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Abstract

We consider a test which allows students to attempt a multiple-choice question

multiple times (i.e., multiple attempts). The most extreme form of multiple attempts is

the answer-until-correct (AUC) procedure. Previous research has demonstrated that

multiple-attempt procedures such as AUC could potentially enhance learning and

increase reliability. However, for multiple-choice items, guessing is still non-ignorable.

Traditional models of sequential item response theory (SIRT) could model

multiple-attempt procedures but fail to take guessing into account. The purpose of this

study is to propose SIRT models for multiple-choice, multiple-attempt items

(SIRT-MM). First, we defined a family of SIRT-MM models to account for the

idiosyncrasies of items, answer options, and examinee behavior. We also explained how

these models could improve person parameter estimates by taking into account partial

(mis)information of examinees. Second, we conducted model comparisons between the

SIRT-MM models, the graded response model, and the nominal response model. Third,

we discussed how the item and person parameters can be estimated, and evaluated item

and person parameter recovery of SIRT-MM models under different conditions through
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a simulation study. Finally, we applied the SIRT-MM models to a real dataset and

demonstrated their utility through model selection, person parameter recovery, and

information functions.

Key words: sequential item response theory, multiple choice item, answer-until-correct,

multiple attempts
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Introduction

Many tests employ two types of items: constructed-response items and multiple-choice items

(Kastner & Stangla, 2011; Lukhele, Thissen, & Wainer, 1994). Constructed response questions

require examinees to create their own answers, which can take many forms, including short text

responses, an essay, a diagram, an explanation of a procedure, or the step-by-step solution of a

mathematical problem (Kastner & Stangla, 2011; Lukhele et al., 1994). Multiple-choice is an item

format widely used in testing due to its simplicity of scoring, which consists of answer choices (or

alternatives) and in many cases one of them is the correct choice.

Scoring of multiple-choice items can heavily depend on the state of an examinee. The

simplest example would be a completely ignorant examinee, who could guess the correct answer

choice and possibly receive credit by chance. Specifically, letting K be the total number of answer

choices and assuming the examinee does not have any knowledge of a test item, the probability of

guessing the correct response, or the expected score when 0/1 (correct-or-incorrect) scoring is

used, is 1
K . We refer to this condition as complete ignorance. An examinee who could eliminate

some distractors, or wrong answer choices, will have a higher chance to earn a point. For

example, the expected score will be 0.5 when an examinee could eliminate K − 2 distractors and

leave two possible choices including the correct answer choice. Davis (1964) referred to this

condition, where an examinee guesses among some, not all, correct and incorrect choices, as

partial information (Frary, 1980). On the other hand, Davis (1964) referred to a condition where

an examinee is misinformed and eliminates the correct choice, as misinformation (Frary, 1980).

The amount of misinformation varies depending on how many choices, including the correct
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choice, are believed to be incorrect. For instance, if an examinee believes that the correct answer

choice and K − 2 distractors are incorrect, he or she would select the remaining distractor, getting

0 point by 0/1 scoring. On the other hand, if an examinee believes that the actual correct choice

is wrong but all the distractors are correct, he or she would select one of the distractors, getting 0

point by 0/1 scoring as well. The former condition is referred to as partial misinformation and the

latter condition is referred to as complete misinformation (Frary, 1980). Intuitively, complete

misinformation should be penalized more than partial misinformation. Nevertheless, such

conditions are handled differently depending on scoring methods. For example, the simple 0/1

scoring method will treat these two misinformation conditions equally, as both examinees would

select one of the distractors. However, an answer-until-correct (AUC) procedure, which is a

popular multiple-attempt procedure that lets an examinee continue to select answer options until

the correct option is picked, tends to give higher expected item scores with lower levels of

misinformation (Frary, 1980, 1989; Kane & Moloney, 1978). Frary (1980) gave a good summary of

how these two misinformation conditions are handled in various scoring methods including a

multiple-attempt procedure, which is the focus of this paper.

As a multiple-attempt procedure, AUC has been reported to have various advantages

including: (1) AUC can lead to higher reliability than 0/1 scoring by taking into account different

levels of examinees’ partial (mis)information (Gilman & Ferry, 1972; Hanna, 1975; Slepkov &

Godfrey, 2019), (2) AUC could enhance learning by providing immediate corrective feedback

between attempts (Epstein, Epstein, & Brosvic, 2001), and (3) AUC is strongly preferred by

examinees over only one attempt being allowed (DiBattista, Gosse, Sinnige-Egger, Candale, &

Sargeson, 2009). Importantly, Epstein et al. (2001) found that their AUC procedure significantly
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enhances the retention of material from earlier exams. Specifically, in the final exam, students who

had previously experienced the AUC approach were twice as likely to answer previously incorrect

questions correctly compared to those who had used Scantron forms (Epstein et al., 2001).

Item scoring for a multiple-attempt procedure, including the AUC procedure, can be very

simple: K − u where u is the number of attempts an examinee makes. In this way, we can retrieve

the levels of partial misinformation by recording the number of attempts. For example, a

completely misinformed examinee would continuously select distractors until the last attempt,

resulting in zero points, whereas a partially misinformed examinee who believes that one

distractor is correct and is unsure about the other choices, would select that distractor at the first

attempt and guess from the second attempt on. Thus, the expected score of a partially

misinformed examinee would be higher than that of a completely misinformed examinee. A

multiple-attempt procedure can also take into account the different levels of partial information.

For example, if a partially informed examinee could eliminate a number of distractors and leave s

remaining choices, they are guaranteed to have a score of K − s or better. Moreover, different

item scoring schemes are possible. Slepkov and Godfrey (2019) conducted analyses of the

reliability of several multiple-attempt tests using different item scoring schemes. In Slepkov and

Godfrey (2019), the most popular scoring scheme is one that grants full credit if the first attempt

was successful, half credit if the second attempt is successful, one-tenth credit if the third attempt

was successful, and no credit otherwise.

These scoring schemes are based on classical test theory. Classical test theory is a class of

measurement models that are based on the total sum of item scores, and typically each item is

scored by the 0/1 scoring. When such scoring schemes for a multiple-attempt procedure are used,
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we calculate the total sum of item scores as an estimate of the ability of an examinee. Another

approach to model the ability of an examinee is to use item response theory (IRT; De Ayala,

2009). Tutz (1990) proposed sequential item response (SIRT) models, which are motivated by “a

genuine stepwise approach” to emphasize its difference from the partial credit model. Unlike the

latter, SIRT models can model a person’s consecutive attempts at an item, such as a test of

psychomotor skills. One advantage of SIRT models is that item parameters specific for future

attempts do not affect ability estimation at the earlier attempts (Tutz, 1990). Thus, SIRT models

could be used for modeling a multiple-attempt procedure that allows an unlimited or limited

number of attempts.

More specifically, following the notations in Culpepper (2014), SIRT models could be

formulated as follows. Suppose a test item has a multiple-attempt procedure that allows an

examinee to submit answers until they reach the correct answer. Let Xj be a random variable

representing the number of attempts an examinee needed to submit a correct answer on item j

and Yju represents a Bernoulli random variable of whether the examinee submitted a correct or

incorrect response on attempt u. In SIRT, P (Xj = u|θ) where u = 1, 2, . . . could be constructed

by assuming P (Yju = 1|Yj(u−1) = 0) = Hj(θ, u) and

P (Xj = u|θ) = P (Yju = 1|Yj(u−1) = 0, θ)P (Yj(u−1) = 0|Yj(u−2) = 0, θ)

...P (Yj2 = 0|Yj1 = 0, θ)P (Yj1 = 0|θ)

= Hj(θ, u)
u−1∏
k=1

[1−Hj(θ, k)].

(1)

We often assume that Hj(θ, u) is a function of item parameters, Hj(θ, u) = H(θ,Ωju), where
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Ωju is item parameters for item j at attempt u. By assuming H(θ,Ωju) to be a Rasch model,

Hj(θ, u) = H(θ,Ωju) =
exp(θ − bju)

1 + exp(θ − bju)
, (2)

where bju ∈ Ωju, we get the Rasch sequential item response model, which was proposed by Tutz

(1990).

