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Abstract

Epistemic uncertainties are included in probabilistic risk assessment (PRA) as second-order
probabilities that represent the degrees of belief of the scientists that a model is correct. In
this article, I propose an alternative approach that incorporates the scientist’s confidence in
a probability set for a given quantity. First, I give some arguments against the use of precise
probabilities to estimate scientific uncertainty in risk analysis. I then extend the “confidence
approach” developed by Brian Hill and Richard Bradley to PRA. Finally, I claim that this
approach represents model uncertainty better than the standard (Bayesian) model does.

1 Introduction
The assessment of natural hazards is subject to two types of model uncertainty. On
one hand, there are structural uncertainties, which concern the form of the equations
used to model natural phenomena (e.g., uncertainty whether all the relevant
explanatory variables have been included in the model). On the other hand, there are
parametric uncertainties, which concern the value of the parameters in these
equations (e.g., uncertainty if the values of these parameters have been measured
correctly). Both these uncertainties are typically due to a shortage of data: historical
catalogs of rare and extreme natural events (such as strong earthquakes, volcanic
eruptions, and tsunamis) often comprise only a few centuries of recordings, whereas a
complete validation of natural hazard models would require thousands of years of
data. This last point deserves some emphasis: given that the “true” data-generating
processes are unknown, epistemic uncertainties are often severe, that is, they cannot
be quantified probabilistically in any meaningful way.

The target of this article is the current practice in probabilistic risk assessment
(PRA) to include these uncertainties as probabilities defined over an ensemble of
models. Probability theory is used twice in PRA: first, to quantify uncertainties that
are due to the intrinsic randomness of natural phenomena (first-order uncertainty),
and second, to quantify the uncertainty about these first-order estimates (second-
order uncertainty). These second-order probabilities often reflect the judgments a
panel of experts gives that evaluate each model’s reliability in a specific case. Given
our remarks about severe uncertainty, these probabilities are interpreted as the
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subjective degrees of belief of the experts that the model is correct rather than as the
objective probability that the model is the correct one. The overall hazard is
expressed by the frequency of exceedance of an adverse event. This frequency is
calculated as the weighted average of the estimates that the models produce, with the
weights corresponding to these models’ probabilities.

I propose an alternative approach that incorporates the scientist’s confidence in a
probability set for a given quantity. My proposal extends the “confidence approach”
formulated by Hill (2013, 2019) and developed by Bradley (2017) and Roussos, Bradley,
and Frigg (2021). This approach is promising for three reasons. First, it distinguishes
between the “weight of evidence” in favor of a forecast from the forecast itself. For
example, new data about frequent but low-intensity events can make experts more
confident that a particular model is correct, even though their best estimate of the
frequency of these events remains the same. Second, confidence levels (e.g., high,
medium, and low) are qualitative and are therefore distinct from degrees of belief.
This reflects the current practice of eliciting the individual judgments of experts as
qualitative assessments rather than as probabilities. Third and finally, the confidence
in a probabilistic forecast required for that probability to play a role in a decision
depends on what is at stake in that decision. This corresponds to how risk analysis,
and especially PRA, is currently practiced. Indeed, the evaluation of the models may
be influenced by practical goals and aims and does not depend merely on the
scientific accuracy of the models themselves.

I proceed as follows. In section 2, I introduce the method of logic trees for
estimating natural hazards. I then describe two alternative ways to include epistemic
uncertainties in PRA: the standard (Bayesian) approach (section 3) and the confidence
approach (section 4). The standard approach is bottom up: the degree of belief of the
experts that an estimate is correct is calculated by multiplying the weights that the
experts assign to the individual components of the models. The confidence approach
is top down: experts are tasked with assessing their confidence directly about the
frequency of the event of interest. In section 5, I show that these two approaches give
different results in a concrete case (the New Italian Seismic Hazard Map [MPS19]). In
section 6, I extend the confidence approach to PRA. I argue that model uncertainty
should be represented using confidence rankings with multiple foci and show that
this representation can be made consistent with both Hill’s and Bradley’s
formulations. In section 7, I compare the confidence approach with the Bayesian
approach. I claim that the confidence approach is the one that best represents model
uncertainty. Section 8 concludes the article.

2 Logic trees for estimating natural hazards
Epistemic uncertainties are included in PRA using logic trees (see, e.g., Baker, Bradley,
and Stafford 2021, sec. 6.7, 272–75).1 Setting up a logic tree requires two steps. (1) The
analyst selects all the models that can describe the area of interest, together with
different values for their parameters. This selection is often based on a literature
review, but recently, some studies have included models whose formulation was

1 Epistemic uncertainties are due to limited data or an insufficient understanding of natural and social
phenomena; by contrast, aleatoric uncertainties are due to the intrinsic variability of these phenomena.
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solicited directly for the study (Meletti et al. 2021). (2) Each model is assigned a weight,
expressed by a probability, that represents the analyst’s confidence that the model is
correct (Scherbaum and Kuehn 2011; Bommer 2012; Musson 2012).

Logic trees can be understood as representations of a sequence of modeling choices
(Kulkarni, Youngs, and Coppersmith 1984). The various stages in the construction of
the models are reflected in the order of the nodes. For example, a particular model is
selected, then all the values for its parameters are included. At each stage, the
probability assigned to a branch departing from the node corresponds informally to
the probability that the choice is correct conditional on the assumption that all
previous choices were correct. Figure 1 is a simplified logic tree. The logic tree
depicted in the figure includes two models. The weights assigned to these models are,
respectively, 0.6 and 0.4. The first model has a parameter a; the branches that depart
from the upper node represent three different choices for the value of a and their
weights.

