
Testing of Reverse Causality Using Semi-

Supervised Machine Learning

Nan Zhang1, Heng Xu1, Manuel J. Vaulont2, and Zhen Zhang3

1University of Florida, Gainesville, FL, USA

2Northeastern University, Boston, MA, USA

3Southern Methodist University, Dallas, TX, USA

Author Note

Financial support: NZ and HX were supported in part by the US National Science Foundation

under Grants 1851637 and 2040807, and by gifts from Amazon Science and Meta. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the sponsors.

Competing interests: Apart from the affiliations and sponsors disclosed above, the authors

declare no competing interests.

Dataset acknowledgment: This study has been realized using data collected by the Swiss

Household Panel (SHP), which is based at the Swiss Centre of Expertise in the Social Sciences

FORS. The SHP project is supported by the Swiss National Science Foundation.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original 
work is unaltered and is properly cited. The written permission of Cambridge University Press must be 
obtained for commercial re-use or in order to create a derivative work. 

This is a “preproof'” accepted article for Psychometrika. 

This version may be subject to change during the production process. 

DOI: 10.1017/psy.2025.13 

https://doi.org/10.1017/psy.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.13


Abstract

Two potential obstacles stand between the observation of a statistical correlation and the design

(and deployment) of an effective intervention, omitted variable bias and reverse causality.

Whereas the former has received ample attention, comparably scant focus has been devoted to the

latter in the methodological literature. Many existing methods for reverse causality testing

commence by postulating a structural model that may suffer from widely recognized issues such

as the difficulty of properly setting temporal lags, which are critical to model validity. In this

paper, we draw upon advances in machine learning, specifically the recently established link

between causal direction and the effectiveness of semi-supervised learning algorithms, to develop

a novel method for reverse causality testing that circumvents many of the assumptions required by

traditional methods. Mathematical analysis and simulation studies were carried out to

demonstrate the effectiveness of our method. We also performed tests over a real-world dataset to

show how our method may be used to identify causal relationships in practice.

Keywords: Reverse Causality; Machine Learning; Semi-Supervised Learning
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REVERSE CAUSALITY 1

Testing of Reverse Causality Using Semi-

Supervised Machine Learning

A fundamental purpose of research in psychology – and many other disciplines in social

sciences for that matter – is to understand causal relationships between variables. In particular, it

is both theoretically and practically important to distinguish between the mere observation of

associations (between variables) and cases where causality can be inferred. When controlled

randomized experiments are impractical, how to properly do so has garnered considerable

attention in multiple disciplines (e.g., Pearl, 1998) including psychology (Rogosa, 1980). The

practical significance of this inquiry becomes apparent considering the pivotal role that causal

inference plays in formulating effective intervention strategies. For example, research has

consistently shown that individuals who occupy central positions in their social networks (i.e.,

centrality) tend to receive more favorable assessment of charisma from their connections

(Balkundi et al., 2011). Yet, the mere identification of this correlation1 does not permit the

conclusion that enhancing an individual’s social-network centrality would be an effective

intervention for boosting their charisma. As a case in point, whereas some scholars view charisma

as an outcome of social-network patterns (Pastor et al., 2002), others contend that charisma is

what attracts followers and allows an individual to occupy a central position in the first place

(Shils, 1965), suggesting that the aforementioned intervention might be less effective.

Two potential obstacles stand between (a) the observation of a robust correlation between

two constructs X and Y , like the centrality-charisma correlation, and (b) the effectiveness of

deploying an intervention on X to change Y , like an attempt to boost centrality in order to

increase charisma (Bollen, 1989, p. 41). The first is omitted variable bias (Mauro, 1990),

meaning that an unobserved confounder induces the co-variation of both X and Y . For example,

individuals high on extraversion may excel on both social-network centrality and charisma. The

other is reverse causality (Leszczensky & Wolbring, 2022), meaning that the causal influence

flows in the reverse direction (i.e., Y → X) from what is required by the intended intervention –

1 Throughout this paper, we use “correlation” in the broader sense to refer to any (i.e., linear or nonlinear)

co-variation (of two or more variables, constructs, etc.) that manifests in an observed dataset.
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REVERSE CAUSALITY 2

e.g., charisma influences centrality but not the other way around. There is a substantial body of

methodological research on assessing the magnitude of omitted variable bias in a relationship

(e.g., Busenbark et al., 2022; Cinelli & Hazlett, 2020; Harring et al., 2017; Mauro, 1990). Yet

comparatively little attention has been directed towards testing for reverse causality (Leszczensky

& Wolbring, 2022). Admittedly, the issue may not be applicable in situations where a clear causal

direction is obvious (e.g., cancer→ age is implausible). Nonetheless, for psychological

constructs, concerns on reverse causality are prevalent, especially when theoretical arguments

could be made for both directions. The focus of this work is to develop a method for testing

reverse causality in observational data, with an emphasis on panel data.

To empirically investigate the issue of reverse causality in observational data, some

existing methods, like cross-lagged panel models (CLPM; Hamaker et al., 2015), commence by

presuming a reciprocal relationship, before postulating a structural model based on the

assumption and empirically estimating the model to assess the magnitude in both directions while

considering auto-regressive effects. Some other methods infer the direction of causality by

exploiting certain distributional and/or functional features assumed of the underlying

data-generating process, such as nonnormality in a linear model (e.g., Shimizu et al., 2006;

von Eye & DeShon, 2012), statistical independence between input variables and additive noise

(e.g., Hoyer et al., 2008; Rosenström et al., 2023), etc. These methods pose two unsolved issues.

First, from a theoretical perspective, given that many psychological theories (and theories in other

fields) stipulate unidirectional (instead of reciprocal) relationships, there exists substantial

theoretical interest in testing the direction of causality rather than assuming it away with the

adoption of a reciprocal model like CLPM. For example, the structural advantage theory of social

networks (Brass, 1984; Burt, 1992) posits a unidirectional effect of one’s social network

characteristics (e.g., centrality) on individual behaviors (e.g., charismatic leadership). Given the

robust correlation reported in the literature for centrality and charisma (e.g., Balkundi et al.,

2011), a well-powered empirical study that shows the absence of a reverse effect (i.e., charisma

̸→ centrality) would provide strong evidential value for supporting the structural advantage

theory. Second, from a methodological perspective, formulating an appropriate model – or
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REVERSE CAUSALITY 3

accurately specifying its distributional/functional features (e.g., whether it is linear) – can be

particularly challenging when dealing with panel data (Hamaker, 2024; Lucas, 2023). For

example, the validity of many existing panel models (or even the notion of Granger causality

itself) is known to break down when the sampling frequency is improperly specified (Shojaie &

Fox, 2022; Vaisey & Miles, 2017), when there are confounders that are unaccounted for (e.g.,

Hamaker et al., 2015), etc.

A promising avenue for addressing these issues of existing methods arises from causal

learning (Peters et al., 2017), a branch of machine learning that injects causal inference into the

design of learning algorithms. Central to this approach is a fundamental question: If we were to

train a machine learning model that predicts Y from X (based on a limited number of training

data points ⟨X, Y ⟩), could knowledge about the probability distribution of X (i.e., P (X)) help us

improve the predictive accuracy of the trained model? Schölkopf et al. (2012) show that the

answer is positive if and only if the causal direction flows from Y to X . This suggests that, by

demonstrating a machine learning model’s ability to capitalize on P (X) for enhancing predictive

accuracy towards Y , we would identify the existence of reverse causality. Even more importantly,

this proposition would hold irrespective of the functional form of the X-Y relationship.

Whereas Schölkopf et al. (2012) establish the dependence between causal direction and

the predictive accuracy of semi-supervised learning algorithms, they leverage this finding to

understand why semi-supervised learning works over some datasets but not others, instead of

developing a concrete method for testing reverse causality. In the current research, we address this

gap by developing a novel method for testing reverse causality over panel data. The contribution

of our work is two-fold. First, our method for reverse causality testing allows researchers to

rigorously test their causal theories by addressing two issues that researchers face. On the one

hand, our method allows researchers to directly test unidirectional relationships, instead of

assuming these relationships are reciprocal in nature. On the other hand, our method does not

require the specification of distributional or functional features such as the sampling frequency or

the shape of the proposed relationship. By demonstrating the effectiveness of our method using

simulation studies and a case study, we show its applicability for psychology researchers in theory
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building and testing. Second, our work pioneers the integration of advancements in causal

learning into the methodological arsenal of psychology for causal inference. We present

conceptual arguments and mathematical formalization that link reverse causality testing with the

predictive accuracy of semi-supervised learning (Van Engelen & Hoos, 2020). In doing so, we

enrich the understanding of how machine learning could contribute to the psychological methods

literature (e.g., Sterner et al., 2023; Wilcox et al., 2023; Zimmer & Debelak, 2023) and open up

future avenues of inquiry at the intersection of psychological research and computer science.

Literature Review

In this section, we briefly review the existing literature on reverse causality testing and the

machine learning method we propose to use (i.e., semi-supervised learning).

