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Abstract

This study aimed to analyse the trend and spatial–temporal clusters of risk of transmission of
COVID-19 in northeastern Brazil. We conducted an ecological study using spatial and tem-
poral trend analysis. All confirmed cases of COVID-19 in the Northeast region of Brazil were
included, from 7 March to 22 May 2020. We used the segmented log-linear regression model
to assess time trends, and the local empirical Bayesian estimator, the global and local Moran
indexes for spatial analysis. The prospective space–time scan statistic was performed using the
Poisson probability distribution model. There were 113 951 confirmed cases of COVID-19.
The average incidence rate was 199.73 cases/100 000 inhabitants. We observed an increasing
trend in the incidence rate in all states. Spatial autocorrelation was reported in metropolitan
areas, and 178 municipalities were considered a priority, especially in the states of Ceará and
Maranhão. We identified 11 spatiotemporal clusters of COVID-19 cases; the primary cluster
included 70 municipalities from Ceará state. COVID-19 epidemic is increasing rapidly
throughout the Northeast region of Brazil, with dispersion towards countryside. It was iden-
tified high risk clusters for COVID-19, especially in the coastal side.

Introduction

The world has been facing an international public health emergency caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), termed as coronavirus disease 2019
(COVID-19) [1]. The disease was firstly reported in the city of Wuhan (China) at the end
of December 2019 and was declared a pandemic by the World Health Organisation in
March 2020 [2]. There were more than 17 million cases and over 650 000 deaths by
COVID-19 confirmed worldwide [1]. Notably, the pandemic has been challenging for health
systems and governments, as the extent of the social and economic impacts of the pandemic is
still uncertain [3].

Following the disease’s dynamics and the exponential growth of the number of cases, sev-
eral studies have been reported [2–5]. Particularly, those that perform temporal and spatial
analyses of COVID-19 have demonstrated the impact of morbidity, mortality and global geo-
graphical dissemination of the disease in the world. The use of aggregate spatial data allows to
map the patterns of the rapid progression of the disease and to support decision-making in the
allocation of resources for the prevention and control of COVID-19 in priority areas [3–6].

In this context, a study that used spatial analysis techniques, conducted in China, found
that SARS-CoV-2 infection was spatially dependent and spread mainly from Hubei province,
in Central China, to the surrounding areas [7]. Additionally, the spatial distribution of cases
and mortality by COVID-19 is heterogeneous across regions, especially in those with socio-
economic disparities [8, 9].

This uneven geographic distribution has been observed in several regions of the United
States. The disease has disproportionately affected populations in situations of social vulnerabil-
ity, as observed in poorer communities from Chicago and New York. The inadequate effects of
COVID-19 reflect the social inequities that existed prior to the current health crisis [9].
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Recently, Brazil has become the epicentre of the epidemic in
Latin America and ranks second in the world in the total number
of cases (behind only the USA) [10]. COVID-19’s first case was
confirmed on 26 February 2020 and the country currently has
more than half a million cases and about 30 000 deaths. Among
Brazilian regions, the Northeast ranks second with the highest
number of cases [11]. Additionally, Brazil is still marked by
great social and human development inequalities, especially in
the Northeast region [12]. This highlights the need for scientific
research on the epidemiology and spatial distribution of
COVID-19 in the municipalities of this region.

Notably, studies of spatial and temporal patterns help to eluci-
date the mechanisms of disease spread in the population and to
identify factors associated with heterogeneous geographic distri-
bution [3, 6]. Similarly, prospective space–time analysis is
required to monitor outbreaks, as it allows the detection of active,
emerging clusters and the relative risk (RR) for each affected site
during the epidemic [13]. Therefore, considering the current situ-
ation of COVID-19 in the regions of the country, the study aimed
to analyse the trend and spatial–temporal clusters of transmission
risk of COVID-19 in northeastern Brazil, defining priority areas
for surveillance actions and more effective disease control in the
states.

Materials and methods

Study design

We conducted an ecological study with techniques of spatial ana-
lysis and temporal trend. All confirmed cases of COVID-19 in the
Northeast region of Brazil were included, from 7 March to 22 May
2020 (divided into 12 epidemiological weeks). The units of ana-
lysis were the nine states (federative unit) in the region and its
1794 municipalities. Data were collected daily regarding the
municipality of residence of confirmed cases of COVID-19. We
excluded 1519 cases with no data of county location [14].

