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This study aims at establishing a model for close-contact melting (CCM) of shear-thinning
fluids. We presented a theoretical framework for predicting the variation of liquid
melt film thickness and motion of unmelted solid for both Carreau and power-law
fluids. We identified the appropriate energy equation considering the convective
effect and derived an analytical temperature profile across the liquid film. Using
the lubrication approximation, force equilibrium relationships and the corresponding
numerical approaches were built. By using laser interferometry and photographic
recording methods, we found excellent agreement between numerical solutions and
experimental results for Carreau liquids, revealing that the convective effect weakens
heat transfer and melting rate. We identified the critical liquid film thickness that
determines three situations of CCM in the theoretical model for Carreau fluids. Numerical
prediction demonstrated that the CCM of Carreau fluids can be almost equivalent to
that of power-law fluids if the initial film thickness is greater than the critical value.
Finally, approximate analytical models were developed for both Carreau and power-law
models. For the applicability of the approximate analytical solutions, we derived two-
and three-dimensional dimensionless phase diagrams of validity range and identified a
key dimensionless group (ΛRe)4/3Re [3 ln(Ste + 1)]1/3 Pe−1/3, where Λ is dimensionless
characteristic time, Re is Reynolds number, Ste is Stefan number and Pe is Peclect number.
The reliability of the approximate solutions was verified by comparing with the numerical
results. These approximate solutions enable convenient and low-cost computational
prediction of the dynamic CCM process of shear-thinning fluids.

Key words: solidification/melting, rheology, lubrication theory

† Email address for correspondence: liwufan@zju.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 968 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:liwufan@zju.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.509&domain=pdf
https://doi.org/10.1017/jfm.2023.509


N. Hu and L.-W. Fan

1. Introduction

Over a wide range of melting phenomena, there is a special process called close-contact
melting (CCM), where the unmelted solid surface and the heating surface are squeezed
towards each other to maintain a close-contact status under the exertion of an
external force. Unlike common convection melting in an expanding space involving
Rayleigh–Bénard systems (Esfahani et al. 2018), a sub-millimetre molten film remains
between the unmelted solid and heating surfaces during CCM (Hu et al. 2019), leading
to a low-Reynolds-number film flow with solid–liquid phase change heat transfer. The
CCM can be classified into two modes, i.e. heat source driven and unmelted solid driven,
depending on the objective of the exerted force (Hu et al. 2022). The former mode usually
represents the formation of a melting channel with a heating surface driven by a constant
or an artificially set force through the solid to be melted, which occurs in magma migration
(Marsh 1978), ‘self-burial’ (Chen, Hao & Chen 2013) or ‘meltdown’ (Emerman & Turcotte
1983) in nuclear engineering, subtractive machining (Mayer & Moaveni 2008) and ice
drilling (Schuller, Kowalski & Raback 2016). The latter mode, on the other hand, implies
that the unmelted solid is extruded by its own weight onto the heating surface under
gravity, which can be found in scenarios like the onset of glacier tables (Henot, Plihon
& Taberlet 2021) and latent heat thermal energy storage (Kozak, Rozenfeld & Ziskind
2014) using solid–liquid phase change materials (PCMs), although the sinking process of
the unmelted solid may be enhanced by an external force (Fu et al. 2022).

The previous investigations on heat source-driven CCM have mainly been focused on
prediction of the source migration rate. Moallemi and Viskanta measured experimentally
the descending velocity of a heated tube at constant surface heat flux (Moallemi &
Viskanta 1985) and concluded that conduction is the dominant heat transfer mechanism
during this process. A correlation of the dimensionless heat source velocity (Pe, Pélect
number) with the degree of superheat (Ste, Stefan number) and the imposed excess
force (�P) was given as Pe ∼ Ste3/4�P1/4 (Bejan 1992). Then various situations were
considered for CCM, e.g. on a surface with arbitrary shape (Fomin, Wei & Chugunov
1995), through an unmelted solid with power-law viscosity at the liquid phase (Fomin,
Saitoh & Chugunov 1997) and with spatially varying heat flux (Schueller & Kowalski
2017).

In contrast, unmelted solid-driven CCM is more complicated due to the coupling effect
between the imposed force (i.e. weight of the unmelted solid) and melting rate that are both
time dependent. Especially, when CCM occurs at the bottom of a container (except for ice
melting where the unmelted solid will float on the top), it is usually accompanied by natural
convection within the upper region of the container. Since it has been confirmed that
convection melting cannot be neglected at large Ste, as compared with CCM, in spherical
(Moore & Bayazitoglu 1982), rectangular (Dong et al. 1991) or cylindrical (Sparrow
& Geiger 1986) vessels, numerous efforts have been devoted to studying CCM on a
horizontal plate to focus on the flow and heat transfer within the thin liquid film. Saito et al.
studied CCM of ice and octadecane cylinders on an isothermal horizontal surface (Saito
et al. 1985a,b). Both experimental and numerical results indicated that non-dimensional
mean heat flux is proportional to the 1/4 power of the non-dimensional contact pressure,
and that the temperature distribution across the liquid film deviates gradually from a
linear profile for Ste > 0.1. Yoo et al. estimated this temperature profile deviation based
on the non-dimensional interfacial temperature gradient predicted by magnitude analysis,
showing discrepancies of less than 10 % at Ste = 0.1 and an exponential deviation when
Ste > 0.1 (Yoo, Hong & Kim 1998). Moallemi et al. also carried out a similar study
of this problem and gave a theoretical formula about the non-dimensional height of the
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unmelted solid by assuming a steady liquid film thickness and a quadratic polynomial
temperature profile (Moallemi, Webb & Viskanta 1986). Groulx & Lacroix established
a three-dimensional transient model to predict the variation of liquid film thickness, and
found that the effect of inertial force is negligible for high Pr (Prandtl number) substances
(Groulx & Lacroix 2007).

Although these prior studies have led to a basic understanding of unmelted solid-driven
CCM phenomena, there is still a need for deeper insights into this problem when complex
fluid behaviours of the molten substances are involved, e.g. the use of different types of
PCM for thermal energy storage applications. Recently, Kozak et al. considered the CCM
process with a PCM having non-Newtonian behaviour in its liquid phase, and derived an
extended analytical model to predict the melt fraction and liquid film thickness (Kozak
et al. 2019). Despite a good extension into the non-Newtonian regime, this new model
has limitations because it was developed under the assumptions of a Bingham fluid of the
liquid PCM (which is still a ‘linear’ rheological model with yield stress) as well as a linear
temperature profile within the liquid film.

However, numerous studies on the rheological properties of various emerging PCMs
have shown shear-thinning behaviours in their liquid phase, e.g. organic PCMs having
long-chain molecular structures or composite PCMs filled with particles at relatively high
loadings. For instance, Motahar et al. reported that n-octadecane with mesoporous silica
particles (3 % or 5 % mass fraction) exhibits a distinct shear-thinning feature at shear rates
<50 s−1 (Motahar et al. 2014). Sugar alcohols, a family of polyols derived from sugars
and having great potential for thermal energy storage in the low-to-medium-temperature
range (80–250 ◦C) (Shao et al. 2019; Shao et al. 2021), also exhibit complex shear-thinning
behaviours over a wide span of shear rates from 0.001 to 1000 s−1. As far as the authors are
aware, the unmelted solid-driven CCM process with a shear-thinning fluid has not yet been
studied, either theoretically or experimentally, in the available literature, although this case
is deemed to be of potential interest for important applications like thermal energy storage
towards a decarbonized energy future.

Therefore, this work presents the derivation of a theoretical model for axisymmetric
CCM on an isothermal horizontal surface, where the shear-thinning behaviour of the fluids
(liquid PCMs) is described by two classical rheological models, i.e. power-law model
and Carreau model, and the nonlinear temperature distribution within the liquid film is
considered. Accurate numerical solutions and approximate analytical solutions are both
obtained and validated by comparison with experimental results. The shear-thinning and
convective effects on the dynamic process and heat transfer of CCM are investigated and
discussed.

2. Physical model and theoretical framework

A typical axisymmetric CCM process is analysed as sketched in figure 1, where a
cylindrical solid bulk PCM with radius R and initial height H(t = 0) = H0 is heated from
below by an isothermal horizontal plate at temperature Tw. The solid PCM maintains an
initial temperature equal to its melting point Tm (< Tw), so it will continuously melt from
the bottom and squeeze the molten liquid consequently due to the weight of solid PCM,
leading to a melt film with thickness δ. It should be emphasized that the schematic diagram
is not drawn to realistic scale (δ � R ∼ H0) according to the thin film approximation
validated in all previous studies. Here, and in what follows, the quantities with hat (.̄) are
non-dimensionalized.
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Figure 1. Schematic illustration of the flow and heat transfer in the axisymmetric CCM region having radius
R and thickness δ, where R � δ and H(0)/R is arbitrary.

2.1. Rheological model
A number of empirical expressions have been used to describe variations in the apparent
viscosity with the rate of strain. In a generalized incompressible Newtonian fluid the
viscous stress is described by

τ = 2μΓ = μ[∇u + (∇u)T], (2.1)

where Γ is the rate of strain tensor and apparent viscosity μ = μ(Γ ); Γ is the second

invariant and equal to
√

1
2 (Γ : Γ ). A well-known shear-thinning model is proposed as the

Carreau–Yasuda model
μ − μ∞
μ0 − μ∞

= [1 + (2λΓ )a]b, (2.2)

where μ∞ is the viscosity at high shear rates γ̇ = 2Γ → ∞, μ0 is the viscosity at low
shear rates 2Γ → 0, λ is a characteristic time of the fluid and a and b are characteristic
parameters. It is worth noting that several widely used rheology constitutive models can
be obtained by modifying conveniently the parameters in (2.2). When a = 2 and b = (n −
1)/2, the Carreau model can be obtained as μ = μ∞ + (μ0 − μ∞)[1 + (2λΓ )2](n−1)/2.
If a = 1 − n and b = −1 are satisfied, it leads to the Cross model: μ = μ∞ + (μ0 −
μ∞)[1 + (2λΓ )1−n]−1. The power-law model μ ≈ μ0(2λΓ )n−1 can be derived by setting
a = 1, b = n − 1 under the conditions of 2λΓ � 1 and μ0 � μ∞. The Bingham model
of μ = μ0 + τ0/(2Γ ), which has been used and investigated in the CCM scenario by
Kozak et al. (2019), is established when a = b = −1 and λ(μ0 − μ∞) = τ0.

