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CARLESON MEASURES ON SPACES
OF HARDY-SOBOLEV TYPE

CARME CASCANTE AND JOAQUIN M. ORTEGA

ABSTRACT.  We study positive measures on B” satisfying that fgn |[f(2)? du(z) <
C][ﬂl";’, , for any f € Hf,, where HP, is the Hardy-Sobolev space in the unit ball. We

obtain several computable sufficient conditions as well as some necessary conditions
and establish their sharpness. We study the same problem for Besov-Sobolev spaces
and give some applications to multipliers.

1. Introduction. Let B" be the unit ball in C”, and " its boundary. We will de-
note by dV the normalized Lebesgue volume measure on B”, and by do the normalized
Lebesgue measure on §". For « € Rand 0 < p < 400, the Hardy-Sobolev space H,
consists of holomorphic functions / in B” so that R*f € HP(B"), where if f = Y f; is its
homogeneous expansion, R%f = Yy (k + 1)%;.

Forn = 1, a = 0, and p > 1, Carleson [C] proved that the finite positive Borel
measures on B! = D such that

| @P due) < Clf ey

are characterized by what is now known as Carleson condition: there exists a constant
K > 0 with u(T(I)) < K|l for any interval [ in the unit circle, where T(J) is the corre-
sponding “Carleson box” over /.

If G is a region, u a finite positive Borel measure and B a Banach space of continuous
functions in G, we say that p is a Carleson measure for B if there exists a constant C > 0
such that for any f in B,

(1.1) J V@ dut) < Clil.

The purpose of this work is to study Carleson measures for Hardy-Sobolev spaces
and other related spaces.

In some particular cases, these measures have been treated by different authors, ([C],
[St], [Lu2], [N-R-S], [A-Bo], [A-J], [F-S], [Ke-S]), as well as their connection with prob-
lems about multipliers, interpolation, solution of the 6-problem and duality theory for H'.
We will mention briefly the results closely related to our work.
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Forn = 1,and p > 1, Stegenga [St] characterized the Carleson measures for /5,(D),
ap < 1 (when ap > 1 these spaces consist of continuous functions on D, and any finite
Borel measure is then Carleson for H%(D)). He showed that those measures are the ones
satisfying that ,u(T (A)) < KCqp(A) for any open set 4 in the unit circle, where C), is
an appropriate Bessel capacity depending on « and p. If p < 1, the characterization in
[A-]] is simpler: any finite positive Borel measure is Carleson for H5/(D) if and only if
p(T(D) < K|1)'=°7, for every open interval / in the unit circle. Since Cop(l) ~ |1|'~°7,
the condition in [A-J] is Stegenga’s condition only for intervals. The proof in [St] goes
roughly in the following way: in dimension one, Carleson measures for H5(D) coincide
with Carleson measures for the space of Poisson transforms of Bessel potentials of 7
functions. The key point in the argument is then a strong type capacity inequality.

In fact, Hansson’s theorem extending this strong capacitary inequality to dimension
n > 1, shows ([N-R-S]) that Stegenga’s theorem extends to measures ; on R™!, for the
spaces B = P[J, * LP], where P is the Poisson kernel on R?*! and J, is the Bessel kernel

in R”.
In [A-C] it is introduced a non-isotropic Bessel kernel given by
1 _
Ke(z,{)) = ——=——, zeB", (eSS,
|1 —z(Jr=e

where 0 < a < n. For 1 < p < +o0, and f € [P(do), the non-isotropic convolution is
denoted by

Ka*f@) = [ Kalz:Qf(Qd0(Q), = €B".

It is also introduced a non-isotropic Bessel capacity, C,p, associated to these kernels,
and a non-isotropic version of Hansson’s theorem is proved. If P[K, * 7] is the space of
Poisson-Szegd transforms of convolutions of L functions with K, following the meth-
ods of Stegenga, it is easy to show that a positive finite Borel measure p in B” is a
Carleson measure for P[K, * LP], if and only if there exists a constant M > 0 so that
u(T(A)) < MCyp(A) for any open set A C S". Here T(4) is an admissible tent over 4.

The paper is organized as follows. In Section 2 we study Carleson measures for
P[K, * IP]. As we have already said, Stegenga’s condition still characterizes, but be-
ing difficult to check, the purpose is to find computable sufficient conditions. We have
found several such conditions in terms of duality, moduli of continuity and geometric es-
timates. Those last kind of conditions improve the one obtained in [N-R-S] for P[J, * [7]
in R""!'. We also give some examples which show, in a certain sense, the “sharpness” of
the sufficient conditions, as well as the relations among them.

In Section 3 we deal with the holomorphic case, where, in general, no necessary and
sufficient size conditions are known. We begin proving the non equivalence, for n > 1,
of the problems for P[K, * LP] and H%,, and observing that the sufficient conditions for
the first space are also sufficient for the second one. We give a necessary and sufficient
condition for a measure to be Carleson for HY, in terms of atomic representation of those
spaces. Some particular cases are presented where Stegenga’s condition is necessary and
sufficient.
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We also study the problem for A%, the holomorphic Besov-Sobolev space, and give
similar sufficient conditions. Finally, we apply the previous theorems giving examples
of multipliers for A’,fs, which could not be obtained as a consequence of the sufficient
condition in [N-R-S].

As final remarks on notation, we will adopt the usual convention of writing by the
same letter various absolute constants whose values may differ in each occurrence. Also
A 5 B will mean that there exists C so that 4 < CB.

2. Carleson measures for P[K, x [”]. As we have already said in the introduction,
Stegenga’s condition characterizes Carleson measures for P[K, x [P],p > 1, ap < n: a
finite positive Borel measure p in B” is a Carleson measure for P[K,, x L7], if and only if
there exists K > 0 such that

@1 p(T(A4)) < KCapl(A),

for any open set A C S”, where 7(A4) is the admissible tent over 4 given by

2.2) T(4) = Ty(4) = B" \ U Ds(©),
€2
D) = {z; |1 — 2] < B(1 — |z])}, and C,,, is the non-isotropic Bessel capacity defined
by
2.3) Capl(A) = inf{|[fI2 ; f € L2(do), Ko *f > 1 on A}.