Study area description

Brazil occupies a territorial area of 8.51 million km2, which is
equivalent to almost 50% of South America territory and has a
total population of 210.1 million inhabitants [15]. It is the country
with the fifth largest territorial area on the planet and the sixth
largest population, with a demographic density of 24.47 inhabi-
tants per km2 [15, 16]. The Northeast region (latitude: 01°
02′30′′N/18°20′07′′S; longitude: 34°47′30′′E/48°45′24′′W) is one
of the five Brazilian regions and the one with the largest number
of federative units (nine) (Fig. 1). This region has the third largest
territorial area in Brazil (155 291 744 km2) and a population of
57 071 654 inhabitants, which corresponds to about 30% of the
Brazilian population. The highest population density occurs in
the coastal strip, where most state capitals are located [16].
The Northeast region of Brazil also presents the lowest human
development index in Brazil (HDI = 0.663) [17].

Variables and measures

The variables analysed in this study were:

(a) New cases of COVID-19 in the 1794municipalities ofNortheast
region of Brazil. The calculation was based on subtracting the
previous day’s count (nt) from the previous day (nt−1);

(b) Weekly incidence rates for states, metropolitan (MA) and
inland areas were calculated per 100 000 inhabitants. For
the calculation, we used the number of confirmed cases of
COVID-19 per week in each state, in the metropolitan and
inland areas, as the numerator and the corresponding popu-
lations as the denominator;

(c) COVID-19 incidence rates of municipalities were calculated
per 100 000 inhabitants. For the calculation, the number of
accumulated cases of COVID-19 in each municipality was
used as the numerator and the corresponding current popu-
lation as the denominator.

Time trend analysis

To assess the weekly time trend of cases by COVID-19, we per-
formed data analysis using the segmented log-linear regression
model. The incidence rates of COVID-19 were considered depend-
ent variables and the epidemiological weeks were the independent
variables. The Monte Carlo permutation test was used to select the
best model for inflection points, applying 999 permutations and
considering the highest residue determination coefficient (R2).
To describe and quantify the time trends, we calculated the weekly
percentage increments (adapted from annual percent changes;
APC) [18] and their respective confidence intervals (95% CI).
Once more than one significant inflection was detected during
the study period, and the average annual percentage changes
(AAPCs) were calculated. Time trends were considered statistically
significant when APCs had a P-value <0.05 and their 95% CI did

Fig. 1. Study location.
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not include a zero value. A positive and significant APC value indi-
cates an increasing trend; a negative and significant APC indicates
a decreasing trend and non-significant trends are described stable,
regardless of APC values [19].

Spatial cluster analysis

The raw data rates were smoothed by the local empirical Bayesian
estimator [20] to minimise the instability caused by the random
fluctuation of the cases. Rate smoothing was done by applying
weighted averages, resulting in a second adjusted rate. The
crude and smoothed incidence rates were represented in thematic
maps stratified into five categories of equal intervals: (a) 0 (with-
out a record of cases or not specified), (b) 0.1–100, (c) 100–200,
(d) 200–300 and (e) ⩾300.

To verify whether the spatial distribution of COVID-19 occurs
randomly in space, we performed spatial autocorrelation analysis
of crude incidence rates by calculating the univariate global
Moran index. For that, we elaborated a spatial proximity matrix
obtained by the contiguity criterion, with a significance level of
5%. This index ranges from −1 to +1 so that values close to
zero indicate spatial randomness; values between 0 and +1
indicate positive spatial autocorrelation and, between −1 and 0,
negative spatial autocorrelation [21].

The global Moran autocorrelation coefficient is based on the
cross products of the deviations from the mean being calculated
for the observations as follows:

I =
(n∑n

i

∑n
j vij(yi − ỹ)(yj − ỹ)

[ ]

∑n
i (yi − ỹ)2 ∑n

i

∑n
j vij

[ ]

where ωij is a contiguity matrix element (ω), γi is the incidence
rate of municipality i, γj is the incidence rate of municipality j,
ỹ is the mean of the sample and the symbol n represents the
total number of municipalities [22].