In PRA, hazards are expressed as frequencies of exceedance,2 that is, the annual
probability of an event whose intensity exceeds a specific threshold at the site of
interest (e.g., 10 percent in 50 years, corresponding to a return period of 475 years3).
Each complete model, corresponding to a branch of the logic tree, calculates the
probability of exceedance of each intensity level in the range of interest included
between the minimum and maximum intensities that are considered for the study.
The overall hazard at the site is calculated using the total probability law as the sum
of all exceedance frequencies estimated by the models in the ensemble, each weighted
by the probability of the model.

Finally, logic trees can include both structural and parametric uncertainties. Let’s
give an example. It is usually assumed that earthquake magnitudes follow the

Figure 1. A simplified logic tree. Bi is the ith branch of the logic tree, w is weight, and a is the model
parameter.

2 In risk analysis, the hazard (the probability of an adverse event) is often distinguished from the
vulnerability (the probability of a loss were the adverse event to occur) and the exposure (the potential loss).

3 The return period of an event with a specific intensity is the converse of its frequency.
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Gutenberg–Ritcher distribution, according to which the number of events with
magnitude m in a specific area is 10a�bm, where a and b are constants (the “a-value”
and the “b-value,” respectively) that characterize the site. The b-value, in particular,
expresses the ratio between low-intensity and high-intensity seismic events.
However, some studies show that this equation does not always hold in the
proximity of faults. In this case, different equations have been used, for example,
characteristic earthquake models.4 If the analyst is uncertain about the geophysical
features of the site, and in particular, whether there are active faults, the logic tree
may include structurally different models, for example, a model that incorporates the
Gutenberg–Ritcher equation (model 1 in figure 1) and a fault-based model (model 2).
Among the models that do include the Gutenberg–Ritcher equation, there can be a
difference in the estimate of the b-value at the site (e.g., 0.9, 1, or 1.1), and these
different values can be included as branches of the logic tree.

3 Model ensembles and the use of experts in probabilistic risk assessment
The interpretation of the weights in the logic tree is Bayesian in two senses. First, the
weights represent “subjective estimates for the degree-of-certainty or degree-of-
belief—expressed within the framework of probability theory—that the correspond-
ing model is the one that should be used” (Scherbaum and Kuehn 2011, 1238). In larger
studies, these weights do not correspond to the judgments of a single analyst but
reflect the options expressed by a panel of experts.

The use of experts in PRA has been influenced mostly by a report of the US Senior
Seismic Hazard Analysis Committee (SSHAC) from 1997. This report distinguishes
between individual proponents, which formulate the models; experts, who evaluate
these models; and a “technical integrator” (TI) or “‘technical facilitator/integrator,”
who oversees the overall study. The SSHAC report also emphasizes that the weights
should be the product of a consensus among the experts on the panel (23, 25–26). The
report distinguishes between four types of consensus (from type 1 to type 4). What is
expected is that all experts agree that a particular composite probability distribution
represents them as a group (type 3) or, more weakly, that the distribution represents
the overall scientific community (type 4). It is not required, however, that each expert
believe in the same probability distribution for a random variable or model parameter
(type 2) or that each expert agree with all other experts that a given model or a given
value for a parameter is correct (type 1).

The report describes a three-stage procedure to achieve the required level of
consensus (Senior Seismic Hazard Analysis Committee [SSHAC] 1997, 23, table 3-1; see
also Budnitz et al. 1998; Kammerer and Ake 2010). In the selection phase, the TI
reviews the literature and selects the models that will be included in the study. In the
evaluation phase, the TI forms a panel of experts that evaluates the models. Scientists
can participate in the process in two roles, both as proponents (of their models) in the
first phase and as evaluators (of others’ models) in the second phase. Finally, in the
aggregation phase, the TI formulates the weights based on the judgments of the panel
of experts and builds the logic tree. The report stresses that, even though the

4 A characteristic earthquake model characterizes the seismicity of the site in terms of the periodic
occurrence of a single event with a specific intensity.
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individual scientists have scientific responsibility for their models, the TI has
responsibility for the final result (SSHAC 1997, appendix, 16).

The second sense in which the standard approach is Bayesian is that the weights of
the logic tree can be updated as new data are collected (Secanell et al. 2018). Given an
observation A consisting of recordings of the activity at the site (e.g., seismic activity)
in a specific interval of time (e.g., one year), the probability that the model that
corresponds to the i-th branch of the logic tree is correct can be calculated, using
Bayes’s law, by setting the prior probability Pr Bi� � to the weights elicited from the
experts, Pr�AjBi�, to the frequency of A calculated by the model, whereas Pr A� � is
treated as a normalizing factor calculated by the total probability law as the sum of
the probability of observing A if the model Bj is correct, weighted by the probability
that Bj is correct. The posterior probability that a model is correct given some set of
observations can be used to score the predictive power of the models with respect to
an independent set of data and conditional on the judgments of experts (Selva and
Sandri 2013). More in general, the posterior probability of each branch corresponds to
the degree of confidence that the experts should have that the model is correct in
light of the new data.5

The prior probabilities assigned to the models, on the other hand, have to be
precise. The reference value in engineering is indeed the mean hazard, which is the
easiest both to compute and to include in an analysis that compares the mean
economic losses (McGuire, Cornell, and Toro 2005). As Baker, Bradley, and Stafford
(2021, 276) recently noticed, “from a practical perspective, the mean hazard : : : is the
nearly universal choice for summarizing the results” of PRA. Mean hazards are the
sum of all the estimates vi a� � multiplied by the weight wi assigned to the branch Bi of
the logic tree, and the weight of each branch of the logic tree, corresponding to a
complete model, is calculated by multiplying the weights of its segments. Therefore
the experts should be able to express their evaluation of each subcomponent of the
different models by assigning a precise weight. Alternately, hazards are estimated
using a percentile (usually, the 85th or the 90th percentile) of the estimates produced
by the models in the ensemble (Abrahamson and Bommer 2005). Again, it is assumed
that the weights assigned to the models can be expressed as precise probabilities
(Musson 2005).

