 — \UJ\ ~ 1 — \z\ and (3.4), we obtain 

/Bno - iziri/-(z)RM(Z) 
< /" ,(\-\z\yP- l—r f \f(z)\PdV(LO)dll(z) 
~ J{r,(l-M)<eCh ( l - | z | ) " + 1 JB p (z , i ( l - | z | ) ) l / W r V 7 P W 

< / ( i - n r - ( " + 1 ) ^ r L , „,... rf/i(z)jK(a;) 
^ ^B" Jz£Bp(uJc{\-\z\)) 

< / (i - |zir-(«+i)|/(^r 
<~ JB" 

Jj^B(uJo,kClr(l - \w\)r)m^{B(LJo,kCi(l - M)*)))-
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The hypotheses on /i finally give that the above is bounded by 

c" Jji - \oj\r+sp-(n+i)\f^)r dv(w) = c j j \ - \to\f-1 \f(utdv(fj). 
Our final result needs some more definitions. A holomorphic function/ in the unit 

disc 0) is a multiplier for Ap
qs(B) if for any g G Ap

qs(B\f • g G Ap
qs(B). In [Ve] it is proved 

the following characterization of inner multipliers: 

THEOREM [VE]. Ifp>l,seN,q>0,0<a = s-*t and m = 1 - ap = 
1 + q — sp > 0, and iff is an inner function in D>, thenf is a multiplier for Ap

qs(^>) if and 
only iff is a Blaschke product, whose sequence (a*)* of zeroes satisfies that the measure 
[i — EA:(1 — \ak\)l+q~spàak ^ a Carleson measurefor Ap

qs($$). 

In particular, all the sufficient conditions for a measure to be Carleson for ^ ( 0 ) that 
we have obtained, can be used to give examples of multipliers. The following example 
will produce a multiplier which we are not able to obtain from the sufficient conditions 
for a measure to be Carleson, known up to now. 

EXAMPLE 3.1. There exists a sequence (a*)* C 0 so that if 0 < m = 1 + # — sp < 1, 
p > 1, and if /i = £(1 — \ak\)môak, then p, is a Carleson measure for Ap

qs. In addition, 
there exists £o G S so that 

(3.5) M(r±(2K<b,r)));gA 

In particular, the Blaschke product whose zeros are the sequence (ak)k is a multiplier 
for 4 , . 

We will construct the required measure in the upper half-plane, being easier to deal 
with the computations. We need to show that there exists a sequence (a*)* C Rj. with 
ak = (xk,yk) so that the measure p = T,y^Sak satisfies the hypothesis on Theorem 3.3 
but does not satisfy (3.5). This will follow once we prove that there exists some r < ^ 
so that 

( i ) ZakeQT(B(Xo,r))y% < *" b u t 

Where QT(^(xo,r)) = {(x,y) ; \x — JCO| < rr,y < r}, and Qiis defined similarly, and 
where xo G R, r > 0. 

Now, if r < ^ , let t G (T, ^) be fixed, and let <p: [0, +oo) —> IR be the function defined 

by <£>(x) = e~. For A: G N, let A* = (</?(£), </>(£)')• We will show that the sequence (a*)* 
satisfies (i) and (ii). First assume that xo = 0, and let 0 < r < 1. 

Since r <t < ^ ,we have that conditions (i) and (ii) can be rewritten as: 

(i;) E , _ i <^(*r < ^ 

(ii') E , ( t y < r # ) ' m ^ , 
conditions which are immediate to verify for the selected <p. In particular, (ii7) says that 
(i) holds, which gives that (3.5) is not satisfied. 

Thus in order to finish we need to show that (i) is also satisfied for any x0 G R. Since 
(i') holds, it is enough to prove (i) for the regions {(x,y) ; s < x < s + rr , 0 < y < r} 
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with rr < s. We must then show that 

i ~ 
s<(f(k)<s+rr 

Expressing the above sum as an integral, using the definition of ip and the mean-value 
theorem, we have 

£ <p{kT < fl + log—K~ \s + A)m - (l +log^)^'m 

, - I {s+r-ry») V s*») s<(p(k)<s+r 

= tmr 
^ • h ' m - x 

where h G [s,s + rr]. 

Now the function in brackets is decreasing (tm < 1), and since rr <s<h, the above 
is bounded by r~? log \, which is, due to the fact that t > r, bounded by r™. m 
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