The local Moran index (or local index of spatial association;
LISA) [13] was used to compare the value of each municipality
with the surrounding municipalities and to verify the spatial
dependence between them. In addition, to assess the local spatial
grouping and to verify that the process stationarity hypothesis
occurs locally, we obtained a measure of the association for
each unit using the following equation [23]:

I =
n (Zi

∑n
j vijZj)

[ ]

(∑n
j Z

2
j )

where Zi = yi − �y; Zj = yj − �y; ωij is the contiguous matrix
element ω; yi is the incidence rate of municipality i; yj is the inci-
dence rate of municipality j; �y is the sample mean and the symbol
n represents the total number of cities [22].

Subsequently, a scattering diagram was obtained with the
following spatial quadrants: Q1 (high/high) and Q2 (low/low),
which indicate municipalities with values similar to those of the
surrounding ones, and represent areas of agreement with positive
spatial association aggregates; Q3 (high/low) and Q4 (low/high)
indicate municipalities with differing values and which
represent transition areas with aggregates of negative spatial
association [22]. The significant results were visually expressed
on Moran maps.

Prospective spatiotemporal cluster analysis

The prospective space–time scan statistic was performed to iden-
tify high-risk space–time clusters for transmission of COVID-19,
using the Poisson probability distribution model [13, 24]. This
analysis allows us to evaluate potential clusters that are still occur-
ring at the end of the study period. We consider as active space–
time clusters (present), those that are still occurring, that is, in
activity [6]. Our null hypothesis (H0) is that the expected number
of COVID-19 cases in each area is proportional to the size of its
population and indicates a constant risk of infection. Although
the alternative hypothesis (H1) is that the number of observed
cases exceeds the expected number of cases derived from the
null model [6].

We built the cluster analysis model with the following condi-
tions: minimum aggregation time of 2 days, minimum of five
cases, without overlapping of clusters, circular clusters, the max-
imum size of the spatial cluster of 10% of the population at risk
and maximum size of the temporal cluster of 50% of the study
period [6]. The primary cluster and secondary clusters were
detected using the log-likelihood ratio test and represented on
maps [11]. We also calculated the RRs of the occurrence of
COVID-19, considering each municipality and agglomerates in
relation to the surrounding areas. Results with P-value <0.05
using 999 Monte Carlo simulations were considered significant.

Software

Microsoft Office Excel 2010 software was used for data tabulation
and descriptive analysis; Joinpoint Regression Program v. 4.2.0
[25] for time trend analysis; QGis v. 3.4.11 (QGIS Development
Team; Open Source Geospatial Foundation Project) for generating
the choropletic maps [26]; TerraView v. 4.2.2 (Instituto Nacional
de Pesquisas Espaciais, INPE, São José dos Campos, SP, Brazil)
for the spatial analysis [27]; SaTScan™ 9.6 (Harvard Medical
School, Boston and Information Management Service Inc.,
Silver Spring, MD, EUA) for spatiotemporal scanning and cluster
analysis [28].

Ethical considerations

This study used public-domain aggregate secondary data and fol-
lowed national and international ethical recommendations, as well
as the rules of the Helsinki Convention.

Results

During the first 11 weeks, after the diagnosis of the first case, 113
951 cases of COVID-19 were confirmed in the states of the
Northeast region of Brazil. As a result, the average incidence
rate in that period was 199.73 cases per 100 000 inhabitants. In
absolute percentage values, the state of Ceará had the highest
number of registered cases of COVID-19, corresponding to
29.40% of the total cases and is considered as the epicentre of
the epidemic in the Northeast region. Next are the states of
Pernambuco (22.57%) and Maranhão (16.47%). The state of
Piauí had the lowest proportion of cases (2.86%).

We carried out the time trend analysis according to the num-
ber of cases diagnosed per week (Table 1). In Figure 2A–J we pre-
sent the weekly trends following the incidence rates in the region,
by state, and by the metropolitan and countryside areas of the
states. We observed an increasing trend in the crude incidence
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rate of the Northeast region of Brazil population, which presented
an AAPC of 76.8 (95% CI 64.1 to 90.5; P-value <0.01; Fig. 2A).
Similarly, increasing trends were observed in all states. However,
the highest growth rates were observed in the states of Alagoas
(AAPC, 134.1; 95% CI 91.2 to 186.7; P-value <0.01; Fig. 2B)
and Sergipe (AAPC, 128.5; 95% CI 89 to 176.2; P-value <0.01;
Fig. 2J). Although the state of Ceará had the highest percentage
of cases in the region, the AAPC was the lowest recorded in the
study period (AAPC, 61.0; 95% CI 46.7 to 76.8; P-value <0.01;
Table 1). Importantly, the largest AAPCs were recorded in the
countryside when compared to AAPCs in metropolitan areas of
all nine states.

