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LOWER BOUND FOR THE EXPECTED SUPREMUM OF FRACTIONAL
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Abstract

We derive a new theoretical lower bound for the expected supremum of drifted fractional
Brownian motion with Hurst index H ∈ (0, 1) over a (in)finite time horizon. Extensive
simulation experiments indicate that our lower bound outperforms the Monte Carlo
estimates based on very dense grids for H ∈ (0, 1

2 ). Additionally, we derive the Paley–
Wiener–Zygmund representation of a linear fractional Brownian motion in the general
case and give an explicit expression for the derivative of the expected supremum at
H = 1

2 in the sense of Bisewski, Dȩbicki and Rolski (2021).
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1. Introduction

Let {BH(t), t ∈R+}, where R+ := [0, ∞), be fractional Brownian motion with Hurst index
H ∈ (0, 1) (or H-fBm), that is, a centred Gaussian process with the covariance function
Cov(BH(t), BH(s)) = 1

2 (s2H + t2H − |t − s|2H), s, t ∈R+. In this manuscript we consider the
expected supremum of fractional Brownian motion with drift a ∈R over time horizon T > 0,
i.e. MH(T, a) := E(supt∈[0,T] BH(t) − at). Even though the quantity MH(T, a) is so funda-
mental in the theory of extremes of fractional Brownian motion, its value is known explicitly
only in two cases: H = 1

2 and H = 1, when BH is a standard Brownian motion and a straight line
with normally distributed slope, respectively. For general H ∈ (0, 1), the value of MH(T, a)
could, in principle, be approximated using Monte Carlo methods by simulation of frac-
tional Brownian motion on a dense grid, i.e. M n

H(T, a) := E(supt∈Tn
{BH(t) − at}), where

Tn := {0, T/n, 2T/n, . . . , T}. However, this approach can lead to substantial errors. In [8,
Theorem 3.1] it was proven that the absolute error MH(T, 0) − M n

H(T, 0) behaves roughly
(up to logarithmic terms) like n−Hbas n → ∞. This becomes problematicbas H ↓ 0, when
additionally MH(T, 0) → ∞; see also [17]. Similarly, the error is expected to be large when
T is large, since in that case more and more points are needed to cover the interval [0, T].
Surprisingly, even as H ↑ 1 we may also encounter problems because then MH(∞, a) → ∞
for all a > 0; see [4, 18]. Since the estimation of MH(T, a) is so challenging, many works
are dedicated to finding its theoretical upper and lower bounds. The most up-to-date bounds
for MH(T, 0) can be found in [8, 9]; see also [23, 26] for older results. The most up-to-date
bounds for MH(∞, a) can be found in [4].
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In this work we present a new theoretical lower bound for MH(T, a) for general T > 0,
a ∈R (including the case T = ∞, a > 0). Our approach is loosely based on recent work [5],
where the authors consider a coupling between H-fBms with different values of H ∈ (0, 1) on
the Mandelbrot–van Ness field [19]. By a coupling we mean that H-fBms live in the same
probability space and have a non-trivial joint distribution. The idea of considering such a cou-
pling dates back to at least [3, 20], which introduced a so-called multi-fractional Brownian
motion. In this manuscript we consider a coupling provided by the family of linear fractional
stable motions with α = 2, see [21, Chapter 7.4], which we will call linear fractional Brownian
motion. Conceptually, our bound for MH(T, a) is very simple: it is defined as the expected
value of the H-fBm at the time of the maximum of the corresponding 1

2 -fBm (i.e. Brownian
motion). The difficult part is the actual calculation of this expected value. This is described
in detail in Section 3. Our new lower bound, which we denote by M H(T, a), is introduced in
Theorem 1.

Our numerical experiments show that M H(T, a) performs exceptionally well in the sub-
diffusive regime H ∈ (

0, 1
2

)
. In fact, the numerical simulations indicate that M H(T, a) gives

a better approximation to the ground truth that the Monte Carlo estimates with as many as
216 gridpoints, i.e. M H(T, a) ≥ M n

H(T, a), n = 216, for all H ∈ (
0, 1

2

)
. We emphasise that

M H(T, a) is the theoretical lower bound for MH(T, a), which makes the result above even
more surprising.

The manuscript is organised as follows. In Section 2 we define linear fractional Brownian
motion and establish its Paley–Wiener–Zygmund representation. We also recall the formula
for the joint density of the supremum of drifted Brownian motion and its time, and intro-
duce a certain functional of the three-dimensional Bessel bridge, which plays an important
role in this manuscript. In Section 3 we show our main results; our lower bound M H(T, a)
is presented in Theorem 1 in a general case. Explicit values of M H(T, a) are provided in
Corollary 2. Additionally, in Theorem 2 we present an explicit formula for the derivative
(∂/∂H)MH(T, a)|H=1/2, which was given in terms of a definite integral in [5]. The main
results are compared to numerical simulations in Section 4, where the results are also dis-
cussed. The proofs of the main results are given in Section 5. In Appendix A we recall the
definition and properties of confluent hypergeometric functions. Finally, in Appendix B (avail-
able in the Supplementary Material of the online version of this article) we include various
calculations needed in the proofs.

