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Abstract

The time fractional diffusion equation with appropriate initial and boundary conditions in
an n-dimensional whole-space and half-space is considered. Its solution has been obtained
in terms of Green functions by Schneider and Wyss. For the problem in whole-space, an
explicit representation of the Green functions can also be obtained. However, an explicit
representation of the Green functions for the problem in half-space is difficult to determine,
except in the special cases a = 1 with arbitrary n, or n = 1 with arbitrary a. In this
paper, we solve these problems. By investigating the explicit relationship between the
Green functions of the problem with initial conditions in whole-space and that of the same
problem with initial and boundary conditions in half-space, an explicit expression for the
Green functions corresponding to the latter can be derived in terms of Fox functions. We also
extend some results of Liu, Anh, Turner and Zhuang concerning the advection-dispersion
equation and obtain its solution in half-space and in a bounded space domain.

1. Introduction

Applications of fractional derivatives can be dated back to the 19th century. For
example, Caputo and Mainardi found good agreement with experimental results when
using fractional derivatives for the description of viscoelastic materials [10, 11]. More
recently, the idea has emerged that the space and/or time fractional partial differential
equation, obtained from the standard partial differential equation that replaces the
space-derivative and/or time-derivative by a fractional derivative, may more accurately
describe some physical problems than the corresponding standard partial differential
equation. More and more works by researchers from various fields of science and
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engineering deal with dynamical systems described by fractional-order differential
equations (FDES), which have been used to represent many natural processes in
physics [8, 28, 33], finance [25, 27] and hydrology [5, 7]. For example, the fractional
diffusion equation (TFDE) and the fractional advection-dispersion equation (TFADE)
have been widely researched [6, 12, 17, 30]. From a physical viewpoint, they are
obtained from a fractional Fick law replacing the classical Fick law, which describes
transport processes with a long memory [16]. Nigmatullin [22, 23] pointed out that
many of the universal electromagnetic, acoustic and mechanical responses can be
modelled accurately using fractional diffusion-wave equations. For example, a TFDE
has been explicitly introduced in physics by Nigmatullin [23] to describe diffusion
in special types of porous media which exhibit a fractal geometry. Ginoa et al. [13]
also presented a TFDE describing relaxation phenomena in complex viscoelastic
materials. Roman and Alemany [26] investigated continuous-time random walks on
fractals. Gorenflo et al. [16] generated discrete random models suitable for simulating
random variables whose spatial probability density evolves in time according to a
TFDE.

Wyss [32] and Schneider and Wyss [29] considered the time fractional diffusion and
wave equations and obtained the solution in closed form in terms of Fox functions.
Other research has considered the same equation and space and/or time FDES for
different motives. Recently, Anh and Leonenko also considered the same fractional
diffusion-wave equations [3, 4] and the heat equation [2]. Gorenflo, Luchko and
Mainardi [14] used the similarity method and the Laplace transform method to obtain
the scale-invariant solution of the time fractional diffusion-wave equation in terms of
the Wright function. Agrawal presented a general solution for a fractional diffusion-
wave equation defined in a bounded space domain by the finite sine and Laplace
transform technique [1]. Gorenflo and Mainardi considered random walk models for
space fractional diffusion processes [15]. The space-time fractional diffusion equation
has also been treated by Mainardi, Luchko and Pagnini as a Cauchy problem and its
fundamental solution (or Green function) was investigated with respect to its scaling
and similarity properties [21]. Benson, Whearcraft and Meerschaert [6] considered
the space fractional advection-dispersion equation and gave an analytical solution
featuring the a-stable error function. Liu et al. [18] considered the space fractional
Fokker-Planck equation and presented its numerical solution. Recently, Liu et al. [19]
also treated the TFADE and derived the complete solution of this equation with an
initial condition. Many other FDEs, such as the Black-Scholes equation, also were
considered. Professor Meerschaert (h t tp : / / un r .edu/homepage/mcubed/) has
pointed out that fractional derivatives are almost as old as their integer-order cousins.
Recently, fractional derivatives have found new applications in engineering, physics,
finance and hydrology. In physics, fractional derivatives are used to model anomalous
diffusion, where a could of particles spreads differently than the classical Brownian
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motion model predicts.
The results presented in this paper are based on the works of Schneider and Wyss

[29] and Liu etal. [19].