Among the above models, the Carreau model (drawn in figure 2a) is widely used to
describe shear-thinning fluids because it can correctly predict the viscosity at both low
and high shear rates (Nouar, Bottaro & Brancher 2007; Chekila et al. 2011; Agbessi et al.
2015), and it is in better agreement with experimental results (Allouche et al. 2017; Boyko
& Stone 2021). Although the prediction of the power-law model significantly deviates at
high and low shear rates (as shown in figure 2b), the simplicity of the model still makes
it very attractive to describe shear-thinning fluids when the operating shear rates lie in the
range of power-law region (Kumar et al. 2021). Here, figure 2(c) shows five PCMs with
different shear-thinning rheological properties in their liquid phase. It can be found that
the curves are more in line with the Carreau model, but there is a considerable range that
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Figure 2. Theoretical prediction of viscosity for (a) Carreau model and (b) power-law model, where the dashed
line represents the baseline at μ0 = 100 Pa s, n = 0.2, λ = 100 s and β = 0.001. (c) Measured viscosity of
selected shear-thinning fluids of liquid PCMs including pure sugar alcohols (inostitol, dulcitol and xylitol (Shao
et al. 2021)) and eutectic sugar alcohols (erythritol + d-mannitol and d-mannitol + inositol (Shao et al. 2019)).

can be well described by the power-law model. Consequently, both the Carreau model and
power-law model are adopted in the following analysis.

2.2. Governing equations and dimensionless parameters
By distances scaled with R, pressure and stresses with ρsgH0 and time with R/

√
ρsgH0/ρl,

the incompressible flow governing equations in dimensionless form are given by

∇ · ū = 0, (2.3)

∂ū
∂ t̄

+ (ū · ∇)ū = −∇P̄ + ∇ · τ̄ , (2.4)

where ū = ūrer + ūzez denotes the fluid velocity, P̄ the pressure (including gravity effect)
and τ̄ the viscous stress tensor. The melt film is supposed to be purely viscous as described
by

τ̄ = 1
Re

2μ̄(Γ )Γ̄ , (2.5)

where Re is the Reynolds number, defined as

Re ≡ R
√

ρsgH0ρl

μ0
. (2.6)

By introducing dimensionless temperature T̄ = (T − Tm)/(Tw − Tm), the energy equation
of flow considering viscous dissipation in dimensionless form is given by

∂T̄
∂ t̄

+ (ū · ∇) T̄ = 1
Pe

∇2T̄ + PrEc
Pe

Γ̄ : Γ̄ , (2.7)
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where Pe is the Péclet number, Pr the Prandtl number and Ec the Eckert number, which
are defined respectively as

Pe ≡ Rcp,l
√

ρsgH0ρl

kl
, Pr ≡ μ

ρlα
, Er ≡ ρsgH0

ρlcp,l(Tw − Tm)
, (2.8a–c)

with α, g, kl, ρl and cp,l being the thermal diffusivity, gravitational acceleration, thermal
conductivity, density and specific heat capacity of the fluids, respectively.

As for the flow within the melt film, the following classical assumptions are adopted,
consistent with previous works (Moallemi et al. 1986; Kozak et al. 2019): (i) due to R � δ,
the lubrication approximation is valid for the melt film (i.e. ∂/∂z � ∂/∂r), (ii) the flow in
the melt film is axisymmetric (i.e. ∂/∂θ = 0), laminar and in quasi-steady state (i.e. ∂/∂t =
0), (iii) thermophysical properties are temperature independent, (iv) the bottom surface
of the solid is flat (i.e. δ(t, r, θ) = δ(t)), (v) the temperature gradient in the r direction
is negligible, (vi) sensible heat of the melt liquid is neglected in heat transfer and (vii)
viscous dissipation is negligible compared with the conductive term due to PrEc � 1 for
most PCMs and thermal conditions. It is worth noting that the convective effect is here
considered instead of the pure heat conduction simplification adopted by Kozak et al.
(2019).

Hence, the momentum equation (2.4) of fluid motion and the energy equation (2.7) can
be described respectively by

∂P̄
∂ r̄

= ∂

∂ z̄

(
1

Re
μ̄(Γ )

∂ ūr

∂ z̄

)
,

∂P̄
∂θ̄

= 0,
∂P̄
∂ z̄

= 0, with Γ = 1
2

∣∣∣∣∂ur

∂z

∣∣∣∣ , (2.9a–d)

ūz
∂T̄
∂ z̄

= 1
Pe

∂2T̄

∂ z̄2 . (2.10)

Note that governing equations (2.9a–d) and (2.10) imply ūr = ūr(z̄, ∂P̄/∂ r̄), P̄ = P̄(r̄)
and T̄ = T̄(z̄), respectively. Different from the pressure-driven flow (having a determinate
pressure difference �P along the channel), the pressure gradient ∂P̄/∂ r̄ in the melt film
stems from the extrusion of remaining solid bulk and is determined by force balance as∫ R

0
2πrP dr = ρsgπR2(H − δ), (2.11)

which can also be written in dimensionless form as∫ 1

0
2r̄P̄ dr̄ = 1

A
(H̄ − δ̄), (2.12)

where the aspect ratio A = H0/R.

2.3. Force equilibrium relationship based on the power-law model
The constitutive expression of the power-law model for μ̄ is

μ̄ = μ(Γ )

μ0
≈ (2λΓ )n−1 = (ΛRe2Γ̄ )n−1, (2.13)

where Λ is the ratio of the characteristic time of the fluid to the viscous diffusion time,
which is fixed for a given fluid and flow length, as defined by

Λ = λ

ρlR2/μ0
. (2.14)
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By substituting (2.13) into (2.9a–d) and integrating twice in two parts, i.e. 0 − 0.5δ̄ and
0.5δ̄ − δ̄, for opposite velocity gradients with the boundary conditions of ūr|z̄=0 = 0 and
∂ ūr/∂ z̄|z̄=δ̄/2 = 0 as well as ūr|z̄=δ̄ = 0 and ∂ ūr/∂ z̄|z̄=δ̄/2 = 0, respectively, the velocity
profile for z̄ = 0 − δ̄ can be obtained as

ūr = n
1 + n

(
−dP̄

dr̄

)1/n

Λ(1−n)/nRe(2−n)/n
[(

δ̄

2

)(1+n)/n

−
∣∣∣∣z̄ − δ̄

2

∣∣∣∣
(1+n)/n]

. (2.15)

Then, integrating (2.3) along z̄ with the boundary conditions of ūz|z̄=0 = 0 and ūz|z̄=δ̄ =
(d(H̄ − δ̄)/dt̄)(ρs/ρl) + dδ̄/dt̄ yields

1
r̄

∂

[(
−dP̄

dr̄

)1/n

r̄
]

∂ r̄
n

1 + n
Λ(1−n)/nRe(2−n)/n

∫ δ̄

0

[(
δ̄

2

)(1+n)/n

−
∣∣∣∣z̄ − δ̄

2

∣∣∣∣
(1+n)/n]

− V∗ = 0,

(2.16)

where V∗ = −ūz|z̄=δ̄ > 0 is related to the descending velocity of the solid bulk and
thickening velocity of the melt film. Integrating (2.16) with respect to r and applying the
boundary conditions of dP̄/dr̄|r̄=0 = 0 and P̄|r̄=1 = 0 yields

P̄(r̄) = (2n + 1)n(V∗)n

(n + 1)(4n)n(δ̄/2)1+2nΛ1−nRe2−n (1 − r̄n+1). (2.17)

Here, we can substitute (2.17) into (2.15) to obtain

ūr = V∗

δ̄2

(2n + 1)

(n + 1)

[(
δ̄

2

)
−
∣∣∣∣z̄ − δ̄

2

∣∣∣∣
∣∣∣∣2z̄
δ̄

− 1
∣∣∣∣
1/n]

r̄, (2.18)

which indicates that ūr varies along both the z and r directions. Finally, substituting (2.17)
into (2.12) and integrating lead to

2(2n + 1)nA

(n + 3)nnΛ1−nRe2−n
(V∗)n

δ̄
1+2n = H̄ − δ̄. (2.19)

2.4. Force equilibrium relationship based on the Carreau model
The constitutive description of the Carreau model for μ̄(Γ ) is given by

μ̄ = μ

μ0
= β + (1 − β)[1 + (2λΓ )2](n−1)/2, (2.20)

where β = μ∞/μ0.
Note that it is difficult to get explicit expressions for the velocity profile ūr(z̄) via

substituting (2.20) into (2.9a–d), which implies that the pressure distribution P̄(r̄) cannot
be obtained from integrating (2.3) without ūr(z̄). Thus, mass conservation in integral
form, instead of differential form, should be used here to obtain the relationship between
the flow rate Q̄ and pressure gradient dP̄/dr̄. Although the solutions of governing
equations (2.9a–d) combined with (2.20) under the no-slip boundary condition have been
similarly investigated in plane Poiseuille flow (Chekila et al. 2011) or approximate slit
flow (Sochi 2015; Boyko & Stone 2021) of Carreau fluids, only asymptotic solutions or
numerically solvable hypergeometric functions are currently available for a Q − �P (flow
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rate−constant pressure drop) relation, which fails to meet the demand of this problem but
is inspiring.

We can refer to the transformation to avoid deriving the velocity profile by substituting
(2.20) into (2.9a–d), which yields

τ̄ = 1
Re

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
)(n−1)/2] ¯̇γ with ¯̇γ = ∂ ūr

∂ z̄
. (2.21)

According to the flow rate expression proposed by Sochi (2015) and Wilkinson (1972),
the flow rate Q̄ between two circular surfaces can be deduced from the shear stress τ̄w, as
given by

Q̄
δ̄2πr̄

= 1
τ̄ 2

w

∫ τ̄w

0
τ̄ ¯̇γ dτ̄. (2.22)

After integrating (see Appendix A for details), (2.22) becomes

Q̄
δ̄2πr̄

= 1
3

¯̇γw

⎧⎨
⎩1 − β(1 − β)(1 + Λ2Re2 ¯̇γ 2

w)(n−1)/2

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

×
∞∑

j=1

(Λ2Re2 ¯̇γ 2
w) j

(1 + Λ2Re2 ¯̇γ 2
w) j

j∏
l=1

2l − n − 1
2l + 3

−
1
2(1 − β)2(1 + Λ2Re2 ¯̇γ 2

w)n−1

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

∞∑
j=1

(Λ2Re2 ¯̇γ 2
w) j

(1 + Λ2Re2 ¯̇γ 2
w) j

j∏
l=1

2l − 2n
2l + 3

⎫⎬
⎭ .