2. Preliminaries

2.1. Linear fractional Brownian motion

In this section we introduce the definition of linear fractional Brownian motion and establish
its Paley–Wiener–Zygmund representation.

Let {B(t) : t ∈R} be a standard two-sided Brownian motion. For (H, t) ∈ (0, 1) ×R+ let

X+
H (t) :=

∫ 0

−∞
[
(t − s)H−(1/2) − (−s)H−(1/2)] dB(s) +

∫ t

0
(t − s)H−(1/2) dB(s),

X−
H (t) := −

∫ t

0
sH−(1/2) dB(s) −

∫ ∞

t

[
sH−(1/2) − (s − t)H−(1/2)] dB(s).

(1)

Note that in case H = 1
2 we have X+

1/2(t) = B(t), X−
1/2(t) = −B(t). Furthermore, for c :=

(c+, c−) ∈R
2
0, with R

2
0 := R

2 \ {(0, 0)}, put
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Xc
H(t) := c+X+

H (t) + c−X−
H (t). (2)

Finally, for any c ∈R
2
0, we define the (standardised) linear fractional Brownian motion

{Bc
H(t) : (H, t) ∈ (0, 1) ×R+}, where

Bc
H(t) := Xc

H(t)√
Vc

H

, Vc
H := VarXc

H(1). (3)

Now, according to [25, Lemma 4.1] we have

Vc
H := C2

H · [((c+ + c−) cos
( 1

2π
(
H + 1

2

)))2 + (
(c+ − c−) sin

( 1
2π (H + 1

2 )
))2]

, (4)

where

C2
H := �

( 1
2 + H

)
�(2 − 2H)

2H�
( 3

2 − H
) . (5)

We emphasise that BH(t) is a Gaussian field with well-known covariance structure, i.e. for each
c ∈R

2
0, the value of

Cov(Bc
H1

(t1), Bc
H2

(t2)), (H1, t1), (H2, t2) ∈ (0, 1) ×R
2+, (6)

is known, see [25, Theorem 4.1]. While for each H ∈ (0, 1), the process {Bc
H(t) : t ∈R+} is an

H-fBm (therefore its law is independent of the choice of the pair c), the covariance structure
(6) of the entire field varies for different c; see [25]. In other words, different choices of c
will provide different couplings between the fractional Brownian motions. The case c = (1, 0)
corresponds to the fractional Brownian field introduced by Mandelbrot and van Ness in [19]
(note that in this case we have Vc

H = C2
H). We remark that the representation (3) was recently

rediscovered in [15].
Following [5], we use the Paley–Wiener–Zygmund (PWZ) representation of processes

{X̃+
H (t) : (H, t) ∈ (0, 1) ×R+} and {X̃−

H (t) : (H, t) ∈ (0, 1) ×R+} defined in (1),

X̃+
H (t) = tH−(1/2) · B(t) − (

H − 1
2

) ·
∫ t

0
(t − s)H−(3/2) · (B(t) − B(s)) ds

+ (
H − 1

2

) ·
∫ 0

−∞
[(t − s)H−(3/2) − ( − s)H−(3/2)] · B(s) ds,

X̃−
H (t) = −tH−(1/2) · B(t) + (

H − 1
2

) ·
∫ t

0
sH−(3/2) · B(s) ds

+ (H − (1/2)) ·
∫ ∞

t
[sH−(3/2) − (s − t)H−(3/2)] · (B(s) − B(t)) ds.

(7)

Proposition 1. {X̃±
H (t) : (H, t) ∈ (0, 1) ×R+} is a continuous modification of {X±

H (t) : (H, t) ∈
(0, 1) ×R+}.

Now let us define the counterpart of the process Xc
H(t) from (2), i.e., for every c :=

(c+, c−) ∈R
2
0 define the stochastic process {X̃c

H(t) : (H, t) ∈ (0, 1) ×R+}, where

X̃c
H(t) = c+X̃+

H (t) + c−X̃−
H (t). (8)
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Corollary 1. {X̃c
H(t) : (H, t) ∈ (0, 1) ×R+} is a continuous modification of {Xc

H(t) : (H, t) ∈
(0, 1) ×R+}.

Corollary 1 generalises [5, Proposition 4.1] in the case n = 0. For completeness, we give a
short proof of Proposition 1 below.

Proof of Proposition 1. In [5, Proposition 4.1] it was shown that {X̃+
H (t) : (H, t) ∈ (0, 1) ×

R+} is a continuous modification of {X+
H (t) : (H, t) ∈ (0, 1) ×R+}. Showing the sample path

continuity of {X̃−
H (t) : (H, t) ∈ (0, 1) ×R+} is analogous to showing the sample path continuity

of X̃+, which was done in [5, Proposition 4.2]. Finally, due to [5, Lemma A.1], for any (H, t) ∈
(0, 1) ×R+ we have X̃−

H (t) = X−
H (t) almost surely (a.s.). This shows that X̃− is a modification

of X− and concludes the proof. �

2.2. Joint density of the supremum of drifted Brownian motion and its time

In this section we recall the formulae for the joint density of the supremum of (drifted)
Brownian motion over [0, T] and its time due to [24]. This section relies heavily on
[5, Section 2].

Let {B(t) : t ∈R+} be a standard Brownian motion. For any T > 0 and a ∈R consider the
supremum of drifted Brownian motion and its time, i.e.