However, one problem in using the Rasch sequential item response model for multiple-choice,

multiple-attempt test items is that it does not take into account guessing at each attempt, which

can be non-trivial especially at later attempts when some answer options have already been

eliminated. While existing SIRT models are suitable for a multiple-attempt procedure with

constructed responses, an appropriate model is yet to be proposed for a multiple-attempt

procedure with multiple-choice items. Thus, the goal of this study is to formally propose new

SIRT models, which we call the “SIRT-MM” models (MM stands for Multiple-Choice,

Multiple-Attempt), to effectively score multiple-attempt responses for multiple-choice test items.

This will be achieved by taking into account the structure of a multiple-choice test item,

especially considering the homogeneity or heterogeneity of distractors and the process of

elimination of answer choices after reattempts. As a result, we will address the issue of guessing

at each attempt. Subsequently, we will also (1) evaluate parameter recovery under various test

length and sample size conditions, (2) compare SIRT-MM models with competing models such as

the graded response model and the nominal response model for multiple attempts data, and (3)

demonstrate the usage of SIRT-MM models using real data.
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Methods

The Basic SIRT-MM Model

In this section, we will suppress the subscript j denoting individual items for simplicity (e.g.,

denoting Hj(θ, u) as H(θ, u)). Theoretically, to model items using SIRT models, we can design

any function for H(θ, u), and thus an infinite number of the variants of SIRT models could be

created. In our context, we need to consider a H(θ, u) suitable for multiple-choice test items. We

begin by considering the structure of a multiple-choice item. Suppose a multiple-choice item has

K choices, including one correct choice and K − 1 distractors, and its choice set as

S = {v1, v2, ..., vK}, which is a set of all K answer choices of a multiple-choice item. We allow K

attempts because any examinee could reach a correct choice by the Kth attempt by eliminating

all the distractors. Technically speaking, we only need K − 1 attempts. However, for the sake of

the clarity of our models, we will include the Kth attempt as a response category to differentiate

whether the (K − 1)th attempt is successful or not.

We model multiple-choice, multiple-attempt test items following the discrete choice theory

(Agresti, 2013; Ben-Akiva, 1985; Benson, Kumar, & Tomkins, 2016; Luce, 1959). The

fundamental principle of discrete choice analysis is utility maximization, which assumes that a

decision maker selects the option or alternative with the highest utility among all available

alternatives at the time (Ben-Akiva, 1985). In the testing context, each answer option of a

multiple-choice test item is considered an alternative, and an examinee’s perceived correctness of

an option is its utility. Utility maximization means an examinee would always try to choose an

answer option with the highest perceived correctness.
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However, the deterministic view of the choice theory has a limitation in modeling examinees’

behavior using a single latent variable θ, because θ cannot fully explain the variations of item

responses and there always is some randomness not captured. Therefore, we will adopt the

probabilistic choice theory for modeling examinees’ behavior.

In probabilistic choice theory, the “choice axiom” (Ben-Akiva, 1985; Luce, 1959) states that

the probability of choosing any answer choice v from the choice set S would satisfy

P (v|S) = P (v|S̃ ⊂ S) = P (v|S̃)P (S̃|S), (3)

where S̃ is any subset of S and P (S̃|S) is the probability of choosing an answer choice in S̃. The

choice axiom suggests that if some distractors are removed from the choice set, the relative

probabilities for the remaining options are unchanged (Ben-Akiva, 1985). The “choice axiom”

implies independence from irrelevant alternatives (IIA; Luce, 1959):

P (va|S)
P (vb|S)

=
P (va|S̃)
P (vb|S̃)

, (4)

which suggests that the odds of choosing va over vb do not depend on the other options in the

choice set (Agresti, 2013).

The IIA assumption is widely used and discussed in statistics literature (Agresti, 2013;

Benson et al., 2016), such as in multinomial logit models, e.g., multinomial logistic regression

(Agresti, 2013; Ben-Akiva, 1985), and other “divide-by-total” models (Thissen & Steinberg,

1986), e.g., (generalized) partial credit model (Masters, 1982; Muraki, 1992) and nominal
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response model (Bock, 1972). In fact, the divide-by-total models can be derived under the IIA

assumption. In other words, when IIA holds, a utility model of P (v|S̃) for any S̃ ⊆ S will be

P (v|S̃) = w(v)∑
v′∈S̃ w(v′)

, (5)

where a utility measure for answer choice v is represented as a positive real valued function w(v),

which is directly proportional to the choice probability. In modeling a multiple-choice test item,

utility measure can be considered a function of the latent ability of an examinee, θ. Here, we take

as the utility measure the probability of the option v being perceived as true by an examinee with

ability level of θ, i.e., w(v) = pv(θ). As we assume the IIA, w(v) does not change after eliminating

any other answer choice.

In sum, the IIA assumption implies that (1) the probability of making a choice can be

expressed as a utility (or divide-by-total) model and thus gets re-scaled proportionally at every

attempt. In other words, the probability of choosing an answer option is simply a scaling constant

away from the utility measure of the option, and can thus be treated as interchangeable; and (2)

eliminating an answer choice does not change the utilities of other alternatives, resulting in the

unchanged relative choice probabilities. In the context of multiple attempts, we call the latter

implication attempt invariance, which means that the utility measures will not change over

attempts. This is a reasonable assumption as long as after every attempt, feedback is only given

regarding their previous choice being correct or incorrect, without any additional information

about the remaining answer choices. Later when we relax the attempt invariance assumption, we

express the probability as pv(θ, u) at attempt u, indicating that the probability depends on the
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number of attempts having been made.

To formulate the SIRT-MM model, we assume that pv(θ) could be sufficiently modeled by a

single latent variable θ and item parameters. Let T be the correct answer choice and pT (θ) be the

probability of considering the correct answer choice to be true. Let Du be the distractor with the

u-th largest utility for each examinee and pDu(θ) be the probability of endorsing the distractor at

the u-th attempt, where each examinee would select in the order of D1, D2, ..., DK−1 when they

consistently make failed attempts. Note that we are not interested in specific choices of

distractors for the ordering of D1, D2, ..., DK−1 for each examinee, but we are only interested in

modeling the expected u-th highest utility of a distractor at given θ (i.e., pDu(θ)), assuming that

each examinee selects the answer choices with the highest utility subjectively judged by them.

Recall that, in SIRT, P (X = u|θ) where u = 1, 2, . . . ,K could be constructed by assuming

P (Yu = 1|Yu−1 = 0, θ) = H(θ, u) and

P (X = u|θ) = P (Yu = 1|Yu−1 = 0, θ)P (Yu−1 = 0|Yu−2 = 0, θ)

...P (Y2 = 0|Y1 = 0, θ)P (Y1 = 0|θ)

= H(θ, u)

u−1∏
k=1

[1−H(θ, k)].

(6)

Then, based on the utility model presented in Eq. 5, the probability of submitting a correct

answer on the first attempt is

H(θ, 1) = P (Y1 = 1|θ) = pT (θ)∑K
v=1 pv(θ)

=
pT (θ)

pT (θ) +
∑K−1

k=1 pDk
(θ)

. (7)

The conditional probability of submitting a correct answer at the second attempt is
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H(θ, 2) = P (Y2 = 1|Y1 = 0, θ) =
pT (θ)

[
∑K

v=1 pv(θ)]− pD1(θ)
=

pT (θ)

pT (θ) +
∑K−1

k=2 pDk
(θ)

, (8)

where a distractor D1 is initially mistakenly selected. This supports an intuition that H(θ, u) will

be higher as u gets larger by eliminating distractors.

We begin by deriving the simplest form of an SIRT-MM model. This simple model assumes

that all the distractors will are equally appealing to examinees, even after reattempts. In other

words, we assume that all the distractors have the same probability of being selected given θ (i.e.,

homogeneity of distractors). Mathematically put, pD1(θ) = pD2(θ) = ... = pDK−1
(θ) and we can

simply denote pDu(θ) as pD(θ). One advantage of assuming both IIA and homogeneity of

distractors is that it allows us not to assume a shape for H(θ, u) for u = 2, . . .. In fact, H(θ, u) for

u = 2, . . . could be analytically derived from H(θ, 1). Therefore, by assuming the shape of H(θ, 1)

to be a 3PL logistic function, as the first attempt is technically the same as the 0/1 scoring, the

whole model could be derived. Later in this paper, we introduce parameterizations that allow us

to relax both assumptions.