(2.23)

The results of Q̄/(δ2πr̄) along ¯̇γ w under various n and number of terms j are depicted in
figure 9 by numerically computing the series in (2.23). When ΛRe ¯̇γ w � 1, (2.23) can be
simplified to

Q̄

δ̄
2
πr̄

= 1
3

¯̇γ w. (2.24)

Furthermore, when 1 � ΛRe ¯̇γ w � 1−n
√

(1 − β)/β, (2.23) can be written as

Q̄

δ̄
2
πr̄

= 1
3

¯̇γ w

⎡
⎣1 − β(ΛRe ¯̇γ w)1−n

1 − β

∞∑
j=1

j∏
l=1

2l − n − 1
2l + 3

− 1
2

∞∑
j=1

j∏
l=1

2l − 2n
2l + 3

⎤
⎦

= 1
3

¯̇γ w

⎛
⎝1 − 1

2

∞∑
j=1

j∏
l=1

2l − 2n
2l + 3

⎞
⎠ = 1

3
¯̇γ wH(n), (2.25)

where H(n) = 1 − 1
2
∑∞

j=1
∏ j

l=1(2l − 2n)/(2l + 3).
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Close-contact melting of shear-thinning fluids

As for ΛRe ¯̇γ w � 1−n
√

(1 − β)/β, (2.23) can be rewritten as

Q̄

δ̄
2
πr̄

= 1
3

¯̇γ w

⎡
⎣1 − (1 − β)

β(ΛRe ¯̇γ w)1−n

∞∑
j=1

j∏
l=1

2l − n − 1
2l + 3

−1
2

(1 − β)2

β2(ΛRe ¯̇γ w)2−2n

∞∑
j=1

j∏
l=1

2l − 2n
2l + 3

⎤
⎦ . (2.26)

Notice that the last two terms in brackets of (2.26) are far less than 1. Hence, (2.26) can be
simplified to

Q̄

δ̄
2
πr̄

= 1
3

¯̇γ w. (2.27)

On the other hand, the unknown ¯̇γw is related to the pressure gradient dP̄/dr̄ as given by

1
Re

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2] ¯̇γw = τ̄w = −dP̄

dr̄
δ̄

2
. (2.28)

Hence, the pressure gradient in asymptotic form can also be obtained after substituting
Q̄ = V∗πr̄2 into the expressions (2.24), (2.25) and (2.27), as given by

−dP̄
dr̄

δ̄

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Re

3 V∗r̄

δ̄
2 if 0 < r̄ � δ̄

2

3V∗ΛRe
,

1 − β

Re (ΛRe)1−n

(
3 V∗r̄

δ̄
2H(n)

)n

if
δ̄

2H(n)

3V∗ΛRe
� r̄ � δ̄

2H(n)

3 V∗ΛRe

(
1 − β

β

)1/(1−n)

,

β

Re
3V∗r̄

δ̄
2 if r̄ � δ̄

2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

.

(2.29)

Then, integrating (2.29) twice under asymptotic assumptions and substituting into (2.12)
leads to two control equations (details are given in Appendix B), depending on whether
the magnitude of the maximum shear rate at the radius edge reaches the high shear rate in
the Carreau model . The two equations are defined as MN and PQ equation as follows.
For the MN equation

M δ̄
5

(V∗)3 + N (V∗)n

δ̄
2n+1 = H̄ − δ̄ for

(
β

1 − β

)1/(1−n)

� δ̄
2

3V∗ΛRe
� 1, (2.30)

where

M = A
27Re

1

(ΛRe)4

[
1
2

− 2 (1 − β)

(n + 3) (H(n))n

]
, (2.31)

and

N = A
Re

1 − β

(ΛRe)1−n
2

n + 3

(
3

H(n)

)n

. (2.32)

For the PQ equation

P δ̄
5

(V∗)3 + QV∗

δ̄
3 = H̄ − δ̄ for

(
β

1 − β

)1/(1−n)

� δ̄
2

3V∗ΛRe
, (2.33)
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where

P = A
27Re

1

(ΛRe)4

[
1
2

+ −2
n + 3

(1 − β)

(H(n))n + 2
n + 3

1 − β

(H(n))n

(
1 − β

β

)(3+n)/(1−n)

+−β

2

(
1 − β

β

)4/(1−n)
]

, (2.34)

and

Q = 3β

2
A
Re

. (2.35)

Here, we denote

B = 1
2

+ −2
n + 3

(1 − β)

(H(n))n + 2
n + 3

1 − β

(H(n))n

(
1 − β

β

)(3+n)/(1−n)

+ −β

2

(
1 − β

β

)4/(1−n)

, (2.36)

and P = (A/27Re)(B/(ΛRe)4) for ease of writing in the subsequent sections.
Furthermore, it is of interest to analyse expressions (2.30) and (2.33) in the limit of

2λΓ � 1 and β = 0 to compare with the power-law model in § 2.3. It can be easily known
that the dimensionless form of limit 2λΓ � 1 is ΛRe ¯̇γw � 1. With the limit of β = 0
and ΛRe ¯̇γw � 1, (2.27) and (2.24) will become absent, which consequently leads to a
transformation of (2.29) as

− dP̄
dr̄

δ̄

2
= 1 − β

Re(ΛRe)1−n

(
3V∗r̄

δ̄2H(n)

)n

for 0 � r̄ � 1. (2.37)

Then, it can be found that the pressure distribution of the Carreau model in the limits of
β = 0 and ΛRe ¯̇γw � 1 is

P̄(r̄) = 2(1 − β)

Re (ΛRe)1−n

(
3 V∗

H(n)

)n 1

δ̄
2n+1

1 − r̄n+1

n + 1
, (2.38)

which is equivalent to the pressure distribution (2.17) in the power-law model because
H(n) = 3n/(2n + 1) can be verified by numerical calculation.

Consequently, (2.30) is also equivalent to (2.19) because the term of M disappears
when integrating (2.38). In summary, it is clear, as expected, that the Carreau model will
be converged to the power-law model in the limit of 2λΓ � 1 and β = 0.

2.5. Temperature profile and energy equation at interface
Recall the energy equation (2.10) considering the convective effect, where ūz should be
found to solve the temperature profile T̄(z̄) and temperature gradient dT̄/dz̄ at z̄ = δ̄. For
a given ūr, e.g. (2.15) for power-law fluids, ūz can be solved by integrating the continuity
equation along the z direction, while it fails for Carreau fluids due to the absence of an
explicit expression for ūr. After evaluating different assumptions for ūz (see details in
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Close-contact melting of shear-thinning fluids

Appendix C), we can adopt the approximation ūz ∼ ūz|z̄=δ̄ in (2.10), leading to

−V∗ ∂T̄
∂ z̄

= 1
Pe

∂2T̄

∂ z̄2 . (2.39)

Then (2.39) can be theoretically solved with the boundary conditions

T̄(z̄ = 0) = 1, T̄(z̄ = δ̄) = 0. (2.40a,b)

The solution of the temperature profile over the melt film is given by

T̄(z̄) = exp(−V∗z̄Pe) − exp(−V∗δ̄Pe)
1 − exp(−V∗δ̄Pe)

, (2.41)

which implies that the temperature T̄(z̄) will gradually deviate from a linear distribution
with increasing V∗Pe that is related to the convection intensity.

The energy conservation equation at the solid–liquid interface is given by

− kl
∂T
∂z

∣∣∣∣
z=δ

= ρsL
(

−dH
dt

+ dδ

dt

)
, (2.42)

where L is the latent heat of fusion. The dimensionless form of (2.42) is

− Ste
ρ̄Pe

∂T̄
∂ z̄

∣∣∣∣
z̄=δ̄

= −dH̄
dt̄

+ dδ̄

dt̄
, (2.43)

where ρ̄ = ρs/ρl is the solid–liquid density ratio and the Stefan number Ste is defined as

Ste ≡ cp,l (Tw − Tm)

L
. (2.44)

Substitution of (2.41) into (2.43) yields the comprehensive expression for the transient
velocity relationship with δ̄′(t̄) and H̄′(t̄)

Ste
ρ̄

V∗

exp(V∗δ̄Pe) − 1
= −dH̄

dt̄
+ dδ̄

dt̄
. (2.45)

Considering the scaling of (dδ̄/dt̄)(ρs − ρl/ρl) � −(dH̄/dt̄)(ρs/ρl), leads to

V∗ = −ρ̄
dH̄
dt̄

. (2.46)

Then, with the scaling of dδ̄/dt̄ � −dH̄/dt̄, (2.45) and (2.46) can be simplified
respectively as

− dH̄
dt̄

= ln(Ste + 1)

ρ̄Peδ̄
, (2.47)

and

V∗ = ln(Ste + 1)

Peδ̄
. (2.48)

Note that (2.47) can be written in the following Taylor expansion form:

−dH̄
dt̄

= ln(Ste + 1)

ρ̄Peδ̄
= 1

ρ̄Peδ̄

∞∑
i=0

(−1)i

i + 1
Stei+1. (2.49)
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This implies that (2.47) can be approximated to

−dH̄
dt̄

= Ste
ρ̄Peδ̄

for Ste � 1, (2.50)

which is the pure conductive form consistent with previous studies (Kozak et al. 2019;
Kozak 2022).

The relative deviation between (2.47) and (2.50) can be estimated by Ste/ ln(Ste + 1) −
1, resulting in an approximate deviation of 4.9 % for Ste = 0.1, 9.7 % for Ste = 0.2 and
23.3 % for Ste = 0.5. This estimation indicates that the assumption of pure heat conduction
in the melt film will lead to an overestimated melting rate, especially at higher values of
Ste.

3. Approaches to numerical solution

3.1. Numerical solution for the power-law model
By substituting (2.48) into (2.19), the following relation can be derived:

2(2n + 1)n

(n + 3)nn
A

(ΛRe)1−nRe

[
ln(Ste + 1)

Pe

]n 1

δ̄
1+3n + δ̄ = H̄. (3.1)

Equations (2.47) and (3.1) comprise a set of first-order ordinary differential equations and
nonlinear algebraic equations, respectively, that can be solved numerically. Equation (2.47)
can be discretized using a forward Euler scheme as

H̄i+1 = − ln(Ste + 1)

ρPeδ̄i
�t̄ + H̄i, (3.2)

where i and i + 1 denote the current and next time steps, respectively, and �t̄ is the discrete
time step size.