M1/2(T, a) := sup
t∈[0,T]

{B(t) − at}, τ1/2(T, a) := arg max
t∈[0,T]

{B(t) − at}, (9)

and their expected values

M1/2(T, a) := E(M1/2(T, a)), E1/2(T, a) := E(τ1/2(T, a)). (10)

In the following, let p(t, y; T, a) be the joint density of (τ1/2(T, a), M1/2(T, a)), i.e.

p(t, y; T, a) := P(τ1/2(T, a) ∈ dt, M1/2(T, a) ∈ dy)

dt dy
.

We note that τ1/2(T, a) is well-defined (unique); see the comment below (14). When T ∈
(0, ∞) and a ∈R then

p(t, y; T, a) = y exp{−(y + ta)2/2t}
π t3/2

√
T − t

(
e−a2(T−t)/2 + a

√
1
2π (T − t) erfc

(
−a

√
1
2 (T − t)

))
(11)

for t ∈ (0, T) and y > 0. When a > 0, then the pair (τ1/2(∞, a), M1/2(∞, a)) is well-defined,
with

p(t, y; ∞, a) =
√

2 ay exp{−(y + ta)2/2t}
t3/2

√
π

(12)

for t > 0 and y > 0.

Proposition 2.

(i) If T ∈ (0, ∞) and a 
= 0 then

M1/2(T, a) = 1

2a

(
−a2T + (1 + a2T)erf

(
a

√
T

2

)
+

√
2T

π
· ae−a2T/2

)
,

E1/2(T, a) = 1

2a2

(
a2T + (1 − a2T)erf

(
a

√
T

2

)
−

√
2T

π
· ae−a2T/2

)
;

https://doi.org/10.1017/jpr.2022.129 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.129


1236 K. BISEWSKI

(ii) if a > 0 then M1/2(∞, a) = 1/2a and E1/2(∞, a) = 1/2a2;

(iii) if T ∈ (0, ∞) then M1/2(T, 0) = √
2T/π and E1/2(T, 0) = T/2.

Proof. The fomula for M1/2(T, a) can be obtained from the Laplace transform of
M1/2(T, a); see [7, (1.1.1.3) and (2.1.1.3)]. The formula for E1/2(T, a) could similarly be
obtained from the Laplace transform of τ1/2(T, a). However, numerical calculations indicate
that the formulas for the Laplace transforms (1.1.12.3) and (2.1.12.3) in [7] are incorrect.
Therefore, we provide our own derivation of E1/2(T, a) in Appendix B (available in the
Supplementary Material of the online version of this manuscript). �

Finally, we introduce a certain functional of Brownian motion, which plays an important
role in this manuscript. We note that its special case

(
H = 1

2

)
appeared in [5, (2.8)]. In what

follows let Y(t) := B(t) − at and

IH(t, y) := E

( ∫ t

0
(t − s)H−(3/2)(Y(t) − Y(s)) ds | τ1/2(T, a) = t, M1/2(T, a) = y

)
. (13)

Following [5], we recognise that the conditional distribution of the process {Y(t) − Y(t −
s) : s ∈ [0, t]} given (τ1/2(T, a), M1/2(T, a)) = (t, y) follows the law of the generalised three-
dimensional Bessel bridge from (0,0) to (t, y). Therefore, IH(t, y) can be thought of as an
expected value of a certain ‘Brownian area’; see [14] for a survey on Brownian areas. It
turns out that the function IH(t, y) can be explicitly calculated. In the following, U(a, b, z)
is Tricomi’s confluent hypergeometric function; see (23) in Appendix A.

Lemma 1. If H ∈ (
0, 1

2

) ∪ ( 1
2 , 1

)
and t, y > 0, then

IH(t, y) = tH+(1/2)

y
(
H − 1

2

)(
H + 1

2

)(
1 − �(H)√

π
U

(
H − 1

2
,

1

2
,

y2

2t

))
+ tH−(1/2)y

H + 1
2

.

Proof of Lemma 1. Let

g(x, s; t, y) := P(Y(t) − Y(t − s) ∈ dx | (τ1/2(T, a), M1/2(T, a)) = (t, y))

dx
.

From [5, (2.7)] we have

g(x, s; t, y) = (x/s3/2) exp{−x2/2s}
(y/t3/2) exp{−y2/2t} · 1√

2π (t − s)

[
exp

{
− (y − x)2

2(t − s)

}
− exp

{
− (y + x)2

2(t − s)

}]
for x > 0. Using the Fubini–Tonelli theorem we have

IH(t, y) =
∫ t

0

∫ ∞

0
sH−3/2x · g(x, s; t, y) dx ds.