Subsequently, to identify areas with a higher concentration of
COVID-19 cases, we assessed the spatial distribution of the
disease among Northeast region of Brazil municipalities
(Fig. 3A–D).We observed that cases of COVID-19 were widely dis-
tributed in the region, with records in 76.76% (n = 1378) of the
municipalities (Fig. 3A). Interestingly, the cities with the highest
numbers of confirmed cases were Fortaleza (capital of CE; n =
19 270) and Recife (capital of PE; n = 12 523). On the other
hand, Salvador (state of BA) is the most populous capital of the
Northeast region of Brazil, however, it presented less than half
the number of cases (n = 7118) than Fortaleza. The state capitals
were responsible for 57 959 cases, equivalent to 50.86% of all cases.

Table 1. Time trends of incidence rates of COVID-19 in the Northeast region by states

State/region

APC (95% CI)

Entire state/region Metropolitan area Countryside

NE Segment 1: 1st to 8th
92.5 (69.2 to 119.1)*

Segment 1: 1st to 8th
90.7 (69.0 to 115.2)*

Segment 1: 1st to 11th
97.4 (90.9 to 104.0)*

Segment 2: 8th to 11th
45.0 (34.7 to 56.0)*

Segment 2: 8th to 11th
29.1 (19.5 to 39.5)*

AL Segment 1: 1st to 8th
189.4 (102.5 to 313.5)*

Segment 1: 1st to 8th
191.9 (116.0 to 294.4)*

Segment 1: 1st to 5th
−13.2 (−64.2 to 110.5)

Segment 2: 8th to 11th
42.8 (25.9 to 62.0)*

Segment 2: 8th to 11th
24.9 (10.9 to 40.7)*

Segment 2: 5th to 11th
148.5 (117.3 to 184.1)*

BA Segment 1: 1st to 5th
120.3 (16.6 to 316.0)*

Segment 1: 1st to 7th
82.5 (49.0 to 123.4)*

Segment 1: 1st to 11th
49.1 (38.6 to 60.4)*

Segment 2: 5th to 11th
49.8 (42.4 to 57.6)*

Segment 2: 7th to 11th
47.7 (37.4 to 58.8)*

CE Segment 1: 1st to 9th
70.9 (49.8 to 95.0)*

Segment 1: 1st to 9th
64.2 (41.7 to 90.2)*

Segment 1: 1st to 9th
132.6 (105.3 to 163.5)*

Segment 2: 9th to 11th
26.9 (−1.0 to 62.6)

Segment 2: 9th to 11th
16.2 (−15.3 to 59.5)

Segment 1: 9th to 11th
58.0 (39.6 to 78.8)*

MA Segment 1: 1st to 7th
138.5 (32.8 to 328.4)*

Segment 1: 1st to 7th
147.0 (58.6 to 284.8)*

Segment 1: 1st to 11th
128.2 (97.8 to 163.3)*

Segment 2: 7th to 11th
57.7 (43.1 to 73.9)*

Segment 2: 7th to 11th
13.6 (0.5 to 28.4)*

PB Segment 1: 1st to 8th
125.0 (82.9 to 176.7)

Segment 1: 1st to 8th
114.2 (66.7 to 175.3)*

Segment 1: 1st to 3rd
−47.7 (−92.5 to 266.8)