The current film thickness δ̄i can be obtained via solving the following equation:

2(2n + 1)n

(n + 3)nn
A

(ΛRe)1−nRe

[
ln(Ste + 1)

Pe

]n 1

(δ̄i)
1+3n + δ̄i = H̄i. (3.3)

The initial condition of H̄(t̄ = 0) is applied

H̄(t̄ = 0) = A. (3.4)

At each time step, (3.3) is solved for δ̄i and then the new remaining height H̄i+1 is
calculated via (3.2). Especially, for the first time step, H̄i = A is set according to (3.4). The
dimensional time step �t = 0.1 s is adopted due to proper convergence and computational
cost after performing an independence test of the time step size.
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Close-contact melting of shear-thinning fluids

3.2. Numerical method for the Carreau model
First, we can find a turning condition from (2.30) to (2.33) as

δ̄2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

= 1. (3.5)

By substituting (2.48) into (3.5), a critical film thickness δ̄cr can be identified, as given by

δ̄cr =
[

3ΛRe ln(Ste + 1)

Pe

(
β

1 − β

)1/(1−n)]1/3

. (3.6)

Essentially the critical liquid film thickness δ̄cr implies whether the wall shear rates γ̄w at
the outlet (r̄ = 1) reaches the plateau region for high shear rate in the Carreau model during
the CCM process, which leads to the transition of the pressure distribution (i.e. transition
from (B3) to (B9) as derived in Appendix B) and consequently determines the choice of
PQ or MN equation.

Similarly, the following nonlinear relations can be obtained, respectively, via
substituting (2.48) into (2.30) and (2.33):

M
[

Pe
ln(Ste + 1)

]3

δ̄
8 + N

[
ln(Ste + 1)

Pe

]n 1

δ̄
2n+1 + δ̄ = H̄ for δ̄ � δ̄cr, (3.7)

and

P
[

Pe
ln(Ste + 1)

]3

δ̄
8 + Q ln(Ste + 1)

Pe
1

δ̄
3 + δ̄ = H̄ for δ̄ � δ̄cr. (3.8)

Equation (3.2) is still utilized to calculate the height of solid PCM while the current
thickness δ̄i is obtained via

M
[

Pe
ln(Ste + 1)

]3

(δ̄i)8 + N
[

ln(Ste + 1)

Pe

]n 1
(δ̄i)2n+1

+ δ̄i = H̄i, (3.9)

or

P
[

Pe
ln(Ste + 1)

]3

(δ̄i)
8 + Q ln(Ste + 1)

Pe
1

(δ̄i)
3 + δ̄i = H̄i. (3.10)

Note that both (3.9) and (3.10) are solved for each time step to obtain δ̄i to compare with
the critical value δ̄cr. Subsequently, the δ̄i that meets the inequality requirement is adopted
for consequent calculations. Also, the same initial condition (3.4) and time step �t = 0.1 s
are adopted for all cases.

As for determining the initial film thickness δ̄(0), we first assume that the PQ equation
is satisfied by substituting H̄(0) = A to solve (3.10). If the condition of δ̄(0) � δ̄cr is
satisfied, it can be verified that the presumption is correct. If δ̄(0) > δ̄cr, it means that the
PQ equation is not satisfied and the initial value needs to be solved by the MN equation.
Since the PQ and MN equations are equivalent when the liquid film thickness is exactly
equal to the critical value, this a posteriori solution method to determine the initial film
thickness will not cause errors.
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Solid PCM

Heating plate

Camera

CW laser
Beam

expander

Beam

splitter

High-speed

camera

PC

Mirror

H(t)

δ(t)

2R 103

1,6H/G-X1% at 42 °C
T-X1% at 34 °C
Inositol at 547.65 K
Dulcitol at 470.45 K

102

101 102 103

100

101

100

10–1

10–1
10–2

10–210–3

(a) (b)

Figure 3. (a) Sketch of the experimental apparatus measuring the melt film thickness δ(t) and recording the
height of the solid H(t). (b) In-house measurements of viscosity as a function of strain rate of 1,6H/G-X1 %
and T-X1 %, also included are data points for inositol and dulcitol (Shao et al. 2021), where the shaded patches
represent the scatter range of the measured viscosity. The regression to Carreau (blue lines) functions and fitting
parameters are listed in table 1, and the power-law (red lines) functions are determined by using the same fitting
parameters from the Carreau model.

4. Numerical results and experimental validation

4.1. Experimental set-up and procedure

4.1.1. Experimental apparatus
As shown in figure 3(a), a heated-from-below configuration was arranged by placing
vertically a cylindrically shaped PCM sample on a heating plate. Two experimental devices
were established to separately measure the instantaneous top surface height H(t) of solid
PCM and thickness δ(t) of melt film during CCM. The height H(t) was recorded by a
digital camera, whereas thickness δ(t) was obtained based on laser interference method
similar to the measurement of the microlayer under vapour bubbles during boiling (Chen
et al. 2020; Sinha, Narayan & Srivastava 2021). Details of the experimental set-up and
procedure for measuring height H(t) and thickness δ(t) can be found in our previous
work (Hu et al. 2018, 2019). Two heating boundary temperatures were used for each PCM
corresponding to wall superheats �T of 10 ◦C and 30 ◦C, respectively, in all cases. Given
the slim shape of the PCM sample, it tended to tilt upon melting from the bottom. Hence,
a glass tube having an inner diameter that is slightly greater than the outer diameter of the
PCM column was suspended vertically to hold it as a guide, so as to prevent it from titling
during each CCM run.

During the measurement of H(t), a three-way valve was used to trigger melting from the
low-temperature loop to the high-temperature loop. The analysis ignored the little delay in
the copper base’s temperature response after switching the valve. To prevent heat losses
to the environment, the entire arrangement was enclosed in a thermostat that was kept at
the initial temperature of the PCM. During the melting process, the decreasing height of
the PCM sample was captured by a digital camera every 5 s. The photos were then loaded
into an image processing program to precisely calculate the height. A circumferentially
grooved shape on the base allowed drainage of the liquid melt squeezed from the thin film.

As for measuring δ(t), experiments were carried out inside an acrylic reservoir that was
utilized to collect molten PCM and serve as a confined environment under atmospheric
pressure. The PCM sample was kept in the thermostat at a starting temperature of Tm −
0.5 ◦C before each run, and the heating plate was verified to be in steady state at the
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Close-contact melting of shear-thinning fluids

predetermined temperature Tw. A typical run was triggered by moving the PCM quickly
from the thermostat onto the transparent isothermal heating plate, while the high-speed
camera started recording the interference patterns synchronously.

As introduced in our previous work (Hu et al. 2019), a high-speed camera at 1000 fps
was used to capture the interferometric fringes, in order to ensure fringes within the
field view shifted monotonically (only expanded) without any oscillating effects, thus
verifying the increasing trend of the melt film thickness during melting. Due to memory
limitations and the inability to switch cameras during the experiment, we were only able
to measure the early liquid film thickness changes. However, given the slow change in
film thickness after melting stabilization, we can still find its quasi-steady-state value from
early measurements and compare it with the analytical/numerical prediction.

4.1.2. Preparation of the experimental PCM
Due to the relatively high melting points of sugar alcohol-based PCMs (Tm > 100 ◦C
for most), two home-made PCMs based on 1,6-hexanediol/glycerol mixture (Tm =
29 ◦C) and tetradecanol (Tm = 37 ◦C) having lower melting points were prepared
for experimental studies. One PCM, denoted as T-X1 %, was obtained by thorough
mixing of 1 wt.% polymer thickener (Carbopol 940) in molten tetradecanol. Another
PCM named 1,6H/GX1 % was obtained by adding 1 wt.% Carbopol 940 to a molten
1,6-hexanediol/glycerol (9 : 1 mass ratio) mixture. To prepare uniformly dissolved and
air-bubble-free solutions, the process of adding thickener to both PCMs was done by
ultrasonic oscillation for 30 min, followed by degassing in a vacuum chamber during
solidification. No phase separation was found after resting on the shelf and several cycles
of solid–liquid phase change.

The solid PCM fabrication procedure prior to the melting experiments was as follows.
A glass test tube with an inner diameter of 12 mm was used to serve as the solidification
mould, which was submerged in water bath maintained at T = Tm − 5 ◦C. To minimize
void formation during solidification, a layer-by-layer strategy was adopted, i.e. a small
amount of a premelted PCM was gently poured into the test tube to generate a thin solid
layer at each step. The tube was cracked once the solidified sample had risen to the desired
height. This cracking step was done with great care to avoid any deformation and damage
to the PCM sample inside (Hu et al. 2018). The entire sample was then easily removed from
the mould, followed by cutting and shaping to produce a cylinder sample with R = 6 mm
and H0 = 20 or 40 mm.

4.1.3. Rheological and other thermophysical properties
The dependence of the shear viscosity μ of T-X1 % and 1,6H/GX1 % on the shear
rate γ̇ was measured by a high-precision rotational rheometer (Anton Paar MCR102).
The rheological measurements were performed at two characteristic temperatures
corresponding to two superheats for both 1,6H/G-X1 % and T-X1 %. In detail, the viscosity
of 1,6H/G-X1 % was measured at 42 ◦C and 52 ◦C corresponding to the superheat of 5 ◦C
and 15 ◦C, respectively. Similarly, the viscosity of T-X1 % was measured at 34 ◦C and
44 ◦C. The results showed a minor temperature-dependent effect on viscosity.