If A = B((, r) is a non-isotropic ball, Cq, (B(g, r)) ~ ¥~ and then the condition
w(T(B(,r) < K",

is necessary but not sufficient (see [St]).
It is easy to see that if we define “weak” Carleson measures for P[K, x L”] as the finite
positive Borel measures p on B” such that

2.4) sup M({z € B [F@)| > AN < CFllpar
>

then p is a Carleson measure for P[K, * LP] if and only if it is a weak Carleson measure.
Indeed, let A be any open set in S” and let f/ be any test function for C,p(4). Then, (see
[N-R-S, Lemma 3.4]) there exists b > 0, depending only on » but not on 4, with

P[f)z) > b, forz e T(A).

Thus T(4) C {z ; P[Ks *f1(z) > b}, and if  satisfies (2.4), u(T(4)) < C|/f|[5. Taking
infimum on f, we get the desired conclusion.
In this section we will study the Carleson measures for P[K,*LP],p > 1and ap < n.
Our first result gives a first sufficient condition, which is deduced using duality, and
does not involve capacity.

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-060-4

1180 C.CASCANTE AND J. M. ORTEGA

THEOREM 2.1. Letl < p < +oo, 0 < o, ap < n. If a positive Borel measure 1 in
B" satisfies that

1

du(z) ) = do(0 < 400,

1 — =

then i is a Carleson measure for P[Ky * L7].

2.5) sp/ T l"d(B

weBr

PROOF OF THEOREM 2.1.  We begin with the following simple lemma:

LEMMA 2.1. Suppose 0 < a < n. Then

P[Ky *f1(z) ~ Ko ¥ f(z) foreachz € B", andf € Ll (do).

PROOF OF LEMMA 2.1. Lemma 1.7 in [A-C] shows that K, * f(z) < P[K, * f1(2).
The other estimate will hold if we check that

[UZERy dot)

o 1= 20 [T = wffre < [T — o=

This will be obtained by breaking the integral in two pieces corresponding to |1 — w(| >
g|]l —z{| and |1 — (| < €|1 — (], with € > 0 to be chosen. Then

/ (1= |z do(w) < 1
N-wfl>ell-2| |1 — 20" |1 — Wl ~ |1 — 2{|n—=’
andif e > 0 is small enough, we obtain that if |1 —w(| < e|1—z(], then |1 —z&| ~ |1—=].
Thus
1Py d
/ ) ) ( 12!2) o(w) do(w)
1=l <el 1] |1 — 2| |1 — w(]m—

< —_/ _ _ da-((tj) ~ l_ s

S =2 n—d<ei= 1 — o~ |1 — "=
and we obtain the lemma. ]

Returning to the proof of the theorem, we just need to show that the linear operator
given by
J©)
s |1 — Zgln—a
is bounded from LP(do) to LP(dp). This is equivalent to show that the adjoint operator
T* defined by

If(z) = do(Q),

/@

QO = [, T e
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is bounded from L7 (dy) to I/ (do), [l)+ 1% = 1. Applying Holder’s inequality and Fubini’s

theorem,
/@due) [
1T W) = ﬂﬂTjﬁ:ﬂMO
% du) \*
< b e e e f ) 4@
duz) \7
= [ WP ( ) do(C) dp(w).
el '(/ T b o))
Now (2.5) finishes the proof. [
REMARK 2.1. When p = 2, it is easy to see that condition (2.5) is equivalent to
_dp(z)
@9 P o [T <
just because
[ do(Q) L
= 1= ogralt —gpe [l zap 2

REMARK 2.2. It is also easy to show that condition (2.6) can be rewritten in terms
of the function . (r) = p(T(B(C, r))), as

00 r
sup <P<(2) — < +00
cesr 0 ey

But if p # 2 there is no a similar expression of (2.5) in terms of . Instead, we will see
in the following theorem a sufficient condition involving a modulus of continuity of u.

THEOREM 2.2. Let p1 be a finite positive Borel measure in B". For 0 < é < 2, let
() = supu(T(BE,5))).
supn(7(8.0)))
Assume 1l <p <+oo,m=n—ap >0, a > 0 and that
00 m ﬁd_ﬁ
2.7) [ (@ ™) TS < 40,

Then p is a Carleson measure for P[K, x LP).

PROOF OF THEOREM 2.2. In [M-K, Theorem 6.1] it is proved that

@) \7T_d o ( w(p,6)) 7T db
W p2) o s (D)7,

where w(p,8) = sup,cp w({y ; |x — ¥| < 8}). Their methods can be used to show that

p [([ 20 ) 70 (o)
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REMARK 2.3. There are many examples of functions ¢ satisfying (2.7):

(1) ¢(6) = §"(log 1'%, ¢ > p.

) ¢(6) = &"(log 3)' P(loglog )'~7, ¢ > p.
The following proposition will show that, in terms of modulus of continuity, (2.7) is
sharp.

PROPOSITION 2.1. Let ¢:[0,+00) — R be a non-decreasing function such that
»(0) = 0, constant for x > xo, and
X0 —m p% dé
) (p@38™)77 = = +oo.
Assume that {; € [0,+00) defined by ¢({;) = 5,';] =1,2,..., satisfies 2{;+, < {;.

Then there exists a finite positive Borel measure v in B”, so that

v(T(BG9)) < 0@), ¢€S",6>0,
but v is not a Carleson measure for P[K, * L”].

REMARK 3.4. 1t is easy to show that if (/¢ is strictly concave on [0, +00), the con-
dition on the sequence (¢;); holds.

PROOF OF PROPOSITION 2.1. In[M-K, Lemma 7.2] it is shown that the n-dimensional
Cantor set £ C R" associated to the sequence (£ ;)i (see [K-S] for a construction of such
sets), has zero Bessel capacity in R”, and that there exists a measure /i, supported in £
so that for any r > 0,x0 € R", i({x € R" ; |x — xo| < r}) < ¢(r), whereas if x, € E,
ad{x eR"; |x ?xo| <rp) ~ p(r).

Identifying £ with a compact subset of an n-dimensional transverse variety included
in §", we obtain a set £ C S" of zero non-isotropic Bessel capacity. The measure y
defined in S" by transporting /i, has its support in E and satisfies similar estimates than
{1, with non isotropic balls.