Reverse Causality Testing

Compared with the rich and growing literature on omitted variable bias – in psychology

(Harring et al., 2017), sociology (Halaby, 2004) and economics (Wüthrich & Zhu, 2023) –

researchers across disciplines have made relatively limited progress on the testing of reverse

causality over panel data. As summarized by Leszczensky and Wolbring (2022), a common

approach is to specify causal direction in a panel model by applying temporal lags on variables

that represent the “cause” after partialing out auto-regressive effects. For example, a causal

direction of X → Y would be reflected by setting a lagged (e.g., previous-wave) value of X and

the contemporary value of Y as independent and dependent variables, respectively, in the panel

model, suggesting that X has a causal, lagged, effect on Y . A variety of panel models follow this

idea (Orth et al., 2021), such as lagged first-difference models (LFD; Vaisey & Miles, 2017),

cross-lagged panel models (CLPM; Hamaker et al., 2015), etc.

As these existing panel models rely on temporal lags to identify the causal direction, how

to specify the amount of this temporal lag becomes a prominent question. Theoretically deriving

the “correct” temporal lag is obviously even more challenging than discerning the causal

direction, suggesting the need for methods to be robust to misspecified temporal lags.

Unfortunately, Vaisey and Miles (2017) show that panel models such as LFDs can be highly
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sensitive to the misspecification of temporal lags. Leszczensky and Wolbring (2022, Figure 2)

also demonstrate that, when a contemporaneous effect is mis-characterized as lagged in a CLPM,

the model can produce highly biased estimates. More fundamentally, the very notion of Granger

causality, which underpins all panel models, is known to break down with a mis-specified

temporal lag (Shojaie & Fox, 2022).

Beyond panel models, other existing methods for reverse causality testing rely on certain

distributional/functional features assumed of the underlying data-generating process. Some – like

Direction Dependence Analysis (DDA; Li & Wiedermann, 2020; Pornprasertmanit & Little,

2012; von Eye & DeShon, 2012; Wiedermann & Li, 2018) and Linear Non-Gaussian Acyclic

Models (LiNGAM; Shimizu et al., 2006) – exploit the nonnormality of data distributions in a

linear model to infer causal direction. In the case of DDA, for example, the causal direction may

be inferred by comparing the degrees of departure2 from normality across different variables. For

longitudinal data, extensions of these methods (e.g., Bauer et al., 2016; Geiger et al., 2015;

Hyvärinen et al., 2010) leverage the nonnormality of noise to identify causal direction in

multivariate time series. Additionally, methods like Rosenström et al.’s (2023) directional

analysis approach, additive noise models (Hoyer et al., 2008; Peters et al., 2014) and (more

generally) post-nonlinear models (Zhang & Hyvärinen, 2009) infer causal direction by assuming

statistical independence between the input variables and an additive noise component within

linear or nonlinear models. Yet, like panel models reliance on properly specified temporal lags,

these methods also hinge on accurately defining certain distributional or functional features of the

relationship between variables – knowledge that may not be available a priori.

These issues of existing methods raise an important question: Can we test for reverse

causality without constraining the functional form of the data-generating process? Doing so

would not only circumvent the complexities of specifying the temporal lag, but also relax the

linearity or additive noise assumptions that permeate existing methods. We seek to answer this

question in the current work by integrating recent advances in machine learning and the broader

2 Such departure are typically quantified using higher-order central moments, such as skewness and kurtosis.
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causal inference literature.

Semi-Supervised Learning

The objective of semi-supervised learning is to approximate the function f that links

independent variables X to a dependent variable Y such that Y = f(X). This is done by learning

from two datasets containing i.i.d. samples. The first dataset, typically known as labeled set,

provides ⟨xi, yi⟩ (i.e., paired X-Y values) for n1 data points. The second dataset provides only the

values of X , but not Y , for other n2 data points, and is therefore known as the unlabeled set. In

machine learning, it is generally assumed that n1 is much smaller than n2, due mainly to the high

cost of acquiring Y in practice. For example, a task for which semi-supervised learning has

shown remarkable success is image classification (Xie et al., 2020). With this task, X is an image

and Y is its category (e.g., landscape, portrait). It is virtually cost-less to collect millions of

images from the web, but considerably more expensive to hire human workers to properly label

the collected images. In this case, we may opt to manually label only a few observations of X ,

leading to the assumption that n1 ≪ n2.

The limited size of the labeled set means that, if we were to launch a canonical supervised

learning algorithm (e.g., OLS or logistic regression), which can only learn from the labeled set,

we would not be able to obtain an accurate prediction of Y . The uniqueness of semi-supervised

learning lies in its ability to leverage the n2 unlabeled, X-only, data points to significantly

improve the predictive accuracy of the learned f̂ . To this end, numerous methods have been

proposed for semi-supervised learning (Van Engelen & Hoos, 2020). A famous example, which

we will further elaborate later in the paper, is self-training (e.g., Sohn et al., 2020), which can be

readily integrated with many supervised learning algorithms such as logistic regression. With

self-training, we start by running a supervised learning algorithm (e.g., logistic regression) over

the n1 labeled data points to generate an approximation of f , denoted by f̂1, which predicts Y

based on an input X . Then, we apply f̂1 over each of the n2 unlabeled data points to predict its

pseudo-label (i.e., an estimate of Y ). Note that when a machine learning model is used for

prediction, it may generate not only a point-estimate (e.g., binary prediction in logistic regression)

but also a confidence level associated with the estimate (e.g., log-odds in logistic regression).
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Leveraging this, we select from the n2 pseudo-labels those with confidence above a

pre-determined threshold, add their X values paired with pseudo-labels (i.e., ⟨xi, f̂1(xi))⟩ to the

labeled set, before running the supervised learning algorithm again to update our approximation

of f . This process can continue iteratively until no more pseudo-labels can be added.

Whereas the efficacy of semi-supervised learning has long been established (Van Engelen

& Hoos, 2020), there has been limited research probing why unlabeled data, which lack any

information about Y , can bolster our understanding of the X-Y relationship. To this end, Buja

et al. (2019) establish that the distribution of a variable X may convey rich information about the

X-Y relationship when the relationship is not strictly linear. For the high-dimensional case where

X comprises multiple variables, Niyogi (2013) attributes the success of semi-supervised learning

to the concept of manifold regularization (Belkin et al., 2006). At its core, Niyogi (2013) posits

that almost all machine learning algorithms predicate their predictions on a smoothness

assumption: if two data points are similar in X , then they also tend to be analogous in Y .

Unfortunately, defining “similar” in the context of multi-dimensional X is challenging – and

requires structural insights into the multivariate distribution of X – because common similarity

measures like Euclidean distance are known to become meaningless in high-dimensional spaces

(Aggarwal et al., 2001). By providing a more refined depiction of the multi-dimensional

distribution of X , unlabeled data allow us to more accurately estimate the similarity of two data

points in X , thereby enhancing our predictive precision for Y (Niyogi, 2013).

While this line of research sheds light on the mechanics of semi-supervised learning, it

does not address why semi-supervised learning achieves high predictive accuracy with certain

datasets but performs poorly with others (Schölkopf et al., 2012). The missing piecethe key to

understanding the conditions under which semi-supervised learning succeedslies in the causal

effects driving the generation of the observed data, as we will elaborate in the next section.

Linking Causality with Semi-Supervised Learning

In this section, we draw upon insights from causal learning (Peters et al., 2017) –

specifically Janzing and Schölkopf’s (2015) mathematical characterisation of Schölkopf et al.’s

(2012) seminal finding on the working condition for semi-supervised learning – to elucidate how
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the predictive accuracy of semi-supervised learning over panel data may reveal the existence of

reverse causality in the underlying data-generating process. Our explanation unfolds in three

steps. First, we offer conceptual arguments through an illustrative example. Following this, we

delve into mathematical formalization, analyzing a special case where the data-generating process

features linear, cross-lagged, effects. Finally, we expand our discussions to justify the reasoning

behind a test that can be applied to any arbitrary data-generating process. The specific

computational algorithms for semi-supervised learning will be described in the next section.

Conceptual Illustration

In what follows we offer an intuitive explanation for the key insight of Schölkopf et al.

(2012) through two observations: 1) P (X) is useless for predicting Y if X → Y , and 2) if

Y → X , P (X) (when combined with a small labeled set) may lead to an accurate prediction

model towards Y . The first is obvious: When X → Y fully characterizes the X-Y relationship,

we can represent their relationship as a stochastic function f such as Y = f(X). Changing f

clearly has no impact on P (X). Consequently, knowledge of P (X) reveals no information about

f , making it useless for the prediction of Y (Janzing & Schölkopf, 2010).

For the second observation, consider a simple example of Y → X depicted in Figure 1,

where Y ∈ {0, 1} is binary and X = αY + ϵ with ϵ ∼ N(0, σ2). In this case, altering the causal

mechanism (i.e., α) obviously modifies P (X). From the perspective of machine learning, this

means that P (X) now encapsulates certain cues regarding α, offering the potential for building an

accurate prediction model towards Y . As can be seen from Figure 1, for this specific example,

knowledge of P (X) alone permits an exact inference3 of α, which is all that is required to build a

Bayes-optimal predictior of Y .