The rest of the proof is purely calculational. For completeness, it is given in Appendix B
(available in the Supplementary Material of the online version of this manuscript). �

3. Main results

Let {B(t) : t ∈R} be a standard, two-sided Brownian motion. Consider the PWZ represen-
tation of linear fractional Brownian motion with parameter c ∈R

2
0, i.e. {B̃c

H(t) : t ∈R
+}, where

B̃c
H(t) := X̃c

H(t)√
Vc

H

,
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with X̃c
H(t) defined in (8) and Vc

H defined in (4). Then, according to Corollary 1, {B̃c
H(t) : H ∈

(0, 1) ×R+} is a continuous modification of {Bc
H(t) : H ∈ (0, 1) ×R+} and therefore, for each

fixed H, {B̃c
H(t) : t ∈R+} is a fractional Brownian motion with Hurst index H. We note that all

the processes B̃c
H live in the same probability space and are, in fact, defined pathwise for every

realisation of the driving Brownian motion.
For each c ∈R

2
0, a ∈R, and T > 0 define

Mc
H(T, a) := sup

t∈[0,T]
{Bc

H(t) − at}, τ c
H(T, a) := arg max

t∈[0,T]
{Bc

H(t) − at}, (14)

which is the supremum of the drifted fractional Brownian motion with parameter c and its
location. We note that τ c

H(T, a) is well-defined (almost surely unique); see [12]. Now we define
the expected values of the supremum,

MH(T, a) := E(Mc
H(T, a)) =E(Bc

H(τ c
H(T, a)) − aτ c

H(T, a)).

Recall that in the case c = (1, 0) and H = 1
2 , the random variables and their expectations were

already defined in (9) and (10). Notice how MH(T, a) does not depend on c, because as c
varies, the law of the supremum does not change.

3.1. The lower bound

We now proceed to derive the lower bound for MH(T, a). The final result is provided in
Theorem 1 at the end of this subsection. All proofs are provided in Section 5.

For each c ∈R
2
0 define

mc
H(T, a) := E(B̃c

H(τ1/2(T, a)) − aτ1/2(T, a)), (15)

which, in words, is the expected value of the drifted fractional Brownian motion with parameter
c evaluated at the time of the supremum of the driving Brownian motion τ1/2(T, a) defined in
(9). Clearly, this yields a lower bound for the expected supremum, i.e. MH(T, a) ≥ mc

H(T, a).
We can further maximise our lower bound by taking the supremum over all c ∈R

2
0 and define

mH(T, a) := supc∈R2
0

mc
H(T, a). It turns out that the value of mH(T, a) can be found explicitly.

Before showing that formula in Proposition 4, we define the useful functionals

JH(T, a) := E{X+
H (τ1/2(T, a))}, J −

H (T, a) := E{X−
H (τ1/2(T, a))}. (16)

Lemma 2. If T ∈ (0, ∞) and a ∈R then J −
H (T, a) = −JH(T, −a).

The proof of Lemma 2 is given in Section 5. In the following, γ (α, z) is the incomplete
Gamma function; see (31) in Appendix A.

Proposition 3.

JH(T, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2H
√

2π
(

H+ 1
2

) · |a|−2Hγ (H, a2T/2), a 
= 0, T ∈ (0, ∞);

2H�(H)√
2π

(
H+ 1

2

) · |a|−2H, a > 0, T = ∞;

TH
√

2πH
(

H+ 1
2

) , a = 0, T ∈ (0, ∞).

Finally, we can show the following.
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Proposition 4. If a ∈R and T ∈ (0, ∞) or a > 0 and T = ∞, then

mc
H(T, a) = c+ − c−√

Vc
H

·JH(T, a) − aE1/2(T, a) (17)

and

mH(T, a) = m(1,−1)
H (T, a) = JH(T, a)

CH sin
( 1

2π
(
H + 1

2

)) − a E1/2(T, a),

with Vc
H and CH defined in (4) and (5), respectively.

We emphasise that the values of E1/2(T, a) and JH(T, a) are known; see Propositions 2 and
3 respectively.

We can further improve the lower bound derived in Proposition 4 simply by
using the self-similarity of fractional Brownian motion. For any ρ > 0 we have
MH(T, a) = ρ−HMH(ρT, ρH−1a), which also holds for a > 0 and T = ∞, i.e. MH(∞, a) =
ρ−HMH(∞, ρH−1a).

Finally, let
M H(T, a) := sup

ρ>0
{ρ−HmH(ρT, ρH−1a)}. (18)

Theorem 1. For any H ∈ (0, 1), T > 0, and a ∈R, MH(T, a) ≥ M H(T, a).

For general (T , a), the solution to the optimisation problem (18) can be found numerically.
We were able to determine the value of M H(T, a) explicitly in two special cases, which we
display in the following corollary. For convenience, we also provide the corresponding values
of mH(T, a).

Corollary 2. For H ∈ (0, 1), with CH defined in (5),

(i) if T ∈ (0, ∞), then

M H(T, 0) = mH(T, 0) = TH

√
2π CHH

(
H + 1

2

)
sin

( 1
2π

(
H + 1

2

)) ;

(ii) if a > 0, then

M H(∞, a) = 1 − H

2aH

(
2H+1a1−2HH�(H)√

2πCH
(
H + 1

2

)
sin

( 1
2π

(
H + 1

2

)))1/(1−H)

,

mH(∞, a) = 2H�(H)√
2πCHa2H

(
H + 1

2

)
sin

( 1
2π

(
H + 1

2

)) − 1

2a
.

The proof of Corollary 2 relies solely on simple algebraic manipulations.