Now, for§ > 0 let E5 = {¢ € $",d((,E) < &} where d((, E) is the non-isotropic
Koranyi distance from ¢ to E. Since Cqp(E) = 0, and Cy, is an outer capacity ([Me]), we
obtain that the increasing function g(6) = Cq,(Es) tends to zero as 6 — 0. It is easy to
construct an integrable positive function 4 on [0, 1) satisfying that for any m € N,

/llﬂ”+ h(r)dr > A g(—’:;)

We define now a positive finite Borel measure in B” by

W= [ [ SO duQdr, foranyf € C@),

which will be the desired measure. If { € B" and 6 > 0, any z € T(B(C,(S)) satisfies
|27| € B((,0). Then

v(1(8GH)) < [ ' hu(BC.8) dr < 9(6), whereas
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W(TED) 2 [ 00 [, xe ©du©dr = [ hOuE)dr

Thus v does not satisfy Stegenga’s condition. m

The third kind of sufficient conditions will be of geometric type. Before stating them
we need some more definitions. Let 1 <p <+oo,m=n—ap >0,and 1 <7< 2 If
(eS"and 3 > 0 let

Q) =) ={z €B"; |1 — " <B(I — |2])}

and for any £ C S”, the “tangential” tent over E is defined by

TAE)=TE)=B" \ U Q.
CHE

(whenT = 1,Q,(¢) = D), T\(E) = T(E)).
In [N-R-S] it is shown that the geometric condition, when 7 = 2, ,u(TE(B(g, r))) <

P = P is sufficient for a measure y to be Carleson for P[K, * L7]. The same condition,
whent =1, p(Tf (B(g, r))) < r™ is the necessary condition we have already mentioned.

It is then natural to ask whether the “intermediate” conditions p ( T¢ (B(C, r))) < ", are
necessary or sufficient.

The next theorem establishes that these conditions are also sufficient for a measure
to be Carleson. Since Hausdorff content is not additive, the proof of the theorem needs
a completely different approach of the one used in [N-R-S] for 7 = 7. In that case, the
corresponding Hausdorff content is just Lebesgue measure.

Before stating it, if /: B" — C, we will denote by Nf the admissible maximal function
given by Nf(Q) = sup,cp, [ (2.

THEOREM 2.3. Letl < p < +oo, m = n — ap > 0, and let i be a finite positive
Borel measure y in B" so that there exists 1 <1 < 7 and C > 0 with

2.8) u(T(BGN)) <7

Then y is a Carleson measure for P[K, * LP].
PROOF OF THEOREM 2.3. We need the following:

PROPOSITION 2.2. Let 0 < p < +00, 0 < candm = n—oap > 0. Let u be a
finite positive Borel measure in B" satisfying that there exists C >0, K >0, 8 > 0, and
1 <7< 2 with

() supppu C {z3 (1 = |z) < eC71}, (e = 75y),
(i) n(TE(BGN) NTP(BGN)) < K™,
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Then there exists M > 0 so that for any f-B" — C
(l - |Z|)ap|f(z)lp duz) < MCm”Nflllj’(do)

REMARK 2.4. Observe that the above proposition gives that if y satisfies (i) and (ii),
then (1 — |z])*? du(z) is a Carleson measure for HP(B"), with a control on the constant
expressing the continuity of the mapping from HP(B") to L” ((l — |z]) a’u(z))

It suffices to prove the proposition for p = 1, since ||Nf||/ ey = NIl oy We
claim that

2.9) ‘/B"(l ~ ) @) dutz) < ‘/O*m ./OECm w({z5 @] > 6,(1 — |2])* > £}) de .

In fact, similar inequalities were treated in [Ci-Do-Su], and we briefly sketch the proof
of 29).If t > 0and ¢ > 0, let E(¢,£) = M({Z ; @ > 6 —|z)* > Z}). Let
z € supp u satisfying that |[f(z)|(1 — |z|)* > ¢ There exists j € Z~, k € Z so that
VeC < (1—|z|)* < 2HeC™,2F < |f(z)] < 2¥',and in particular z € EQ2¥, 27eC7T),
and t < 42¢C1. Thus

+00 —1 J+k¢266 oy

[Pulza-drrol >g)a< % W(E@,2eC™)) di

:——001——-

< Z 2* Z YO u(E@RH, YeC))

~k=—0c0 j=—00

~ [ /OEC’*' w(EG, 0) de di,

which gives (2.9).
Next, since (2.9) holds, in order to prove the proposition, we just need to check that

(2.10) /jm n({z: /@1 > 1,1 = |2 > €}) dt < C"o({C: Q) > 1}).

Let B = (By), with By = B(, ri) be a Whitney decomposition of the set {¢ ; Nf(C) > ¢}.
Thus: (a) {Nf > t} = Uy Bs; (b) there exists & € N, only depending on n, so that no
point in §” lies in more than 4 distinct balls By; (c) B(, hri) ¢ {Nf > t} for each k.

Let z € B" with (1 — |z]) < eC7 and |[f(z)| > r. Then there exists M > 0 with
B(zO,M(l —|z])) € {Nf > 1}, where zo = 7 In particular there exists k € N and
zo € By, and by property (c) of the Whitney decomposition (1 — |z|) < ke We want to
show that there exists m > 0 and

Q.11 ze 1€ (B(g,m(c%r,f + rk))> N7’ (B(g,m(cir,f + rk))).

Indeed let ¢ € S” with z € Q.(C) (the condition 1 — |z| < eC71 with e = 4&_' gives that
is always possible to find such ¢). Then,

1= GGl <1 =+~ 2P+ 1 — 20l < CH - e
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Thus if ¢ is any point such that z € Q,((), ( € B(g, m(Cérlgl + rk)), and we deduce from

the definition that z € TC (B(g, m(CHry + rk))).

The other inclusion in (2.11) is proved in a similar way.

Now we decompose B = ‘B' UB?, where any ball By in B! satisfies r;, < (Crk)fl ,and
if By € B2, (Cry)? < ry. Applying (2.10) we get

EC%
b ez @l > 6 -2 > 6})de
<y " #(T6(BGo 2mC? ) N TP (B Gy 2mCPr}) ) dt

B eB!