More generally, Schölkopf et al. (2012) contend that P (X) is “independent” of f if

3 While outside the scope of this paper, this exact inference also works when Y is not binary but follows other

distributions such as Poisson (due to Linnik’s theorem; Linnik, 1957). Interested readers could refer to the rich

literature of random variable decomposition (Lukacs, 1970) and the more recent literature of additive noise model

(Hoyer et al., 2008; Peters et al., 2014) which are both intimately related to the unique identification of P (Y |X) (and

thereby α and σ) given P (X).
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reverse causality does not exist (i.e., Y ̸→ X). However, this independence may no longer hold

when Y → X . This notion of “independence” can be formalized mathematically in at least three

distinct ways: 1) through Kolmogorov complexity (Janzing & Schölkopf, 2010), 2) by examining

the uncorrelatedness between p and the derivative of f (Janzing & Schölkopf, 2015), and 3)

through the uncorrelatedness between p and the logarithm of the derivative of f (Daniusis et al.,

2010). Whereas the mathematical formulation of Schölkopf et al.’s (2012) insight necessarily

varies with this underlying notion of independence – e.g., see Lemma 1 in Janzing and Schölkopf

(2015) for one variation – the two observations discussed before hold true regardless of this

specific mathematical formulation.

Mathematical Analysis of Cross-Lagged Effects

To mathematically illustrate the link between causality testing and semi-supervised

learning, we use the cross-lagged panel model (CLPM; Hamaker et al., 2015) as an example of

the underlying data-generating process. This analysis aims to emphasize two key observations.

First, in the absence of reverse causality (i.e., Y ̸→ X), no information about the coefficient

representing the X → Y relationship can be inferred from a dataset containing only X . Second,

when reverse causality exists (i.e., Y → X), a standard least squares estimate for the coefficient

representing Y → X can be obtained even without Y in the dataset.

In its simplest form, CLPM assumes a model of structural equations

(xit − κi) = α(xi,t−1 − κi) + β(yi,t−1 − ωi) + uit, (1)

(yit − ωi) = δ(yi,t−1 − ωi) + γ(xi,t−1 − κi) + vit, (2)

where xit and yit are the values of X and Y at time t, respectively; κi and ωi represent the

sample-specific random intercepts for X and Y , respectively; and uit and vit are i.i.d. random

impulses. With this model, the cross-lagged parameter β captures the (within-person) reverse

causal effect Y → X .

As the sample-specific random intercepts κi and ωi are extraneous to our ensuing analysis,

we assume that κi = ωi = 0 for all i ∈ [1, n] (where n is the sample size). For the ease of

understanding, we also assume that all coefficients α, β, δ, and γ remain unchanged between time
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t− 1 and t + 1. These simplifying assumptions yield the following structural equations.

xit = αxi,t−1 + βyi,t−1 + uit, (3)

yit = δyi,t−1 + γxi,t−1 + vit. (4)

The crux of connecting semi-supervised learning with causality testing hinges on the following

inquiry: Can any information about the regression coefficients in Equation 4 (i.e., δ and γ for

predicting Y ) be inferred from observations of X at time t− 1, t, and t + 1 (i.e.,

x1,t−1, . . . , xn,t−1; x1t, . . . , xnt; x1,t+1, . . . , xn,t+1), but no observation of Y , assuming the other

coefficients (i.e., α and β) as given?

When β = 0, this is obviously impossible because Equation 3 would only contain an

autoregressive term αxi,t−1 and the remainder uit, meaning that we would have no information

about Y from any of the inputs X , α, and β.

When β ̸= 0, however, knowledge of α and β would allow us to make a probabilistic

inference of yi,t−1 from Equation 3 based on xit and xi,t−1 and, similarly, yit based on xi,t+1 and

xit. Substituting these inferred values of yi,t−1 and yit into Equation 4 would then let us make a

probabilistic inference of the regression coefficients δ and γ. To elucidate the reasoning behind

this procedure, we rewrite Equation 3 as

xi,t+1 = αxit + β(δyi,t−1 + γxi,t−1 + vit) + ui,t+1, (5)

= αxit + δ(βyi,t−1) + γβxi,t−1 + βvit + ui,t+1, (6)

= αxit + δ(xit − αxi,t−1 − uit) + γβxi,t−1 + βvit + ui,t+1, (7)

which can be further simplified to

(xi,t+1 − αxi,t) = δ(xit − αxi,t−1) + γβxi,t−1 + ϵi, (8)

where ϵi = βvit + ui,t+1 − δuit is a remainder term that aggregates various random impulses and

satisfies E(ϵi) = E(ϵixit) = E(ϵixi,t−1) = 0. Equation 8 can be used to obtain a standard least

squares estimate for δ and γ, i.e.,δ̂

γ̂

 = ([xt − αxt−1, βxt−1]⊤[xt − αxt−1, βxt−1])−1[xt − αxt−1, βxt−1]⊤(xt+1 − αxt), (9)
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where xj represents the vector of X at time j. The variances of δ̂ and γ̂ are

Var(δ̂) = σ2((xt − αxt−1)⊤(xt − αxt−1)− ((xt − αxt−1)⊤xt−1)2(x⊤
t−1xt−1)−1)−1, (10)

Var(γ̂) = σ2(β2x⊤
t−1xt−1 − ((xt − αxt−1)⊤xt−1)2((xt − αxt−1)⊤(xt − αxt−1))−1)−1, (11)

where σ2 is the variance of ϵi. Note from Equation 11 that the variance of γ̂ tends to infinity when

β approaches 0. This substantiates our prior assertion that estimating the coefficient for X → Y

(i.e., γ) from X is only feasible when the coefficient for Y → X (i.e., β) is significant.

Given that δ and γ can be inferred (at least asymptotically) using just three inputs – α, β,

and X – without any information on Y , a natural question is: which among the three inputs

carries information about δ and γ? We can rule out α and β because they are free parameters

(independent of δ and γ) per CLPM. This leaves the only possibility to be that the distribution of

X carries certain information about the X → Y relationship (i.e., δ and γ). Importantly, this

information carriage is valid if and only if reverse causality Y → X is present (i.e., β ̸= 0).

At this juncture, the connection between semi-supervised learning and reverse causality

testing becomes evident. Recall that a semi-supervised learning algorithm aims to learn the

X → Y relationship f(·) – i.e., γ in the case of CLPM – using a small labeled set of ⟨X, Y ⟩ pairs

and a large unlabeled set consisting solely of X . Clearly, the only information revealed by the

unlabeled set is the distribution of X . When reverse causality does not exist (i.e., β = 0), the

distribution of X does not carry any information about γ. In this case, the unlabeled set is useless

for improving the prediction of Y , making the deployment of a semi-supervised learning

algorithm futile. However, when reverse causality exists (i.e., β ̸= 0), the distribution of X – and

therefore the unlabeled set – does carry information about γ (as shown in Equation 9), making

semi-supervised learning potentially fruitful.

For a more specific example, consider the aforementioned self-training method for

semi-supervised learning. When the X-Y relationship is unidirectional flowing from X to Y (i.e.,

β = 0), expanding the labeled set with pseudo-labels will not lead to a more accurate prediction

of Y for the simple reason that even an infinitely large unlabeled set, which perfectly reveals

P (X), still contains no information about the X → Y relationship. Put simply, we can test
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reverse causality by comparing the predictive accuracy pre and post self-training, with an increase

in predictive accuracy suggesting the existence of reverse causality.

Generalized Test

Whereas we developed the connection between semi-supervised learning and reverse

causality testing through the structural model of CLPM, the connection indeed persists regardless

of the underlying data-generating process. To understand why, consider an extension of

Equations 3 and 4 to data-generating processes beyond CLPM. When the X-Y relationship is

unidirectional flowing from X to Y , we have

xit = ft(xi,t−1, uit), (12)

yit = gt(xi,t−1, yi,t−1, vit), (13)

where ft and gt can be any arbitrary stochastic function.

Two key insights emerge from the equations. First, the X → Y relationship is wholly

captured by gt. Second, alterations in gt has no influence on the value (and distribution) of X .

Combining these two insights, it is evident that the distribution of X does not carry any

information about the X → Y relationship unless there exists a reciprocal Y → X relationship.

This underscores that the nexus between semi-supervised learning and reverse causality testing

remains intact, independent of assumptions about the data-generating process.

Reverse Causality Testing Using Semi-Supervised Learning

In this section, we develop our novel method for reverse causality testing. As established

in the last section, a semi-supervised learning algorithm can effectively leverage the large

unlabeled (i.e., X-only) data to improve predictive accuracy for Y only when reverse causality

Y → X is at play. Building upon this insight, our method revolves around assessing the

predictive accuracy of semi-supervised learning. In the passages that follow, we outline our

methodological design in two steps. First, we describe the input and output of semi-supervised

learning, explaining in detail how the output of semi-supervised learning is used for reverse

causality testing. Then, we delve into the algorithmic design of semi-supervised learning.
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Input and Output of Semi-Supervised Learning

The objective of our method is to detect the presence of reverse causality, i.e., Y → X ,

given a longitudinal panel dataset D = {⟨xi1, yi1, . . . , xim, yim⟩|i ∈ [1, n]}, where n is the sample

size and m is the number of waves. Our method requires at least three waves (i.e., m ≥ 3) for

identification. It imposes no assumptions about the lag, provided that the lag is not so extensive

that yi1 exerts no causal effect on xim, as this would render reverse causality unidentifiable within

the given dataset. Our method also makes no assumption about the functional form of the

relationships between X and Y . The sole assumption underlying our method is the working

condition of causal learning, which states that P (X) is independent4 of f if X → Y fully

describes the relationship between X and Y (Schölkopf et al., 2012). Also note that, if the

purpose is to test the existence of X → Y instead, the only revision required is to swap X and Y

in the input data.