Now, for u = 1, 2, ...,K, H(θ, u) can be instead written as

H(θ, u) =
pT (θ)

pT (θ) +
∑K−1

k=u pDk
(θ)

=
pT (θ)

pT (θ) + (K − u)pD(θ)
. (9)

We can observe that the reciprocal of this probability, 1
H(θ,u) , decreases linearly by pD(θ)

pT (θ) as u

increases since:
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1

H(θ, u)
= 1 + (K − u)

pD(θ)

pT (θ)
. (10)

Finally, by assuming H(θ, 1) to be a 3PL logistic function with a fixed pseudo-guessing

parameter of 1
K , which we denote as the “2.5 PL” model as it is between the 2PL and 3PL models

(Bizot & Goldman, 1994),

H(θ, 1) =
1

K
+ (1− 1

K
)

exp(a(θ − b))

1 + exp(a(θ − b))
=

pT (θ)

pT (θ) + (K − 1)pD(θ)
. (11)

Thus,

pD(θ)

pT (θ)
=

1
H(θ,1) − 1

K − 1

= [
K +K exp(a(θ − b))

1 +K exp(a(θ − b))
− 1]/[K − 1]

=
1

1 +K exp(a(θ − b))

(12)

and

1

H(θ, u)
= 1 + (K − u)

pD(θ)

pT (θ)

= 1 +
K − u

1 +K exp(a(θ − b))
.

(13)

It is worth noting that we only model pD(θ)
pT (θ) in the equations, instead of directly modeling

pD(θ) and pT (θ) respectively. Finally, the unconditional probability of choosing the correct choice

for item j at the u-th attempt is derived as follows:
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P (X = u|θ) = H(θ, u)
u−1∏
k=1

[1−H(θ, k)]

=
(K − 1)![1 +K exp(a(θ − b))]

(K − u)!
∏u

k=1[K − k + 1 +K exp(a(θ − b))]
,

(14)

which is the simplest SIRT-MM model.

Figure 1 shows example item category response functions (i.e., P (X = u|θ)) when

a = 1.7, b = 0.0,K = 5. As expected, we can observe that at any θ,
∑K

u=1 P (X = u|θ) = 1, and

P (X = 1|θ) (or u = 1) has the same shape as a 3PL logistic model. This figure also shows that

conditioning on X = 2 (or u = 2), the middle range of θ is the most likely when b = 0. This is

intuitive as those who need exactly two attempts to get the right answer likely do not have very

low or high θ. Since we assume a fixed pseudo-guessing parameter of 1
K , P (X = u|θ) converges to

1
K as θ → −∞, suggesting complete ignorance will occur as θ → −∞. This figure also shows that

P (X = 1|θ) is the highest among all P (X = u|θ) at any θ. To allow P (X = u|θ) for u = 2 or

above to be larger than P (X = 1|θ) for some θ, we need to relax the homogeneity of distractors

assumption and attempt invariance.

=========================

Insert Figure 1 about here

=========================

More General SIRT-MM Models

Now, we turn to a more general case where distractors are not homogeneous, in particular,

one distractor being the most attractive. Consider examinees with ability θ who try to evaluate
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all answer options of two test items. Let dk be the distractor k of an item, specified by its

position within the item. Note that dk is different from Du, which we introduced earlier to

represent the distractor with the u-th largest utility for each examinee. Suppose on average

examinees with ability θ perceive the chance for the four options of item 1 being the correct

choice as (pT (θ), pd1(θ), pd2(θ), pd3(θ)) = (0.25, 0.25, 0.25, 0.25), and that of item 2 as

(pT (θ), pd1(θ), pd2(θ), pd3(θ)) = (0.25, 0.65, 0.05, 0.05). Table 1 presents the probabilities of

submitting a correct response at each attempt for the two items based on the utility model.

Obviously, the probability of submitting a correct response at the first attempt is 0.25 for both

items. However, the chance of submitting a correct response at the second attempt is different.

For the the first item, it is (1− 0.25) · 0.25
0.25+0.25+0.25 ≈ 0.25. For the second item it is

0.65 ∗ 0.25
0.25+0.05+0.05 + 2 ∗ 0.05 ∗ 0.25

0.25+0.65+0.05 ≈ 0.49. Note that the first term of the second

equation, which calculates the probability of choosing d1 first and then the correct answer choice,

is 0.65 ∗ 0.25
0.25+0.05+0.05 ≈ 0.46, meaning that when an examinee makes two attempts for the second

item, they are likely tricked by the most attractive distractor, d1, and select d1 at the first

attempt. These results also suggest that a multiple-attempt procedure penalizes complete

ignorance more than partial (mis)information at the second attempt. For the first item, the person

considers the correct answer choice to be equally likely, while for the second item, the person at

least believes that the correct answer choice is more probable than d2 and d3. In the second case,

partial information helps avoid needing more than two attempts to answer the item correctly.

We also consider another general case where the utility of any answer choice will change over

reattempts. Suppose that the utility of answer choice v at attempt u is pv(θ, u). The IIA

assumption implies attempt invariance, which means that pv(θ, 1) = pv(θ, 2) = ... = pv(θ,K),
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allowing us to denote pv(θ, u) as pv(θ). However, this could be a strong assumption in a

multiple-attempt procedure because the population changes after reattempts and specific

characteristics of items might affect changes in pv(θ, u) over reattempts. For example, a test item

that requires certain factual knowledge (e.g., trivia questions) to answer might divide examinees

into those who know the answer with confidence and those who do not know the answer at all. In

such a case, conditioning on some θ, the population could be divided into two groups by whether

they know the requisite fact. For some value of θ, the first group of examinees might believe

(pT (θ), pd1(θ), pd2(θ), pd3(θ)) = (0.91, 0.03, 0.03, 0.03), while the second group of examinees might

believe (pT (θ), pd1(θ), pd2(θ), pd3(θ)) = (0.25, 0.25, 0.25, 0.25). If there is an equal number of

examinees from each group in the population, on average, pT (θ) would be around 0.58 at the first

attempt. However, after the first attempt, most likely only the latter group of examinees would

proceed to the second attempt, leading to a much lower average pT (θ) at the second attempt. A

similar phenomenon was documented by Lyu, Bolt, and Westby (2023) in which they explain that

certain item characteristics can have a larger effect after reattempts, resulting in higher difficulty

estimates for multiple-attempt items.

To accommodate scenarios described above, we can formulate a more general SIRT-MM

model which relaxes both the homogeneity of distractors and the attempt-invariance assumptions

by introducing more parameters to vary the average utility of all the unattempted distractors

relative to that of the correct answer choice across different attempts.

Recall that H(θ, u) can be expressed as follows

H(θ, u) =
pT (θ, u)

pT (θ, u) +
∑K−1

k=u pDk
(θ, u)

. (15)

https://doi.org/10.1017/psy.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.18


Psychometrika Submission October 30, 2024 18

Thus,

1

H(θ, u)
= 1 +

K−1∑
k=u

pDk
(θ, u)

pT (θ, u)
. (16)

To model H(θ, u), we model the average of all the unattempted distractors at the u-th

attempt†:

pD(θ, u) =
1

K − u

K−1∑
k=u

pDk
(θ, u). (17)

Then,

1

H(θ, u)
= 1 +

K−1∑
k=u

pDk
(θ, u)

pT (θ, u)

= 1 + (K − u)
pD(θ, u)

pT (θ, u)
.

(18)

In modeling pD(θ,u)
pT (θ,u) , as an extension of the simplest SIRT-MM model, which assumes

pD(θ)

pT (θ)
=

1

1 +K exp(a(θ − b))
, (19)

we propose to introduce the attempt-specific “difficulty-shift” parameter γu ∈ R for u = 2, . . . ,K

for a more general SIRT-MM model:

†One approach to model H(θ, u) is to model pDk
(θ)

pT (θ)
directly as a function of item parameters and θ. However, an

issue of this parameterization is that H(θ, u) will depend on attempt-specific parameters from later attempts, which

makes it not an SIRT model anymore. Also, we cannot estimate the model when we do not have a large sample size

or we set the maximum number of attempts to be less than K where later attempts are not available.
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pD(θ, u)

pT (θ, u)
=

1

1 +K exp(a(θ − b+ γu))
. (20)

Therefore,

1

H(θ, u)
= 1 + (K − u)

pD(θ, u)

pT (θ, u)

= 1 +
K − u

1 +K exp(a(θ − b+ γu))
.