The use of precise probabilities to represent model uncertainty has, however,
become the subject of controversy, especially in the climate sciences. In particular,
the reports of the Intergovernmental Panel on Climate Change (IPCC) have gradually
shifted from expressing uncertainty in probabilistic terms to using qualitative levels
of confidence (Mastrandrea et al. 2011; Aven and Renn 2015; Wüthrich 2016). To
mention just one notable example, a guidance note for the IPCC Sixth Assessment
Report of 2021–23 (AR6) defined risk as a potential for adverse consequences
(Reisinger et al. 2020). These consequences include, for example, life losses; negative
economic and social impacts; economic losses; losses in infrastructure, ecosystems,
and species, and so on, whereas the word “potential” indicates uncertainty about
their realization. The note stresses that “the definition does not require the adverse

5 Notice that this is still rarely done in practice. By contrast, some recent PSHA assigns a weight that
combines the experts’ judgments with a scoring of the forecasting performance of the models with
respect to a set of independent data; see section 5.
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consequence or the degree of uncertainty or likelihood of those consequences to be
quantified” (8). On the contrary, AR6 adopts three different language scales to express
uncertainty about the estimates of these losses: an evidence/agreement scale (e.g.,
robust evidence, high agreement), a confidence scale (ranging from very low to very high),
and a likelihood scale (ranging from exceptionally unlikely to virtually certain). The
likelihood scale is explicitly tied to intervals of probabilities (e.g., very likely
corresponds to 90–100 percent probability). However, the guidance notes emphasize
that confidence should not be interpreted probabilistically (Janzwood 2020, 1657–58).
Climate projections are often similar to risk analysis insofar as historical data sets are
limited. However, the distinction between different scales for representing
uncertainty does not seem to have percolated into PRA. By contrast, model
uncertainties are still expressed in PRA exclusively as second-order probabilities.

The use of model weights can be defended in three ways. The first response is that
even if historical data are scarce, and so there is large epistemic uncertainty about
which model is correct, the weights can be precise because these weights correspond
to the experts’ estimates of their uncertainy. However, this response is unsatisfactory,
because the problem is exactly whether the available evidence allows precise
credences. The weights assigned by the experts may indeed be sensitive to available
evidence (Klügel 2011, 40). But as Bradley, Helgeson, and Hill (2017, 509) emphasized,
for example, “if [a person] has trouble forming precise first-order probabilities, why
would he have any less trouble forming precise second-order confidence weights?”

The second response is that the weights are a precise mathematical representation
of the experts’ credences, which can themselves be imprecise. Indeed, the experts on
the panel often provide only a qualitative assessment of the likelihood of the models
(Kammerer and Ake 2010). The precise weights are then inferred from these
judgments, and aggregators typically have some choice of how to represent them in
the form of a probability distribution (Marzocchi and Jordan 2017). This response is
standard in the literature on structured expert judgment elicitation (e.g., O’Hagan
et al. 2006). However, if the experts do not express probabilistic judgments, it is
arbitrary, to some extent, which probability corresponds to which level of confidence.
However, given that the overall hazard is calculated as the weighted average of the
estimates produced by the models in the ensemble, these choices can lead to either
overestimating or underestimating the hazard.

The third, and more promising, response concedes that the experts’ judgments
cannot indeed be precise while insisting, at the same time, that if epistemic
uncertainty cannot be reduced, then it must be communicated as part of the results of
the risk analysis. The first fact imposes limitations on how this uncertainty can be
represented. In particular, epistemic uncertainty should not be represented by
precise second-order weights but can be represented using imprecise probabilities. In
what follows, I present one such approach that incorporates the analyst’s confidence
that the “true” frequency lies within a given probability interval. My approach
extends Hill’s and Bradley’s “confidence approach.” This approach has already been
applied to clarify the relationship between qualitative and quantitative metrics in the
IPCC reports (Bradley, Helgeson, and Hill 2017; Helgeson, Bradley, and Hill 2018).
However, it has not yet been applied to PRA. My aim is to answer two questions:
(1) Can the confidence approach be applied to PRA? and (2) If so, does this approach
provide a better representation of model uncertainty than the standard one?
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4 Credences and confidence
In this section, I introduce the formal notion of confidence.6 My presentation follows
Hill (2013, 2019) and Bradley (2017). Confidence, as understood here, is a propositional
attitude, that is, an attitude that an agent can have toward a proposition. The
propositions that will be considered for our purposes are forecasts, which usually take
the form of probability judgments, that is, judgments that attribute a probability to an
event. The agent’s confidence in a probability judgment corresponds to “one’s
attitude of being more or less sure of one’s belief” (Hill 2019, 4).