Input

Recall from the literature review that a semi-supervised learning algorithm takes as input

two datasets, a small labeled set Dlb, which consists of n1 data points with paired X-Y values,

and a large unlabeled set Dul, which consists of n2 data points (n2 ≫ n1) with X values only. To

properly specify Dlb and Dul based on the input data D, there are three issues to be addressed.

First, since semi-supervised learning algorithms generally requires the prediction target Y

to be a scalar (i.e., a single variable), we need to select (the Y value of) one wave as the prediction

target for semi-supervised learning. Mathematically, any wave except the last one would work

because, as discussed earlier, if Y → X exists with a lagged effect, then the distribution of X in

the t-th wave carries information about Y in all previous waves (i.e., 1 to t− 1). In other words,

semi-supervised learning could effectively boost the predictive accuracy towards Y for all but the

last wave. Since we are interested in minimizing the number of waves required for identification,

a proper choice is to select Y in the first wave, i.e., {yi1}, as the prediction target because

otherwise data in the first wave would become useless for identification (as Y in a latter wave

4 As discussed earlier, see Daniusis et al. (2010) and Janzing and Schölkopf (2010, 2015) for formal definitions.
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cannot have a causal effect on X in the first wave).

Second, we need to determine the variable composition of X . When Y → X exists, the

distribution of X from the second wave onward is informative for predicting the value of Y from

the first wave. We therefore include ⟨xi2, . . . , xim⟩ as the predictor vector X .

Third, we also need to determine n1 and n2, the sample sizes for Dlb and Dul,

respectively. Recall that our purpose is to test whether semi-supervised learning can effectively

leverage the unlabeled set Dul to enhance predictive accuracy. Clearly, assuming Y → X exists,

the smaller n1 and the larger n2 is, the more likely we would be able to detect the effectiveness of

semi-supervised learning. From this perspective, a natural choice is to make n1 the minimum

labeled-sample size required by the semi-supervised learning algorithm, and to include all other

data in the unlabeled set (i.e., n2 = n− n1). For example, the aforementioned self-training

algorithm generally requires n1 ≥ m to avoid an initial degenerate solution. Hence, we generate

the labeled set Dlb and the unlabeled set Dul by first randomly permuting the order of all data

points in D, before setting

Dlb = {⟨xi2, . . . , xim, yi1⟩|i ∈ [1, m]}, and (14)

Dul = {⟨xi2, . . . , xim⟩|i ∈ [m + 1, n]}. (15)

Output

Our method for reverse causality testing focuses on the accuracy of fssl, the output of

semi-supervised learning. To determine whether the unlabeled set Dul is useful for improving the

predictive accuracy of fssl (which is only possible when reverse causality exists), we compare fssl

against a baseline model f0, which is the initial model of semi-supervised learning generated from

the small labeled set Dlb only before accessing the unlabeled set Dul. A smaller error of fssl

would serve as evidence against the null hypothesis of no reverse causality.

Recall from earlier discussions that Dlb and Dub are drawn uniformly at random from the

input data D. Since Dlb and Dub are random samples, comparing the predictive errors of the

machine learning models trained on them - i.e., f0 and fssl, respectively – requires a statistical

significance test. Specifically, we need to determine whether any observed reduction in predictive
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error of fssl relative to f0 is statistically significant. To assess this, we repeatedly draw

i.i.d. samples of Dlb from D, derive the corresponding Dub, and compare the predictive error of

fssl against f0 for each sample. The statistical significance of the reduction in predictive error can

then be evaluated based on these comparisons. There are three key issues worth discussing in this

design: (1) how to measure the predictive error of a model, (2) how to assess the statistical

significance of the reduction in predictive error, and (3) how to determine the number of

resamples necessary for the test.

First, in terms of measuring the predictive error of a machine learning model, a prevalent

practice in machine learning is to separate the testing dataset from the training data due to

concerns of overfitting (Bishop & Nasrabadi, 2006). It is important to note that overfitting is not a

concern in our case because the prediction target yi1 for the vast majority of data (i.e.,

i ∈ [m + 1, n]) is hidden from semi-supervised learning. As such, we can assess the predictive

error of fssl (and the baseline f0) directly over the input dataset D. Further, our method has no

specific requirement on the metric for predictive error, as a reduction of any error metric indicates

the existence of reverse causality. For example, when yi1 is binary, we could use the total number

of prediction errors as the metric. The cross-entropy metric (Bishop & Nasrabadi, 2006) can be

used for categorical yi1. When yi1 is continuous, the error metric could be the mean squared error,

mean absolute error, etc.

Second, for comparing the predictive errors of two machine learning models, Demar

(2006) reviewed three types of statistical tests used in the literature: (1) a parametric test, like the

paired t-test (Dietterich, 1998), (2) a nonparametric test that makes assumptions about the

distribution of difference in predictive accuracy, like the Wilcoxon signed-rank test (Santafe et al.,

2015), and (3) a nonparametric test that only requires predictive accuracy to be comparable (i.e.,

at least on an ordinal scale), like the binomial test, also known as the sign test (Salzberg, 1997).

Problems with parametric tests such as the paired t-test have been well documented in the

literature (Dietterich, 1998). As summarized by Demar (2006), these tests suffer from sensitivity

to outliers and the issue of commensurability between different runs, making it possible for the

total failure of semi-supervised learning on a single sample of Dlb to dominate the test result.
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Similarly, key assumptions of the Wilcoxon signed-rank test do not hold in our context. For

instance, it assumes that the difference in predictive accuracy between the two models is

symmetrically distributed around a central value, yet there is no evidence to support this

symmetry in our setting. In fact, semi-supervised learning is likely to amplify the skewness in the

labeled set, suggesting that the difference could follow a heavy-tailed rather than symmetric

distribution, violating the assumptions of the Wilcoxon signed-rank test. This leaves the (exact)

binomial test (i.e., sign test) as a suitable alternative, as it requires only that each pair of predictive

accuracy scores be comparable (Salzberg, 1997) and is inherently robust to outliers (Demar,

2006). In our case, we employ the binomial test (with π0 = 0.5) to compare the number of runs

(i.e., Dlb samples) where fssl outperforms f0 against the number of runs where the reverse is true.

Finally, two key factors influence the determination of the number of resamples required

for the test. First, increasing the number of resamples enhances the statistical power of the test,

which is especially critical given the well-documented limitation of the binomial test in terms of

low statistical power (Demar, 2006; Rainio et al., 2024; Salzberg, 1997). Second, a larger number

of resamples incurs higher computational costs, as the semi-supervised learning algorithm must

be executed for each sampled Dlb and Dul. This computational burden can be particularly

significant for resource-intensive algorithms, such as those based on deep learning (Goodfellow

et al., 2016). To balance these considerations, we recommend following the default setting

proposed by Demar (2006) and performing 1,000 resamples. As demonstrated in the simulation

studies, this setting offers a practical trade-off between statistical power and computational

efficiency.

Design of Semi-Supervised Learning Algorithm

Numerous algorithms have been proposed for semi-supervised learning (Van Engelen &

Hoos, 2020). We chose to implement the self-training paradigm discussed earlier. This choice is

driven by two primary considerations. First, self-training is highly versatile, as it can be

seamlessly integrated with a wide range of supervised learning algorithms as its base learner

(Sohn et al., 2020). Second, the mathematical analysis of self-training is one of the few that have

been thoroughly developed in the literature (Amini & Gallinari, 2002; Grandvalet & Bengio,
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2004), providing a clear connection between the Bayes risk of its predictions and the foundational

working condition of semi-supervised learning that has been discussed earlier in the paper.

In the passages that follow, we describe the mathematical foundation and algorithmic

design of self-training. Note that, our method represents a novel use of self-training for the

purpose of reverse causality testing, and we did not make any change to its canonical algorithmic

design. For the ease of discussion, we start with a simple setting where the prediction target yi1 is

binary (i.e., yi1 ∈ {0, 1}) and the underlying learning algorithm is logistic regression. At the end

of this section, we describe a generalization to continuous variables and any regression algorithm.

Mathematical Foundation of Self-Training

Any algorithm aiming to learn a prediction model that estimates a binary yi1 based on a

predictor vector xi = ⟨xi2, . . . , xim⟩ can be viewed as learning a function5 f(xi) that

approximates Pr{yi1 = 1|xi}. For example, logistic regression specifies f(xi) as

f(xi) = sigmoid(β1 + β2 · xi2 + · · ·+ βm · xim), (16)

where β = ⟨β1, . . . , βm⟩ are the coefficients to be estimated from training data.

