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Curves formed by colonies of micro-organisms growing
on a plane surface

By AGNES H. WADDELL.

Introduction.

In many cases, when a colony of micro-organisms such as moulds,
yeasts or bacteria grows on the plane surface of a solid medium (e.g.
agar), starting from a single cell, the colony tends to grow as an ever
expanding circle. The reason for this is that every cell, if free from
competition, can multiply at roughly a constant rate in all directions
in a plane, limited by the fact that territory occupied by one cell
cannot be occupied by another. For the purposes of the present
discussion, we can assume, as a first approximation, that the whole
process is two-dimensional.

It is a matter of common observation in bacteriology and
mycology1' a that occasionally a colony may show departure from a
circular shape, due to part of it (known as a sector) growing at an
obviously different rate from the rest. A sector originates when one
cell on the growing edge of the colony begins suddenly to multiply at
a faster rate than the remainder, an event due in some cases to
mutation. It is also often observed that when colonies, growing near
to one another in the same plane, meet, the boundaries between them
are generally of very regular shapes.

This paper studies the geometry of
(1) the intersection curves between colonies,
(2) the intersection curves between colonies and their sectors,
(3) the outer growing edge of colonies and sectors.
We find that the most general intersection curve between two

colonies consists of an arc of a Cartesian oval together with arcs of
equiangular spirals. In special cases, the Cartesian oval degenerates
into a hyperbola, a circle or a straight line; and the sector curve may
be considered as a special case in which the Cartesian oval arc is
absent. In the same way, we find that the outer growing edge of the
sector may be thought of as a special case of the more general outer

1 G. Pontecorvo and A. R. Gemmell, Nature, 154 (1944), pp. 532-531. " Colonies
of Penicillium Notatum and other moulds as models for the study of population
genetics."

2 L. B. Shinn, Journal of Bacteriology, 38 (1939), pp. 5-12. "Factors governing
the development of variational structures within bacterial colonies."
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edge and that both consist of a circular part together with parts of
involutes of the equiangular spirals.

Since this analysis does not appear to have been done before, it
is hoped that it may prove useful and be further developed in the
study of variation, and of interaction of variant forms, in micro-
organisms.

The writer wishes to acknowledge her indebtedness to Dr G.
Pontecorvo, of the Institute of Animal Genetics, University of Edin-
burgh, for having presented this problem to her, and for his advice in
the preparation of this paper. Also for the use of the photograph in
Figure 5, which shows a .sector in a colony of Penicillium notatum.
The dotted line in Figure 5 shows how the intersection curve
would have continued.

Figure I.

or—'*

General case.

Two colonies, (a) and (b), grow out from two different points 0 and
0' with different growth rates and beginning at different times. (See
Figure 1.)

Let the colonies meet at A, and let AQA' and AQ'A' represent
the subsequent boundary curve, which of course is symmetrical about
00'. We choose three convenient parameters which the biologist can
determine without difficulty, namely p, a and v where
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p = OA = radius of colony (a) at time of meeting,
ap = AO' = radius of colony (b) at time of meeting,

growth rate of colony (b)
v ~ growth rate of colony (a)'

Figure 1 is drawn for the case where a < 1, v > 1.
Let P be any point on the boundary curve, and let OP = r,

O'P = r', angle O'OP = 0.
The intersection curve is formed in two stages. At first the

growth of both colonies is radial, and we have

v — r'/r = dr'/dr. (1)

.•. vr — r' = constant = (v — a) p. (2)

This is the equation in bipolar coordinates of a quartic curve known
as a Cartesian oval1' * with O and 0' as two of its three foci.

Let Q, Q' be the points on the Cartesian oval such that O'Q and
O'Q' are tangents. After these points are reached, the growth of the
second colony is no longer radial, since cells on its outer edge begin
to grow round the arcs QR and Q'R'.

To locate the points Q, Q' where the change occurs, let
angle OQO' = a; and let <j> be the angle between OP and the tangent
at P to the boundary curve.

Then we know that
cos <j> — dr/ds, (3)

and a t the point Q,
<f> = a, and ds/dr'= 1. (4)

Hence, from (4), (3) and (1)

sec a = dr'/dr = v. (5)

This determines a and the boundary curve follows the Cartesian
oval until angles OQO' and OQ'O' reach this value. (Here we have
assumed that v > 1. If v < 1, OQ instead of O'Q is tangential when
COS a = V.) - . .

Let OQ = ru O'Q = r{, angle QOO' = 02; and let O'M be the per-
pendicular from 0' to OQ. From triangle OQO', we have

r\ + r{2 - 2rj r\ cos a = OO'2.