The μ − γ̇ curves of T-X1 % and 1,6H/GX1 % are shown in figure 3(b), where the
fitted curves based on the Carreau model are in good agreement with the experimental
data, while the curves based on the power-law model only fit well over a certain segment.
In addition, for the subsequent discussion of the CCM process for sugar alcohols,
the rheological properties and fitted curves of inositol and dulcitol are also plotted in
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PCM μ0 (Pa s) μ∞ (Pa s) β (–) λ (s) n (–) R2

Inositol 192.278 4.00 × 10−2 2.08 × 10−4 137.867 0.2 0.992
Dulcitol 10.469 1.68 × 10−2 1.61 × 10−3 1500 0.1 0.979
T-X1 % 0.212 1.00 × 10−2 4.71 × 10−2 3.496 0.1 0.996
1,6H/G-X1 % 6.523 1.10 × 10−2 1.68 × 10−2 8.00 0.6 0.994

PCM Tm (◦C) L (kJ kg−1) cp,l (J kgK−1) kl (W mK−1) ρs (kg m−3) ρl (kg m−3)

Inositol 224.5 261.8 2773 0.364 1752 1523
Dulcitol 187.3 350.8 2068 0.372 1640 1467
T-X1 % 37.0 225.5 2351 0.161 873 821
1,6H/G-X1 % 29.1 177.5 2438 0.232 1160 984

Table 1. Fitted rheological parameters and other thermophysical properties of inositol, dulcitol, T-X1 % and
1,6H/G-X1 %.

figure 3(b). The melting point Tm, latent heat of fusion L and specific heat capacity in liquid
phase cp,l of all PCMs were measured by a differential scanning calorimeter (NETZSCH
200 F3). The thermal conductivity of liquid phase PCMs was measured using a KD2
Pro thermal analyser that is based on the transient hot-line method. All fitted rheological
parameters and other important thermophysical properties related to the CCM process are
given in table 1.

4.2. Validation of the Carreau model and convective effect
In figure 4(a), the model predictions and experimental measurements of the instantaneous
top surface height H(t) for T-X1 % and 1,6H/G-X1 % are shown together with three
combinations of operating conditions. The solid line represents the convective model
using (2.47), and the dashed line denotes the pure conduction model using (2.50). All
predictions of the pure conduction model overestimate the rate of decline in height H,
in comparison with the experimental results. As expected, the predictions of the new
model including convective effect are more accurate. There is a clear difference between
the convective and conductive models when the superheat is 30 ◦C, and the convective
model is in better agreement with the experimental results. The convective effect is not
significant at 10 ◦C, but a non-negligible difference can still be found. Figure 4(a) also
proves that the convective effect is insignificant at Ste = 0.1, while a more remarkable
influence occurs at Ste = 0.3 or 0.4, which is consistent with the condition of Ste � 1
for (2.50) as the conductive model. Additionally, it is demonstrated that, with decreasing
superheat, the prediction difference between the two models becomes smaller. Especially,
when Ste → 0.1, it is difficult to distinguish the difference from the height variation.

Therefore, we particularly investigated the liquid film thickness variation, and the
combined experimental and predicted values show that the film grows rapidly from the first
few seconds after start of melting to gradually approach the theoretical predicted value. It is
worth noting that, although the initial transient growth of the film cannot be predicted due
to the simplification of the model, the fact that this short period of time is negligible with
respect to the full melting process allows us to compare the quasi-steady-state asymptotic
values from the experimental results with the predicted values, as illustrated in figure 4(b).
First, the comparison of the predicted results reveals that the liquid film thicknesses
calculated by the pure conduction and convective models do not differ much at the onset
of melting, although the predicted values for the former are greater than those for the
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Figure 4. (a) Comparison between the experimental results and numerical predictions of H(t) over the whole
process of CCM. (b) Comparison between the experimental results and numerical predictions of δ(t) during the
initial stage of CCM. (c) Numerical predictions of δ(t) for the whole process of CCM. (d) Transient heat flux q′′
for T-X1 % and 1,6H/G-X1 %. (e) Transient equivalent heat transfer coefficient h for T-X1 % and 1,6H/G-X1 %.
Three conditions are involved for all cases with the combination of two aspect ratios (A = 10/3 or 20/3) and
two degrees of superheat (�T = 10 ◦C or 30 ◦C), as denoted by [�T, A] for each condition. Scattered points:
experimental values, solid line: convection effects by (2.47), double dotted line: pure conduction assumption
by (2.50), shaded patches: the scatter range of measured film thickness.

latter in all cases. The experimental results reflect a closer convergence to the convective
model within the error spreading range of the measured data, which again confirms the
significance of considering convective effect.

However, if the time span is extended to the whole melting process to observe the liquid
film thickness variation (see figure 4c), the gap of predicted liquid film thickness between
the two models gradually widens as time proceeds. It is interesting to note that, although
the liquid film thickness predicted by the pure conduction model is always higher than that
of the convective model, the total melting time is shorter for the former. Another point to
note is that the model equation for T-X1 % is always the PQ equation, while 1,6H/G-X1 %
is always associated with the MN equation for the set thermal and geometric conditions.
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In order to investigate the aforementioned non-intuitive variations of the liquid film
thickness and melting rate, we calculated the heat flux q′′ and equivalent heat transfer
coefficient h according to the following equations:

q′′ = −ρsL
dH
dt

, (4.1)

and

h = q′′

�T
= q′′

Tw − Tm
. (4.2)

Figure 4(d) shows that the heat flux predicted by the pure conduction model is higher
than that by the convective model when convection is considered for a longer period of
time after the onset of melting, regardless of the material, superheat and size conditions.
This means that essentially the decrease in liquid film thickness due to convective effect
is caused by the reduction in the molten liquid generation rate as a result of the decrease
in the local temperature gradient at the solid–liquid phase interface of the PCM. Indeed,
the high superheat and occurrence of the convective effect cause an increase in thermal
resistance within the melt film, which is verified by the comparison of equivalent heat
transfer coefficient under various conditions (see figure 4e).

According to the field synergy principle (Guo, Tao & Shah 2005), improving the
synergy between the velocity field and temperature gradient/heat flow field can enhance
heat transfer. However, we can find that the direction of ūz is naturally opposite to the
temperature gradient as evaluated in Appendix C. Hence, the presence of ūz leads to a
deterioration of heat transfer. The large superheat will also enlarge the magnitude of ūz, as
indicated by (2.48), and results in a greater thermal resistance, which is also indicated in
figure 4(e).

Again, the convective model is confirmed to be more realistic and more accurate than
the pure conduction model. Both experimental results (figure 4) and theoretical analysis
(2.50) indicate that Ste = 0.1 can be used as an empirical threshold value for whether to
consider the convective effect in the melt film during CCM.

4.3. Transition of control equation and power-law model approximation
As previously mentioned in figure 4(c), the liquid film thickness δ of the T-X1 % and
1,6H/G-X1 % during the whole CCM process is less than and greater than, respectively, the
critical liquid film thickness δcr under three operating conditions, meaning that the CCM
process of the two PCMs is always determined only by the PQ equation and the MN
equation, respectively. However, it is pointed out that the value of δcr is not only related
to the two physical conditions of superheat �T and radius R, but also affected by the
complex physical properties of the PCMs according to the following formula transformed
from (3.6):

δcr =
[

3Rλkl

ρlcp,l
ln
(

�Tcp,l

L
+ 1

)(
β

1 − β

)1/(1−n)
]1/3

. (4.3)

Therefore, we then selected inositol and dulcitol as additional shear-thinning PCMs and
calculated the CCM process of both under the same three operating conditions with the
same radius R = 6 mm. Also, notice that the force balance control equation (2.19) of the
power-law model is particularly similar in form to a part of the MN equation (2.30).
Considering that the power-law model is close to the Carreau model over a certain shear
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Figure 5. Comparison of numerical predictions H and δ between the Carreau and power-law models for (a)
T-X1 %, (b) 1,6H/G-X1 %, (c) dulcitol and (d) inositol under three conditions. (e) Comparison of numerical
predictions of H and δ between the Carreau and power-law models when modifying R from 6 to 3 mm for
inositol.

rate range (see fitted line in figure 2b), we also calculated the H and δ variations during
the CCM process based on the power-law model to compare the differences between the
two shear-thinning models.

Numerical predictions of the four PCMs under three operating conditions are shown
in figures 5(a)–5(d), corresponding to T-X1 %, 1,6H/G-X1 %, dulcitol and inositol,
respectively. We can find that dulcitol exhibits the same characteristics as T-X1 %, i.e. the
liquid film thickness is always lower than the critical liquid film thickness, while the case
of inositol is similar to 1,6H/G-X1 % except that there is a transition from PQ control to
MN control under condition of [30, 20/3] (see inset in figure 5d). During this transition,
it can be found that the liquid film thickness continues to increase and the growth rate has
suddenly changed, but no reflection can be seen in the change of H.

What is more interesting is that, in the case of MN control, the predicted value of
the power-law model is almost identical to the Carreau model (see figure 5b,d), while
there is no relationship between the two models in the case of PQ control. It is noted
that the consistence is applicable in the special case of inositol with [30, 20/3] although
it does not belong to pure MN control. We believe that this is because the critical liquid
film thickness δcr is relatively low, causing the transition to occur too early, so this case
can still be considered to approximately belong to the MN control mode. To justify this
hypothesis, we calculated an additional case, amplifying the critical liquid film thickness
δcr by changing only R from 6 to 3 mm to delay the transition. As shown in figure 5(e),
because the transition occurs later, the predictions of the two models differ to a great
extent, indicating that the Carreau model could not be replaced with the power-law model
in this situation.

Therefore, we can conclude that there are three complex combinations due to various
operating conditions and thermophysical properties of PCMs, namely PQ control, MN
control and PQ − MN transition, depending on whether the liquid film thickness δ varies
below, above or across the critical liquid film thickness δcr. If the conditions meet the
MN control situation, the numerical prediction method based on the power-law model
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Figure 6. The influence of non-Newtonian parameters including index n (a,b), infinite viscosity μ∞ (c,d) and
characteristic time λ (e, f ), where T-X1 % (a,c,e) and 1,6H/G-X1 % (b,d, f ) are chosen as benchmark materials.
The conditions of initial height 20 mm as well as superheat 30 ◦C are adopted. Solid line, H(t); dashed line,
δ(t); and dot-dash line, δcr.

can be used to greatly reduce the computational cost for solving the MN equation with
high-order exponents.

4.4. Impact of non-Newtonian rheology on CCM
Given that the non-Newtonian rheology causes the appearance of critical liquid film
thickness as discussed in § 4.3, it is also of interest to explore the effect of non-Newtonian
rheological parameters on the CCM process. Since T-X1 % and 1,6H/G-X1 % exhibit
very different CCM processes, we chose the physical properties of these two materials as
benchmarks to study the effects of index n, characteristic time λ and high-shear viscosity
μ∞ (to vary β).