Confidence must be distinguished from the forecasts themselves. The latter estimate
the objective probability or chance of an event (e.g., the probability of an event whose
intensity exceeds a specific threshold), whereas the former captures the experts’
individual or collective attitudes. Confidence should also be distinguished from second-
order probabilities. The latter are representations of confidence as a numerical degree
of belief. If such a representation is not warranted, as argued earlier, then one can
either renounce the notion of confidence altogether or consider an ordinal notion, that
is, a confidence relation that induces an order on the set of probability judgments
without assigning a second-order probability to these judgments.

Hill (2013, 2019) formulates an ordinal notion of confidence. Hill proposes that the
agent’s confidence can be represented by a nested family of sets of probability
measures. A probability measure assigns a probability to each member of a set of
events. Sets of probability measures are often used to represent imprecise credences,
that is, cases in which the agent’s belief is better represented by a probability interval
than by a precise probability. A nested family of sets is a set that contains a chain of
subsets. Figure 2 is a representation of Hill’s approach. In figure 2, the judgment that
Pr A� � ≤ 0:05 holds in all the sets in the ranking. Therefore the expert is highly
confident that Pr A� � is 0.05 or lower. At the same time, Pr A� � � 0:1 is outside the
confidence rank of the expert, which means that the expert has no confidence that
that is the correct estimate of Pr A� �.

Three features of Hill’s proposal are worth mentioning (Hill 2013, 678; 2019, 229–31).
First, larger sets in the ranking (i.e., outer sets) correspond to higher levels of
confidence, whereas smaller (i.e., inner) sets correspond to lower levels of confidence.
Each set in the ranking represents all the values of Pr A� � that the agent holds with the
same level of confidence. For example, the agent can have high confidence that the
“true” value lies within a given set A but only medium confidence that it lies within a
smaller set B � A and even less confidence that Pr A� � lies in an even smaller
set C � B.

Second, each set in the confidence ranking can be “lifted” to a set of probability
judgments. The set of probability judgments that correspond to a given set in the
confidence ranking is the set of judgments that hold for all probability measures in
that set. The probability judgments corresponding to a given rank are the judgments

6 This notion is closely related to the use of confidence intervals in classical statistics, as emphasized,
for example, by Hill (2013, 676): “Confidence intervals at a standard fixed level (for example, the 95%
level) are used to inform decisions. The proposed decision rule would suggest that one may vary the
confidence intervals one uses in decisions: whereas if relatively little is at stake one may use confidence
intervals at, say, the 90% level, if there is a lot at stake one might insist on relying only on intervals that
are at, say, the 99% level.”
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the agent holds with the level of confidence represented by that rank. For example,
the judgment that Pr A� � � 0:01 holds only for the smaller one of the sets represented
in figure 2. Therefore an agent whose confidence levels are represented by that figure
believes with low confidence that Pr A� � � 0:01.

Third, and finally, the higher the confidence level we consider is, the fewer will be
the probability judgments that the agent holds with that level of confidence, because
fewer judgments are true for all probability measures in larger sets, for example, the
judgment that Pr A� � � 0:01 holds for all the probability measures in the smaller set of
the ranking but not in larger sets versus the judgment that Pr A� � ≤ 0:05 may hold at
all confidence ranks. The agent holds a given probability judgment with the highest
confidence allowed by its rank, namely, with the level corresponding to the larger sets
on which that judgment holds. For example, an agent whose confidence levels are
represented by figure 2 may believe with high confidence that Pr A� �0:05 but have low
confidence that Pr A� � � 0:01.

Confidence rankings induce an ordinal structure on the set of probability
judgments (Hill 2019, 8). More specifically, any elicitation of a complete confidence
relation among probability judgments picks up a unique confidence ranking (Bradley,
Helgeson, and Hill 2017, 512). Moreover, each complete cardinal ranking of
probability judgments can be turned into a confidence ranking, but not vice versa
(Hill 2019, 7–9). Therefore the confidence approach can be applied even if the agent
does not have enough information to assign a cardinality measure to a probability
judgment (Bradley 2017, 297). This is the main difference between the confidence
approach and the second-order probability approach that is currently used.7

Figure 2. Hill’s (2013) representation of confidence rankings. The numbers represent different estimates of
the probability of the same event A.

7 An equivalent representation of confidence levels is due to Bradley (2017). Bradley represents
confidence levels as partitions of the set of probability judgments; each set of the relevant partition
corresponds to a distinct level of confidence (296–99).
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It is also important to clarify the nature of the probabilities at play. In the confidence
approach, the objects of confidence are usually first-order beliefs. As Roussos, Bradley,
and Frigg (2021, 14) stated, for example, “‘confidence’ is : : : a (second-order) attitude
towards a (first-order) claim, reflecting an evaluation of the state of knowledge
underpinning it.” In particular, levels of confidence are credal sets, that is, sets of
credences. However, the confidence approach can be applied in a situation in which the
underlying probabilities purport to represent frequencies. In this case, confidence
levels are probability sets. For example, Roussos, Bradley, and Frigg apply the approach
to insurance pricing by using as input a set of probabilities that are determined by an
ensemble of models. This will allow us to apply the same approach to PRA.