3.2. Secondary results

Before ending this section, we would like to present two immediate corollaries that are
implied by our main results. The first result describes the asymptotic behavior of MH(T, 0)
as H ↓ 0, while the second result pertains to the evaluation of the derivative of the expected
supremum MH(T, a) at H = 1

2 .
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3.2.1. Behavior of M H(1, 0) as H ↓ 0 Using the formula for M H(T, 0) from Theorem 1(i), it
is easy to obtain the following result.

Corollary 3.

M H(1, 0) ∼ 2√
πH

, H → 0.

The asymptotic lower bound in Corollary 3 is over five times larger than the cor-
responding bound derived in [8, Theorem 2.1(i)], where it was shown that MH(1, 0) ≥
(4Hπe log (2))−1/2 for all H ∈ (0, 1). Moreover, together with [9, Corollary 2], our result
implies that 1.128 ≤ H−1/2MH(1, 0) ≤ 1.695 for all H small enough. Determining whether the
limit H−1/2MH(1, 0) as H → 0 exists and finding its value remain interesting open questions.

3.2.2. Derivative of the expected supremum. Recently, [5] considered the derivative of the
expected supremum with respect to the Hurst parameter at H = 1

2 , that is M ′
1/2(T, a) :=

(∂/∂H)MH(T, a)
∣∣
H=1/2. In [5, Theorem 3.1], they derived an expression for M ′

1/2(T, a) in
terms of a definite double integral and in [5, Corollary 3.3] they derived a more explicit
result in two special cases a = 0 and T = ∞. Using the formula for JH(T, a) we established
in Proposition 3, we are able to explicitly evaluate the derivative in the general case. In the
following, let γ ′(s, x) = (∂/∂s)γ (s, x).

Theorem 2.

M ′
1/2(T, a) = 1√

π |a|
(

log (2a−2)γ

(
1

2
,

a2T

2

)
+ γ ′

(
1

2
,

a2T

2

))
.

Note that the continuous extension of the function M ′
1/2(T, a) to (T,0) and (∞, a) agrees with

[5, Corollary 3.3].

Proof of Theorem 2. The proof of [5, Theorem 3.1] implies that

M ′
1/2(T, a) := ∂

∂H
MH(T, a)

∣∣∣∣
H=1/2

= ∂

∂H
m(1,0)

H (T, a)

∣∣∣∣
H=1/2

.

Therefore, using the formula for m(1,0)
H (T, a) from Proposition 4, we find that M ′

1/2(T, a) =
J1/2(T, a) + (∂/∂H)JH(T, a)|H=1/2. The proof is concluded after simple algebraic manipula-
tions. �

4. Numerical experiments

In this section we compare our theoretical lower bound M H(T, a) with Monte Carlo
simulations.

In our experiments we use the circulant embedding method (also called the Davies–Harte
method [10]) for simulating fractional Brownian motion; see also [11] for various methods of
simulation. Experiments were performed in Python, and the code for the Davies–Harte method
was adapted from [16, Section 12.4.2]. The method relies on the simulation of fractional
Brownian motion on an equidistant grid of n points, i.e. (B(0), B(T/n), B(2T/n), . . . , B(T)).
The resulting estimator has the expected value M n

H(T, a) := E
(
supt∈Tn

{BH(t) − at}), where
Tn := {0, T/n, 2T/n, . . . , T}. Clearly, M n

H(T, a) ≤ MH(T, a); i.e., on average, the Monte
Carlo estimator underestimates the ground truth, as the supremum is taken over a finite subset
of [0, T]. Nonetheless, as n → ∞, M n

H(T, a) → MH(T, a).
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FIGURE 1. Numerical results for the case T = 1, a = 0.

FIGURE 2. Numerical results for the case T = 1, a = 1.

In our experiments, we consider three different cases: (i) T = 1, a = 0; (ii) T = 1, a = 1;
and, finally, (iii) T = ∞, a = 1. In each case the theoretical lower bound M H(T, a) is com-
pared with the corresponding simulation results M̂ n

H(T, a) for n ∈ {210, 212, 214, 216} based on
20 000 independent runs of the Davies–Harte algorithm; in case (ii) we took T = 10 because it
is not possible to simulate the process over the infinite time horizon.

The results corresponding to cases (i)–(iii) are displayed in Figs. 1–3. Each curve is sur-
rounded by its 95% confidence interval depicted as a shaded blue area. The results are
presented in two different scales. We interpret the results on the figures on the left and on
the right separately, in the following two paragraphs.

In the figures on the left, we compare the bound with the simulation results on the ‘high’
level for all H ∈ (0.01, 1). The blue dots at H = 1

2 and H = 1 correspond to the known values
of M1/2(T, a) and M1(T, a) respectively; the value at H = 1 in Fig. 3 is not shown because
M1(∞, 1) = ∞. As expected, the value of M̂ n

H(T, a) is increasing, as n is increasing. The sim-
ulation results seem to roughly agree with the ground truth at H = 1

2 and H = 1, while the lower
bound agrees with the ground truth at H = 1

2 by definition, i.e. M 1/2(T, a) = M1/2(T, a). On
the ‘high’ level, we can conclude that the lower bound M H(T, a)
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FIGURE 3. Numerical results for the case T = ∞, a = 1.