(21)

This leads to:

P (X = u|θ) = H(θ, u)
u−1∏
k=1

[1−H(θ, k)]

=
(K − 1)![1 +K exp(a(θ − b+ γu))]

(K − u)!
∏u

k=1[K − k + 1 +K exp(a(θ − b+ γk))]
,

(22)

where γ1 ≡ 0 and γK ≡ 0. This is the more general SIRT-MM model, of which the simplest

SIRT-MM model (Eq. 14) is a special case.

We define non-zero γu parameters only for u = 2, . . . ,K − 1 because: (a) γ1 will lead to

over-parameterization due to the existence of b, and (b) γK is not necessary since only one answer

choice will be left after the K − 1th attempt. Note that γu is item and attempt specific, but does

not vary across examinees. We could further relax pD(θ,u)
pT (θ,u) by allowing a to vary over each attempt

at u (i.e., modeling aju or (a+ δju)). We discuss this extension in the supplementary materials

and discussion section.
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Interpreting γ parameters

The simplest interpretation of γu is that γu regulates the probability of making a successful

attempt at the uth attempt. Specifically, when γu increases, P (X = u|θ) increases. Similarly,

when γu decreases, P (X = u|θ) is decreased.

=========================

Insert Figure 2 about here

=========================

Figure 2 shows example item category response functions (ICRFs) when

a = 1.7, b = 0.0,K = 5, γ3 = 0.5, γ4 = 0 and two different γ2s. The left panel shows the ICRF with

γ2 = 1 and the right panel shows the ICRF with γ2 = −1. All parameters except for the γ

parameters are the same as those for Figure 1. Note that P (X = 1|θ) is unaffected by any γu

parameters, as non-zero γu are only defined for u = 2, . . . ,K − 1, which could not influence u = 1.

The major difference between the two panels lies in P (X = 2|θ), which has a pronounced peak

around θ = −0.5 when γ2 = 1 and is rather flat around θ = −0.5 when γ2 = −1. As a result,

P (X = u|θ) for u > 2 are also affected accordingly, which are smaller when γ2 = 1 and larger

when γ2 = −1. This indicates that examinees with lower ability (e.g., θ < −1) are more likely to

require only two attempts to answer correctly when γ2 = 1, whereas they are more likely to

require three attempts when γ2 = −1. Therefore, by adjusting γ parameters, different types of

item category response functions can be captured.

More specifically, γu governs the change of probability ratio between the average of the

unattempted distractors and the correct answer option and at the u-th attempt (i.e., pD(θ,u)
pT (θ,u) )
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compared to the first attempt.

=========================

Insert Figure 3 about here

=========================

Figure 3 shows pD(θ,u)
pT (θ,u) when a = 1.7, b = 0.0,K = 4, γ2 = 1, γ3 = 0.1. We set γ3 = 0.1 instead

of γ3 = 0 to prevent u = 1 and u = 3 lines from overlapping. We can observe that pD(θ,2)
pT (θ,2) is

shifted to the left by γ2 = 1 compared to pD(θ,1)
pT (θ,1) . Similarly, pD(θ,3)

pT (θ,3) is shifted to the left by

γ2 = 0.1 compared to pD(θ,1)
pT (θ,1)

Possible factors that affect γ parameters

Increasing γu parameters over attempts can be caused by the heterogeneity of distractors.

This means when γ2 > 0, pD1 > pD2 is expected. Furthermore, when γ3 > γ2, pD2 > pD3 is

expected. For example, when γ2 = 1.0, γ3 = 1.0, and K = 4 for an item, there is at least one

attractive distractor that will make examinees more likely to make two attempts. Suppose

(pT (θ), pD1(θ), pD2(θ), pD3(θ)) = (0.25, 0.65, 0.05, 0.05) for some value of θ. In this case,

pD(θ) =
0.65+0.05+0.05

3 = 0.25 at the first attempt, pD(θ) = 0.05+0.05
2 = 0.05 at the second attempt,

and pD(θ) =
0.05
1 = 0.05 at the third attempt. Numerically, a positive γu reduces pD(θ,u)

pT (θ,u) at the

u-th attempt. Logically, increasing γu indicates knowledge gain through correcting partial

misinformation because after a failed attempt, a distractorwith high utility will be eliminated,

leading to pD(θ,u)
pT (θ,u) to be smaller at later attempts and the correct answer option even more

appealing. Therefore, increasing γu could signify the heterogeneity of distractors. Increasing γu
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might also be caused by informative feedback such as hints after a wrong response.

On the other hand, as we described earlier, decreasing γu parameters can be caused by the

population changes after reattempts and specific characteristics of items. In the example of an

item requiring factual knowledge, pT could decrease because the examinees who fails the first

attempt would likely fail the second attempt as well, and they represent the majority of those

who need the second attempt. Thus, pD(θ,u)
pT (θ,u) would increase from the first to second attempt,

which would be captured by a negative γ2.

In addition, negative γ parameters could result from having a large number of examinees who

are being inattentive and fail to eliminate already selected distractors in reattempts. In this

paper, we assume that examinees are attentive. However, if the system allows examinees to select

the same wrong answer option repeatedly, negative γu could result.

Setting the maximum number of attempts

One advantage of using an SIRT model is that we can limit the maximum number of

attempts in a test item, as it is not influenced by attempt-specific parameters such as γ

parameters from later attempts (Tutz, 1990). This is especially useful when a sample size is not

large enough to reliably estimate attempt-specific parameters for later attempts. In addition,

thanks to the future-agnostic property of SIRT models, we can also reuse the same item

parameters and collapse certain categories when only a smaller number of attempts is allowed.

=========================

Insert Figure 4 about here

=========================
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For example, Figure 4 shows the item category response functions used in Figure 2a when we

set the maximum number of attempts to 3. Simply, these are the item category response functions

shown in Figure 2a, but P (X = 3|θ), P (X = 4|θ), and P (X = 5|θ) are collapsed into one

category. In this example, only γ2 is relevant, and no matter what true value of γ3 or γ4 would be,

the SIRT-MM model yields exactly the same model when the maximum number of attempts is 3.

Summary of Different Parameterizations of SIRT-MM Models

=========================

Insert Table 2 about here

=========================

Bergner, Choi, and Castellano (2019) summarized existing SIRT models in a table. Similarly,

we summarize in Table 2 a family of SIRT-MM models with different constraints. We denote the

subject j for individual items and u for the number of attempts. The number of parameters

depends on constraints imposed or lifted. The basic SIRT-MM model introduced first in this

paper is actually a constrained version of the more general SIRT-MM models when γju ≡ 0. We

recommend that a model should be selected based on the sample size and model fit statistics such

as likelihood ratio tests, Akaike Information Criterion (AIC; Akaike, 1973) and Bayesian

Information Criterion (BIC; Schwarz, 1978). Later we evaluate the accuracy of model selection

using AIC and BIC in the simulation study section.
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Item Parameter Estimation of SIRT-MM

In this paper, we implement marginal maximum likelihood estimation (MMLE) for

estimating the item parameters for SIRT-MM models (Bock & Aitkin, 1981). Once the item

parameters are estimated, we will estimate θ after treating estimated item parameters as fixed.

In MMLE for item parameters, the likelihood function,

L =

∫ ∞

−∞

N∏
i=1

M∏
j=1

P (Xij = uij |θ)Φ(θ)dθ (23)

is maximized, where Xij is a random variable representing the number of attempts examinee i

needed to submit a correct answer on item j, uij is the actual number of attempts taken by

examinee i to answer item j correctly, N is the number of examinees, M is the number of items,

and Φ(θ) is a probability density function for the population. Typically, the standard normal

distribution is used for Φ(θ).

To maximize the likelihood function, we use the log-likelihood, denoted as lnL, instead.