Semi-supervised learning in general, and self-training in particular, starts by estimating β

from the small labeled set Dlb. Specifically, it does so by finding β that maximizes the following

log-likelihood function

ℓ(f) = log P (Ylb|f, Xlb) (17)

=
m∑

i=1
(yi1 · log(f(xi)) + (1− yi1) · log(1− f(xi))) , (18)

where Xlb and Ylb represent the predictor (i.e., xi2, . . . , xim) and prediction target (i.e., yi1)

portions of Dlb, respectively. In the Bayesian framework, these initial coefficient estimates form

the maximum a posteriori (MAP) estimate under the uniform prior. As shown by Seeger (2000),

this MAP estimate does not change if we merely add the unlabeled set Dul into the observed data,

because semi-supervised learning only works under the condition that the distribution of xi

5 For simplicity in notation, this section uses f to denote the machine learning estimate, replacing the earlier notation

f̂ . This causes no ambiguity, as the ground-truth value of f is not discussed in this section.

https://doi.org/10.1017/psy.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.13


REVERSE CAUSALITY 18

reveals information about yi1. In other words, in order to proceed beyond this initial step and

generate the MAP estimate for semi-supervised learning, we need to encode its working condition

into the prior distribution used to calculate the MAP estimate.

In the Bayesian framework, a common method for deriving the prior distribution from a

given constraint (e.g., the working condition for semi-supervised learning) is the principle of

maximum entropy (Jaynes, 1957), which sets the prior distribution as the one that satisfies the

given constraint while having the maximum information entropy (Cover & Thomas, 2006).

Grandvalet and Bengio (2004) followed this principle to prove that, for a semi-supervised

learning algorithm that uses both Dlb and Dul, the MAP estimate for β is the maximizer of the

following criterion C(f),

C(f) = ℓ(f)− λ ·
n∑

i=m+1
(−f(xi) · log(f(xi))− (1− f(xi)) · log(1− f(xi))) , (19)

where λ (λ > 0) is the Lagrange multiplier that, roughly speaking, captures the amount of

information about yi1 that can be revealed by the distribution of xi. Amini and Gallinari (2002)

analyzed self-training with logistic regression as the underlying learning algorithm, and proved

that the resulting coefficient estimates maximizes C(f) when λ = 1. In other words,

semi-supervised learning in general, and self-training in particular, can be viewed as

approximating the MAP estimate of f under the working condition of semi-supervised learning.

Specifically, it does so by finding f that maximizes C(f) in Equation 19.

Algorithmic Design of Self-Training

The algorithmic design of self-training can be readily derived from Equation 19. Note that

the second term in the equation is proportional to the sum of

H(f(xi)) = −f(xi) · log(f(xi))− (1− f(xi)) · log(1− f(xi)) (20)

for all data points in the unlabeled set Dul. Recall that f(xi) is the prediction from

semi-supervised learning for Pr{yi1 = 1|xi}. This makes H(f(xi)) in Equation 20 the entropy

(Cover & Thomas, 2006) of the predicted distribution of yi1 given xi, meaning that it captures the

amount of uncertainty in machine learning predictions. For example, we have H(f(xi)) = 0, its
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minimum possible value, when semi-supervised learning is fully confident of its prediction (i.e.,

f(xi) = 0 or 1). In contrast, when f(xi) = 0.5 (i.e., maximum uncertainty), H(f(xi)) reaches its

maximum value6 of 1.

With this understanding, the goal of self-training – i.e., the maximization of C(f) –

pertaining to the unlabeled set is equivalent with minimizing prediction uncertainty (i.e.,

H(f(xi))) for the unlabeled data. Self-training does so in an iterative manner. As described

earlier, the initial iteration estimates β from the labeled set Dlb by applying the underlying

learning algorithm, which in this case is the standard logistic regression. The estimated β is then

used to compute f(xi), and thereby H(f(xi)), for all data points in the unlabeled set Dul. The

first iteration concludes by adding into the labeled set Dlb all unlabeled data points with

prediction uncertainty below a pre-determined threshold h, using their predicted labels as if they

were real. In other words, the labeled and unlabeled sets are updated as

Dlb := Dlb ∪ {⟨xi,1f(xi)≥0.5⟩|xi ∈ Dul, H(f(xi)) ≤ h}, (21)

Dul := {xi|xi ∈ Dul, H(f(xi)) > h}, (22)

where 1f(xi)≥0.5 is the predicted label for xi – i.e., an indicator function that returns 1 if

f(xi) ≥ 0.5 and 0 otherwise. The updated Dlb and Dul are then entered as input to the next

iteration. The iterative process ends when no new X-Y pair is added to Dlb after an iteration. As

can be seen from the description, self-training minimizes prediction uncertainty among unlabeled

data using the idea of pseudo-labels, i.e., by promoting those with minimal prediction uncertainty

to the labeled set, using their predicted labels as if they were real. These promoted data points, in

turn, reduce prediction uncertainty for the remaining unlabeled data (Amini & Gallinari, 2002),

pushing the coefficient estimates closer to their MAP values that maximize C(f).

Generalization to Continuous Variables

Whereas the above description of self-training is based on a binary yi1 and logistic

regression being the underlying learning algorithm, the same iterative process can be adapted to

6 Without loss of generality, we follow the convention in computer science to assume a base of 2 for all log

operations, so as to measure entropy in binary bits.
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support continuous yi1 and any underlying learning algorithm. This adaption requires addressing

two issues. One is the design of an appropriate uncertainty measure (i.e., H(f(xi)) in the binary

case), and the other is the generation of pseudo-label (i.e., 1f(xi)≥0.5 in the binary case). The

reason why these two issues arise for continuous variables is because, unlike in the binary case

where f(xi), as an estimate of Pr{yi1 = 1|xi}, inherently captures uncertainty about the

predicted yi1, a point-estimate for a continuous yi1 contains no such uncertainty information.

Therefore, instead of deriving both the uncertainty measure and the pseudo-label from f(xi)

itself, we may have to resort to other information in order to do so in the continuous case.

A well-known method for addressing both issues in semi-supervised learning is

co-training (Blum & Mitchell, 1998). With this method, instead of generating a single prediction

of f(xi) ≈ yi1, we generate two predictions, f1 and f2, based on two (slightly) different subsets of

variables in xi. Then, the difference between f1 and f2 (i.e., |f1 − f2|) is a natural measure of

uncertainty, while the mean of the two (i.e., (f1 + f2)/2) can be used as pseudo-label for

expanding the labeled set.

More specifically, recall that our method includes in xi a total of m− 1 variables

⟨xi2, . . . , xim⟩, where m ≥ 3 because we require a minimum of three waves for identification. A

natural choice is to associate f1 with the first m− 2 variables xF
i = ⟨xi2, . . . , xi,m−1⟩, and f2 with

the last m− 2 variables xL
i = ⟨xi3, . . . , xim⟩. This way, we allow a divergence of two predictions

(to allow the uncertainty estimate) while minimizing the number of predictors withheld from

either. With this design, the updates of labeled and unlabeled set in each iteration become

Dlb := Dlb ∪ {⟨xi, (f1(xF
i ) + f2(xL

i ))/2⟩|xi ∈ Dul, |f1(xF
i )− f2(xL

i )| ≤ h}, (23)

Dul := {xi|xi ∈ Dul, |f1(xF
i )− f2(xL

i )| > h}, (24)

whereas everything else in the iterative process follows directly from the binary case. Clearly, this

design for continuous yi1 is compatible with any underlying learning algorithm for generating f1

and f2, e.g., linear regression (Stine, 1985), support vector machines (De Brabanter et al., 2010),

neural networks (Heskes, 1996), etc. The pseudocode of our algorithm for continuous variables is

available in Table 1.
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Transparency and Openness

The complete code implementation of our algorithm will be publicly available at

https://github.com/calearn/revc (Python) and https://github.com/calearn/revc_m (MATLAB).

Simulation Studies

We conducted two simulation studies. The main study evaluates the statistical power of

our method in identifying reverse causality, and a followup study assesses the Type I error rate of

our method in the absence of reverse causality, because existing methods such as the random-

intercept CLPM (RI-CLPM; Hamaker et al., 2015) are known to generate Type I errors.

Data-Generating Process

In the main simulation study, we aimed to delineate the primary factors influencing the

statistical power of our method. To achieve this, we employed a straightforward structural model

– Equations 1 and 2 – as the data-generating process, establishing a clear ground truth for the

causal direction. To ensure a comprehensive analysis, we created multiple levels for three key

parameters in the data-generating process: the total number of observations N and the

cross-lagged parameters β (i.e., Y → X) and γ (i.e., X → Y ). For the sample size N , we created

four levels: 100, 250, 500, and 1,000. For the cross-lagged parameters β and γ, we created six

levels for each: 0, 0.1, 0.2, 0.3, 0.4, and 0.5. In total, the design for the main simulation study

consists of 4 (N ) × 6 (β) × 6 (γ) = 144 unique conditions.

We adopted a standard parameter setup (e.g., Hamaker et al., 2015) to configure the other

fixed parameters for the data-generating process in the main simulation study. Specifically, we

followed Hamaker et al. (2015) to set the autoregressive parameters for both variables to

α = δ = 0.5. All random impulses uit and vit were generated from a Gaussian distribution

N (0, 0.52), while the sample-specific random intercepts were fixed at κi = ωi = 0 for all

i ∈ [1, N ]. To generate the initial (Wave 1) values of xi1 and yi1, we deliberately used different

distributions7 to emphasize that our method does not rely on specific distributional assumptions

for the input data. For each i ∈ [1, N ], xi1 was sampled uniformly at random from the interval

7 We also tested alternative distributions (e.g., Gaussian mixtures) and observed no qualitative differences.
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[−3, 3], while yi1 was drawn from a Gaussian distribution N (0, 1).