• is close to the simulation results for all H ≈ 1
2 ;

• perfoms much better than the simulation results as H → 0; and

• performs worse when H → 1 (in fact, the bound seems to converge to 0 there).

On the right of the figures, we compare the bound with the simulation results in the region
H ∈ (0.2, 0.8). We show the relative error between the theoretical lower bound and the simula-
tion results based on n = 216 grid points, i.e. (M H(T, a) − M̂ n

H(T, a))/M̂ n
H(T, a). We note that

if the relative error is positive, then the theoretical lower bound yields a better approximation
to the ground truth than the Monte Carlo method, which is indicated by the green area below
the curve on the plot. In this sense, we see that the theoretical lower bound outperforms the
Monte Carlo simulations for H ∈ (

0, 1
2

)
in all three cases (i)–(iii). We remark that the value of

the relative error at H = 1
2 approximately equals 0.5% in Fig. 1 and 0.7% in Fig. 2; this roughly

agrees with [6, Corollary 4.3], which states that

M n
1/2(T, a) − M1/2(T, a) ≈ −√

T · ζ (1/2)√
2πn

≈ −0.5826 · √T/n,

where ζ (·) is the Riemann zeta function. See also [2, Theorem 2] for the case a = 0.

5. Proofs

Here we provide proofs of Lemma 2, Proposition 3, and Proposition 4 from Section 3.1.

Proof of Lemma 2. For brevity we write τ := τ1/2(T, a) and put Y(t) := B(t) − at.
According to the PWZ representation of X̃+

H in (7), we have

E(X̃+
H (τ )) =E

(
τH−(1/2)B(τ ) − (H − (1/2)) ·

∫ τ

0
(τ − s)H−(3/2) · (B(τ ) − B(s)) ds

)

=E

(
τH−(1/2)Y(τ ) + aτH+(1/2)

H + 1/2
− (

H − 1
2

) ·
∫ τ

0
(τ − s)H−(3/2) · (Y(τ ) − Y(s)) ds

)
, (19)

where in the second line we simply substituted B(t) = Y(t) + at and integrated out
∫ τ

0 (τ −
s)H−(3/2)(aτ − as) ds. Furthermore, notice that for any T ∈ (0, ∞), the PWZ representation of
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X̃−
H (τ ) from (7) can be rewritten as

X̃−
H (τ ) := −(T − τ )H−(1/2)(B(τ ) − B(T)) + (

H − 1
2

) ·
∫ T

τ

(s − τ )H−(3/2)(B(τ ) − B(s)) ds

+ (
H − 1

2

) ·
∫ T

0
sH−(3/2)B(s) ds − TH−(1/2)B(T)

+ (
H − 1

2

) ·
∫ ∞

T
[sH−(3/2) − (s − τ )H−(3/2)] · (B(s) − B(T)) ds.

Since Brownian motion is centred and has independent increments, τ is independent of {B(T +
s) − B(T) : s > 0} and the expected value of each term in the second and third lines above is
equal to 0. This yields

E(X̃−
H (τ ))

= −E

(
(T − τ )H−(1/2)(B(τ ) − B(T)) − (

H − 1
2

) ·
∫ T

τ

(s − τ )H−(3/2)(B(τ ) − B(s)) ds

)
.

After substituting B(t) = Y(t) + at we find that this equals

−E

(
(T − τ )H−(1/2)(Y(τ ) − Y(T))

− a(T − τ )H+(1/2)

H + 1/2
− (

H − 1
2

) ·
∫ T

τ

(s − τ )H−(3/2)(Y(τ ) − Y(s)) ds

)
.

Now let {Ŷ(t) : t ∈ [0, T]} be the time-reverse of process Y , i.e. Ŷ(t) := Y(T − t) − Y(T), and
let τ̂ := arg max{t ∈ [0, T] : Ŷ(t)} be the time of its supremum over [0, T]. Notice that we must
have τ ∗ = T − τ . After substituting for Ŷ , we find that

E(X̃−
H (τ )) = −E

(
τ̂H−(1/2)Ŷ(τ ) − aτ̂H+(1/2)

H + 1/2
− (

H − 1
2

) ·
∫ τ̂

0
(̂τ − s)H−(3/2)(̂Y(τ ) − Ŷ(s)) ds

)
.

Finally, we notice that Ŷ(·) d= Y( · ; − a), i.e. Ŷ follows the law of drifted Brownian motion
with drift −a. Comparing the above with (19) for EX̃+

H (τ ) concludes the proof. �

In light of the result in Lemma 2 the function J −
H (T, a) can be expressed using

JH(T, a), which justifies our notation JH(T, a) instead of J +
H (T, a), cf. (16). Before prov-

ing Proposition 3, we need to establish a certain continuity property of the argmax functional
of Brownian motion. In what follows, let τ1/2(T, a) := arg maxt∈[0,T]{B(t) − at} be the argmax
functional of drifted Brownian motion; see also the definition in (14).

Lemma 3.

(i) lima→a∗ τ1/2(T, a) = τ1/2(T, a∗) a.s. for any T ∈ (0, ∞), a∗ ∈R.

(ii) limT→∞ τ1/2(T, a) = τ1/2(∞, a) a.s. for any a > 0.