Consequently, we require the gradient and Hessian of lnP (Xij = uij |θ) with respect to a

parameter of interest to apply Newton’s method for maximizing the likelihood function. However,

computing the value of the log-likelihood function is not straightforward because the equation

contains an integral. In practice, an EM algorithm that uses Gauss–Hermite quadratures is used

to compute the marginal likelihood. One should refer to the works by Bock and Aitkin (1981);

Muraki (1992) for the details of implementing an EM algorithm for parameter estimation. We

will suppress the subscript i next for simplicity.

The generic solutions of the gradient and Hessian of lnP (Xj = u|θ) are rather
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straightforward. Suppose ϕ ∈ {a, b, γ} and ω ∈ {a, b, γ} are the parameters of interest:

∂

∂ϕ
lnP (Xj = u|θ) = ∂zju

∂ϕ
Aju −

u∑
k=1

∂zju
∂ϕ

Bju;

∂2

∂ϕ∂ω
lnP (Xj = u|θ) =∂2zju

∂ϕ∂ω
Aju +

∂zju
∂ϕ

∂zju
∂ω

(Aju −A2
ju)

−
u∑

k=1

(
∂2zju
∂ϕ∂ω

Bju +
∂zju
∂ϕ

∂zju
∂ω

(Bju −B2
ju)),

(24)

where zju = aj(θ − bj + γju), Aju =
K exp(zju)

1+K exp(zju)
, and Bju =

K exp(zju)
K−i+1+K exp(zju)

. Especially,

− ∂2

∂ϕ∂ω lnP (Xj = u|θ) is called the observed information function and

−E[ ∂2

∂ϕ∂ω lnP (Xj = u|θ)] = −
∑K

u=1 P (Xj = u|θ) ∂2

∂ϕ∂ω lnP (Xj = u|θ) is called the expected or

Fisher information function of an item. In addition, the Fisher information function of an item is

often simply referred to as an item information function. When we estimate a simple model with

fewer parameters by setting γju = 0 for any u, we only need to set these values to zero in

zju = aj(θ − bj + γju) and use the same equations, Eq. (24).

Person Parameter Estimation

There exist three popular approaches for estimating person parameters: Maximum

Likelihood Estimation (MLE), Maximum A Posteriori (MAP), and Expected A Posteriori (EAP)

(De Ayala, 2009). MLE maximizes the log-likelihood of a response pattern by Newton’s method,

MAP uses the mode of the posterior distribution of an θ estimate (typically the standard normal

distribution is used for prior), and EAP uses the mean of the posterior distribution of an θ

estimate (De Ayala, 2009). In our model, MLE could be obtained by maximizing
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lnLResp =
M∑
j=1

lnP (Xij = uij |θi) (25)

with respect to θi where θi is the latent ability of examinee i, which could be done by Newton’s

method using Eq. (25). One issue in using MLE is that it cannot provide a θ estimate when a

response pattern is all 1 or K. Also, it is known that the mean squared error of θ estimates by

EAP is smaller than that obtained by using MLE although its estimation bias is increased

(De Ayala, 2009; Lord, 1986). Thus, we use EAP in our simulation study.

Fisher Information and Standard Errors

Under regularity conditions, the Fisher information of item parameter ϕ ∈ {a, b, γ} is

−E[ ∂2

∂ϕ2 lnL] and that of θ is −E[ ∂2

∂θ2
lnLResp]. Thus, we can calculate the standard errors of

estimates in {θ, a, b, γ}, which is inversely related to the square root of the corresponding Fisher

information. Thus, the standard error of item parameter ϕ is

SEϕ =
1√

−E[ ∂2

∂ϕ2 lnL]
. (26)

Similarly, the standard error of measurement (SEM), which is the standard error of θ is

SEM =
1√

−E[ ∂2

∂θ2
lnLResp]

. (27)

However, the SEM as defined in the above formula is based on MLE. In this study, since we

use EAP, we decide to capture the variation in the person parameter estimates using the

empirical SE instead.
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Item Information

Item information is Fisher information computed with respect to θ for any single item, which

is a measure of how much an item contributes to reducing the uncertainty about θ estimates

(De Ayala, 2009). We can compare item information computed by using SIRT-MM models (which

captures information from multiple attempts) against its corresponding 2.5PL model (i.e., the

3PL model with a fixed guessing parameter of 1/K) to demonstrate how much SIRT-MM models

potentially improve the accuracy of θ estimates. For example,

=========================

Insert Figure 5 about here

=========================

Figure 5 shows the item information of SIRT-MM models with b = 0,K = 4, and γu = 0 for

u = 2 and 3, two levels of a parameters (a = 0.482 in the left panel and and a = 0.75 in the right

panel), and its corresponding 2.5PL model. As with the 2.5PL model, SIRT-MM models provide

more Fisher information as the a parameter increases. It is noteworthy that for lower θ,

SIRT-MM models can yield more information than their 2.5PL counterparts. This is because

though reattempts we can gain more information about examinees who fail the first attempt,

which is more likely to happen for examinees with lower θ. Conversely, for higher θ, both models

have similar information because examinees with higher θ typically only need one attempt to

reach the correct answer.

=========================
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Insert Figure 6 about here

=========================

Figure 6 shows the item information of SIRT-MM models with a = 0.75, b = 0, and γu = 0 for

u = 2 and 3, two levels of K parameters (K = 2 in the left panel and and K = 3 in the right

panel), and its corresponding 2.5PL model. The left panel demonstrates that the 2.5PL models

can be considered a special case of SIRT-MM models when K = 2. Also, the comparison between

the two panels shows that the item information increases for both 2.5PL and SIRT-MM models

when K increases because the chance of guessing is reduced.

=========================

Insert Figure 7 about here

=========================

Figure 7 shows the item Information of SIRT-MM models with a = 0.75, b = 0, and γ3 = 0

for u = 2 and 3, K = 4, two levels of γ2 (γ2 = 2 on the left, and γ2 = −2 on the right), and the

corresponding 2.5PL models. Changing the γ2 will affect the amount of item information in lower

θ. When γ2 is positive, we can gain more item information in lower θ than when it is negative

because in the latter case examinees with lower θ would not be able to differentiate among

distractors and behave similarly to random guessing after the first attempt, as in the example of

factual knowledge item.

https://doi.org/10.1017/psy.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.18


Psychometrika Submission October 30, 2024 29

Simulation Studies

Simulation Design

We conducted three simulation studies on: model selection, item parameter recovery, and

person parameter recovery, respectively. A high-level description of the simulation design shared

by these simulation studies is provided here. First, we generated response matrices from the

SIRT-MM models. Second, item parameters were estimated by MMLE using an EM algorithm

(Bock & Aitkin, 1981) implemented in R and C++. We provide the R package on GitHub

https://github.com/luyikei/sirtmm to fit the SIRT-MM models. A standard normal prior

was used for θ in MMLE. Third, with the estimated item parameters considered fixed, person

parameters were estimated by EAP. Here, a standard normal prior was used for θ again.

Generally, our simulation design followed Reise and Yu (1990).

The first simulation evaluated model selection using AIC and BIC to identify the best model,

among SIRT-MM models with all combinations of freely-estimated γ parameters to fit multiple

attempt data. In addition, we also compared SIRT-MM models in terms of model fit against

Graded Response Model (GRM; Samejima, 1969), since previous research showed that GRM

could also be used for AUC (Attali, 2011), as well as Nominal Response Model (NRM; Bock,

1972). The simulation conditions are specified as N = 500 and 4000, M = 30, K = 4, θ ∼ N(0, 1),

bj ∼ Unif(−2, 2), aj ∼ Unif(0.75, 1.33), and γju ∼ Unif(−1, 1). We analyzed the impact of varying

sample sizes, N = 500 and N = 4000, to assess how differences in sample size influence model

selection performance. For each replication, we simulated responses from all possible SIRT-MM

models and fit all candidate models (SIRT-MM, GRM, and NRM models) to each response
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matrix. Over 100 replications, we were able to obtain model selection with AIC and BIC.