5 An example: Reading the new Italian Seismic Hazard Model (MPS19)
In this section, I show that the standard approach and the confidence approach give
different results in concrete cases. To do this, I consider an example from the new
Italian Seismic Hazard Model (MPS19). MPS19 is soon to supersede the old hazard map
(MPS04) that has been used for defining seismic zones in Italy since 2006. The new
map was commissioned by the Italian government to the Seismic Hazard Centre (CPS)
of the Italian Natural Institute of Geophysics and Volcanology in 2015. The models
used in MPS19 were solicited directly by the promoters through an open call to the
scientific community (Meletti et al. 2021). In the end, MPS19 included eleven different
earthquake rate models of the entire Italian territory: five area-based models (M1–
M5), two zone-free models (MF1 and MF2), two physical models (MS1 and MS2), and
two geodetically based statistical models (MG1 and MG2).

The input data that were used for evaluating the models consisted of a collection of
new and existing data sets. These data sets were heterogeneous and included, among
other sources, two instrumental catalogs of the Italian region, a database of seismogenic
sources, and two assessments of focal mechanisms of expected earthquakes. It was not
required that this data set be used to build the models. Only four out of ten data sets
were used as input in more than one model, and none was used in all models. One data
set was used specifically in the testing phase, and another was used to select and test
the ground-motion acceleration models used in MPS19 (Lanzano et al. 2020).

This selection started from a list of more than three hundred published equations
and consisted of three phases: (1) fourteen equations were preselected based on their
applicability to the Italian territory; (2) those equations were tested for accuracy
against a data set of historical recordings and received scores based on their
performances; and (3) a final score was assigned to each equation by combining their
forecasting skills and the weights assigned by a group of experts, and the three
higher-scored equations were selected to enter the final hazard calculations in
MPS19. Finally, each model underwent a double weighting procedure. First, the model
was included in MPS19 only if it passed a consistency test that assessed if that model
was compatible with the catalog data and if it was deemed physically plausible by an
independent group of experts; any model that did not pass the consistency test was
excluded.8 Second, a weightW � W1 �W2=C was assigned to each model, whereW1 is a

8 In practice, the territory was divided into seven macro-areas for the testing phase of MPS19; if a
model did not pass the consistency test in one subregion, its estimates in that subregion were replaced by
the weighted average of the outputs of the consistent models.
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weight based on the testing phase, W2 is a weight based on experts’ judgments, and C
is a normalization factor equal to the sum of W1 �W2 for all models. Epistemic
uncertainty is represented in MPS19 by reporting a beta distribution whose
parameters correspond to the weighted standard deviation of all the hazard estimates
and the weighted average value among all estimates. More specifically, the hazard is
expressed, not by a single number (the mean hazard), but rather by a distribution the
dispersion of which corresponds to the scientific uncertainty concerning the “true”
frequency (Meletti et al. 2021, 13–14).

The example that I consider is a single quantity that can be estimated using the
MPS19, namely, the frequency of an earthquake with magnitude M4:5 in the Italian
region (see Meletti et al. 2021, 10–12). Based on the eleven earthquake-rate models
that were included in MPS19, the mean frequency of an earthquake with magnitude
M4:5 in the Italian region is between �4 and �8 earthquakes per year (ea/yr). The
lowest estimate is�3 eq/yr (from one of the fault-based models), whereas the highest
estimated frequency is �17 eq/yr (from one area-source model). The weighted
average of the ensemble is �5.7 eq/yr, which is the frequency of M4:5 is�5.7 eq/yr if
we adopt the approach described in section 2. By contrast, if we adopt the MPS19
representation of epistemic uncertainty, this frequency will correspond to the
interval [�4, �8] and a probability distribution over that interval. This distribution
will show that the overall weight of the models that estimate that frequency to be less
than �5.7 eq/yr is 0.38, whereas the overall weight of the models that estimate it to
be higher than �5.7 eq/yr is 0.62.

Suppose that we want instead to represent the confidence of the panel of experts
with respect to the same quantity (the frequency of an earthquake with magnitude
M4:5) without using second-order probabilities. We can proceed as follows. The two
models that receive the highest scores from the panel of experts are a seismotectonic
model, MA4 (W2 = 0.2240), and a smoothed seismicity model, MS1 (W2 = 0.2193). Even
though we will no longer assign second-order probabilities to the models, let’s assume
that the experts would place equal confidence in the estimates of MA4 and MS1 for
the same quantities. In particular, the mean frequency of MS1 for an earthquake with
M4:5 is �4.75 eq/yr, and the mean frequency of MA4 for the same intensity is �6.1
eq/yr. An expert who is confident that either MA4 or MS1 is correct should
consequently hold with high confidence that the frequency of M4:5 is either �4.75
eq/yr or �6.1 eq/yr, with low confidence in values far off from both those estimates.
The epistemic uncertainty of the panel of experts can be represented using a
confidence ranking with multiple foci, as shown in figure 3.

In this case, experts would not be required to assess their confidence in the models
but only in the final estimate of a quantity of interest (in this case, the frequency of an
earthquake with magnitudeM4:5). These judgments need not be precise. For example,
the experts may believe with high confidence that the frequency is �4.75 eq/yr
without assigning a probability to this frequency being exactly 4.75 eq/yr. The final
ranking provides a clearer representation of the epistemic uncertainty than the
distribution of second-order probabilities used in MPS19. Figure 3 clearly shows that
the panel of experts split their confidence among two frequency intervals.

Moreover, the experts may fail to realize how different values of the parameters in
the models contribute to the final hazard. As, for example, Bommer and Scherbaum
(2008, 1000) remarked, “before seeing the results of a full hazard disaggregation
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[of the relative contributions to that hazard from the range of values of magnitude
and distance], [the expert] does not really know what [these values correspond] to in
terms of magnitude-distance distribution or ground motion.” For example, experts
may believe that MA4 and MS1 are plausible overall but find their estimates for M4:5
to be unconvincing. The confidence approach allows us to assess how much the
experts trust the final estimate rather than determining their degree of confidence
that the model is the best one available.