Proof. Let Y(t; a) := B(t) − at. It is easy to see that the trajectories {Y(t, a) : t ∈ [0, T]} con-
verge uniformly to {Y(t, a∗) : t ∈ [0, T]} as a → a∗, and hence the argmax functionals also
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converge; see, e.g., [22, Lemma 2.9], which concludes the proof of item (i). Furthermore,
since τ1/2(∞, a) is almost surely finite, then there must exist some (random) T0 > 0 such that
τ1/2(T, a) = τ1/2(∞, a) for all T > T0, which implies item (ii). �

Proof of Proposition 3. Consider the case H = 1
2 . Since the value of M1/2(T, a) is irre-

spective of c (see also the comment above (15)), we may take c = (1, 0) and observe
that

M1/2(T, a) =E
(
M(1,0)

1/2 (T, a)
) =E

(
B(1,0)

1/2 (τ1/2(T, a)) − aτ1/2(T, a)
)

= E(X̃+
1/2(τ (T, a)))√

V (1,0)
1/2

− aE
(
τ1/2(T, a)

)

=J1/2(T, a) − aE1/2(T, a);

therefore J1/2(T, a) = M1/2(T, a) + aE1/2(T, a), which agrees with Proposition 2 (note that
the error function is a special case of the incomplete Gamma function, cf. (34)).

Now let H ∈ (
0, 1

2

) ∪ ( 1
2 , 1

)
. For brevity, we write τ := τ1/2(T, a) and let Y(t) = B(t) − at.

We now consider the case T ∈ (0, ∞), a 
= 0. Recall that, from (19), we have

JH(T, a) =E

(
τ

H− 1
2 Y(τ ) + aτH+(1/2)

H + 1/2
− (

H − 1
2

) ·
∫ τ

0
(τ − s)H−(3/2) · (Y(τ ) − Y(s)) ds

)
.

Now, we have

E

( ∫ τ

0
(τ − s)H−(3/2) · (Y(τ ) − Y(s)) ds

)

=E

(
E

( ∫ t

0
(t − s)H−(3/2) · (Y(t) − Y(s)) ds | τ = t, Y(τ ) = y

))
.

We now recognise that the above equals E(IH(τ, Y(τ )), with IH(t, y) defined in (13). Using
Lemma 1 we obtain JH(T, a) =J (1)

H (T, a) +J (2)
H (T, a), where

J (1)
H (T, a) := 1

H + 1/2
·E

(
τH−(1/2)

(
Y(τ ) + aτ − τ

Y(τ )

))
,

J (2)
H (T, a) := 1

H + 1/2
·E

(
τH+(1/2)

Y(τ )
· �(H)√

π
U

(
H − 1

2
,

1

2
,

Y2(τ )

2τ

))
.

The joint density of the pair (τ, Y(τ )) is well known (see (11) in Section 2.2) and therefore
both functions J (1)

H (T, a) and J (2)
H (T, a) can be written as definite integrals and calculated. In

fact, we have

J (1)
H (T, a) = 0, J (2)

H (T, a) = 2H

√
2π (H + 1/2)

· |a|−2Hγ

(
H,

a2T

2

)
. (20)

The derivation of (20) is purely calculational and is provided in Appendix B (available in the
Supplementary Material of the online version of this manuscript). This ends the proof in the
case T ∈ (0, ∞), a 
= 0.
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In order to derive the formula for JH(T, a) in the remaining two cases (i.e. T ∈ (0, ∞), a = 0
and T = ∞, a > 0), we could redo the calculations in (20) with appropriate density functions
for the pair (τ, Y(τ )); see (12) and (11). However, this is not necessary, as it suffices to show
that the function JH(T, a) is continuous at (∞, a) and (T , 0).

Let T ∈ (0, ∞), a = 0. Using the fact that γ (s, x) ∼ (sxs)−1 as x ↓ 0, we can see that

lim
a→0

JH(T, a) = TH

√
2πH(H + 1/2)

.

Showing that lima→0 JH(T, a) =JH(T, 0) would therefore conclude the proof in this case. By
definition we have JH(T, a) = √

V(H) ·E(
B(1,0)

H (τ (T, a))
)
. Since V(H) is continuous at H = 1

2 ,
it suffices to show that

E
(
B(1,0)

H (τ (T, a))
) →E

(
B(1,0)

H (τ (T, 0))
)

(21)

as a → 0. Using Proposition 1 and Lemma 3(i), we obtain

lim
a→0

B(1,0)
H (τ (T, a)) = B(1,0)

H (τ (T, 0)) a.s.

Moreover, for any ε > 0 and all a ∈ (−ε, ε) we have

B(1,0)
H (τ (T, a)) ≤ sup

t∈[0,T]
B(1,0)

H (t) + εT,

which has finite expectation. Therefore, by Lebesgue dominated convergence we can conclude
that the limit in (21) holds, which ends the proof in this case.

Let T = ∞, a > 0. It is easy to see that

lim
T→∞ JH(T, a) = 2H�(H)√

2π (H + 1/2)
· |a|−2H if a > 0.

Analogously to the proof of the previous case, it suffices to show that

E
(
B(1,0)

H (τ (T, a))
) →E

(
B(1,0)

H (τ (∞, a))
)

(22)

as T → ∞. Using Proposition 1 and Lemma 3(ii), we find that

lim
T→∞ B(1,0)

H (τ (T, a)) = B(1,0)
H (τ (∞, a)) a.s.