Segment 2: 8th to 11th
76.9 (64.3 to 90.4)*

Segment 2: 8th to 11th
51.3 (34.1 to 70.6)*

Segment 2: 3rd to 11th
132.8 (120.0 to 146.4)*

PE Segment 1: 1st to 8th
108.6 (39.3 to 212.4)*

Segment 1: 1st to 8th
111.3 (45.0 to 207.8)*

Segment 1: 1st to 11th
87.6 (68.8 to 108.5)*

Segment 2: 8th to 11th
30.9 (8.5 to 57.9)*

Segment 2: 8th to 11th
22.4 (1.8 to 47.0)*

PI Segment 1: 1st to 8th
137.0 (116.7 to 159.2)*

Segment 1: 1st to 8th
106.6 (71.9 to 148.3)*

Segment 1: 1st to 11th
79.4 (64.6 to 95.6)*

Segment 2: 8th to 11th
49.7 (43.8 to 55.8)*

Segment 2: 8th to 11th
36.2 (20.7 to 53.6)*

RN Segment 1: 1st to 11th
50.0 (39.3 to 61.7)*

Segment 1: 1st to 11th
43.9 (32.2 to 56.6)*

Segment 1: 1st to 11th
61.3 (48.2 to 75.6)*

SE Segment 1: 1st to 9th
144.6 (83.3 to 226.3)*

Segment 1: 1st to 11th
87.9 (61.9 to 118.0)*

Segment 1: 1st to 11th
113.8 (83.9 to 148.6)*

Segment 1: 9th to 11th
74.0 (32.5 to 128.4)*

AL, Alagoas; BA, Bahia; CE, Ceará; MA, Maranhão; PB, Paraíba; PE, Pernambuco; PI, Piauí; RN, Rio Grande do Norte; SE, Sergipe.
*P-value <0.05.
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We also identified that 23.17% of the municipalities (n = 416)
did not register cases of the disease. However, when considering
smoothed rates, this percentage was reduced to 0.61% (n = 11;
Fig. 3B). Even with spatial smoothing techniques, the highest
incidence rates (areas of greatest risk of COVID-19) were
concentrated in the coastal strip of the Northeast region of
Brazil, where the metropolitan areas of the states are
located. Similarly, significant spatial autocorrelation (high/high;

I = 0.373; P = 0.001; Fig. 3C) was reported in the metropolitan
areas and 178 municipalities considered a priority, especially in
the states of CE and MA.

Next, we performed the prospective space–time scan statistics
(Table 2) and identified 11 spatiotemporal clusters of COVID-19
cases (Fig. 3D). The primary cluster (cluster number 1) included
70 municipalities, all from the state of Ceará, and the largest num-
ber of cases (22 007), in the period from 4 to 22 May. The crude
incidence rate in this cluster was 240.98 cases per 100 000 inhabi-
tants and an RR of 9.64. Of the total clusters identified, five were
in the state of Bahia, where the cluster with the highest RR was
reported (cluster 10; RR = 19.46).

Discussion

This study analysed the incidence and spatial distribution, and
identified the occurrence of risk clusters for SARS-CoV-2 infec-
tion in municipalities from northeast Brazil. We reported herein
that COVID-19 is a serious public health problem in the
Northeast region of Brazil, which lead the ranking of higher inci-
dence and mortality rates of Brazil [11]. In fact, several studies
have been investigating the spatial dynamics of the disease, but
few of them have applied the integration of methods of time
trends, spatial clusters and prospective spatiotemporal clusters
to analyse the COVID-19 pandemic [4, 8, 13, 29]. Taken together,
our results demonstrate the exponential growth of COVID-19 in
the Northeast region of Brazil and the rapid spread of cases from
metropolitan areas to countryside municipalities.

We observed an increasing temporal trend in all states of the
Northeast region of Brazil. Importantly, the highest growth rates
were observed in the states of Alagoas and Sergipe, whose
AAPCs were even higher than those observed in the Northeast
region. Conversely, we notice a centripetal dispersion of the
COVID-19 cases on the states. Data from our study demonstrated
either an expansion process of the disease towards countryside
municipalities, given that AAPCs of the countryside from almost
all states (except for Bahia state) were superior when compared to
AAPCs of entire region/states or metropolitan areas. These find-
ings warn of the severity of dispersing cases and the projection of
collapse in public health systems. Most municipalities in the inter-
ior of the states do not have hospitals with exclusive clinical assist-
ance for COVID-19. Expanding cases and increasing demand for
clinical care, many patients in these municipalities will be referred
to hospitals in metropolitan regions, which are already in a state
of overcrowding.