2. The time fractional diffusion equation

We consider the equation

" ( X ' f ) = AM(X, t), 0 < a < 1, (2.1)

with the fractional derivative defined in the Caputo sense [9]:

d"cp(t)
d"cp(t)_ - t

 dt" '
dr l /"'

a = n € N,

, n-l<a<n,
r(n

where <p is a continuous function. Properties and more details about Caputo's fractional
derivative can be found in [20, 24]. The Laplace transform of a function <p(t),
0 < t < oo, is defined as follows [20, 24]:

,p)= I e-»<p{t)dt.
Jo

(2.2)
Jo

There is a fundamental formula

y ] 1 V * ) eN. (2.3)

We refer to (2.1) as the time fractional diffusion equation (TFDE). For this equation,
there are a series of papers (see [20] and the references therein) which consider
the following two basic problems, which are initial value problems (IVPs) or initial
boundary-value problems (IBVP) respectively:
Problem I: The TFDE in a whole-space (IVP)

M ( X , 0 + ) = / ( X ) , x e R " , (2.4)

M(xr, :poo, r ) = 0 , / > 0; (2.5)

Problem II: The TFDE in a half-space (IBVP)

x € ID, (2.6)

•). ' > 0 , (2.7)
oxn

u(xT, +oo, /) = 0, / > 0, (2.8)
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with given sufficiently well-behaved functions / and v. The notation is as follows:

O = R " - ' x R + , 3D = R""1 x {0}, x = (xux2, ... ,xn) e P,

For problem I, the solution has been obtained by Schneider and Wyss [29]:

«(x,r)= / dayGa(\x-y\,t)f(y),
J fflt"

where G" (x, t) is referred to as the Green function or fundamental solution, which
is intended to be the solution for the IVP corresponding to the initial condition
/ (x) = 8(x) (where S denotes the Dirac delta distribution):

- ' ' r t

where H™(z) is a Fox function (or //-function) [24, 31].
For problem n, as the propagation equation (2.1) is linear, it is sufficient to consider

separately the problems

fd) f+0. » = 0;
((2) / = 0 , v # 0 ,

which Schneider and Wyss called first and second type problems respectively. They
also obtained solutions in terms of their corresponding Green functions. However,
they only derived an explicit representation of the Green functions for the first type
problem and that for the second type problem for some special cases. In fact, the
second type problem can be further subdivided by the choice of k, \x in (2.7):

(1) * = 1, M = 0;

(2) A.=0, ii=l; (2.10)

(3) X ^ 0 , / i = l .

Then their solutions may be expressed [29] as

u(x,t)= [ dn~ly f dxG;({xT -y,xn),t-x)v(y,x), (2.11)
J R - ' JO

where the indices./ = 1, 2, 3correspondtothecases(/')of(2.10). However, Schneider
and Wyss [29] did not succeed in finding explicit representations for G" except in
the special cases a = 1 with arbitrary n, or n = 1 with arbitrary or. For the special
case when a is set to be one, they found that G° (j = 1,2) are non-negative. They
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then wanted to know whether this remains true for arbitrary n with 0 < a < 1. They
pointed out that this question remained open for n > 1.

Based on the work of Schneider and Wyss, we try to resolve the above questions.
In other words, we provide explicit representations for G" (j — 1,2) and show that
they are indeed non-negative for arbitrary n and 0 < a < 1.

2.1. The TFDE in one spatial dimension In order to motivate the technique and
for simplicity, we first focus our attention on (2.1) in one dimension, that is,

The following basic initial and boundary conditions are considered:
(a) The Cauchy problem (IVP)

u(x,0+) =f(x), -oo<x<+oo, (2.13)

) = 0, t>0; (2.14)

u(x,0+) = 0, x>0, (2.15)

= 0, r > 0 . (2.16)

(b) The signalling problem (IBVP)

The solutions of the Cauchy and signalling problems were derived respectively [29]
to be

and

r+oo

u(x,t)= dy Ga
c(\x - y\,

J-oo

u(x, t) = / dx G?(x, t - r)g(r),
Jo

t)f(y)

where G" and G" are the corresponding Green functions which represent the so-
called fundamental solutions, obtained when / (x) is set to be 8(x) or g(t) to be S(l)
respectively. It should be noted that G°(x, t) = G"(|;c|, t) since the Green function
is an even function of x.

Applying the Laplace transform (2.2) to (2.12) with respect to variable t and using
the formula (2.3) with (2.13) for/ (x) = S(x), we obtain

p"Ga
c(x, p) - 8(x)p°-} = -^G'ix, p).
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Because of the singular term 8(x), we have to consider the above equation separately
in the two intervals x < 0 and x > 0, imposing the natural boundary conditions (2.14)
and the necessary matching conditions at x = 0. Then we obtain

Ga
c(x,p)=^P-e-"'n^. (2.17)

For the signalling problem, the same application of the Laplace transform to (2.12)
with (2.15) leads to

G°(x,p) = e~x"an = e-^"2 = wa/2(.x
2"*p). (2.18)

Returning to the time domain and letting z = x~2/at, we obtain the solution

G"s(x, t) = x-2/awa/2(x-2/at) = zrlwa/2(z).