In the followup simulation study, we followed Lucas (2023), which demonstrates the

spurious cross-lagged effects generated by CLPM, in adopting the widely used Stable Trait

Autoregressive Trait and State (STARTS) model (Kenny & Zautra, 1995) as the underlying

data-generating process. We also followed Lucas (2023) in the parameter setup, specifically by

setting (for both X and Y ) the stability parameter as 0.5, the random intercept variance as 1, and

variance of autoregressive component as 1. We also added a measurement error of variance 0.3 to

both X and Y . Since the focus of the followup study is on Type I errors, the cross-lagged

parameter for reverse causality (Y → X) was always set to zero, while the parameter for X → Y

(represented as γ for consistency with the main study) was varied from 0.1 to 0.5. Like in the

main study, we created four levels, 100, 250, 500, and 1,000, for the sample size N . In total, the

design for the followup simulation study consists of 4 (N ) × 5 (γ) = 20 unique conditions.

Algorithmic Implementations

Recall from earlier discussions that our method applies to both discrete and continuous Y ,

and can be used with any supervised learning algorithm as its base learner. To demonstrate the

versatility of our method, we implemented two variants of it. The first was designed for

continuous Y and implemented in MATLAB R2023b (with statistics and machine learning

toolbox). We selected a simple design, i.e., OLS regression, as the underlying learning algorithm.

We set the number of resamples for binomial test to be 1,000, leading to a computational

overhead of about 20 seconds per simulation run on a laptop computer with Apple M2 CPU and

8GB RAM. For the number of waves taken as input, we set m = 3 (i.e., the first three waves), the

minimum value that satisfies the identification requirement of our method while providing a

conservative estimate of its statistical power. For the uncertainty threshold h (i.e., the maximum

difference in prediction between the two models for an unlabeled data point to be added to the

labeled set, see Equation 24), after testing a wide range of threshold values, we found that the

output of our method is insensitive to the threshold setting as long as it is neither too large – so as

to allow all unlabeled data to enter the labeled set at once – nor too small to permit any unlabeled

data point into the labeled set. Due to this finding, we set the threshold to a constant of h = 0.1,
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which is about 10% of the standard deviation of the label (i.e., Y ).

Since the OLS regression algorithm relies on a linear model and our data-generating

process is also linear, concerns may arise regarding a potential unfair advantage due to their

inherent consistency. To address these concerns, we implemented a variant of our method using a

nonlinear learning model. Specifically, for the underlying base learner in self-training, we

employed the support vector machine (SVM; Cortes & Vapnik, 1995) algorithm with a

polynomial kernel of degree 3 (i.e., a cubic kernel SVM).

Given the significantly higher computational overhead of SVM, we implemented this

variant in Python using the scikit-learn (Pedregosa et al., 2011) machine learning library. We

adhered to the default settings of scikit-learns LIBSVM implementation (Chang & Lin, 2011) for

all SVM parameters, including the kernel configuration (i.e., in function sklearn.svm.SVC).

For the uncertainty threshold h in the self-training algorithm, we used the default value for the

threshold parameter in sklearn.semi_supervised.SelfTrainingClassifier.

Apart from the use of SVM as the base learner, all other design elements were identical to the

OLS implementation, except for an additional input data normalization process required for the

SVM implementation. Specifically, Y was converted to binary values (using median

dichotomization), and X was normalized to the range [−1, 1] (through min-max scaling) to

account for SVM’s sensitivity to input feature scaling (Chang & Lin, 2011; Tax & Duin, 2004).

To accommodate the computational demands of the nonlinear SVM algorithm and the

large number of simulation runs required for the main study, this implementation was executed on

Amazon Web Services (AWS) Batch using Elastic Container Service (ECS) clusters configured

with 256 virtual CPUs, provisioned and scaled automatically using AWS Fargate. With the same

number of resamples (1,000) as the OLS implementation, the SVM variant completed each

simulation run in approximately 30 seconds on the AWS cluster.

Simulation Results

For the main study, Table 2 presents the statistical power achieved by our method under a

significance level of α = .05 for all simulation settings with β > 0. For settings where β = 0

(highlighted in gray), the table reports the Type I error rates. Each cell in the table is based on
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1,000 independent runs of our method. Note that results for the nonlinear SVM-based

implementation are included only for N = 1000, as the SVM-based implementation required

more than 500 samples to consistently converge to reliable predictions.

We can draw three key observations from the table. First, regarding Type I error rates

(highlighted rows with β = 0), our method consistently remains below 0.075 across all simulation

conditions, aligning with Bradley’s (1978) liberal robustness criterion. This demonstrates the

robustness of our method against finding spurious reverse causal effects.

Second, note that the top six rows of Table 2, along with the highlighted rows, represent

simulation conditions where X and Y exhibit a unidirectional relationship. The statistical power

achieved by our method in these scenarios highlights its effectiveness in identifying the direction

of a unidirectional effect – a critical use-case for our method when competing theories stipulate

different causal directions between X and Y . For example, Rows 3-6 show that, when β ≥ 0.2,

the OLS implementation of our method achieves statistical power exceeding 0.97 when N ≥ 500,

while the SVM implementation achieves the same when N = 1000.

Third, the statistical power of our method is influenced by three key factors. One factor is

N , the input sample size. Larger sample sizes significantly improve statistical power. For

example, when β = 0.3 and γ = 0, the OLS implementation achieves a statistical power of only

0.44 with N = 100 but exceeds 0.99 when N ≥ 500. Another factor is β, the cross-lagged

parameter representing the strength of the reverse causal effect. When γ = 0 (i.e., unidirectional

effect), larger β values correspond to higher statistical power. For instance, with N = 250 and

γ = 0, the OLS implementation achieves a power of 0.19 at β = 0.1, increasing to 0.77 at

β = 0.3, and exceeding 0.99 for β ≥ 0.4. The SVM implementation exhibits a similar trend. The

final factor is γ, the strength of the causal effect X → Y . The impact of γ on statistical power

varies depending on other parameters. For example, when β = 0.5 and N = 1000, a stronger

forward effect of γ = 0.5 can obscure reverse causality, reducing power from 1.00 at γ = 0 to

0.86 at γ = 0.5. Conversely, when γ and β are smaller yet closer in magnitude (e.g., γ = 0.2,

β = 0.2, N = 250), γ could potentially enhance power, increasing it from 0.30 at γ = 0 to 0.67 at

γ = 0.2. This increase can be attributed to the technical design of the two-step self-training
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algorithm in our method. Specifically, in situations where the causal effect X → Y is nonexistent

(i.e., γ = 0), the initial step of self-training, which learns from the labeled set only, is destined to

yield highly inaccurate predictions. In such scenarios, particularly with smaller sample sizes, it

becomes challenging for the subsequent step (of learning from the unlabeled set) to significantly

enhance predictive accuracy even in the presence of reverse causality. Therefore, a larger γ value,

which improves the accuracy of the initial step, also tends to boost the statistical power.

Interestingly, the negative impact of γ on the statistical power of our method appears more

pronounced in the SVM implementation compared to the OLS implementation. For example,

with N = 1000, the OLS implementation maintains a statistical power of at least 0.70 for

β ≥ 0.2, regardless of γ. In contrast, the SVM implementation’s power drops from 1.00 at γ = 0

to 0.43 at γ = 0.5 for β = 0.5. We attribute this discrepancy to SVM’s sensitivity to feature

scaling (Tax & Duin, 2004) and vulnerability to outliers (Debruyne, 2009), both of which are

exacerbated at larger γ.

Table 3 summarizes the results of the follow-up simulation study comparing the Type I

error rates of RI-CLPM and the OLS implementation of our method8. Following Mulder and

Hamaker (2021), RI-CLPM was implemented using default settings in Mplus9. The results reveal

that RI-CLPM frequently identifies spurious reverse causal relationships, with Type I error rates

reaching 0.88 when N = 1000 and γ = 0.5. In general, RI-CLPM’s Type I error rate increases

with larger N and higher γ. In contrast, our method maintains a Type I error rate below 0.05

across all conditions, again aligning with Bradley’s (1978) liberal robustness criterion and

demonstrating an advantage of our method over CLPM and its variants, which are known to find

spurious cross-lagged effects (Lucas, 2023).

A Case Study

We applied our method over a real-world panel dataset to demonstrate its value for reverse

causality testing in practice. Specifically, we examined the relationship between work-family

8 We also ran the SVM implementation and found qualitatively identical results.

9 We also implemented RI-CLPM in R with the lavaan package, replicating the setup from Mulder and Hamaker

(2021). Results were consistent with those reported in Table 3.
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conflict (WFC) – i.e., “a form of inter-role conflict in which the role pressures from the work and

family domains are mutually incompatible in some respect” (Greenhaus & Beutell, 1985, p. 77) –

and job satisfaction (JAS) – i.e., the “overall evaluative judgement one has about ones job” (Judge

et al., 2017, p. 357). We chose this focal relationship for two main reasons. First, like many

constructs in industrial-organizational psychology, it is often practically difficult, if not ethically

dubious, to manipulate WFC or JAS in a randomized controlled trial. Second, whereas a robust

correlation between WFC and JAS has been widely recognized (Allen et al., 2020; Amstad et al.,

2011), there are ongoing debates about the causal direction between the two constructs. Some

posit a unidirectional effect of WFC negatively affecting JAS (e.g., Allen et al., 2020; Amstad

et al., 2011; Kossek & Ozeki, 1998). Others contend that the causal influence flows in the

opposite direction, as higher JAS leads to greater work-life balance and, correspondingly, lower

WFC (Landolfi et al., 2022). Yet others suggest the existence of reciprocal effects, with WFC and

JAS affecting each other over time (e.g., Demerouti et al., 2004). Given these varied viewpoints,

we sought to apply our method to empirically test the existence of causal effect in either direction.