.-. rl + r'1*-2r1r[!v=p2(l + a)2. (6)

1 A. B. Basset, Elementary Treatise on Cubic and Quartic Curves, Cambridge, 1901,
p. 172.

2 H. Lamb, Infinitesimal Calculus, Cambridge, 1921, p. 320.

https://doi.org/10.1017/S0950184300000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0950184300000203


CURVES FORMED BY COLONIES OF MICRO-ORGANISMS 17

Also, from equation (2),

r'x=p (v -a). (7)

Eliminating r\, we obtain

r\ (v* - 1) - ^ ^ (v -a) («2 - 1) + p*[ (v - af - (1 + a)2] = 0. (8)

Also, using equations (5) and (7),

i = = ( 9 )

0 0 ' p ( l + a) «2>(l + a) w ( l + a ) w

The larger of the two roots of equation (8) gives the^correct value for
OQ. This can be verified by applying the sine formula to triangle
OQO' in which By and a have already been determined.

After Q and Q' are reached, we have in place of equation (1)

v = s/r = ds/dr = sec 0.1
Hence <f> = constant = a, '
which shows that QRA' and Q'R'A' are equiangular spirals1 round 0.
Their polar equations are

r = flC(±«-e.)oot.j where sec a = v. (11)

(If v < 1, the spirals will be described round 0'.)

Special Cases.

1. Two colonies grow out from 0 and 0' at the same rate but beginning
at different times.

In this case, v = 1, and equation (2) becomes

r-r' = (l-a)p. (12)

Hence P traces out one branch of a hyperbola with foci at 0 and 0'.
If a< 1, it is the branch nearest O' (see Figure 2), since r — r' is
always positive.

The right side of equation (12), taken positively, gives the length
of the transverse axis of the hyperbola. If we call it 2 A, and call
the eccentricity e, we have

2A = \l-a\.p,

and 2Ae = 00' = (1 + a) p.

Hence e = (1 + a) / | 1 - a |, (13)

and if 2 a) is the angle between the asymptotes,

coso)= l/e = | l - a | / ( l + o ) . (14)

1 H. Lamb, Zoc. eit., p. 307.
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Putting t; = 1 in equations (5), (8) and (9), we find a = 0, infinite
roots to equation (8) and cos dx = (1 — a) / (1 + a). Hence for the
hyperbola, u> corresponds to 9X in the general case.

2. Two colonies grow out from O and 0' at different rates but beginning
at the same time.

In this case, a = v and Figure 3 is drawn for a = v < 1. Equation
(2) becomes

rt/r = v. (15)
The curve QAQ' is therefore an arc of a circle (the Circle of Apollonius).
I t can easily be shown that the circle has its centre at C where

OC = ———, and that its radius is ——. 0 and 0' are inverse points
1 — v 1 — v

with respect to the circle; hence, if OQ and OQ' are tangents to the
circle, angle OO'Q is a right angle. The values of 0X and rx are then
easily obtained.

As in the general case, the mode of growth changes when Q and
Q' are reached and the curve continues as an equiangular spiral round
O'. Its equation is

r'==r'1e<±-('-wJ)cot«j ( 1 6 )

where ip = angle A'O'R and cos a = v.

3. Two colonies grow out from 0 and 0' at the same rate and beginning
at the same time.

Here, equation (2) becomes r = r'. Thus, the boundary curve is
the straight line through A perpendicular to 00'. (See Figure 4.)

4. Sector.
We now consider a final special case which occurs when 0' lies on

the circumference of colony (a), and where the new growth then
begins from 0' at a greater rate than that of colony (a). (See Figure
5.)

Here, v > 1 and a = 0. Equations (10) of the general case apply
to the whole of this boundary curve which is therefore made up of
two equiangular spirals round O with equations

r = ^e i*c o t a , where sec a = v. (17)

The outer growing edge.
A study of the form of the outer growing edge of colony (b) for

the general case gives the following results:
Until the points Q and Q' are reached, the growing edge of colony
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(6) is a circle or part of a circle, centre 0'. Thereafter, it consists of
part of a circle together with parts of involutes of the equiangular
spirals QBA' and Q'B'A'. Figure 6 shows this in successive stages,
the colony (a) with the smaller growth rate being ultimately
swallowed.

When the point B has been reached on the spiral QBA',
the boundary fc2 of (b) consists of a circular arc TS (radius
O'S = O'Q + arc QB) together with a portion SB. The latter is an
involute of QB since the tangent UV is equal in length to the arc VB.

The angle subtended at 0' by the circular parts remains constant
after Q and Q' are reached. In the special cases 1 and,3 (Figs. 2 and

Figure (o.

utan^uW spiral.

4), the points Q and Q' are never reached; hence the growing edges
remain circular. In the special case 4 (Fig. 5), Q and Q' coincide with
0' and the angle subtended at O' by the circular part = the angle of
intersection of the equiangular spirals at 0' = 2 a.

It can be shown without difficulty that the intrinsic equation of
the involute curve is of the form

s = r1 sec ae('=-(-)BU [̂  - tan a (I — e-*™'*)],

where 02 = O'OB; and that, referred to rectangular axes through 0,
the involute through B has the parametric equations

x = r cos 0 + s cos (6 + a), y = r sin 9 + s sin (6 + a),

where r, 6 and s refer to the equiangular spiral, that is,

r = r1 e(»-«.>cot", s = (r2 — r) sec a, rx = OQ, r2 = OB.
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