The spatial distribution of COVID-19 revealed a wide distribu-
tion of the disease in all states, except in Bahia state, herein we
observed low incidence rates or absence of cases in countryside
municipalities. Interestingly, when we analysed the smoothed
rates, a dispersion in this area was also evidenced, since this stat-
istical method considers the proximity of neighbours with con-
firmed cases. Our results showed clustering of highest incidence
rates located in the Salvador metropolitan area like other
Brazilian regions. The state of Bahia (and the capital Salvador)
is the most populated areas in the Northeast region. However,
we observed a distinct epidemiological panorama, with lower inci-
dence and time trend (AAPCs) less than other states and metro-
politan areas. We hypothesised that measures to combat the
disease were implemented early in the pandemic, such as the
blockade of state highways, which may have reduced the spread
of the disease among countryside municipalities. It may also indi-
cate diagnosis failures due to low population testing. However, we

Fig. 2. Weekly trends in incidence rates in the region, by state and by metropolitan
and countryside areas of the states.
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emphasise that further studies are required to understand the
dynamics of the disease in the state of Bahia [30].

Tourism, economic networks and social mobility are import-
ant factors to better understanding of the disease progression in
different territories [31]. In Wuhan, China, social mobility was
associated with high transmission of SARS-CoV-2, and social dis-
tancing policies were effective at controlling the epidemic [32].
Thus, we recommend the strengthening of these measures consid-
ering the increasing trends of COVID-19 in the Northeast region.
This region is the most-searched travel destination of Brazil, espe-
cially Ceará state. Additionally, Fortaleza (capital of Ceará state) is
the nearest city from Europe and has heavy air traffic (national

and international), which probably explains the highest incidence
of COVID-19 in the Northeast region of Brazil.

The spatiotemporal analysis enabled us to visualise the hetero-
geneous distribution of COVID-19 and identify spatial depend-
ence and priority areas. Studies using these techniques
supported the understanding of disease dissemination towards
neighbouring areas in China [4, 7, 29, 33]. Besides, detection of
high-risk spatiotemporal clusters can guide the decision making
related to the implementation of more strict policies [6].
Furthermore, spatial modelling can assist and guide the imple-
mentation of control measures to reduce or prevent the spread
of the virus [4, 7, 33].

Fig. 3. Spatial analysis of COVID-19 among municipalities in the Northeast region of Brazil. (A) Gross incidence rate; (B) smoothed incidence rate; (C) Moran map
(LISA cluster) and (D) RR (spatial modelling by prospective scanning).

6 D. S. Gomes et al.

https://doi.org/10.1017/S0950268820001843 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268820001843


We also highlight the limitations of the study, which include
the use of secondary data reported by health departments. In
some records (n = 1519) we did not find information on the loca-
tion of the cases. In addition, states have adopted testing policies
with different criteria since the beginning of virus circulation in
the country. We also point out that massive testing policies
have not been implemented in Brazil, with symptomatic cases
and/or those seeking health services being strictly notified. This
may indicate, therefore, that the number of COVID-19 cases in
Brazil is underreported. Despite the limitations found here, the
analyses were not compromised, and our findings bring relevant
data and support for decision-making and the formulation of
new public policies to face the epidemic in Brazil.

We emphasise that the incorporation of geostatistics techniques
was able to highlight areas of risk for the occurrence of COVID-19.
Additionally, we identified priority regions in Northeast region of
Brazil to mitigate the impacts on health and the economy, as well
as to assist in the allocation of resources and mobility restriction
measures. However, for health monitoring of COVID-19, new
studies are required, which may include prospective spatio-
temporal modelling, addressing different socio-demographic strata
and analysing socioeconomic indicators of the regions.

Conclusion

Altogether, our results showed that the epidemic of COVID-19 is
growing exponentially in all states of the Northeast region, with
priority clusters mainly in the states of Ceará and Maranhão.
The results also demonstrate the dispersion of cases to country-
side municipalities of the states. COVID-19 represents a serious
public health problem, and its impact may be greater, considering
the interiorisation process and its growing expansion to more vul-
nerable areas and without exclusive clinical care for the disease.
The dynamics of transmission and the repercussions of
COVID-19 in the Northeast region have not yet been fully eluci-
dated and require further studies.

Data availability statement

The data that support the findings of this study will be available
on request and permission of via e-mail from the corresponding
author.
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