As shown in figures 6(a) and 6(b), a larger n implies a greater initial liquid film thickness
δt=0 and a smaller critical liquid film thickness δcr, which represents a trend from PQ
control to MN control until it is fully controlled by the MN equation. For PQ control
cases of n = 0.1 and 0.2 in figure 6(a), the index n has no effect, while increasing n slows
down the CCM melting rate, i.e. the descent velocity of solid PCM, for the other cases. It
is worth noting that n = 1, which represents Newtonian fluids, leads to δcr = 0. Hence, it
is identical to the power-law equation with n = 1, which is also equivalent to the control
equation established by Kozak et al. (2019) for describing Newtonian fluids. A similar
pattern is shown for characteristic time λ. For PQ control cases of λ = 3.496 s, 34.96 s
and 349.6 s, as shown in figure 6(e), changing λ will have no effect. Nevertheless, for
PQ − MN transition and PQ cases in figure 6( f ), a smaller λ results in an increase of
the melting time. As for only varying the high-shear viscosity μ∞, a different pattern is
found. There is no impact of μ∞ on CCM for MN control cases, as shown in figure 6(d),
whereas increasing μ∞ leads to a slower melting rate for PQ − MN transition and PQ
cases (see figure 6c).
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It can be summarized that the effect of non-Newtonian rheological parameters on CCM
is complex. Increasing n, decreasing μ∞ and decreasing λ all can reduce the critical liquid
film thickness δcr, and thus result in the change of control scenarios. Moreover, increasing
n and decreasing λ can slow down melting and reduce the descent velocity of PCM only in
PQ − MN transition and MN control cases, while greater μ∞ leads to a slower melting
only in PQ control and PQ − MN transition cases.

5. Approximate analytical solutions

5.1. Approximate solutions of power-law model
It is reasonable to consider H̄ � δ̄ except for the final stage of CCM. Hence, (2.19) can be
rearranged as

2(2n + 1)nA

(n + 3)nnΛ1−nRe2−n
(V∗)n

δ̄
1+2n = H̄. (5.1)

Substitution of (2.48) into (5.1) leads to the explicit relationship as

δ̄ =
[

ln(Ste + 1)

Pe

]n/(3n+1) [ 2(2n + 1)nA
(n + 3)nn(ΛRe)1−nRe

]1/(3n+1) ( 1
H̄

)1/(3n+1)

. (5.2)

Then, substituting (5.2) into (2.47) leads to the following ordinary differential equation:

dH̄
dt̄

= −H̄1/(1+3n) 1
ρ̄

[
(n + 3)nn(ΛRe)1−nRe

2(2n + 1)nA

]1/(1+3n) [ ln(Ste + 1)

Pe

](1+2n)/(1+3n)

.

(5.3)
By integrating (5.3), we can get the following expression for H̄(t̄):

H̄(t̄) =
{

A3n/(1+3n) − 3n
1 + 3n

1
ρ̄

[
(n + 3)nn(ΛRe)1−nRe

2(2n + 1)nA

]1/(1+3n)

×
[

ln(Ste + 1)

Pe

](1+2n)/(1+3n)

t̄
}(1+3n)/3n

, (5.4)

and the expression for δ̄(t̄) can be obtained by substituting (5.4) into (5.2), as given by

δ̄(t̄) =
[

ln(Ste + 1)

Pe

]n/(3n+1) [ 2(2n + 1)nA
(n + 3)nn(ΛRe)1−nRe

]1/(1+3n) {
A3n/(1+3n) − 3n

1 + 3n
1
ρ̄[

(n + 3)nn(ΛRe)1−nRe
2(2n + 1)nA

]1/(1+3n) [ ln(Ste + 1)

Pe

](1+2n)/(1+3n)

t̄
}−1/3n

. (5.5)

It is noted that the expressions (5.4) and (5.5) will reduce to the approximate solutions in
previous work (Kozak et al. 2019) for Newtonian fluids when n = 1.
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5.2. Approximate solutions of Carreau model
Similarly, (2.30) can also be rewritten with the condition of H̄ � δ̄, followed by
substitution of (2.48), leading to

M
[

Pe
ln(Ste + 1)

]3

δ̄
8 + N

[
ln(Ste + 1)

Pe

]n 1

δ̄
3n+1 = H̄. (5.6)

Notice that M < 0, N > 0 and H̄ � 0 are always satisfied. Hence, there is only one
possible approximation that

N
[

ln(Ste + 1)

Pe

]n 1

δ̄
3n+1 = H̄ (denoted by N-Eq), (5.7)

where the following condition should always be satisfied during melting:

δ̄ �
( N

−M
)1/(3n+9) [ ln(Ste + 1)

Pe

]1/3

. (5.8)

According to (5.7), the minimum value δ̄N,min and maximum value δ̄N,max can be obtained,
respectively, as

δ̄N,min =
(N

A

)1/(1+3n) [ ln(Ste + 1)

Pe

]n/(1+3n)

, (5.9)

δ̄N,max =
(N

εA

)1/(1+3n) [ ln(Ste + 1)

Pe

]n/(1+3n)

, (5.10)

where ε is a limit value as H̄ ∼ δ̄ and ε = 0.1 is a proper estimation (Moallemi et al. 1986).
Then, substituting (5.10) into the inequality in (5.8) leads to the following constraint:

1
ε

2(1 − β)

(n + 3)Hn

(
1 − n + 3

4
Hn

1 − β

)(3n+1)/(3n+9)

� (ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

.

(5.11)

Substitution of (5.9) and (5.10) into the inequalities in (2.30) leads to the conditions for
the M − N control region

1
ε

2(1 − β)

(n + 3)Hn < (ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

<
2(1 − β)

(n + 3)Hn

(
1 − β

β

)(1+3n)/(3−3n)

.

(5.12)

Moreover, if we can approximate that 1 � a
b is equivalent to F � a/b (factor F is

considered to be 20 in this work) for two variables a and b, the constraint for N-Eq becomes
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F
ε

2(1 − β)

(n + 3)Hn

(
1 − n + 3

4
Hn

1 − β

)(3n+1)/(3n+9)

� (ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

<
2(1 − β)

(n + 3)Hn

(
1 − β

β

)(1+3n)/(3−3n)

. (5.13)

On the other hand, substituting (2.48) into (2.33) with H̄ � δ̄ leads to

P δ̄
8Pe3

[ln(Ste + 1)]3 + Q ln(Ste + 1)

Peδ̄4 = H̄. (5.14)

Because both P and Q are always positive, there are two possible approximations, one of
which is given by

P δ̄
8Pe3

[ln(Ste + 1)]3 = H̄ (denoted by P-Eq). (5.15)

This expression implies that the range of δ̄ is

δ̄P,min =
(

εA
P
)1/8 [ ln(Ste + 1)

Pe

]3/8

� δ̄ �
(

A
P
)1/8 [ ln(Ste + 1)

Pe

]3/8

= δ̄P,max.

(5.16)
The constraint for P-Eq to hold is

δ̄ �
(Q
P
)1/12 [ ln(Ste + 1)

Pe

]1/3

. (5.17)

Thus, substituting δ̄P,min into (5.17) and δ̄P,max into (2.33) leads to the constraints as

1
ε

(
β2B

4

)1/3

� (ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

<

(
β

1 − β

)8/(3−3n)

B, (5.18)

which is not valid due to (β/(1 − β))8/(3−3n)B < (β2B/4)1/3 for n = 0.1–0.9 and β =
10−5–10−1. This result indicates that the approximation of P-Eq is not available.

Therefore, only the following constraint exists for (5.14):

δ̄ �
(Q
P
)1/12 [ ln(Ste + 1)

Pe

]1/3

, (5.19)

and (5.14) is reduced to

Q ln(Ste + 1)

Peδ̄4 = H̄ (denoted by Q-Eq), (5.20)

where the range of δ̄ is

δ̄Q,min =
(Q

A

)1/4 [ ln(Ste + 1)

Pe

]1/4

� δ̄ �
(Q

εA

)1/4 [ ln(Ste + 1)

Pe

]1/4

= δ̄Q,max. (5.21)

Similarly, substituting δ̄Q,max into the inequality in (2.33) and into (5.19) leads to,
respectively, the following conditions:
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the P − Q control region

(ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

>
1 − β

2ε

(
1 − β

β

)(1+3n)/(3−3n)

(5.22)

and the Q-Eq region

(ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

� 1
ε

(
β2B

4

)1/3

. (5.23)

It is noted that, under the conditions of 0.1 � n � 0.9 and 10−5 � β � 10−1, a
magnitude comparison analysis on B reveals that

B = 2
n + 3

1 − β

(H(n))n

(
1 − β

β

)(3+n)/(1−n)

+ −β

2

(
1 − β

β

)4/(1−n)

=
(

2
n + 3

1
Hn − 1

2

)
(1 − β)4/(1−n) β(−3−n)/(1−n). (5.24)

Hence, the constraint for Q-Eq is

F(1 − β)

ε

[
1

2(n + 3)Hn − 1
8

]1/3 (1 − β

β

)(1+3n)/(3−3n)

� (ΛRe)4/3 Re
[

3 ln(Ste + 1)

Pe

]1/3

. (5.25)

Based on the above constraints, the parametric phase diagram of the approximate solution
can be drawn as in figure 7(a). It is worth noting that the parameter combinations
in the white region of the phase diagram represent that the approximation conditions
cannot be met, thus the approximate solutions cannot be obtained and only numerical
solutions can be used. Furthermore, the same dimensionless group (ΛRe)4/3Re[3 ln(Ste +
1)/Pe]1/3 is found by generalizing all the constraints (5.11), (5.12), (5.22) and (5.23), in
which parameters β and n can be considered as the other independent variables. This
dimensionless group can be seen as the dimensionless form of product of characteristic
time λ and the wall shear rate γ̇ w|r=R under different CCM conditions. Hence, it implies
that we can use the dimensionless group (ΛRe)4/3Re[3 ln(Ste + 1)/Pe]1/3, β and n
together to construct a three-dimensional parameter phase space to indicate the usable
range of approximate solutions. It is noted that the dimensionless group is independent of
the critical liquid film thickness due to the absence of β and n in the group, although the
part [3ΛRe ln(Ste + 1)/Pe]1/3 is shared.

Substituting δ̄(H̄) from (5.7) and (5.20) into (2.47), we can finally obtain the
approximate solutions of the Carreau model as follows.