Finally, figure 3 represents the confidence of the panel of experts; a single expert
in the panel may believe that only one of the two models is correct and therefore
place high confidence in a single interval (notice that the representation would be the
same if half of the panel believes that MA1 is the best model and the other half
believes that MS2 is the best model). If the confidence levels of the panel are
represented by figure 3, the panel believes with high confidence that the frequency of
M4:5 is either �4.75 eq/yr or �6.1 eq/yr (because this judgment holds for all the
frequencies that are held with high confidence) but does not believe that this
frequency is, say, �5.4 eq/yr (because this judgment is false for at least some of the
frequencies in the high confidence rank).

6 Confidence in probabilistic risk assessment
In this section, I show how all this can be turned into a formal representation of
epistemic uncertainty in PRA. The confidence approach was originally proposed to
represent uncertainty about competing scientific estimates (Hill 2013, 675–76).
Roussos, Bradley, and Frigg (2021) extend it to the pricing of hurricane insurance.
Given that the models employed in hurricane hazard analysis are different from the

Figure 3. Confidence ranking with two foci for the frequency F of an earthquake with M4:5 based on
MPS19. H is high confidence, M is medium confidence, and L is low confidence.
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ones of PHA, it will be instructive on its own to see how the same approach can be
extended to risk analysis. This will require also two steps: (1) defining a probability set
containing all the estimated frequencies of the same event and (2) formulating a
confidence ranking over this set. In the next section, I discuss how this approach
compares to the standard approach.

The credal set is defined by the ensemble of models. A model whose parameters
have all been set to some specific value determines a hazard curve that plots intensity
levels (on the x-axis) and their frequencies of exceedance (on the y-axis). The
characteristic shape of the hazard curve displays the fact that events that exceed
lower intensity thresholds have a higher frequency (top left of the curve), whereas
events that exceed higher thresholds have a lower frequency (bottom right of the
curve). The ensemble of models can be represented as a family or bundle of hazard
curves. This representation conveys two pieces of information. Horizontally, the
values on the y-axis corresponding to the same point on the x-axis represent the
variance in the estimation of the frequency of an event with a given intensity.
Vertically, the values on the x-axis that correspond to the same point on the y-axis
represent the variance in the estimate of the most intense event with a given
frequency.

Both these dimensions are relevant in the practice of risk analysis. For example, a
failure rate of 10 percent in fifty years is often considered the safety threshold in
earthquake engineering. In this case, we consider the horizontal dimension, whose
spread corresponds to the divergence of the models in their estimates of the strongest
event that may occur at the site with the relevant frequency. I focus, however, on the
vertical dimension, whose spread indicates the variance in the frequency of the event
according to the models included in the ensemble. The vertical spread of the bundle of
hazard curves can be taken to represent the relevant probability interval that the
experts consider for estimating the frequency of exceedance corresponding to a
specific intensity. This interval comprises all the probability measures for the same
event between the frequency estimated by the “lowest” curve and the frequency
estimated by the “highest” curve. A simplified bundle of hazard curves with a
corresponding confidence ranking is shown in figure 4. The probability set can be
built by including all the frequencies estimated by the models. Alternatively, one can
consider the interval between the lowest and highest frequencies. An advantage of
using the first method is that it includes only the frequencies that are correct
according to some models. At the same time, this overlooks the fact that such
estimates have an epistemic uncertainty attached to them. To avoid this problem, the
set of frequencies may be represented as a set of intervals (see later).

The panel of experts would then provide a confidence ranking over this probability
set. For example, a panel of experts whose confidence levels can be represented as in
figure 4 believes with medium confidence that the correct frequency of a specified
level of intensity lies between the 16th and the 84th percentiles estimated by the
ensemble, while being less confident in any more precise interval. A different expert
may be highly confident that the correct frequency corresponds to the mean value
and have no confidence that this frequency is anywhere far off the mean. Intuitively,
the confidence ranking should be centered around the frequency estimated by the
model with the highest weight (e.g., Hill, forthcoming, 7). In this case, the confidence
ranking can be represented as in figure 2. However, experts may also believe with
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equal confidence that either of two different estimates corresponds to the correct
frequency. In this case, the two intervals corresponding to their confidence
judgments may be partially overlapping or disjoint.

If these two intervals partially overlap, the frequencies that lie in the intersection
of these intervals can be considered more robust estimates than the ones that are
correct according to only one model (Roussos, Bradley, and Frigg 2021, 27–34). We can
distinguish between two routes to robustness. The first one is given by the standard
approach using the logic tree. As seen, each branch of the logic tree corresponds to a
hazard curve whose weight is determined by the weights assigned to the segments of
that branch. If two models agree on the final estimate of the hazard, then the total
probability of this estimate is given by the sum of the weights of the two models.
Another route to robustness is as follows. Each model can be represented as a subset
of the interval between the maximum and minimum values estimated by the
ensemble. If different subsets overlap, the analyst can decide to put the values in the
intersection in the confidence ranking so that robust estimates are retained as beliefs
(Roussos, Bradley, and Frigg 2021, 28–29; Hill, forthcoming, sec. 7, 35–41).