Then, we conducted simulation studies to evaluate item and person parameter recovery of

SIRT-MM models. As item and person parameter estimations take place at different stages, we

evaluated them separately. The second simulation study investigates item parameter recovery of

SIRT-MM models under different sample sizes and test length conditions. The number of answer

choices is K = 4. We evaluated all the combinations of (1) the sample size:

N = 250, 500, 1000, 2000, 4000, 8000, 16000; (2) the number of items: M = 15, 20, 25, 30; and (3)

the number of γju ∼ Unif(−1, 1). We also evaluated more simulation conditions varying other

factors; however, they are not fully crossed with conditions (1) - (3), as it would result in an

unrealistic number of simulation conditions. Specifically, we evaluated conditions varying (4) θ

distribution: normal (N(0, 1)), uniform (Unif(−3, 3)), and skewed normal distribution

sn(ξ = −1.5, ω = 2, α = 6) using sn package (Azzalini, 2022); (5) item discrimination parameter,

αj : sampled from low (Unif(0.44, 0.75)), middle (Unif(0.58, 0.98)), high (Unif(0.75, 1.33)), and all

(Unif(0.44, 1.33)) ranges; (6) item difficulty parameter: sampled from all (Unif(−2, 2)) and high

(Unif(0, 2)) ranges; and (7) setting the maximum number of attempts of 2 vs 4. The simulation

conditions in (4) to (7) are evaluated with different sample sizes but share the same baseline

condition, which is specified as follows: M = 20, aj ∼ Unif(0.75, 1.33), bj ∼ Unif(−2, 2), for γju

parameters, only γj2 ∼ Unif(−1, 1) is specified as a freely estimated parameter, and the θ

distribution is the standard normal distribution (θ ∼ N(0, 1)). The skewed distribution for θ is

positively skewed in order to evaluate the performance of person parameter recovery for a

low-ability population, for which the SIRT-MM models are good candidates. For the same reason,

the item difficulty parameter has a condition where only relatively difficult items exist. The
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convergence rate of item parameter estimation was reported for each simulation condition.

Standard errors for the item parameters (SE), bias, and root mean square error (RMSE) were

used as primary indices to examine the quality of parameter estimates, which were obtained for

the converged conditions. Out of 100 replications, we calculated the averages of metrics from all

converged replications across all conditions.

The third simulation study evaluated person parameter recovery following the same baseline

condition as the first simulation: M = 20, aj ∼ Unif(0.75, 1.33), bj ∼ Unif(−2, 2). For γju

parameters, only γj2 ∼ Unif(−1, 1) is specified as a freely estimated parameter, and the θ

distribution is the standard normal distribution (θ ∼ N(0, 1)). θ was estimated by EAP treating

item estimates as fixed. To evaluate person parameter recovery, we used the 2.5PL model as a

baseline for comparison since multiple-attempt responses could be converted to 0/1 scoring if we

only take first-attempt data. Note that model fit and selection are evaluated in a different

simulation study and the purpose of this comparison is to show how much improvement in person

parameter recovery could be gained by just allowing multiple attempts using the same test items.

We used mirt package for estimating the 2.5PL model (Chalmers, 2012). In addition to bias and

RMSE, the Pearson correlation coefficient was also used to assess the recovery accuracy for θ.

When we evaluate correlation, we also included the results of a popular scoring scheme in CTT

which grants full credit for the successful first attempt to an item, half credit for the successful

second attempt, one-tenth credit for the successful third attempt, and zero credit otherwise

(Slepkov & Godfrey, 2019). Results were presented by taking the averages of metrics calculated

from 100 replications for all conditions.
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Results

Model Selection

=========================

Insert Figure 8 about here

=========================

=========================

Insert Figure 9 about here

=========================

Figure 8 and Figure 9 presents the model selection performance of AIC and BIC for SIRT-MM

models with N = 500 and N = 4000. First, both AIC and BIC successfully select an SIRT-MM

model over GRM or NRM when responses are simulated from an SIRT-MM model. Second, for

selecting the correct SIRT-MM model from all the variants of SIRT-MM models, AIC selects the

correct model the majority of times regardless of N , and both AIC and BIC perform well with

larger N . Specifically, when N = 500, AIC could identify the correct model about 90% of the

time and BIC could identify the correct model about 86% of the time from models with or

without γj2. However, for the data generating model incorporating both γj2 and γj3, a sample

size of N = 500 results in AIC correctly identifying the model 60% of the time, while BIC never

identifies the correct model. When N = 4000, AIC could identify the correct model about 97% of

the time and BIC could identify the correct model about 92% of the time from all the models.

Between the two, AIC seems to outperform BIC, as BIC could under-specify the model, though in

a small number of cases AIC could over-specify the model. Specifically, with N = 500, in 21 out
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of a total of 300 generated cases across the conditions AIC over-specified the model while BIC

under-specifies the model with γj2 in 29 out of 100 cases and consistently under-specifies the

model with both γj2 and γj3 (i.e., 100 out of 100 cases). In contrast, AIC under-specifies the

model containing both γj2 and γj3 in 40 out of 100 cases. When N = 4000, AIC identifies γj2

parameters when no γju was included in the generating model in 2 out of 100 cases, and AIC

identifies γj2 and γj3 when the generating model only had γj2 parameter in 6 out of 100 cases. On

the other hand, it is worth noting that there are 24 out of all the generated cases (300) across the

conditions where BIC identifies only γj2 parameters while the data generating model includes

both γj2 and γj3. In our simulation results under both sample size conditions, AIC is more

accurate in selecting the true model and BIC in some cases picks an over-simplified model.

Item Parameter Recovery

=========================

Insert Table 3 about here

=========================

=========================

Insert Table 4 about here

=========================

=========================

Insert Table 5 about here

=========================
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Table 3 to Table 5 present the item parameter recovery statistics varying sample size, number

of items, and number of effective γ parameters when θ ∼ N(0, 1), aj ∼ Unif(0.75, 1.33),

bj ∼ Unif(−2, 2). The results show that, as N gets larger, the SE and RMSE for the item

parameter estimates decrease and the bias quickly converges to 0 in all the conditions, suggesting

that our estimation method could yield satisfactory item parameter recovery for all conditions

given a large enough N . Although M has a smaller effect on item recovery statistics compared to

N , generally larger M also leads to better item parameter estimates.

Different SIRT-MM models tend to vary in their sample size requirements, and thus

investigated separately. Table 3 presents item parameter recovery results when all γju parameters

are constrained to be zero. This model has the fewest number of item parameters among all

variants, as only aj and bj are estimated. Please note that this is not the same as a 2.5PL model,

because we simulated a maximum of four attempts. Item parameter estimation converged in all

conditions, except for one single case when N = 250 and M = 20. The RMSE for the item

parameter estimates are smaller than 0.6 in all N and M conditions, smaller than 0.3 with

N ≥ 500, and could be smaller than 0.1 with N ≥ 4000. Overall, these results show that the item

parameters from the simplest SIRT-MM model can be recovered very well when the model fits the

data with a reasonable sample size (e.g., N = 500 or more).

Table 4 presents item recovery statistics when only γj2 ∼ Unif(−1, 1) is specified as a freely

estimated parameter. Item parameter estimation generally converged in all conditions although

when N = 250, there is a 2% to 5% chance of non-convergence. The RMSE for the item parameter

estimates are smaller than 0.3 when N ≥ 1000. However, if we can compromise the accuracy of

γju a little bit, N ≥ 500 is also acceptable since the RMSE for γju will not be larger than 0.5
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when N = 500. Table 5 presents item recovery statistics when γj2, γj3 ∼ Unif(−1, 1) are specified

as freely estimated parameters. We do not recommend N <= 1000 for estimating both γj2 and

γj3 because the RMSE for γj3 are generally very high and the convergence rates could be low. On

the other hand, the RMSE for all the item parameters are smaller than 0.35 when N ≥ 4000 .

In supplementary materials, we include additional tables, Table S1 to Table S4, which

present the item parameter recovery statistics varying θ distributions, item discrimination

parameters, item difficulty parameters and the maximum number of attempts respectively.

Especially, Table S1 shows that an SIRT-MM models works better with a positively skewed θ

distribution than the 2.5PL model, and Table S3 shows that having a relatively difficult test (by

keeping bj parameters to a high range) does not seem to affect item parameter estimation much

for SIRT-MM models. This is because SIRT-MM models can glean more item information in the

lower θ range from multiple attempts. Please refer to the supplementary material for further

elaboration.

In sum, although all the factors more or less affect the accuracy of item parameter estimates,

having a reasonably large sample size enables quality item parameter estimates. For a simple

SIRT-MM model, we recommend N = 500 or more. For more complex SIRT-MM models,

N = 1000 or 2000 or more might be needed.