+ 3 /EC (T (B 2mr) N T (BG, 2mr) ) dt,

Bkeﬂz

where in the first estimate we have also used that if £ < (1 — |z|)* and (1 — |z|) < 4,
then £ < r¢. Finally, we use the hypothesis on y to obtain that the last sums are bounded

by
cm Y opesCm S R < C"o({Nf > 1}).
ByeB' BB
Here we have used that if B, € B2, C < r;~!, and then C71~" < r¢~~D" Thus we
have seen (2.10), and that finishes the proof of the proposition. n

Going back to the proof of the theorem, Lemma 2.1 gives that we just need to show
that there exists M > 0 such that if

O
)= [, g 0O

In a
with f € I£(do), then
P <
2.12) | P du <M [ do.
Since

1 _ pnrta—1
[ — </ &dt,
1=z ~Jo |1 — ez

we then have:

_t2n+a—
FQ) = [, S o0 < [, 10 f) S o

|na

— 2Py
| — 1P
where g = P[f]. Breaking up the integral in the right hand side in two pieces, from 0 to

A and from A to 1 (0 < 4 < 1 to be chosen), we denote the corresponding integrals by
g1 and g. We will show that both functions satisfy an estimate like (2.12).

< [la-ot [ SEEE Qo0 = [0 - 0 g,
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First, since the supremum of g over any compact in B” is bounded by the L”-norm of
g, we may assume that suppp C {z; 1 —|z| < min(sC7T, ;—5)}, where 3 > 2 will be
chosen later. By the same argument the estimate for g; is immediate. So we need only to
deal with the contribution of g, to (2 12). Letl =4 >t > --- > ty, where £ € Nis
the first integer so that 2¢(1 — |z]) > 2 5, and where for eachk < £, 1 —tJz| = 2K(1 —z]).
If we choose 4 = (1 — ﬂ)(l - ﬁ)‘l then ¢, < 4, and

2@ < [ (1= 00 gl de < l_z'l [ " (=0 gtz de
--1

</ (1 —¢z)* g(tz) t| l)a dt

+Z =z g

)

We denote by g24(z), k = 0,..., ¢ — 1, the integrals that appear on the right hand side.
Let po, ..., it be the measures in B” defined by:

po(h) = u(f h(tz )( —;|)a|);d)

Ik di
i(h) = u(f,k h(tz)(1 jt)), k=1---¢, he C®").

Each y is a finite measure. Indeed, for £ = 0, and since 1 — #;|z] = 2(1 — |z|), we have
thatiffy <¢<1,1 —¢z] ~1—]z| and

1 (1 — ! 1 1 4
2.13 dt ~ 1—0)*"dt~1
@13 Jo = = = b 0 ’
andif 1 <k </,
[ dt 1 — 4 1— tk+||Z| — t (1 — |ZI)
=1 =1
T e S P = oy )
2K1(1 = |2])

(2.14) = log4,

Sl T D

where in the last inequality we have used that since k > 1, z, < 2¢-1.

We check that the measures uy, 0 < k < £, are in the hypothesis of Proposition 2,
for appropriate constants. We first check the size estimate. We will show that there exists
M > 0 so that

(2.15) (T (BGo, ) N TP (BGo,7)) ) < 7

forany {, € S",» > 0.
Indeed, let z € suppp and assume tz € 72M (B,r)) NT*(B(,7), t < & Let
¢ € S" so that z € QE(() (again, since suppp C {z; 1 — |z| < eC71} there exists such
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point). If zz € D((), we have since tz € T? (B(Cg,r)) that |1 — {| < r and consequently
thatz € T¢ (B(Co, r)). Widening, if necessary, the aperture of the admissible region D((),
it is immediate to show that if k <1 —1,¢ < # and if z ¢ D((), then 1z € Qf*kM ©.
Hence, since 1z € T2 M (B(Co, r)), we have that |1 —({| < r,andz € TT‘C(B((O, r)). Now,
this inclusion, (2.13), (2.14) and the hypothesis on p gives that in any case:
0 (1=t

uo(TH(BGo, ) N TP(BGo,1) ) < u(xrf , [ sup . ’D <

( ( )N T )) e ok / A==} =
andif 1 <k </¢

—k
(72 M (BGu) N 7(86)) < x| _sup ) s

k( ( ) ( G ))) P XTen zeTf(B(Co oy i (l P)

We deal now with the condition on the support of the measures e, 0 <k < . Lethbe

any continuous function supported in {z ; (1 — |z|) > EC" },0<k< (¢ Foranyt <t
we have 1 —f]z| > 1 — ]z| = 2%(1 — |z]) > eC71, and consequently 1z ¢ supp p and
pi(h) = 0. Thus if k < ¢,

Cc
supp px C {z s (L= |2)) <e—p T }
Assuming first that — — < 1, we finish the proof of the theorem. We can choose M > 0

big enough so that = CT - < (2%)?—1‘1, k < ¢, and we then have that the measures y; are in
the hypothesis of Proposntion 2.2 with constant 27¥M. Hélder’s inequality together with
(2.12) and (2.13) gives

1

a—1 ?
s af duco)

1 _ttrdu(Z));

leallam < 3 lgasllaw = (
k>0

+I§l(/Bn

<(f [ a-thre@S = dtdu(Z)) "

2 [0 e

3 d
S (= tlz)g(e)

du(Z)) :

= kZO( L= lh7ee duk<z>) g

Applying now Proposition 2.2 to each y; we deduce that the above sum is bounded by
i 0(2"‘M)5 INgllp < IIfll¢ao) and we have ended the proof when L <1

If =5 > 1, we may choose ko so that for k > ko, 2 27kM < (%)T_1 C. Applying Propo-
sition 2 2 to g, k > ko, now with constant (—,;)T‘l C, a similar argument would give that
mr—1)

1
5 leallvan S T (55) 7 Wl
k>ko k>ko
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Finally for 0 < k < ko, (%)"~'C < 27*M and we proceed as in the case 7 < 1. .
Before going further we give a definition of tangential “Carleson box .

DEFINITION.  Fork>0and1 <7< :7,{ €S"andr >0,

Z -
1— =G

A(BG.n) = 2 g

<rl——|z|<kr7}.