If the two intervals are disjoint, then there is a choice of how to construe the
confidence ranking. Earlier, we considered the full interval between the lowest and
the highest estimates produced by the model ensemble as the probability set of
reference for the definition of confidence rankings. Alternatively, we could have
considered the set of point value estimates produced by the models. This would

Figure 4. A simplified bundle of hazard curves. The curves represent (from the top) the highest curve
estimated by the ensemble, the 84th percentile, the mean, the 16th percentile, and the lowest estimated
curve. The dotted lines represent the horizontal dimension of the bundle (i.e., the variance in the estimate of
the frequency of an event with a given intensity) and its vertical dimension (i.e., the variance in the estimate
of the most intense event with a given frequency).
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neglect the fact that each one of these models has multiple submodels that produce a
specific epistemic uncertainty around the mean frequency. In the case of disjoint
intervals, we can construe the final confidence ranking by considering the intervals
between the highest and the lowest estimates that the agent holds with a given level
of confidence. For example, in the case discussed in section 5, one could consider the
interval between �4.75 eq/yr and �6.1 eq/yr as the low confidence interval (i.e., the
expert has at least medium confidence that the true frequency is between �4.75 and
�6.1 eq/yr and low confidence in more precise estimates). However, this would
misrepresent the epistemic situation of the panel of experts. Indeed, the experts split
their confidence between �4.75 eq/yr and �6.1 eq/yr in the sense that they believe
that the correct frequency is close to either one of the two estimates. However, the
experts would think that many values in between these two estimates add little to the
confidence of the prediction, and therefore these experts may be willing to put them
in a higher confidence ranking.

The epistemic uncertainty of the experts is best represented by allowing for
confidence rankings with multiple foci, as shown in figure 3. Such rankings are sets
that contain disjoint families of sets; the set corresponding to a given level of
confidence is formed by taking the union of the sets of estimates that the agent holds
with that level of confidence. The fact that the confidence ranking has multiple foci
does not mean that the expert thinks that there are multiple correct frequencies of
the same event but only that the evidence available is such that it permits holding
two disjoint probability intervals with equal confidence. This is likely to be the case in
the forecasting of rare and extreme events. In particular, the sets M1 [ M2 and L1 [ L2
are not convex. Convexity is a condition in Hill (2013, 681, Definition 2) but not in Hill
(2019, forthcoming).9 By contrast, Roussos (2020, 249) emphasizes that the convexity
of confidence rankings is a nonessential feature of the approach, because “the sets in
the nesting can contain only the point valued outputs of the models, or balls around
those outputs (representing initial condition and parameter uncertainty), without
including all of the points between those outputs.” Roussos reserves the term “gappy
sets” for confidence rankings that contain multiple intervals of values (250, figure 4).
It is plausible that at least in some cases, the uncertainty of the experts is represented
by a set with multiple foci; “gappy” sets are therefore apt to represent model
uncertainty in PRA.

7 Representing model uncertainty
The main differences between this approach and the standard approach in PRA are as
follows. First of all, the standard (Bayesian) approach yields a single estimate of
hazard (either the mean or a percentile). The mean hazard, which is the reference
value in civil and environmental engineering, includes epistemic uncertainty in the
sense that it is the weighted average of the estimates produced by models. We also
mentioned the MPS19 representation of epistemic uncertainty, in which this
uncertainty is represented by a distribution over an interval of frequencies for the
same event of interest. By contrast, the approach presented in this article yields

9 I am grateful to an anonymous reviewer for pointing this out to me.
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different sets of estimates, each held by the experts with a different level of
confidence.

The representation of epistemic uncertainty used in MPS19, in particular, builds
more information in the model about the experts’ levels of confidence than licensed
by the experts’ judgments themselves. To assign a weight to each model, the experts’
judgments are first expressed as probabilities, then the weights are assigned to the
models on a particular distribution that represents the overall scientific community
and is inferred from the judgments expressed by the experts, assuming that those
experts are representative of the scientific community. Treating both the experts’
elicitation weights and the performance weights of the models as probabilities makes
those weights comparable. However, as the MPS19 Working Group acknowledged,
“the procedure carries on an unavoidable subjectivity in merging the different
scoring metrics of the testing phase and the scoring of the experts’ judgement”
(Marzocchi and Jordan 2017, 15).

At the same time, the model may also provide too much information for most
practical uses. One of the goals of MPS19 is to convey the full range of epistemic
uncertainty to the user (stakeholders and decision makers). To do this, it estimates
epistemic uncertainty as a probability distribution rather than providing a single value
for seismic hazard. As the MPS19 Working Group emphasizes, “MPS19 shows the aleatory
variability and the epistemic uncertainty in the final output, making the interpretation of
the dispersion of the hazard curves more clear, and providing the interpretation for any
possible end-user” (Meletti et al. 2021, 24). However, in most circumstances, end users
may not need the full range of estimates but only those estimates that are held with some
confidence by the scientific community, whichmay, in turn, depend on what is at stake in
those circumstances. By contrast, the confidence approach is clearer and easier to use for
decision-making. As emphasized especially by Hill, the confidence in a probability
judgment required for that judgment to play a role in a decision depends on what is at
stake in that decision. A key feature of this approach is that it allows decision makers to
consider only the set of estimates that correspond to the level of confidence that they
want to achieve.