Here wfi (0 < P < 1) denotes the one-sided stable (or Levy) probability density [29]
- o "characterised by its Laplace transform Wp{p) = e p . In fact, it can be explicitly

expressed [29] as

From (2.17) and (2.18), we recognise that for x > 0,

— Ga
s(x,p) = -axGa

r(x,p),
dp

and in the time domain we obtain the relation

xGa
c(x,t) = -Ga

s(x,t), xn>0.

Then we can obtain the explicit representation for G° with 0 < a < 1

Ga
c(x, t) = — w a /

] l / 2 2 <
OCX

which is in agreement with the known result in [29].

REMARK 1. We can easily show that G" is a probability on K, for G°(x, t) =
Ga

r{\x\, t) and that wp{z) is a probability on K+.

REMARK 2. We can obtain similar results for 1 < a < 2 if we add another initial-
value condition (du/dt)(x, 0) = 0.

https://doi.org/10.1017/S1446181100008282 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008282


[7] The time fractional diffusion equation and the advection-dispersion equation 323

2.2. The TFDE in an w-dimensional half-space Using a similar method to that
outlined above, we can treat (2.1) in an n-dimensional space, that is to say, we will
analyse the Green function in (2.11) corresponding to the second type of problem II.
We use g(k,xn, p) to denote a Fourier transform with respect to variable xr and a
Laplace transform with respect to variable t for the function g(x, t), that is,

,xn,p)= d"-'xTeik*T /
J*-> Jo

-p'g(t).

For problem I, the Fourier-Laplace transform for (2.1) with the initial condition
(2.4) for/ (x) = <5(x) leads to

p"Ga -pa-lS(xn) = -k2Ga + -f-2G
a.

Taking into account the boundary condition (2.5) and the necessary matching condi-
tions at xn = 0, we derive

Ga(k,xn,p) = (2.19)

For problem II, the application of the Fourier-Laplace transform to (2.1) with (2.6),
where/ (x) = 0, leads to d2G°/dx2 = (pa + k2)GJ, with the general solution

G°(k,xn,p) = A (*,p)<r V ^ * " + B(k,p)e+J^*".

The coefficients A and B are determined by the conditions (2.7)-(2.8) with v(xT, t) =
S(\T)S(t), that is, G'J'fjk, 0, p) = 1 and dG"2{k, 0, p)/dxn = - 1 . Consequently,

,xn,p) =

G2(k,xn,p) =

and (2.20)

(2.21)

From (2.19M2.21), we recognise that for*,, > 0,

_£_ -
9P

G°(k,xn,p) = -axnG
a(k,xn,p) and

Returning to the space-time domain we obtain the relation

G°(x,t)= ,y,t), xn > 0.

(2.22)

(2.23)
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First, we can obtain an explicit representation for G",

G°(x,t)=axnr
lGa(x,t)

- 2 axnt n x Hl2 ̂ 2 x/ ( n / 2 , 1/2). (1.

Then an explicit representation for G" follows from (2.23).
It is obvious that for y = 1 , 2 ,

G°(x, 0 > 0, x € O, t > 0.

For the particular choices that a = 1 or n = 1, the results are in good agreement with
those in [29].

3. The time fractional advection-dispersion equation

As an application of the derived theory we extend the above analysis to the time
fractional advection-dispersion equation (TFADE) which Liu et al. [19] investigated
recently. Furthermore, we seek the solution for the TFADE in a bounded domain
using the same approach as in [1]. The TFADE is obtained by replacing the time
derivative in the advection-dispersion equation by a generalised derivative of order a
withO < a < 1:

with the initial condition

C&c,0)=q,(jc), (3.2)

where v > 0, D > 0 and daC(x, t)/df is a Capato's fractional derivative. This
system can be expressed by the following integral equation:

. „ .
T(a) Jo

with n— 1 < a < n, n = \. To reduce the above equation to a more familiar form, let

• '-7B- (33)

with the initial condition

2-/D)'

https://doi.org/10.1017/S1446181100008282 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008282


[9] The time fractional diffusion equation and the advection-dispersion equation 325

The TFADE is then reduced [19] to

A] (3.4)
and

/ t \ / .;£ \
(3.5)

where fx2 = v2/4D, D~a is the fractional integral of order a [24] and its Laplace
transform is given by

<£{D-aip(t)\ = -±-j?{t°-l}J?{<p(t)} = p-a$(p), a > 0.