For N-Eq region, we have

H̄(t̄) =
{

A3n/(3n+1) − 3n
(3n + 1)ρ̄

[
Re(ΛRe)1−n

A
(n + 3)Hn

2(1 − β)3n

]1/(3n+1)

×
[

ln(Ste + 1)

Pe

](2n+1)/(3n+1)

t̄

}(3n+1)/3n

, (5.26)
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]

Figure 7. (a) Analytical phase diagram of the approximate solutions. (b) Three-dimensional phase diagram
of Q-Eq and N-Eq regions with n and β as independent variables for parameter space 0.1 � n � 0.9 and
10−5 � β � 10−1.

and

δ̄(t̄) =
[

A
Re(ΛRe)1−n

2(1 − β)3n

(n + 3)Hn

]1/(3n+1) [ ln(Ste + 1)

Pe

]n/(3n+1) {
A3n/(3n+1)

− 3n
(3n + 1)ρ̄

[
Re(ΛRe)1−n

A
(n + 3)Hn

2(1 − β)3n

]1/(3n+1) [ ln(Ste + 1)

Pe

](2n+1)/(3n+1)

t̄
}−1/3n

.

(5.27)

It is noting that, with the limit of the power-law fluid from the Carreau fluid, i.e. β = 0
and ΛRe � 1 and recalling H(n) = 1 − 1

2
∑∞

j=1
∏ j

l=1(2l − 2n)/(2l + 3) = 3n/(2n + 1),
the (5.27) will be identical to (5.5).
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Virtual cases ΛRe Re Pe Ste ρ n β

VC1 102 102 104 0.1 1.1 0.1 10−2

VC2 104 102 105 1 1.1 0.2 10−3

VC3 104 102 105 1 1.1 0.3 10−4

VC4 103 10 104 0.1 1.1 0.6 10−2

VC5 103 10 104 0.1 1.1 0.6 10−5

VC6 104 102 105 1 1.1 0.6 10−3

Table 2. Dimensionless parameters for the virtual cases.

For Q-Eq region, we have

H̄(t̄) =
{

A3/4 − 3
4ρ̄

(
2Re
3βA

)1/4 [ ln(Ste + 1)

Pe

]3/4

t̄
}4/3

(5.28)

and

δ̄(t̄) =
[

3βA
2Re

ln(Ste + 1)

Pe

]1/4 {
A3/4 − 3

4ρ̄

(
2Re
3βA

)1/4 [ ln(Ste + 1)

Pe

]3/4

t̄
}−1/3

. (5.29)

It is noted that, when β = 1 and n = 1 for Newtonian fluids, the approximate solutions
for N-Eq region, i.e. (5.26) and (5.27), both disappear. In this case, (5.28) and (5.29)
also reduce to the formulae for Newtonian fluids, which are identical to (5.4) and (5.5),
respectively.

5.3. Discussion of approximate solutions
In order to determine the applicable range of the approximate solutions and to evaluate
their degree of coincidence with numerical predictions, we transform the phase diagram
in figure 7(a) into a three-dimensional phase diagram with n and β as two independent
variables, as shown in figure 7(b). Above the blue surface is the control range of Q-Eq,
while the space between the red and yellow surfaces is the control range of N-Eq.
We estimated that the magnitude of the dimensionless group 31/3(ΛRe)4/3Re(ln(Ste +
1))1/3Pe−1/3 ranges from approximately 10−3 to 107 based on the representative values of
the following dimensional parameters R = 0.01–1 m, λ = 1–5000 s, μ0 = 0.1–1000 Pa s
and dimensionless parameters Ste = 0.05–1, A = 0.1–10, Pe = 104–106, ΛRe = 10–105,
Re = 10−2–102, while the range of values for n and β is consistent with the assumptions
in the derivation process.

In figure 7(b), we also marked the positions for the four PCMs under all conditions in the
phase diagram, which have been shown in figures 4 and 5. However, it can be found that
these points are not located in the N-Eq and Q-Eq regions, meaning that none of these real
cases satisfies the conditions for using an approximate solution. Therefore, we constructed
six virtual cases (VC) to compare the difference between the approximate solution and the
numerical prediction, and the relevant parameters of the cases are listed in table 2. Among
them, three cases (VC1–3) are set to Q-Eq control, while the other three (VC4–5) belong
to the N-Eq control space, and the points within the phase space of these cases are also
plotted in figure 7.

The comparison between the approximate solutions and numerical predictions are
shown in figure 8(a) for VC1–3 and in figure 8(b) for VC4–5. In all the virtual cases,
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Figure 8. (a) Comparison between the approximate solutions and numerical predictions of the dimensionless
liquid film thickness δ̄ and remaining height H̄ in virtual cases 1–3 controlled by Q-Eq. (b) Comparison between
the approximate solutions and numerical predictions of the dimensionless liquid film thickness δ̄ and remaining
height H̄ of virtual cases 4–6 controlled by N-Eq and comparison with the power-law approximation solutions.

the approximate solutions and numerical predictions are found to be highly consistent,
except for a small difference in the thickness of the liquid film near the end of melting.
This confirms the validity of the proposed Q-Eq and N-Eq phase spaces. Accordingly, the
use of approximate solutions rather than computationally expensive numerical solutions
for cases that satisfy the phase space conditions can greatly reduce the cost for analysis.

In addition, it is interesting to note that VC5 changes the β value from 10−2 to 10−5

compared with VC4, but the melting processes of the two cases are identical. This
means that, in the case of the current dimensionless group 31/3(ΛRe)4/3Re(ln(Ste +
1))1/3Pe−1/3, the shear rates everywhere in the liquid film are in the low shear rate range
of the power-law region, and changing the β value does not affect the CCM process,
as shown in figure 2. Moreover, as previously demonstrated in § 4.3, when the CCM
process is completely controlled by N-Eq, the Carreau model and the power-law model
are essentially equivalent. Therefore, as shown in figure 8(b), we can find that the two
approximate solutions in the phase space N-Eq control space are also equivalent for cases
VC4–6.

6. Concluding remarks

In this work, we established a theoretical framework to model the CCM of shear-thinning
fluids based on the Carreau and power-law models. We found excellent agreement
between the melt film thickness and remaining height predicted by our numerical
solutions of the Carreau model and those obtained from experimental results in all
cases. Furthermore, we showed that convection within the liquid film deteriorates the
heat transfer and lowers the melting rate because the velocity ūz is in the opposite
direction to the temperature gradient. Our theoretical framework revealed the existence of
critical liquid film thickness for Carreau fluids, i.e. δcr = {3Rλkl ln(Ste + 1)/[ρlcp,l(1/β −
1)1/(1−n)]}1/3 . Three scenarios of CCM may occur, namely PQ control, MN control and
PQ − MN transition, depending on whether the liquid film thickness is always smaller

968 A9-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.509


N. Hu and L.-W. Fan

(δend < δcr), always greater (δt=0 > δcr) or crossing (δt=0 < δathrmcr < δend) the critical
liquid film thickness, respectively. Numerical prediction results demonstrated that the
CCM process of MN -controlled Carreau fluids is almost equivalent to that of power-law
fluids.

Finally, approximate analytical models were developed for gaining fundamental
understanding of the problem, which provides fast estimation for both the Carreau and
power-law cases. We also identified a key dimensionless group (ΛRe)4/3Re(3 ln(Ste +
1))1/3Pe−1/3 to construct a three-dimensional parameter phase space to indicate the
usable range of approximate solutions. We revealed that two approximate solution spaces
(Q-Eq and N-Eq) are distributed in the phase space and verified the reliability of the
approximate solutions by comparing them with the numerical solutions. It is noted that
the approximate solution of the power-law model is almost equivalent to the Carreau
model in the N-Eq region. These approximate solutions enable convenient and low-cost
computation to predict the dynamic process of CCM for shear-thinning fluids. In addition
to the rheological effect studied in this work, other complexities, such as non-uniform melt
film layer thickness, sensible heating effect and temperature-dependent thermophysical
properties of the PCM, will be of interest for further extending the CCM model toward
more realistic situations.
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Appendix A. Derivation of relationship between Q̄ and ¯̇γ w

Differentiating both sides of (2.21) yields

dτ̄ = 1
Re

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2)(n−1)/2

+ (1 − β)(n − 1) ¯̇γΛ2Re2(1 + Λ2Re2 ¯̇γ 2)(n−3)/2]d ¯̇γ, (A1)

and then substituting this equation into (2.22) leads to

Q̄

δ̄
2
πr̄

= 1
τ̄ 2

wRe2

¯̇γw∫
0

{ ¯̇γ 2[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2)(n−1)/2]

× [β + (1 − β)(1 + Λ2Re2 ¯̇γ 2)(n−1)/2

+ (1 − β)(n − 1) ¯̇γΛ2Re2(1 + Λ2Re2 ¯̇γ 2)(n−3)/2]}dγ̇
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= 1
τ̄ 2

wRe2

¯̇γw∫
0

[β2 ¯̇γ 2 + 2β(1 − β) ¯̇γ 2(1 + Λ2Re2 ¯̇γ 2)(n−1)/2

+ (1 − β)2 ¯̇γ 2(1 + Λ2Re2 ¯̇γ 2)n−1

+ β(1 − β)(n − 1)Λ2Re2 ¯̇γ 4(1 + Λ2Re2 ¯̇γ 2)(n−3)/2

+ (1 − β)2(n − 1)Λ2Re2 ¯̇γ 4(1 + Λ2Re2 ¯̇γ 2)n−2]d ¯̇γ

= 1
τ̄ 2

wRe2

{
1
3
β2 ¯̇γ 3

w + 1
3

¯̇γ 3
w2β(1 − β)(1 + Λ2Re2 ¯̇γ 2

w)(n−1)/2

+ 1
3

¯̇γ 3
w(1 − β)2(1 + Λ2Re2 ¯̇γ 2

w)n−1

+ n − 1
3

¯̇γw∫
0

[β(1 − β)Λ2Re2 ¯̇γ 4(1 + Λ2Re2 ¯̇γ 2)(n−3)/2

+ (1 − β)2Λ2Re2 ¯̇γ 4(1 + Λ2Re2 ¯̇γ 2)n−2]d ¯̇γ
}

, (A2)

where

τ̄w = 1
Re

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2] ¯̇γw. (A3)

After simplification, it can be written in the form of hypergeometric functions
2F1(a, b; c; z) as

