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On Nearly Equilateral Simplices and
Nearly I, Spaces

Gennadiy Averkov

Abstract. By d(X,Y) we denote the (multiplicative) Banach-Mazur distance between two normed
spaces X and Y. Let X be an n-dimensional normed space with d(X, ;) < 2, where I stands
for R” endowed with the norm ||(x1, ..., %n)||co := max{|xi]|,...,|xs|}. Then every metric space
(S, p) of cardinality n + 1 with norm p satisfying the condition maxD/ minD < 2/d(X, %) for
D :={p(a,b) : a,b € S, a # b} can be isometrically embedded into X.

1 Introduction

The theory of embeddings of finite metric spaces into normed spaces is used in var-
ious applied disciplines, e.g., for qualitative analysis of large data sets (see [7, Chap-
ter 15] and [5]). The spaces close to I” typically exhibit marginal properties in the
indicated theory. More precisely, they are known to have the “richest” metric struc-
ture; cf. [5, §8.1.3] and a recent result from [1]. The theorem proved in this note
provides another confirmation of the above informal statement.

The Banach—Mazur distance d(X,Y) between two n-dimensional normed spaces
X and Y, with norms || - ||x and || - ||y, respectively, is the least &« > 1 such that for
some bijective linear map T from X to Y one has ||x||x < || Tx|ly < o|x||x Vx € X.

Theorem 1.1 Let X be an n-dimensional normed space with o := d(X, %) < 2. Let
S be a set of cardinality n + 1, and p be a metric satisfying

max D

(1.1)

2
— < —
minD — «
for D := {p(a,b) : a,b € S, a # b} . Then the space (S, p) can be isometrically embed-
ded into X.

Theorem [[.1] is similar to [3, Theorem 1.9], providing an analogous statement
with I§ (n-dimensional Euclidean space) in place of I”_. The metric space (S, p) can
be viewed as an abstract n-dimensional simplex, which we wish to realize in certain
normed spaces. The quantity max D/min D estimates the distance of (S, p) to the
equilateral metric space (i.e., the space with all non-zero distances equal). In fact, for
« = 2 the only metric space (S, p) satistying (L) is the equilateral one. For v = 1
the space X from Theorem [I.]is necessarily isometric to IZ_, and the inequality (L.I)
attains its weakest form max D/ min D < 2.
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Theorem [I.1] generalizes the result of Swanepoel and Villa [10] saying that any
n-dimensional normed space X with d(X, /%) < % contains # + 1 points at pairwise
distance one to each other. The proof of Theorem [[.T] extends the arguments from
[10, Theorem B] by employing the observation that for every metric p on the set
S={s1,...,5.41} of cardinality n + 1 the mapping

sir (plstysi)y -y plonysi)),  1<i<n+l,
is an isometric embedding of (S, p) into I (see [9]). One of the ingredients of the
proof is the Brouwer fixed point theorem (see also [2] for the use of that theorem in

a similar context).
Let X" be the class of all n-dimensional Banach spaces. It is known that

C-n< max dX,Y)<n
Xyexr

for some universal constant 0 < C < 1 (see [4] and [6, Section 4.1 and Theo-
rem 5.2.1]). From these bounds it is seen that Theorem [l can be applied to “rather
many” n-dimensional Banach spaces if n is small, say n = 3 or n = 4, and to
n-dimensional normed spaces which are “very close” to I’ if n is large.

2 Proof

Let S = {s1,...,Su+1}- In what follows i, j, k are integer indices. For 1 < i, j <n+1
we put p; ; := p(s;, s;). Without loss of generality let

(2.1) minD = 1.

Then (I.I)) amounts to

2
(2.2) maxD < —.
«

Choosing an appropriate coordinate system we may assume that
(2.3) %[ < lxlloo < exllx]],

where || - || denotes the norm of X. In what follows we shall consider vectors from
R""1D/2 whose coordinates will be indexed by the elements of the set

I'={(,j):1<i<j<n+1}.
Let us introduce the n(n + 1) /2-dimensional cube

Pi= T] [0.2(a = 1/a] = [0,2(a = 1)/a)" "V,
G,jel
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Given the variable vector
(2.4) z:=(zij)ijer € P
consider the vector functions

pl(z) = (pl,lv s 7pﬂ,1)a

pi(@) = (prjtz1js- s Pj1,j t Zj=1,js Pjjo -+ Pnj) Ffor2 < j<mn,

Pn+1(Z) = (pl,n+1 + 21,41y« + -y Prntl + Zn,n+1)
with values in R”. Given 1 <1 < j < n+ 1, we have
19;(2) = pi(2)]|oe = max{RL;(2), R (2), B2 ;(2), B¢ ;(2)},
where
R}’j(Z) = max{ |pk,i — pk,j +Zk,i — Zk,j‘ 01 § k § i— 1},
Riz,j(Z) = |pii — pij — zijls
Rij(z) = max{ loki — prj—zkjl i+ 1 <k<j— 1},

R} i(2) == max{ |pxi — prj| : j <k <n}.

Let us estimate R}A’j(z), . ,R;{j(z). Forl <i< j<n+landl <k <n+1with
k¢ {i,j}, we get

|pki — Prj + Zki — 2k < i = Prjl + |2ri — 2k ]
CDEDED ey ED
> a 1+ a B =
|le _ le _ Zi,’j| = pl] + Zi,j?
owi — P — 2] é = loxi — prjl + |z, j]
(m,§~ (%_1)+@:1§p1]’
ki = px.jl =

Pi,j-

Consequently, R,{ (@), Rf, (@), R:{ j(2) are not greater than p; j and Ri @) = pij+
z;,j- Hence

(2.5) pi(2) = pi(D oo = pij +zi;-

https://doi.org/10.4153/CMB-2010-055-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-055-1

On Nearly Equilateral Simplices and Nearly I Spaces 397

We define mapping F(z) := (F; j(2)),jjer from P to IL; je/R = [RA(n+1)/2 by

Fij(2) == pij+zij— |pi(2) — p;(@].

The mapping F(z) is continuous. The range of F; ;(z) can be found as follows:

Fi,j(Z) > Pi,j +2zij— ||P1(Z) _ p](z)Hoo |l 0,
o 1 a—1
Fij(z) < pij+azij— a”Pi(z) —pi(@)l = T(Pi.j +z ;)

@ZD a—1<2+2(a—1)> :2(04—1).

(67 (&% « «

The above inequalities can be reformulated as the inclusion F(P) C P. Thus, the
Brouwer fixed point theorem (see [8, p. 107]) yields the existence of z’ € P with
F(z') = z'. This implies the equality ||p;(z') — pj(z')|| = pijfor1 <i < j<n+1,
i.e., the mapping s; — p;(z’) is an isometric embedding of S into X.
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