Person Parameter Recovery

=========================

Insert Figure 10 about here

=========================
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Figure 10 shows the person recovery statistics varying the number of items, M , when

θ ∼ N(0, 1), a ∼ Unif(0.75, 1.33), b ∼ Unif(−2, 2), and γj2 ∼ Unif(−1, 1). The left panel shows

RMSE, the middle panel shows bias and the right panel shows correlations between the true and

estimated θ. The RMSE for θ estimated by the SIRT-MM model with freely-estimated γju

parameters is consistently smaller than those estimated by the 2.5PL model. The RMSE of θ

estimates is quite low even with N = 250, indicating that the person parameter estimation can be

robust even at very small sample sizes. The bias for θ estimated both by the SIRT-MM model

and the 2.5 PL model are consistently close to zero. The correlations between true θ and θ

estimated by the SIRT-MM model are consistently the highest among the three scoring

mechanisms. Typically the CTT scoring scheme outperforms the 2.5PL model in terms of

correlation because it still can recover some partial information from multiple attempts.

=========================

Insert Figure 11 about here

=========================

Figure 11 shows the conditioned RMSE for θ estimates. The SIRT-MM model leads to lower

RMSE, especially at the lower range of θ. Thus, the SIRT-MM model could be used for improving

person parameter estimates, especially at the low end of the θ.

In supplementary materials, we include additional figures, Figures S3-S6, which present the

person parameter recovery statistics varying θ distributions, item discrimination parameters, item

difficulty parameters and the maximum number of attempts respectively. Generally, an SIRT-MM

model outperforms the 2.5PL model in all conditions especially in RMSE when the SIRT-MM
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model is the true model. Please refer to the supplementary material for detailed explanations.

Empirical Analysis

We applied the SIRM-MM model to a real dataset collected from both from college students

(N = 167) and Prolific (N = 295) participants. They took multiple-choice, multiple-attempt

trivia questions about Harry Potter through an online platform, following an AUC procedure.

The data was collected between May 2023 to March 2024. There was no missing or incomplete

responses. To ensure the quality of data and item parameter estimates, we omitted four test items

that were generally very difficult and had very few correct responses at the first attempt. The

resulting response matrix included multiple-attempt responses of 462 examinees to 27 test items

with four answer options. Because the sample size (N = 462) was limited, based on the sample

size guidelines from our simulation studies, only two candidate SIRT-MM models were fit to the

data: (1) the simplest SIRT-MM model without any freely-estimated γju, and (2) an SIRT-MM

model with freely-estimated γj2 only. We chose a better model with smaller AIC and BIC values

between the two candidate models. We also fitted GRM and NRM for comparison. For this

analysis, we fixed the maximum number of attempts to two so only data for the first two

attempts were used to fit the two candidate models. We compared the θ estimates and test

information function derived using two attempts against those derived from only the first attempt

data. In the supplementary materials, we present the resulting item parameter estimates

(Table 5), the histograms of the number of attempts for each item (Figure 7) and the item

category response functions (Figure 8).

=========================
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Insert Table 6 about here

=========================

Table 6 shows the model fit statistics for the two candidate SIRT-MM models, GRM, and

NRM. It shows that both SIRT-MM models lead to smaller AIC and BIC than GRM and NRM

in AIC, BIC, and negative log likelihood. AIC is the smallest for the SIRT-MM model with freely

estimated γj2 and BIC is the smallest for the simplest SIRT-MM model. As AIC is shown to be

more accurate in selecting the correct model in our simulation study when N = 500, we selected

the SIRT-MM model with freely estimated γj2 for the subsequent analysis.

=========================

Insert Figure 12 about here

=========================

=========================

Insert Figure 14 about here

=========================

Figure 12 presents the scatter plot of θ estimated by the SIRT-MM with freely-estimated γj2

with one- vs. two-attempt data. The result shows that all the θ estimates are generally very

similar to each other and there is no outlier that yields very different estimates between one or

two attempts. However, the precision of these estimates can be different. Figure 14 presents the

test information functions derived from the SIRT-MM with one- vs. two-attempt data. There is a

consistent increase of test information from one attempt to two attempts, suggesting that
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allowing two attempts helps gain more information from examinees, which leads to smaller SE of

θ estimates.

Discussion

This paper has proposed and formally derived a family of new sequential item response

models (SIRT-MM models) for multiple-choice, multiple-attempt test items that considers the

guessing of multiple-choice test items, and the homogeneity and heterogeneity of distractors. We

demonstrated that an SIRT-MM model can be used to glean more information from

multiple-choice, multiple-attempt items and to provide better scoring, especially for in the region

of smaller θ.

Our simulation study included model selection, and item and person parameter recovery. For

model selection, we showed that AIC and BIC never selected GRM or NRM when data were

generated from SIRT-MM models, demonstrating the unique utility of the SIRT-MM models to

model multiple-attempt data. For item parameter recovery, we showed that our implementation

of marginal maximum likelihood estimation could recover item parameters very well with

N = 500 for the simplest SIRT-MM model and with N = 1000 or 2000 for more complex

SIRT-MM models with reasonable test lengths. For person parameter recovery, we showed that

an SIRT-MM model consistently outperforms the 2.5PL model in all conditions when former is

the true model. Also, the person parameter recovery results suggested that θ can be estimated

reasonably well even with a small sample size. Taken together, one could consider adopting a

multiple-attempt procedure and SIRT-MM models to improve measurement precision.

One limitation of this study is that we have not fully investigated different possible
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parameterizations of SIRT-MM models. First, our proposed models do not allow a

freely-estimated pseudo-guessing parameter for each item. By doing so, SIRT-MM models could

be compared against the actual 3PL model, instead of the 2.5PL model. That being said, it is

worth noting that a previous study showed that fixing the pseudo-guessing parameter in 3PL

model provides a stable and accurate item estimation solution (Han, 2012), and thus our study

still provides practical utility. Second, our proposed models do not focus on varying the aj

parameter at each attempt. The concept of allowing the item discrimination parameter to change

at each attempt by introducing δju parameters is explained and discussed in the supplementary

materials. This extension could be important as item discrimination in a traditional SIRT model

could decrease with each attempt (Lyu et al., 2023). Both extensions imply estimating many

additional item parameters, which could cause convergence issues or inaccurate item parameters

unless we have a huge sample size. Future work could consider regularization for item parameter

estimation or Bayesian estimation to help accurately estimate more item parameters even with a

smaller sample size.

A few additional limitations should be noted about the current study. First, our simulation

did not evaluate all the combinations of simulation conditions for item parameters. The sample

size requirement would be different depending on various factors including the complexity of a

model and the distributions of true parameters including γju. As suggested by a reviewer,

interactions between such factors should also be evaluated. In addition, our models did not model

learning or growth in this context. For future work, we can consider a use case where

growth-curve SIRT-MM models similar to Culpepper (2014) could be formulated and used to

track examinees’ learning.
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Figures

Figure 1: Item category response function: a = 1.7, b = 0.0,K = 5

(a) γ2 = 1 (b) γ2 = −1

Figure 2: Item category response function: a = 1.7, b = 0.0, γ3 = 0.5, γ4 = 0, and K = 5 with
different γ2
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Figure 3: pD(θ,u)
pT (θ,u) when a = 1.7, b = 0.0, γ2 = 1, γ3 = 0.1,K = 4

Figure 4: Item category response function when the maximum number of attempts is 3: a = 1.7, b =
0.0, γ2 = 1, and K = 5
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(a) a = 0.48 (b) a = 0.75

Figure 5: Fisher Information of SIRT-MM models with K = 4, b = 0, and γu = 0 for u = 2 and 3,
and different a; and the corresponding 2.5PL models with γ1 ≡ 0.

(a) K = 2 (b) K = 3

Figure 6: Fisher Information of SIRT-MM models with a = 0.75, b = 0, γu = 0 for u = 2 and 3,
and different K; and the corresponding 2.5PL models with γ1 ≡ 0.
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(a) γ2 = 2 (b) γ2 = −2

Figure 7: Fisher Information of SIRT-MM models with a = 0.75, b = 0, γ3 = 0, K = 4, and
different γ2; and the corresponding 2.5PL models with γ1 ≡ 0.