Q̄

δ̄
2
πr̄

= 1
3

¯̇γw − n − 1
3τ̄ 2

wRe2

[
2F1

(
5
2
,

3 − n
2

; 7
2
;−Λ2Re2 ¯̇γ 2

)
β(1 − β)Λ2Re2 ¯̇γ 5

5

+ 2F1

(
5
2
, 2 − n; 7

2
;−Λ2Re2 ¯̇γ 2

)
(1 − β)2 Λ2Re2 ¯̇γ 5

5

]
. (A4)

Following the partial integration method for (A2), we can finally get a convergent series as

Q̄

δ̄
2
πr̄

= 1
3

¯̇γw

⎧⎪⎪⎨
⎪⎪⎩1 −

∑∞
j=1 β(1 − β)(ReΛ ¯̇γw)2j(1 + Λ2Re2 ¯̇γ 2

w)(n−1−2j)/2∏ j
l=1

2l − n − 1
2l + 3

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

−
∑∞

j=1
1
2 (1 − β)2(ReΛ ¯̇γw)2j(1 + Λ2Re2 ¯̇γ 2

w)n−1−j∏ j
l=1

2l − 2n
2l + 3

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

⎫⎪⎪⎬
⎪⎪⎭ , (A5)
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which can be rearranged into

Q̄

δ̄
2
πr̄

= 1
3

¯̇γw

⎧⎨
⎩1 − β(1 − β)(1 + Λ2Re2 ¯̇γ 2

w)(n−1)/2

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

×
∞∑

j=1

(Λ2Re2 ¯̇γ 2
w) j

(1 + Λ2Re2 ¯̇γ 2
w) j

j∏
l=1

2l − n − 1
2l + 3

−
1
2(1 − β)2(1 + Λ2Re2 ¯̇γ 2

w)n−1

[β + (1 − β)(1 + Λ2Re2 ¯̇γ 2
w)(n−1)/2]2

∞∑
j=1

(Λ2Re2 ¯̇γ 2
w) j

(1 + Λ2Re2 ¯̇γ 2
w) j

j∏
l=1

2l − 2n
2l + 3

⎫⎬
⎭ .

(A6)

The results of Q̄/(δ2πr̄) with ¯̇γ w under various n and number of terms j are depicted in
figure 9 by numerically computing the series in (A6), which implies that Q̄/(δ2πr̄) can be
calculated by finite series.

Appendix B. Derivation of force balance equation based on the Carreau model

Integrating (2.29) with r̄ leads to the expression of pressure distribution P̄(r̄), as given by

P̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
Re

3V∗

δ̄
3 r̄2 + C1 if r̄ � δ̄

2

3V∗ΛRe
,

− 2(1 − β)

Re (ΛRe)1−n

(
3V∗

H(n)

)n 1

δ̄
2n+1

r̄n+1

n + 1
+ C2 if

δ̄
2H(n)

3V∗ΛRe
� r̄

� δ̄
2H(n)

3V∗ΛRe

(
1 − β

β

)1/(1−n)

,

− β

Re
3V∗

δ̄
3 r̄2 + C3 if r̄ � δ̄

2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

,

(B1)

where C1, C2 and C3 are integral constants and can be determined by boundary conditions
of dP̄/dr̄|r̄=0 = 0 and zero gauge pressure P̄(r̄ = 1) = 0 as well as continuity at the
interface. In order to obtain an explicit pressure distribution function, here, we treated the
region near the two characteristic dividing points of the above equation as an asymptotic
approximation.

Hence, if

δ̄
2

3V∗ΛRe
� 1 and

δ̄
2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

> 1, (B2a,b)

the asymptotic form of (B1) can be written as

P̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
Re

3V∗

δ̄
3 r̄2 + A1 if 0 � r̄ � δ̄

2

3V∗ΛRe
,

− 2(1 − β)

Re (ΛRe)1−n

(
3V∗

H(n)

)n 1

δ̄
2n+1

r̄n+1 − 1
n + 1

if
δ̄

2

3V∗ΛRe
� r̄ � 1,

(B3)
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Figure 9. Variations of Q̄/δ2πr̄ with γ̄ w for ΛRe = 10 as a representative case (yellow lines, comparison of
series for various number of terms j; red lines, β = 10−4; and blue lines, β = 10−3).

where

A1 = 1
Re

1
(ΛRe)2

δ̄

3V∗

[
1 − 2(1 − β)

(n + 1)(H(n))n

]
+ 2(1 − β)

Re(ΛRe)1−n

(
3V∗

H(n)

)n 1

δ̄
2n+1

1
n + 1

.

(B4)

Substituting (B3) into (2.12) and integrating with r̄ from 0 to 1 lead to

M δ̄
5

(V∗)3 + N (V∗)n

δ̄
2n+1 = H̄ − δ̄, (B5)

where

M = A
27Re

1
(ΛRe)4

[
1
2

− 2(1 − β)

(n + 3)(H(n))n

]
, (B6)

and

N = A
Re

1 − β

(ΛRe)1−n
2

n + 3

(
3

H(n)

)n

. (B7)

If

δ̄
2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

� 1, (B8)
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the asymptotic form of (B1) can be written as

P̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
Re

3V∗

δ̄
3 r̄2 + B1 if 0 � r̄ � δ̄

2

3 V∗ΛRe
,

− 2(1 − β)

Re (ΛRe)1−n

(
3V∗
H(n)

)n 1

δ̄
2n+1

r̄n+1

n + 1
+ B2 if

δ̄
2

3V∗ΛRe
� r̄

� δ̄
2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

,

− β

Re
3V∗

δ̄
3 (r̄2 − 1) if

δ̄
2

3V∗ΛRe

(
1 − β

β

)1/(1−n)

� r̄ � 1,

(B9)
where

B2 = 1
Re

1
(ΛRe)2

δ̄

3V∗

[
−β

(
1 − β

β

)2/(1−n)

+ 2(1 − β)

(n + 1)(H(n))n

(
1 − β

β

)(1+n)/(1−n)]

+ β

Re
3V∗

δ̄
3 , (B10)

and

B1 = 1
Re

1
(ΛRe)2

δ̄

3V∗

[
1 − 2(1 − β)

(n + 1)(H(n))n

]
+ B2. (B11)

Similarly, substituting (B9) into (2.12) and integrating with r̄ from 0 to 1 leads to

P δ̄
5

(V∗)3 + QV∗

δ̄
3 = H̄ − δ̄, (B12)

where

P = A
27Re

1
(ΛRe)4

[
1
2

+ −2
n + 3

(1 − β)

(H(n))n + 2
n + 3

1 − β

(H(n))n

(
1 − β

β

)(3+n)/(1−n)

+ −β

2

(
1 − β

β

)4/(1−n)]
, (B13)

and Q = (3β/2)(A/Re).

Appendix C. Valuation of ūz in energy equation considering the convective effect

First, for Newtonian or power-law fluids, we can obtain explicit expressions for the velocity
distribution ūr by substituting the pressure gradient from (2.16) into (2.15), as given by

ūr(r̄, z̄, t̄) = 2n + 1
n + 1

21/nV∗

δ̄2+1/n
r̄
[(

δ̄

2

)1+1/n

−
∣∣∣∣ δ̄2 − z̄

∣∣∣∣
1+1/n]

, (C1)
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where n = 1 represents to Newtonian fluids. Substituting (C1) into the continuity equation
and integrating along the z direction leads to

ūz(z̄, t̄) = −
∫ z̄

0

1
r̄

∂

∂ r̄
(r̄ur) dz̄

= V∗
{

n
2n + 2

(
2

z̄
δ̄

− 1
)[(

2
z̄
δ̄

− 1
)

· sign
(

2
z̄
δ̄

− 1
)]1+1/n

− 2n + 1
n + 1

z̄
δ̄

+ n
2n + 2

}
. (C2)

Especially, when n = 1 for Newtonian fluids, the distribution of dimensionless ūz becomes

ūz(z̄, t̄) = V∗
[

2
(

z̄
δ̄

)3

− 3
(

z̄
δ̄

)2]
. (C3)

It can also be derived from (C2) that the dimensionless ūz for n → 0 is

ūz(z̄, t̄) = − z̄
δ̄

V∗. (C4)

The plot of (C2) for various n is presented in figure 10(a), which indicates that (C3)
and (C4) are the limit of possible cases of velocity distribution for power-law fluids. By
substituting (C2) into (2.10), one can obtain

f
(

z̄
δ̄

)
V∗ ∂T̄

∂ z̄
= ∂2T̄

∂ z̄2 , f
(

z̄
δ̄

)
=

⎧⎪⎨
⎪⎩

0, for conduction,
−1, for uniform distribution,
−z̄/δ̄, for n = 0,
2z̄3/δ̄3 − 3z̄2/δ̄2, for n = 1.

(C5a,b)
where no explicit temperature profile can be obtained for n = 0 and n = 1.

Hence, numerical solutions were sought for both cases for temperature comparison, as
shown in figure 10(b). By taking PeV∗ = 1 as an example, it indicates that uniform ūz =
−V∗ will enlarge the convection effect, and that the non-Newtonian parameter n seems to
have little impact on the temperature profile. This demonstrates that non-Newtonian effects
have minimal impact on the distribution of temperature. When focusing on the temperature
gradient at the phase interface z̄ = δ̄, a certain difference can be found with PeV∗ = 1, as
shown in figure 10(c). By going through a wide range of PeV∗, the results are shown in
figure 10(d), demonstrating that using uniform velocity distribution will cause a slightly
underestimated heat flux through the solid–liquid interface. However, although it is not
valid at z = 0, the simplification of ūz = −V∗ can reflect the trend of convection effect
under different PeV∗, thus providing an explicit and simple temperature expression for
the CCM model. Regarding Carreau fluids, due to their complex constitutive expressions,
an explicit velocity distribution ūr cannot be obtained and inputted into the continuity
equation to derive a velocity distribution ūz. However, given that the Carreau model
can be approximately treated as a combination of the Newtonian region and power-law
region, it can be considered that the above proof is also valid for a Carreau fluid. Another
justification is that the model predictions obtained by this simplification were also in good
agreement with our experimental data (with Ste from 0.104 to 0.412).
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Figure 10. (a) Dimensionless velocity ūz of power-law fluids for different n. (b–d) Comparison of different
assumptions: (b) dimensionless temperature profile T̄(z̄) and (c) temperature gradient distribution dT̄/dz̄ by
taking PeV∗ = 1 as an example. (d) Temperature gradient dT̄/dz̄ at z̄ = δ̄ for different PeV∗.
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