We then have

LEMMA 2.2. (i) Letk > 0and 1 <1 < Z_Then there existk; > 1, ky < 1 so that
foranyr>0,4 €S,

T (B, kar)) C Vi (B, 1))-

(i) Analogously,letk > 0 and 1 <1 < 2. Then there existky > 0, k > 0 so that
foranyr<1,{p €S

Vi (B, kar)) C TE(BGos 1))

PROOF OF LEMMA 2.2. Letz € T¥(B((o,kar)), where ki > 1,k > 0 are to be
chosen. Since z € Qki(z), zp = é[, we must then have |1 — {Zo| < kor < rifk, < 1.

Now choose ¢ € S” so that |1 — ({y| = 2kyr (if k, is small enough it always exists).
Then since ¢ & B({, k2r), we have that z & Q1 (¢). Thus

1—|Z|<—|1—Z€l’< ((1—|ZI)+i1—ZoCoI+l1—CoCI)< ((1—|Z|)+r)

and if k; is big enough, 1 — |z| < k", and we have proved (i).
The proof of (ii) goes similarly. [

COROLLARY 2.1. Let i be a finite positive Borel measure in B". Then the following
are equivalent:
(i) Thereexists k,Cy > 0 such that ,u(Ti‘(B({o, r))) <G forany €S", r > 0.
(ii) There exists k, Cy > 0 such that

,u(Vf(B((o,r))) <G forany{ €S", r>0.

We can now show that any measure satisfying the sufficient condition of [N-R-S],
also satisfies the sufficient condition in Theorem 2.3, for any 1 < 7 < 2. Nevertheless,
there are measures satisfying such sufficient condition, but do not satlsfy the condition
of [N-R-S].
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PROPOSITION 2.3.  Assume 1 < p < +oo andm = n— ap > 0. Then:
(i) Let p be a finite positive Borel measure in B", so that, there exists C > 0 with

u(T% (B(§0,r))) <Cr', forany{ €S, r>0.

Then for any 1 <1 < =, there exists C, > 0 so that for any o € S", r > 0

u(T.(BG.n)) <

. n . .. Cm e
(it) ForanyT < . there exists a positive Borel measure p in B" satisfying

p(TT(B(g,r))) <, but ;L(Tﬁ(B(C,r))) L.

PROOF OF PROPOSITION 2.3. By Corollary 2.1 it is enough to show the proposition
with tents changed for the equivalent regions V. Since V, (B((o, r)) C Ve (B(go, re )),
we have (i). For the proof of (ii), let ¥ be a m-measure on S”, i.e., there exists E C S” so
that forany (o € E,r > 0 V(B((o,r)) ~ " whereas for any {, € §" V(B(go,r)) < r"
(for the existence of such measures, see [K-S] and the argument in Proposition 2.1).

Let p be the measure in B” defined by

wh = [ [ 10~ du¢)dr,

for f € C(B") and where ¢ > —1 is to be chosen later.
Next, let { € S, » > 0. Then

_ 1 Y2 T(t+1)+m
w(P(BGn)) = [, =" [ duQdx <.
If{ € E, r > 0 we have

H<V§ (B(CO, r))) ~ §a(triym

Since 7 < 7. we can choose t > —1 so that Tm < 7(t+ 1)+ mbut (¢ + 1) +m < n, and
that finishes the proof. =

The following two examples will show the “sharpness” of the sufficient condition
of Theorem 2.3 as well as the relation between the different sufficient conditions. As a
consequence we will see that none of them are necessary.

EXAMPLE 2.1. Letl < p < +oo,m = n— ap > 0, and let ¥:[0,2) — R" be a
differentiable function such that ¥(0) = 0 and %Q — +00, as ¥ — 0. Then there exists
a finite positive Borel measure p in B” satisfying:

u(7(BG.n)) < wEr),

but p is not a Carleson measure for P[K, * L7].
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Let { € S" be a fixed point, and define du = W/(1 — r)dré,, where é, is the Dirac
measure at (9. Then ,u(TT(B(C, r))) < Y(Cr"), but for any r > 0, ,u(T(B(Co,r))) ~
W(Cr). This last estimate, the condition of growth of ¥ at zero, and the fact that
Cop (B(g),r)) ~ p shows that 11 does not satisfy Stegenga’s condition. (]

EXAMPLE 2.2. Let ¢ be the modulus of continuity of ;2 defined in Theorem 2.2.
() For 1 <7< -, there exists a finite Borel measure  in B” such that

u(T(BGR)) <7,
but L db
/0*00(@(5)5"")’;—'—6- = +00.

(i1) There exists a positive finite Borel measure p in B” so that

%0 L db
J (o3 5 <o

and there exists ( € §”, so that forany 1 <7< 2,

u(TT(B(C, r))) L.

For (i) it is enough to take dp = (1 — r)"‘“é(o, {p € S". For the second example, let
E C S", be an m-set and v be a measure on S", supported in E satisfying: v (B(g, r)) ~ "

for each ¢ € E, r < 1, and v(B(,r)) <", V6 € S",r > 0. Let ¢ > p be fixed, and let
f(r) = (log 1)'~4, and define ;1 by

1
we = [ [ £ —ngr)dvQdr, foranyf e CE®".
It is then immediate to show that y is the desired measure.

REMARK 2.5. In [A-Bo] the so-called 3-Carleson measures are studied. They are
defined as the finite positive Borel measures p in B” so that there exists C > 0 with

,u(T(A)) < Co(4)?, foranyopensetd CS".

Following [Me, Theorem 20] it is easy to show that there exists M > 0 so that o(4) =" <
MCyy(A). Thus any ";'?E-Carleson measure p satisfies Stegenga’s condition and is a
Carleson measure for P[K, x LP],p > 1. The following example will show that there are
Carleson measures for P[K,, * LP] which are not “=*2-Carleson. Consider a transverse
curve in §",¥: I = [a,b] — S", and denote by dx the unidimensional Lebesgue measure
on 7. Let p be the positive measure in B”, supported in {rY(x) ; x € I,r < 1} given by

du(r,x) = (log %)1_‘1 drdx, with ¢ > p. Then forany { € §", r > 0, u(T(B(Q, r))) <

r(log 1)!~9, whereas ,u(T (BOV(), r))) ~ r(log 1)!79. Theorem 2.2 shows that  is a
Carleson measure for P[Ky * L], if 1 = n — ap.
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Assume that y is also an %-Carleson measure, let ¢ > 0 and consider 4, =
e B(“Y(x,-), s) the union of a maximal number of disjoint non-isotropic balls centered
at points in V. Since A4, is open and we have

N,

> u(T(BO@),0)) = u(T) < CVe,

=

this estimate together with the fact that u(T (B("Y(xi), 5))) ~ ¢(log é)‘“q and N, ~ %
gives a contradiction.