Data

We drew from the Swiss Household Panel (SHP; Voorpostel et al., 2023) to examine the

WFC-JAS relationship. The SHP began in 1999 with a nationally representative sample of 5,074

Swiss Households, introducing supplementary samples in 2004 (addition of 2,537 households),

2013 (addition of 3,989 households), and 2020 (addition of 4,380 households; Voorpostel et al.,

2023). All household members aged 14 and above are surveyed annually via telephone and

written surveys. We mirrored the timeframe used in prior work on CLPM and analyzed data

collected in Waves 6 through 9 (i.e., the annual surveys between 2004 and 2007; Ozkok et al.,

2022). We excluded participants who did not work or who did not complete a single survey in our

timeframe, resulting in N = 7,748. Participants (51.55% women, 48.45% men) were on average

39.28 (SD = 14.50) years old. On average, participants had 12.98 (SD = 3.20) years of education.

In the case study, WFC was measured by a single item on a 11-point Likert scale (0 = not

at all, 10 = very strongly). The item read “How strongly does your work interfere with your

private activities and family obligations more than you would want this to be?” JAS was measured
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by a six-item measure created for the SHP on a 11-point Likert scale (0 = not at all satisfied, 10 =

completely satisfied). The lead-in to the items was “Can you indicate your degree of satisfaction

for each of the following points?” Sample items include “your job in general” and “the amount of

your work.” The internal consistency for the four waves was .78, .78, .79, and .79, respectively.

Results

In terms of algorithmic implementations, we used the same implementations (OLS and

SVM) as the simulation study, and set the number of resamples to 10,000 and 100, respectively.

Note that we intentionally set the number of resamples for the OLS implementation to be much

higher than required in order to support a detailed analysis described later. With either

implementation, we first tested the presence of WFC→ JAS by setting the self-training algorithm

to predict WFC from JAS, before testing the presence of JAS→WFC by setting the self-training

algorithm to predict JAS from WFC. For the OLS implementation, self-training was effective for

predicting WFC from JAS in 5,743 out of 10,000 resamples (one-tailed binomial exact test with

π0 = 0.5: p < 10−6), and was effective for predicting JAS from WFC in 5,006 out of 10,000

resamples (one-tailed binomial exact test with π0 = 0.5: p = 0.4562). For the nonlinear SVM

implementation, the results were consistent with the OLS implementation. Specifically, for the

prediction of WFC from JAS, self-training was effective in 67 out of 100 iterations, leading to a

p-value of p < 0.0005. On the flip side, when predicting JAS from WFC, self-training was

effective only in 37 out of 100 runs10, leading to a p-value of p = 0.9967. In sum, the results

suggest that work-family conflict influences job satisfaction, but not vice versa.

To further inspect why semi-supervised learning succeed in predicting WFC but not JAS,

we examined how its effectiveness depends on the small labeled set, which is the only

information source about Y that semi-supervised learning receives. Recall from the design of

self-training that, if the distribution of X reveals signals about the X-Y relationship, we would

expect self-training to be more effective when the labeled set is a more representative sample of

10 Note that this means the use of unlabeled set actually increased predictive error in the majority (63%) of runs,

likely due to the aforementioned sensitivity of SVM to outliers in the (uninformative) unlabeled set (Debruyne, 2009).
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the full dataset. This is because, when the labeled set is a severely biased sample, say featuring

only a single value of Y , then self-training would stand no chance in becoming effective, as it

would not even know what the other values of Y might be.

To inspect how the effectiveness of semi-supervised learning varies with the bias of

labeled sample, we leveraged the 10,000 resample runs executed for the OLS implementation.

Specifically, we sorted all runs according to the distributional distance (as measured by

Kolmogorov-Smirnov test statistic; Daniel, 1990) between the labeled set and the full dataset,

before stratifying them into 10 equi-sized bins (i.e., each containing 1,000 runs) according to the

sorted order and calculating the average effectiveness of semi-supervised learning for each bin as

measured by the fraction of runs that improve predictive accuracy minus the fraction of those that

reduce accuracy. As discussed before, if self-training were ineffective, we would expect the

average effectiveness measure to hover around zero for all ten bins. In contrast, if self-training

were effective, we would expect the average effectiveness to be high when the distributional

distance is small, and gradually decrease when the distributional distance becomes larger.

As can be seen from Figure 2, when self-training is used to predict WFC (i.e., to test the

presence of WFC→ JAS), there is a clear, negative, correlation between its effectiveness and the

distributional distance. In contrast, such correlation disappears in the prediction of JSA (i.e.,

testing of JAS→WFC), as the effectiveness of self-training hovers around zero regardless of the

distributional distance. This clearly shows that, whereas the distribution of JSA reveals valuable

signals for predicting WFC – meaning that WFC may have a causal effect on JAS – the

distribution of WFC carries no information for predicting JAS, suggesting that the causal

direction is unlikely to flow from JAS to WFC.

General Discussion

In this section, we first discuss the research implications of our new method. We then

review the limitations of our method and the future research needed to address them.
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Research Implications

For testing reverse causality, the main research implication of our semi-supervised

learning based method is its ability to identify causal directions without presuming distributional

or functional features of the data-generating process. Our method achieves this by leveraging

recent advances in machine learning that directly link the causal direction with the effectiveness

of semi-supervised learning. A unique feature of our method is that it is an umbrella algorithm

independent of the underlying learning algorithm, which can be any algorithm for supervised

learning. As such, researchers can freely choose a learning algorithm that fits the type and scale

of their data before using our method for causal identification.

More broadly, the main research implication of our work is its transfer of insights of

causal learning (Peters et al., 2017), in particular Schölkopf et al.’s (2012) seminal finding that

links causal direction with the effectiveness of semi-supervised learning, into the methodological

arsenal of causal inference in psychology. Whereas most existing work in causal learning –

perhaps owing to the disciplinary focus of machine learning – leverages this link to explain

(Schölkopf et al., 2012) or improve (Kügelgen et al., 2019) the performance of machine learning

algorithms, our contribution is to demonstrate that the exact same link can be used to develop a

concrete method for identifying reverse causality, addressing long-standing challenges in the

analysis of longitudinal data in psychology and other disciplines.

Limitations and Future Directions

Capability of Semi-Supervised Learning

The statistical power of our method depends on the capability of the semi-supervised

learning algorithm in approximating the functional relationship between X and Y . On the one

hand, this allows our method to generalize beyond linearity to allow nonlinear X-Y relationships.

On the other hand, it also brings about the limitation that, if the semi-supervised learning

algorithm being used cannot effectively approximate a nonlinear relationship between X and Y ,

our method may generate Type II errors.

In the main simulation study in our current work, we employed a linear model (i.e.,
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CLPM) as the underlying data-generating process. This choice allowed us to concentrate on the

overarching design of our method rather than on fine-tuning the underlying learning algorithm,

given that even a simple algorithm (like OLS) would likely suffice for a linear relationship.

Nonetheless, although the theoretical foundations of our method extend readily to more complex,

nonlinear relationships between X and Y , we did not evaluate the performance of our method in

the presence of such relationships. As a natural next step, future research could provide a

comprehensive empirical assessment of the statistical power of our method across a wider range

of data-generating processes, encompassing both linear and nonlinear scenarios beyond those

considered in this study. Additionally, exploring various underlying learning algorithms and other

semi-supervised learning designs will be valuable for capturing the inherent complexity of

nonlinear relationships between X and Y .

In the longer term, recent advancements in machine learning offer two key insights. First,

there are semi-supervised learning algorithms that offers universal approximation (Goodfellow

et al., 2016), meaning that they are theoretically capable of approximating any arbitrary function

in a Euclidean space. Examples include the use of our method (i.e., self-training) with deep

neural networks (Hornik et al., 1989) or variational Gaussian processes (Tran et al., 2016) as the

underlying learning algorithm. Second, unfortunately, one would have to restrict the type of

relationship between X and Y in order to translate such theoretical feasibility into any practical

guarantee. To understand why, consider a stylized example where Y is the encrypted value (i.e.,

ciphertext) of X based on a secret key. Theoretically, it is feasible for a machine learning

algorithm to eventually learn how to predict Y from X . In practice, doing so constitutes a

brute-force ciphertext-only attack against the encryption algorithm, which is commonly believed

to be practically infeasible (Goldreich, 2004).