Second, the standard approach represents confidence as a cardinal notion
(assigning weights to models), whereas the confidence approach represents it as an
ordinal notion (using sets of probabilities). Consequently, the confidence approach
does not require experts to have enough evidence to warrant precise judgments
(Bradley 2017, 297; Roussos, Bradley, and Frigg 2021, 12–13). This approach is
therefore particularly justified when the historical data are limited or ambiguous.
Moreover, the approach that I present in this article is continuous with the
representation of uncertainty that is currently used in climate modeling.

Third, the standard approach is “bottom-up”: the experts are tasked with
evaluating the components of the models, and the weight of the final estimate
produced by a model is calculated by multiplying the probabilities in the logic tree. By
contrast, the confidence approach is “top-down”: experts assess directly their
confidence about the estimate of a single quantity (e.g., the frequency of an event
with a specific intensity). More specifically, the inputs of a PRA consist of some sets of
historical data from the area in which the models will be applied, and the experts are
asked to evaluate the models based on these data. The output then consists of a single
hazard estimate that incorporates the epistemic uncertainty of the panel (SSHAC
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1997, 177). By contrast, both the empirical data and the array of available models
should be provided to the experts as inputs for their evaluation, and the experts
should assess their confidence concerning a single quantity of interest. This ranking
should reflect the “weight of evidence” available to the experts that is relevant to
their judgments (Bradley 2017, 290; Bradley and Hill 2019, 506–7). This evidence may
include not only historical recordings but also the estimates produced by different
models. Importantly, the amount of evidence supporting a forecast is distinct from
the forecast itself. For example, new data about frequent but low-intensity events can
make the scientist more confident that a particular model is correct even though her
estimates remain the same. In this sense, “confidence [reflects] an evaluation of the
state of knowledge underpinning [a probabilistic judgment]” (Roussos, Bradley, and
Frigg 2021, 4).

It is important to notice, however, that the two approaches are not in contrast
with each other; on the contrary, the confidence framework allows or supports a
top-down approach while also being compatible with a bottom-up approach.10

Helgeson, Bradley, and Hill (2018) emphasize that an advantage of their approach
is that it allows for a “downstream transmission” of confidence. In their words,
“by building confidence assessments into a formal belief representation (the
nested sets), we facilitate this propagation [to ‘downstream’ modeling and
decision analysis]” (521). At the same time, an “upstream” transmission from logic
trees to the confidence approach is also possible. For example, in MPS19, each
model received two weights, one based on the experts’ evaluation and one based
on the model’s performance. These performance-based weights can be used to
provide a partial ordering of the relevant frequencies that can be then passed on to
the experts. For example, the ERMs of MPS10 also received a score that was based
purely on their forecasting performances with respect to an independent set of
data (W1). Two ERMs have W1 � 0:1439 (MA1 and MS2) and four ERMs have
W1 � 0:1136 (MA4, MF1, MF2, MS1). The mean frequency of MA1 for M4:5 is �7 eq/
yr, whereas the mean frequency of MS2 is �6.2 eq/yr. At the same time, the mean
frequency of the four models that received the second-best score is between �4.5
and �6.3 eq/yr. If one were to use the performance-based weights to form a
confidence ranking, the set corresponding to low confidence would contain �6.2
and �7, whereas values as low as �4.5 would be included at the next confidence
level up.

Finally, and most importantly, in the confidence approach, there is a clear
distinction between the models’ hazard estimates and the experts’ confidence
judgments. As both Hill (2013, esp. 678–80) and Bradley (2017, sec. 13.4, 277–78)
frequently emphasize, the confidence approach allows decision makers to consider
the estimates that are held with a level of confidence that is appropriate for a specific
situation. Once the appropriate set is selected, the confidence approach is compatible
with different decision rules. Many such rules have been proposed. For example, Hill
(2019, 9–11) mentions the maximin expected utility rule, which requires choosing the
option with the greatest minimum expected utility. Hill (forthcoming, 37) argues that
“whilst the [decision maker] may act as a subjective expected utility agent with the
aggregate (centre) probability when the stakes are low, when the stakes are higher, it

10 I owe the point and this formulation to an anonymous reviewer.
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will use a larger set of priors, and : : : be more ambiguity averse.” It is worth noting
that this flexibility with respect to decision rules is not available in the standard
approach. By contrast, in PRA, the hazard is defined as the weighted average of the
estimates produced by the models. The standard approach therefore includes linear
pooling in the definition of the hazard. By contrast, the confidence approach
represents the models’ estimates and the experts’ judgments separately and makes
both available in the decision.

8 Conclusions
Epistemic uncertainties are included in PRA as second-order probabilities that
represent the degree of belief of the analyst that a model is correct. However, experts
typically do not have enough evidence to warrant precise judgments. In this article, I
presented a methodology that incorporates the analyst’s confidence in a given
probability interval. My proposal extends Hill’s and Bradley’s confidence approach.
Following this approach, model uncertainty is represented using nested families of
probability sets with multiple foci. The main differences between the standard
approach and the confidence approach are as follows. (1) The standard (Bayesian)
approach yields a single estimate of hazard (either the mean or a percentile), whereas
the approach presented in this article yields different sets of estimates held with a
particular level of confidence. (2) In the standard approach, confidence is a cardinal
notion (weights in the logic tree), whereas the confidence approach represents it as
an ordinal notion (confidence rankings). (3) The standard approach is “bottom-up,”
whereas the confidence approach is “top-down.” (4) In the confidence approach, there
is a clear distinction between the models’ estimates and the experts’ confidence. The
confidence approach is, therefore, clearer, less questionable, and more usable in
decisions than the Bayesian approach.
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