3. Carleson measures for holomorphic spaces. In this section we will study con-
ditions on a measure p in B” to be Carleson for Hardy-Sobolev and Besov-Sobolev
spaces. The first example, which is based on one included in [A-C, p. 448] shows that,
unlike what happens in dimension one, Stegenga’s condition is, in general, not necessary
for a measure y to be Carleson for H5, n > 1.

ProPOSITION 3.1. If1 < p < 2, n— ap > 1, there exists a finite positive Borel
measure i in B, such that p is a Carleson measure for Hs, but p is not Carleson for
P[Ky x LP].

PROOF OF PROPOSITION 3.1. By Theorem 3.1 and Corollary 3.1 in [A-C] there exists
a compact set E C §" with Cop(E) = 0, and an invariant positive measure v in S”,
supported in E so that

G.1) fg INfPdv < C|R®f|lZ for any f € H(B").

Forany§ > 0,1et E; = {¢ € " ; d((,E) < 6}, and g(6) = Cqp(E5). This function

tends to zero as § tends to zero since Cqp(E) = 0. Let A be the function constructed in

Proposition 2.1, and define a measure p in B” given by [g- f du = fol Jor f(rQOh(r)dv(() dr.
Then (3.1) gives that p is a Carleson measure for H5,. Indeed, if f € H?,

[ L reophyangydr < [ [ INOP R dvQydr
SR = e

Now the same argument given in Proposition 2.1 shows that u does not satisfy Stegenga’s
condition.

REMARK 3.1. Since any f € H, satisfies that there exists g € L£(do) with |[f(z)] <
P[Kq * g](z) and |[f][}.« ~ |Igl7, 40y ([A-C, Lemma 1.7]), all the sufficient conditions in
Section 2 also hold for the Hardy-Sobolev spaces.

From the following representation theorem for H%,, ([Lul, Theorem 5.5]), follows an
equivalent formulation of the definition of a Carleson measure.
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THEOREM [LUL]. There exists & > 0, € > 0, so that for any (r,), C (0,1), with
¥a — 1, and for any n € N, a finite sequence (a)i") C {z € B" ; |z| = m}. n > 1,
satisfying

(1) U{z; p(z,am) <6} D {z € B"; |z| = rn} (here p(z,w) is the pseudohyperbolic
metric in B, that is, p(z,w) = |h,(2)|), where h,, is the automorphism of B" taking 0 to
w.

(2) Ifk,j € {1---k(n)} and k # j then p(ay, an) > e.
Then any f € HP can be written as

Ia )

Zank)n

@)= Z e

where Y° | k(") Ic,,kIP)P < +o0. Furthermore the mapping ¥ defined by W(C) =
1 " n(l
‘I’((c,,k)nk) = Ynk cnk(—%’%y— is continuous.
With the same notations we then have

PROPOSITION 3.2. Let | < p < 400, ap < n. Then y is a Carleson measure for H,
if and only if there exists M > 0 so that for any finite sequence (Cu)nx C C,

(3.2) (/B

PROOF OF PROPOSITION 3.2. It is proved in [Ca-O, Theorem 2.1] that the linear
functional ¢: HP — HP, given by

1 1
ol PP 1o by (§eup)
) <M (S lenl’)’.
nk e (I —zay)"— e = n <k:1 |C kl )

f©

z)= | ——=—do
WO = [, T O
is onto. Thus the composition with ¥ is also onto. But for any a,; € B", Cauchy’s formula
gives
1 1 do(Q) 1
¢(—'n)(z): n 7 .\ § “a g, yn—a’
(1 —ap) s (1 —Cam)" (1 =20~ (1 —zaw)
and we obtain the desired conclusion. (]

REMARK 3.2. If we just take one term in (3.2) we deduce a necessary condition,
namely u(T(B(C, r))) < /", which, as is shown in [St] is not sufficient.

We have seen that, in general, Stegenga’s condition is no longer necessary for a mea-
sure to be Carleson for H%,. Nevertheless there are some particular cases where it still
characterizes. The first case is given by the following proposition.

PROPOSITION 3.3. Assumep > 1, ap < nand n — o < 1. Then a finite positive
Borel measure p in B" is Carleson for HY, if and only if

u(TA)) < kCap(4),
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Sfor any open set A C S".

PROOF OF PROPOSITION 3.3.  Applying again [Ca-O, Theorem 2.1], any F € H, can
be written as

Fo = [, & do©,  with [Fllpa > [l aor

Since p is Carleson for H5, there exists C > 0 such that
[ 22— o] awr <cirg. s 2o

/Bn )n a

But since n — o < 1, this is equivalent to

( P
(f 725 a00) aur < cur,

and since the integral on the left is equivalent to fg:(P[Kq * |[f|]Y (z) du(z), we are done. m

Before giving our next result we need some definitions. If I = [a;,b;] X - - - X [ay, bi],
and 7:/ — S" is a smooth non-singular map, I' = Y(/) is complex-tangential if and only
if Y'(x)(h) - Y(x) = O forany x € Iand h € RF. Let 7(T") = {r¢ ; (€ T0 < r < 1}, and
denote by dv the k-dimensional Lebesgue measure on I".

PROPOSITION 3.4. If i is a finite positive Borel measure in B", supported in n(T'),
then y is a Carleson measure for b, if and only if there exists § > 0, M > 0 so that for
any openset A C T = {(; d((,T) <6},

u(T(4)) < MCop(A).

PROOF OF PROPOSITION 3.4. The proof is based in Lemma 2.7 and Theorem 2.8
in [A-C], where it is proved that if E is a subset of a complex tangential manifold with
Cop(E) = 0, E is an exceptional set for H,. For the sake of completeness, we give a brief
sketch of the proof.