Leveraging Other Advances in Machine Learning

A central premise of our method is the link between causal direction and the predictive

accuracy of machine learning algorithms. When the causal direction flows only from X to Y (i.e.,

X → Y ), the distribution of X would reveal no information about the X-Y relationship,

rendering semi-supervised learning ineffective.
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Following the same logic, causal direction could also affect the effectiveness of machine

learning algorithms besides semi-supervised learning. For example, a common generalizability

issue facing supervised learning, covariate shift (Sugiyama et al., 2007), arises when a machine

learning model degrades in predictive accuracy because of the distributional differences in

predictor variables (i.e., X) between the training dataset and the dataset actually in need of

prediction. As discussed before, it would be impossible for covariate shift to arise if the causal

direction flows only from X to Y because, in this case, a change of X’s distribution should have

no bearing on the X-Y relationship. In machine learning, Kügelgen et al. (2019) leveraged this

property to address the degradation of predictive accuracy caused by covariate shift. Similarly,

future research could examine the use of covariate shift or, more broadly, the generalizability of

supervised learning models to help identify the causal relationship between X and Y .

Integration of Our Method with Existing Methods

A key feature of our method is robustness to model misspecification, as it imposes no

restrictions on the functional form of the data-generating process (e.g., linearity or the addition of

independent noise). This flexibility minimizes the risk of spurious discoveries, such as the

incorrect inference of reverse causality, caused by inappropriate model specifications or

dependency structures. However, a notable limitation of our method lies in its relatively weak

statistical power. For instance, our simulations demonstrate that it may struggle to detect reverse

causality when the sample size is small. As such, our method may be better suited to larger

datasets (e.g., with N > 500).

These characteristics make our method a valuable complement to existing approaches,

such as additive noise models and direction dependence analysis, which can be sensitive to model

misspecifications (e.g., Schultheiss & Bühlmann, 2024; Thoemmes, 2015). For example, while

existing methods may not be ideally suited for exploratory investigations into causal directions

between variables (Wiedermann & von Eye, 2015), our method can serve this purpose effectively.

Researchers could first employ our approach as an exploratory tool to identify promising

relationships. Subsequently, they may leverage existing methods to conduct confirmatory

analyses of those relationships supported by robust theoretical formulations but not identifiable
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through our approach (e.g., in cases where neither X → Y nor Y → X is detected).

Our method can also be seamlessly integrated with panel models such as CLPM and its

variants. To illustrate, applying our method to infer the causal direction between X and Y could

result in one of four possible outcomes: 1) the detection of Y → X but not X → Y , 2) the

detection of X → Y but not Y → X , 3) the detection of both X → Y and Y → X , suggesting

reciprocal relationships or the potential existence of an unobserved confounder, and 4) the

detection of neither X → Y nor Y → X . With the first two outcomes, our model informs the

model specification for CLPM, as researchers could choose to remove the cross-lagged effect

inconsistent with the outcome of our method. An important future direction for research is to

study whether causal learning could be used not only for identifying the causal direction (as in

our work) but also for estimating the temporal lag of an effect, which would further improve the

model specification for CLPM. The third outcome could prompt researchers to consider panel

models that allow for certain types of latent confounders – e.g., the random-intercept CLPM

(RI-CLPM; Hamaker et al., 2015), which models time-invariant confounders, or Latent Curve

Models with Structured Residuals (LCM-CR; Curran et al., 2014), which models time-varying

confounders with patterns such as autoregressive structures. Finally, as discussed earlier,

researchers facing the fourth outcome could consider the use of existing confirmatory methods,

e.g., additive noise models and direction dependence analysis, to identify the causal direction.

Conclusion

In conclusion, our work proposes a novel method that integrates machine learning and

reverse causality testing. Through mathematic analysis, simulation studies, and a case illustration,

we demonstrates the effectiveness of this method. We hope this approach inspires future research

to more strongly embrace the advancements in computer science and machine learning to enrich

the methodological toolkit of psychological sciences.
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Algorithm 1: Reverse Causality Testing Using Self-Training
Data: A longitudinal dataset D = {⟨xi1, yi1, . . . , xim, yim⟩|i ∈ [1, n]}

Input: Uncertainty threshold h; Number of iterations r; A base supervised learner Γ that

outputs f̂ : X → Y from an input labeled dataset

Result: p-value from binomial exact test (with π0 = 0.5)

1 c← 0;

2 for r iterations do

3 Randomly permute the order of all n data points in D;

4 Dlb ← {⟨xi2, . . . , xim, yi1⟩|i ∈ [1, m]};

5 Dul ← {⟨xi2, . . . , xim⟩|i ∈ [m + 1, n]};

6 f0 ← Γ(Dlb);

7 repeat

8 Remove the (m− 1)-th column (i.e., x·m) from Dlb to form D1
lb = {⟨xF

i , yi1⟩};

9 Remove the first column (i.e., x·2) from Dlb to form D2
lb = {⟨xL

i , yi1⟩};

10 f1 ← Γ(D1
lb); f2 ← Γ(D2

lb);

11 Dlb ← Dlb ∪ {⟨xi, (f1(xF
i ) + f2(xL

i ))/2⟩|xi ∈ Dul, |f1(xF
i )− f2(xL

i )| ≤ h};

12 Dul ← {xi|xi ∈ Dul, |f1(xF
i )− f2(xL

i )| > h};

13 until Dlb and Dub remain unchanged;

14 fssl ← Γ(Dlb);

15 if fssl has a smaller mean squared error over D than f0 then

16 c← c + 1;

17 end

18 end

19 return
∑r

i=c

(
r
i

)
· 0.5i · 0.5r−i

Table 1

Pseudocode for Reverse Causality Testing with Continuous Variables
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OLS SVM
β γ N = 100 N = 250 N = 500 N = 1000 N = 1000
0.0 0.0 0.005 0.003 0.037 0.000 0.017
0.1 0.0 0.006 0.188 0.335 0.448 0.518
0.2 0.0 0.091 0.301 0.976 0.972 1.000
0.3 0.0 0.440 0.774 0.998 1.000 1.000
0.4 0.0 0.593 0.999 0.999 1.000 1.000
0.5 0.0 0.820 1.000 1.000 1.000 1.000
0.0 0.1 0.001 0.058 0.002 0.000 0.032
0.1 0.1 0.000 0.018 0.557 0.421 0.542
0.2 0.1 0.092 0.636 0.800 0.719 1.000
0.3 0.1 0.362 0.589 0.988 0.986 1.000
0.4 0.1 0.503 0.994 0.998 1.000 1.000
0.5 0.1 0.856 0.908 1.000 0.999 0.990
0.0 0.2 0.073 0.000 0.013 0.000 0.018
0.1 0.2 0.012 0.073 0.469 0.886 0.546
0.2 0.2 0.202 0.669 0.763 0.982 1.000
0.3 0.2 0.373 0.793 0.833 0.997 1.000
0.4 0.2 0.618 0.990 0.995 1.000 0.986
0.5 0.2 0.731 0.943 0.935 0.992 0.841
0.0 0.3 0.050 0.000 0.071 0.007 0.036
0.1 0.3 0.004 0.179 0.702 0.575 0.487
0.2 0.3 0.157 0.311 0.586 0.816 1.000
0.3 0.3 0.306 0.816 0.999 0.961 0.997
0.4 0.3 0.373 0.855 0.979 0.998 0.909
0.5 0.3 0.309 0.879 0.914 0.975 0.510
0.0 0.4 0.000 0.004 0.001 0.037 0.048
0.1 0.4 0.008 0.052 0.323 0.475 0.456
0.2 0.4 0.277 0.320 0.688 0.933 1.000
0.3 0.4 0.446 0.615 0.896 0.939 0.993
0.4 0.4 0.401 0.726 0.882 0.863 0.725
0.5 0.4 0.475 0.575 0.838 0.792 0.370
0.0 0.5 0.058 0.057 0.040 0.001 0.037
0.1 0.5 0.003 0.018 0.144 0.343 0.504
0.2 0.5 0.255 0.429 0.648 0.740 0.997
0.3 0.5 0.240 0.501 0.931 0.930 0.966
0.4 0.5 0.243 0.486 0.704 0.879 0.668
0.5 0.5 0.590 0.347 0.840 0.856 0.432

Table 2

Type I Error Rate and Statistical Power of Our Method in the Main Simulation Study
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γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

RI-CLPM

N = 100 0.055 0.077 0.099 0.139 0.186

N = 250 0.066 0.096 0.174 0.262 0.352

N = 500 0.073 0.148 0.277 0.445 0.614

N = 1000 0.106 0.254 0.478 0.713 0.883

Our Method

N = 100 0.001 0.002 0.012 0.006 0.002

N = 250 0.001 0.000 0.004 0.004 0.013

N = 500 0.022 0.055 0.038 0.022 0.018

N = 1000 0.003 0.015 0.012 0.007 0.016

Table 3

Type I Error Rate of RI-CLPM and Our Method under STARTS model
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Figure 1

Illustrative Example for Y → X

Note. Both panels depict the probability density function of P (X) when X = αY + ϵ, where Y follows

Bernoulli distribution with p = 0.5 and ϵ ∼ N(0, 1). Note that, in either case, P (X) follows a Gaussian

mixture distribution with two equal-weight components, which are illustrated in red dashed lines. The

mean difference between the two Gaussian components is always equal to α, suggesting that the functional

relationship between X and Y can be precisely inferred from P (X).
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Figure 2

Relationship between Effectiveness of Self-Training and Representativeness of Labeled Set

Note. WFC = work-family conflict. JSA = job satisfaction. Source: Swiss Household Panel (SHP).
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