According to the properties of the Laplace and Mellin transforms and the Fox function,
Liu et al. found the Green function for the reduced TFADE (3.4)-(3.5) in the half-space
domain (£ > 0), that is,

«(£,*)= / GaJ\t=-y\,t)u(y,0)dy, (3.6)
Jo

where

Gl(r, t) = —U= j f J do. (3.7)

3.1. The solution of the TFADE in the half-space domain In fact, the above results
(3.6)-(3.7) can easily be extended to the Cauchy problem for (3.1) in the whole-space
domain with

C(x,0+) = Co(x), -oo<;t<+oo,

C(=FOO, 0 = 0, t > 0,

which corresponds to the reduced TFADE (3.4) for £ 6 K by the relation (3.3). The
solution is obtained by using the same technique as that of Liu et al. [19]

/•+0O

J-oo

An explicit representation for G"r is also obtained:
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with a Laplace transform of the form

The signalling problem for (3.1) in the half-space domain is considered with

C(x,0+) = 0, x>0,

C(fl+, t) = g(t), C(+oo, 0 = 0 , * > 0.

It corresponds to the reduced TFADE (3.4) for £ > 0 with

«(£,0+)=0, £ > 0 , (3.9)
«(0+, 0 = g(t), «(+oo, 0 = 0 , t > 0. (3.10)

The application of the Laplace transform to (3.4) with (3.9) gives

with the general solution

M(£, p) = Ae-J

Taking into account the boundary conditions (3.10), that is,

u(0,p) = g(p), u(+oo,p)=0,

the coefficients A and B are determined, then

«(£. P) = gWe-J^111 = g(p)Gl,G, P) = SfiC^Q, 0 * g(0), (3.11)
where

G ^ ( £ , p ) = e - V ^ ^ ? . (3.12)

The inverse Laplace transform of (3.11) gives

«(f, 0 = Gl,Q, 0 * g(0 := f drC^tt, t - T)g(r).

From (3.12) and (3.8), we derive that for r > 0,
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Returning to the space-time domain we obtain the relation

lct) = ^Gl(r,t), r>0.

Consequently, we obtain explicit representations for G™̂  as

ar

3.2. The solution of the TFADE in a bounded domain In this section we seek
the solution of the TFADE (3.1) in a bounded domain 0 < x < \fDL with the initial
condition (3.2). We further consider the following boundary conditions:

C(0, r) = C(\/DL,/) = 0, r > 0 .

By the relation (3.3), we obtain another form of the reduced TFADE

M . « . O + . o ? . , , > » , (3..3,

with the boundary conditions

«(0, t) = u(L,t) = O, t>0, (3.14)

and initial condition (3.5). Taking the finite sine transform of (3.13), and applying the
boundary conditions (3.14), we obtain

, t) - (an)2u(n, t), t > 0, (3.15)

where a — n/L, n is a wave number and u(n, t) = f0 u(y, t) sin(a/ry) dy is the finite
sine transform of u(y, t). The finite sine transform of (3.5) is

-0)" f c° < 3 I 6 )

Applying the Laplace transform to (3.15) and using the initial conditions (3.16), we
obtain

u(n,s) = ——r-——-. (3.17)
sa + fj? + (an)2
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Noting the Laplace transform pair of the Mittag-Leffler function

Ea(cta) JU -£—, m{p) > \c\1/f>, c€V, (3.18)
p" — c

where the Mittag-Leffler function Ea(z) with a > 0 is defined by the following series
representation, valid in the whole complex plane [24]:

n=0

We then obtain the pair

4- + M2 + (an)2 "L ^ v ' '

Thus we can first apply the inverse Laplace transform and then the inverse finite sine
transform for (3.17) to obtain

"(£. t) = — / Ea[—(u2 + (an)2)ta)]sin(an£) I Co I —==. ) e~v?/2 sin (any) dy.L , Jo \*/DJ

By the relation (3.3), we can obtain the solution C(x, t).

4. Conclusions

We consider the time fractional diffusion equation and the advection-dispersion
equation respectively in an n-dimensional whole- and half-space. We investigate the
explicit relationships between the problems in whole-space with the corresponding
problems in half-space using the Fourier-Laplace transform (2.19). Then fundamental
solutions of the problems in half-space are obtained under the precondition that the
fundamental solutions of the problems in the whole-space are known. We resolve
some of the remaining problems stated in [29]. Furthermore, the time fractional
advection-dispersion equation in a bounded space domain is also considered. Its
solution is derived by the finite sine and Laplace transforms. In future research, we
will consider their applications in hydrology and numerical simulation.
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