Let 1 be a measure supported in 7(I"), which is Carleson for H, andlet 4 C 5,6 > 0
to be chosen. Take g € Lf(do) any test function. Then K, * g > 1 on 4, and there exists
C > 0 so that P[K, x g] > C, on T(4). Since K, x g ~ P[K, * g], we deduce that

3.3 w(IW) <Cf KexglP@dp@=CJ[  (Kagl(rC)du(ro)

Now the argument in Lemma 2.7 in [A-C] can be adapted to show that K, * g(r{) <

Jury PLRIMKo(r¢, ) dv(n), where v is the measure in n(I') defined by dv(r() =
(1 — /"~ #-1 dix(¢). Thus (3.3) is bounded by

/7r(r) (fvr(r) PIglmKp(rC, m)dv W))p du(rq).
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Given r¢ € m(I'), let V,c = {n € n(I') ; |1 — r(7j] < é}.In [A-C, (2.6)] is shown that for
any 7 € Vy, Re and breaking the inner integral in two pieces we
obtain

1 1
"= 2 [Toraf=

C)na

dv(n)
Plgl(n )——————~—|1 T

Plg](n) — 220

5 /n(r) () (1 — i)y~
dv(n)

+ —————————
/wm (/wm\Vn: Fleltn )I Gl
Next, Corollary 2.6 in [A-C] shows that the function

u(r) 5 [ (Re ], P 22 auc)
p
+/7f(r)( O\ Vi ) dulro)

r du(r¢)

P
drc).

dv(n)
( )na

is in Hy,, and ||R*G|5 < Jor P[gF dv(n). Then the above is bounded by

G@) = [ Pleln

|, Ple¥ dv,
which in turn is bounded by ||g||5, since dv satisfies by Proposition 2.3 in [A-C] that
an |h|dI/ <f§nth0’ ]
The last case is also based in [A-C] with slight modifications, and we refer there for

the proof.

PROPOSITION 3.5. Letp = 2,n—2a < 1. Then a finite positive Borel measure in B"
is a Carleson measure for H, if and only if

w(T(4)) < KCaplA),
for any open set Ain S".

In the following, we will deal with Carleson measures for Besov-Sobolev spaces. If
1 <p <+00,q > 0ands € N, the Besov-Sobolev space 4 is given by

A, = {1 € HB"Y; 111, = IfO] + [ (1= 2 [RF@F dV(e) < +00).

It is well known ([Be, Theorem 1.2]) thatifs; € N, g; > 0,/ = 1,2 and 0 < p < +oo0,
and if g2 — q1 = p(s2 — 1), then 45, = A, with equivalent norm. In particular
Ay = A gpstl and we may always assume that ¢ > 1. It is also known ([Be]) that if
p < 2,45 C Hf_g, whereas if 2 < p < +o0, H‘;’ ¢ C Af. In what follows, we will
P P

denotea—s—g m=n—ap.

From the following representation theorem for 4%, ([O-F, Theorem 4.1]) we deduce
an equivalent formulation for a measure y to be Carleson for 4.
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THEOREM [O-F]. If0 < 1 < o are small enough, and € < 1, there exists a lattice
(ay) C B” so that
(l) |akj| =1 —Ek,jz 1,...,jk.
(i) Uedw s plag,w) <mno} = B".
(i) {w; plag,w) < myN{w; plagy,w) <m} # Oiffk =k, j =j'; so that the
mapping

T: {C = (c)ij 5 2 leylPe™ < +oo} — A given by
kj
e 7

TO =33

== ¢ (1 —ayzy*™

is onto, provided > 1
p

With the above notations we then have:

PROPOSITION 3.6. Let1 < p < +00,q > 0ands € Nso that0 < a = 5 — I‘—j,
m = n—ap > 0. Then a finite positive Borel measure 1 in B" is a Carleson measure for
Al, if and only if there exists M > 0 such that

o

Jor any finite sequence (cy)i; C C.

(- |%|2)n+mr om
Cpj—————| duz) < MY |cii|Pe™,
%: K { _alg,z)nﬂ-vy %:I /VI

Our next type of results will be obtained, as in the previous cases, by duality.

THEOREM 3.1. Assumel < p < +00,q > 0ands € Nso that0 < o = s—g,
m=n—ap > 0. Let u be a finite Borel positive measure in B satisfying

A= OB (f du) \*
zseulg /B" Il —zd"*q (/n |1 _ wc—lnﬂl) dv(¢) < +oo,

where L + 1L = 1. Then p is a Carleson measure for A%
p P 9

PROOF OF THEOREM 3.1.  In [Be, Corollary 2.3] it is shown that any f € 4, can be
written as

1@ =Y [ RIQK &1 — [ av (o),
j=0
where the kernels K; are holomorphic in z, and satisfy for any § € N”,

Cs
07K (z,Q)| < = et

The above estimates on the kernel, and Theorem 3.1 in [Be-Bu] gives that the operator
defined by

Kf@) = [ (=™ K@ 0 dr©
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is bounded from Lf) = I7((1 — |2])~" dV(z)) to itself.
r——\—

On the other hand, there exists a linear bounded operator, ng:LZ — L’; X oo X Lf;,
@(h) = (ho, ..., hs) with hy = h, and Rh;_; = h;. All together, the operator T: L — A%,
defined by

Th(z) = An z h(OKi(z, Q)1 — ¢ V()
is bounded and onto. Thus y is a Carleson measure for A%, if and only if 7 is bounded

from Lf to LP(dp). Equivalently, the adjoint operator T*: 17 (dp) — L" ' + [: =1,
given by

IO = f DA O — (G duc),
Z

must be bounded. Now, Holder’s inequality and the hypothesis on p give

2\s
ol K||,,+qf(2)du(2) (1= |2Py ar©)
(1 = gryrre! dp(w) 7
< fobror (f, S (b ) o) due
< [ V@V duc),
which together with the estimates on Kj(z, (), show that T is bounded. L]

REMARK 3.2.  As we have already said H2 = A2, with ¢ = 2(s — «). It is easy to
check that in that case the sufficient condition (2.5) given in Remark 2.1 and the one in
that theorem coincides. In fact, a change to polar coordinates shows that

A—IgHy> !t arQ 1
T T R R
which gives the desired equivalence.

