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Scanning transmission electron microscopy (STEM) can provide key insights into the structures of 

materials at the nanoscale. However, for inhomogeneous materials, there is always a question of the 

statistical relevance of findings derived solely from microscopy datasets, which sample only femtograms 

of the source material.  This is particularly true for the case of nanoparticle electrocatalysts like those 

used in water electrolyzers and hydrogen fuel cells. STEM is often used to quantify particle size 

distributions in these devices, but conventional approaches typically sample fewer than 1000 particles. 

Attempting to draw structure-property relationships from these limited datasets can be particularly 

problematic when particle size distributions vary both across and along the electrodes [1]. 

 

In this work, automated data acquisition software (Thermo Scientific Velox/MAPS) has been coupled 

with custom Python codes utilizing high performance computing resources to increase nanoparticle 

sampling by three orders of magnitude. Since the process is automated, the acquisition and analysis of 

these more robust datasets requires fewer labor hours than conventional approaches, while also 

significantly increasing instrument utilization, as the automated imaging can be performed unattended 

overnight. This synergy further increases throughput, allowing for multiple datasets per sample to be 

obtained and/or a greater number of samples to be analyzed.  

 

This automated approach will be demonstrated on a series of membrane electrode assemblies (MEAs) 

used to develop accelerated stress tests (ASTs) for heavy-duty fuel cell vehicle applications [2]. One 

such data set is shown in Figure 1, spanning the 6 micron-thick cathode of a tested MEA. We will 

discuss how these larger datasets allow particle size distributions to be determined as a function of 

position within the electrode, enable total Pt dissolution to be estimated, and facilitate quantification and 

correlation of changes in surface area with electrochemical measurements. 

 

Despite this increase in sampling, automated electron microscopy methods still sample a relatively small 

portion of the 25 cm
2
 active fuel cell MEA area used in most lab-scale tests. Thus, these automated 

microscopy studies must still be complemented by a broader infrastructure of bulk particle size analysis 

approaches, such as micro-X-ray diffraction and small angle X-ray scattering (SAXS) [1,3]. We will 

present correlative SAXS data and emphasize the complementary role played by each technique in 

determining particle size distributions and compositions. We will then look forward to emerging edge 

computing methods which will allow for real-time data analysis, enabling more efficient energy-

dispersive X-ray spectroscopy (EDS) mapping of individual particles, as shown in Figure 2. The 
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incorporation of machine learning and artificial intelligence to further reduce the need for operator input 

and artefacts arising from overlapping particles will also be discussed [4]. 

 

 
 

Figure 1. HAADF-STEM overview image of fuel cell cathode showing (left) conventional dataset: 5 

images (red boxes) representing around 500 particles; and (right) fully automated dataset: 130 images 

(green boxes) representing >50k particles. 

 

 
 

Figure 2. High-resolution HAADF-STEM and EDS spectrum images for Pt (red) and Co (green) 

showing the Pt-shell on the PtCo core. The label in each map shows the overall Co at.% quantified 

relative to Pt. 
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