Moreover, since the mapping T �→ τ (T, a) is non-decreasing, we have

B(1,0)
H (τ (T, a)) ≤ M(1,0)

H (∞, a) + aτ (∞, a),

and the right-hand side above has a finite expectation. Using Lebesgue dominated convergence
we conclude that the limit (22) holds, which ends the proof. �

Proof of Proposition 4. From the definition of mc
H(T, a) in (15),

mc
H(T, a) := E{B̃c

H(τ (T, a)) − aτ (T, a)} = c+J +
H (T, a) − c−J −

H (T, a)√
Vc

H

− aE1/2(T, a).
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In the light of Lemma 2, for T ∈ (0, ∞) we have (17). We now show that (17) also holds in the
case T = ∞, a > 0. Using Proposition 1 and Lemma 3(ii), we find that

B̃c
H(τ (T, a)) − aτ (T, a) → B̃c

H(τ (∞, a)) − aτ (∞, a) a.s., T → ∞.

Now we have the bound B̃c
H(τ (T, a)) − aτ (T, a) ≤ Mc

H(∞, a), which is integrable, and hence
we can conclude that mc

H(∞, a) = limT→∞ mc
H(T, a). Furthermore, from Propositions 3 and 2

it is clear that JH(T, a) →JH(∞, a) and E1/2(T, a) → E1/2(∞, a) as T → ∞. Hence,

lim
T→∞ mc

H(T, a) = c+ − c−√
Vc

H

·JH(T, a) − aE1/2(T, a),

which concludes the proof that (17) holds for all admissible pairs (T , a).
Finally, since JH(T, a) > 0 (see Proposition 3), it is easy to see that (17) is maximized

whenever (c+ − c−)/
√

Vc
H is maximized. It is straighforward to show that the maximum is

attained at c = (1, −1), which concludes the proof. �

Appendix A. Special functions

All of the definitions, formulae, and relations from this section can be found in [1].

A.1. Confluent hypergeometric functions

For any a, z ∈R and b ∈R \ {0, −1, −2, . . .} we define Kummer’s (confluent hypergeo-
metric) function

1F1(a, b, z) :=
∞∑

n=0

a(n)zn

b(n)n! ,

where a(n) is the rising factorial, i.e. a(0) := 1 and a(n) := a(a + 1) · · · (a + n − 1) for n ∈N.
Similarly, for any a, z ∈R and b ∈R \ {0, −1, −2, . . .} we define Tricomi’s (confluent hyper-
geometric) function

U(a, b, z) = �(1 − b)

�(a + 1 − b)
1F1(a, b, z) + �(b − 1)

�(a)
1F1(a + 1 − b, 2 − b, z). (23)

When b > a > 0, Kummer’s function can be represented as an integral,

1F1(a, b, z) = �(b)

�(a)�(b − a)

∫ 1

0
eztta−1(1 − t)b−a−1 dt; (24)

similarly, for a > 0, z > 0, Tricomi’s function can be represented as an integral,

U(a, b, z) = 1

�(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1 dt. (25)

Moreover, we have the Kummer transformations

1F1(a, b, z) = ez
1F1(b − a, b, −z), (26)

U(a, b, z) = z1−bU(1 + a − b, 2 − b, z) (27)
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and the recurrence relations

zU(a, b + 1, z) = (b − a)U(a, b, z) + U(a − 1, b, z), (28)

aU(a + 1, b, z) = U(a, b, z) − U(a, b − 1, z). (29)

In this manuscript we often use the following integral equality. Let c > γ > 0 and u > 0; then∫ 1

0
xγ−1(1 − x)c−γ−1

1F1(a, γ, ux) dx = �(γ )�(c − γ )

�(c)
1F1(a, c, u), (30)

which can be verified using [13, 7.613-1].

A.2. Incomplete Gamma function

For any α > 0, z > 0, we define the upper and lower incomplete Gamma functions
respectively as

�(α, z) :=
∫ ∞

z
tα−1e−t dt, γ (α, z) :=

∫ z

0
tα−1e−t dt, (31)

so that �(α, z) + γ (α, z) = �(α), where �(·) the standard Gamma function �(α) :=∫ ∞
0 tα−1e−t dt. Using integration by parts we obtain the useful recurrence relation

γ (α + 1, z) = αγ (α, z) − zαe−z. (32)

Notice that, as z → ∞, this is reduced to the well-known recurrence relation for the Gamma
function, i.e. �(α + 1) = α�(α). Finally, we note that γ (α, z) can be expressed in terms of the
confluent hypergeometric function:

γ (α, z) = α−1zαe−z
1F1(1, α + 1, z). (33)

A.3. Error function

For z ∈R we define the error function and complementary error function, respectively, as

erf(z) := 2√
π

∫ z

0
e−t2 dt, erfc(z) := 1 − erf(z).

The error function can be expressed in terms of the incomplete Gamma function, and therefore,
in the light of (33), also in terms of the hypergeometric function:

erf(z) = sgn(z)√
π

γ
( 1

2 , z2) = 2ze−z2

√
π

1F1
(
1, 3

2 , z2). (34)
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