We also can state, as in the case of potentials, a sufficient condition in terms of a
modulus of continuity of p.

THEOREM 3.2. Assumel < p < +00,q > 0ands € Nso that0 < o = s — g,
m=n—ap > 0. Let p be a finite Borel measure in B" satisfying.

d(S
J7 (p@p )T < oo,
with p(8) = sup;cgs u(T(B((, 6))). Then p is a Carleson measure for Af.
PROOF OF THEOREM 3.2.  An integration in polar coordinates gives

(1 — |¢Py's+a- 'U dp(w)
Jur |1 — (e "1 — W]

1 d =
S /gn |] _Zﬁln—a (/n 1 __;f,](:ij')n_a) do(n).

)'ﬁ v
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The main estimate in Theorem 2.2 shows that the integral on the right hand side is

bounded. Hence, Theorem 3.1 finishes the proof. n

THEOREM 3.3. Let1 < p < +00, g > 0ands € N so that a :s—g,m =n—ap>

0. Let p be a finite positive Borel measure in B" satisfying that there exist C > 0 and
1 <7< 2 with

u(TE(BG)) 7™
Jorany ¢ €S", r > 0. Then p is a Carleson measure for Ap.

PROOF OF THEOREM 3.3. The proof is similar to Theorem 2.3 replacing Proposi-
tion 2.2 by

PROPOSITION 3.7.  Let p be a positive finite Borel measure in B", and assume there
exists 3 >2,C>0and 1 <7< 50 that

(i) suppp C {z; (1 — |z|) < eC71}, where e = ——

471’
(ii) u(T,C(B(C, ) NTP(BE,r ))) <
Then

[ (1= D7 f@p due) < " [ (= 1Py )P dve),
forany f € HB").

PROOF OF PROPOSITION 3.7. Let By(z,r) = {w € B" ; p(z,w) < r}, where z €
B",r > 0 and p(z, w) is the pseudodistance in B". It is then easy to show that there exist
constants k, K > 0 so that for any z € B", and if z = zo|z|, 1 — |z| < eC7T,

(G-4) By(z k(1 — |2) € TE(B(z, KCH(1 — [z ) ) N TP (B(z0, KCT (1 = [2])7)),

and that if w € B,(z, k(1 — |z|)) then 1 — |w| ~ 1 —|z|.
Now the mean-value inequality gives that for any z € B”

e S g Izl)"*‘ Jyoxiy OF V.
Applying Fubini’s theorem, the fact that 1 — |w| ~ 1 — |z| and (3.4), we obtain
(1 — )7 [f @)l duz)
S Jea-meect! W’W Syt P V() dut2)
< U=l [
< 4 =D Dlfp

M(IfB(wo,kC%(l —lwh?) Tﬂ(B(wo,kC?‘(l - |w|)%))).

du(z)dV(w)
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The hypotheses on p finally give that the above is bounded by
[ = Ll D )P dVw) = C" [ (1= ol P V). .

Our final result needs some more definitions. A holomorphic function f in the unit
disc D is a multiplier for A5,(D) if for any g € A4(D), f - g € Afs(D). In [Ve] it is proved
the following characterization of inner multipliers:

THEOREM [VE]. Ifp > 1,5 €N ¢g>00< -——s—g, andm = 1 —oap =
1 +q —sp >0, and if f is an inner function in D, then f is a multiplier for A4s(D) if and
only if f is a Blaschke product, whose sequence (a )y of zeroes satisfies that the measure
1= 41 — |a|)!*97P8,, is a Carleson measure for A(D).

In particular, all the sufficient conditions for a measure to be Carleson for 4%,(D) that
we have obtained, can be used to give examples of multipliers. The following example
will produce a multiplier which we are not able to obtain from the sufficient conditions
for a measure to be Carleson, known up to now.

EXAMPLE 3.1. There exists a sequence (a;)y C Dsothatif 0 <m=1+g—sp <1,
p > lLandif p = (1 — |ax|)"8,,, then p is a Carleson measure for 47,. In addition,
there exists {y € S so that

3.5) u(Ty(BGo.)) £
In particular, the Blaschke product whose zeros are the sequence (a; )y is a multiplier
for A;.

We will construct the required measure in the upper half-plane, being easier to deal
with the computations. We need to show that there exists a sequence (a;); C R? with
ar = (xx,yx) so that the measure . = 37’6, satisfies the hypothesis on Theorem 3.3
but does not satisfy (3.5). This will follow once we prove that there exists some 7 < #
so that

() Zaeauaumyi <17 but

(i) Zaeau@uomn i L1

Where QT(B(xO, r)) ={(x,y); |x —x0| < r7,y < r}, and Q. is defined similarly, and
where xo € R, r > 0.

Now, if 7 < #, lett € (r, #) be fixed, and let ¢: [0, +00) — R be the function defined
by p(x) = e_r—f. Fork e N, leta; = ((p(k), p(k) ) We will show that the sequence (a;)x
satisfies (i) and (i1). First assume that xo = 0, and let 0 < r < 1.

Since 7 < t < #, we have that conditions (i) and (ii) can be rewritten as:

(@) £yt PRI <"

(ii") Lptky<r (k™ f/ r,
conditions which are immediate to verify for the selected . In particular, (ii’) says that
(i) holds, which gives that (3.5) is not satisfied.

Thus in order to finish we need to show that (i) is also satisfied for any xo € R. Since
(i") holds, it is enough to prove (i) for the regions {(x,y) ;s <x <s+r7,0 <y < r}
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with 7+ <'s. We must then show that

Y ek <

s<p(k)<s+rt

Expressing the above sum as an integral, using the definition of ¢ and the mean-value
theorem, we have

1
o ek™ < (1+log _ )(s+r%)’”‘ — (1 +log L)s""
s<pby<strt ~ (s+rr)m stm
1 1 —
= tmr+ [log = A 1],

where h € [s,s + ré].
Now the function in brackets is decreasing (tm < 1), and since ri <s< h, the above
is bounded by 7+ log %, which is, due to the fact that ¢ > 7, bounded by »". n
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