(a) AIC (b) BIC

Figure 8: Model selection performance of AIC and BIC for SIRT-MM models when data are
generated from SIRT-MM models with N = 500, M = 30, K = 4, θ ∼ N(0, 1), bj ∼ Unif(−2, 2),
aj ∼ Unif(0.75, 1.33), and γju ∼ Unif(−1, 1). The freely-estimated γju are denoted as Ga where a
is the number of γju parameters for all u.
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(a) AIC (b) BIC

Figure 9: Model selection performance of AIC and BIC for SIRT-MM models when data are
generated from SIRT-MM models with N = 4000, M = 30, K = 4, θ ∼ N(0, 1), bj ∼ Unif(−2, 2),
aj ∼ Unif(0.75, 1.33), and γju ∼ Unif(−1, 1). The freely-estimated γju are denoted as Ga where a
is the number of γju parameters for all u.

(a) RMSE (b) Bias (c) Correlation

Figure 10: Person parameter statistics when θ ∼ N(0, 1), aj ∼ Unif(0.75, 1.33), bj ∼ Unif(−2, 2),
and γj2 ∼ Unif(−1, 1). M is the number of items administered. The scoring scheme used in classical
test theory is denoted as SS in the correlation plot.
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Figure 11: RMSE for θ estimates conditioning on θ when N = 1000,M = 25, θ ∼ N(0, 1), aj ∼
Unif(0.75, 1.33), bj ∼ Unif(−2, 2)

Figure 12: Scatter plot of θ estimated by the SIRT-MM models using only one attempt and two
attempts from the real data
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Figure 13: Test Information

Figure 14: Test information functions of the real data with different maximum numbers of attempts
using the item parameter estimates for the SIRT-MM model.
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Tables

Table 1: Probabilities of submitting a correct response at each attempt for two hypothetical test
items.

Item with (pT (θ), pd1(θ), pd2(θ), pd3(θ)) Condition Attempt
1 2 3 4

(0.25, 0.25, 0.25, 0.25) Complete Ignorance 0.25 0.25 0.25 0.25
(0.25, 0.65, 0.05, 0.05) Partial (mis)information 0.25 0.46 0.21 0.08
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Table 3: Item recovery statistics for items without γju

SE BIAS RMSE CONV
M N bj aj bj aj bj aj
15 250 0.30 0.23 0.02 0.02 0.40 0.32 1.00

500 0.18 0.16 -0.00 0.01 0.23 0.21 1.00
1000 0.12 0.11 0.01 0.01 0.16 0.15 1.00
2000 0.09 0.08 0.01 -0.00 0.12 0.11 1.00
4000 0.06 0.06 0.00 0.00 0.08 0.07 1.00
8000 0.04 0.04 0.01 -0.00 0.06 0.05 1.00

16000 0.03 0.03 0.01 -0.00 0.04 0.04 1.00
20 250 0.30 0.23 -0.00 0.03 0.40 0.31 0.99

500 0.19 0.16 -0.01 0.00 0.25 0.20 1.00
1000 0.12 0.11 0.01 0.00 0.16 0.15 1.00
2000 0.09 0.08 -0.00 -0.00 0.11 0.10 1.00
4000 0.06 0.06 0.00 -0.00 0.08 0.07 1.00
8000 0.04 0.04 0.00 -0.00 0.05 0.05 1.00

16000 0.03 0.03 0.01 -0.01 0.04 0.04 1.00
25 250 0.28 0.23 -0.00 0.02 0.36 0.29 1.00

500 0.18 0.16 -0.01 0.01 0.23 0.20 1.00
1000 0.12 0.11 -0.00 0.00 0.15 0.14 1.00
2000 0.09 0.08 -0.00 -0.00 0.10 0.09 1.00
4000 0.06 0.06 0.01 -0.00 0.07 0.07 1.00
8000 0.04 0.04 0.00 -0.01 0.05 0.05 1.00

16000 0.03 0.03 0.00 -0.01 0.04 0.03 1.00
30 250 0.28 0.23 -0.00 0.02 0.36 0.29 1.00

500 0.18 0.16 -0.01 0.01 0.23 0.20 1.00
1000 0.12 0.11 -0.00 0.00 0.16 0.14 1.00
2000 0.09 0.08 -0.00 -0.00 0.10 0.10 1.00
4000 0.06 0.06 -0.00 -0.01 0.07 0.07 1.00
8000 0.04 0.04 -0.00 -0.01 0.05 0.05 1.00

16000 0.03 0.03 -0.00 -0.01 0.04 0.03 1.00
Note: “CONV” stands for convergence rate for a simulation condition.
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Table 4: Item recovery statistics for items with γj2

SE BIAS RMSE CONV
M N bj aj γj2 bj aj γj2 bj aj γj2
15 250 0.37 0.23 0.55 0.03 0.03 0.03 0.52 0.33 1.00 0.98

500 0.20 0.16 0.35 0.01 0.03 0.01 0.26 0.24 0.49 1.00
1000 0.13 0.11 0.24 0.01 0.01 -0.01 0.17 0.15 0.27 1.00
2000 0.09 0.08 0.17 0.01 0.00 0.00 0.12 0.11 0.18 1.00
4000 0.06 0.06 0.11 0.01 -0.00 0.00 0.08 0.08 0.12 1.00
8000 0.05 0.04 0.08 0.01 -0.00 0.00 0.06 0.05 0.09 1.00

16000 0.03 0.03 0.06 0.01 -0.00 -0.00 0.04 0.04 0.06 1.00
20 250 0.30 0.24 0.51 0.01 0.05 0.06 0.39 0.32 0.78 0.95

500 0.20 0.16 0.34 0.01 0.02 -0.00 0.25 0.22 0.36 1.00
1000 0.13 0.11 0.24 0.00 0.00 -0.01 0.17 0.15 0.27 1.00
2000 0.09 0.08 0.17 0.01 -0.00 -0.00 0.12 0.10 0.18 1.00
4000 0.06 0.06 0.12 0.01 -0.00 -0.00 0.08 0.07 0.13 1.00
8000 0.05 0.04 0.08 0.00 -0.00 -0.00 0.06 0.05 0.09 1.00

16000 0.03 0.03 0.06 0.00 -0.00 0.00 0.04 0.04 0.06 1.00
25 250 0.30 0.24 0.52 0.01 0.03 0.04 0.37 0.31 0.77 0.97

500 0.20 0.16 0.35 -0.00 0.01 0.01 0.24 0.21 0.43 1.00
1000 0.13 0.11 0.24 0.00 0.00 -0.00 0.16 0.14 0.25 1.00
2000 0.09 0.08 0.17 0.01 -0.00 -0.00 0.11 0.10 0.18 1.00
4000 0.06 0.06 0.12 0.00 -0.00 -0.00 0.08 0.07 0.12 1.00
8000 0.05 0.04 0.08 0.00 -0.01 -0.00 0.06 0.05 0.09 1.00

16000 0.03 0.03 0.06 0.00 -0.01 -0.00 0.04 0.04 0.06 1.00
30 250 0.30 0.23 0.58 0.00 0.02 0.07 0.38 0.30 1.11 0.97

500 0.20 0.16 0.35 0.00 0.01 0.00 0.24 0.20 0.38 1.00
1000 0.13 0.11 0.24 -0.00 -0.00 0.01 0.16 0.14 0.25 1.00
2000 0.09 0.08 0.17 0.01 -0.00 0.00 0.11 0.10 0.18 1.00
4000 0.07 0.06 0.12 0.00 -0.01 -0.00 0.08 0.07 0.12 1.00
8000 0.05 0.04 0.08 -0.00 -0.01 -0.00 0.05 0.05 0.09 1.00

16000 0.03 0.03 0.06 0.00 -0.01 -0.00 0.04 0.03 0.06 1.00
Note: “CONV” stands for convergence rate for a simulation condition.
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Table 5: Item recovery statistics for an item with γj2 and γj3

SE BIAS RMSE CONV
M N bj aj γj2 γj3 bj aj γj2 γj3 bj aj γj2 γj3
15 250 0.30 0.24 0.51 1.03 0.04 0.07 -0.03 1.97 0.39 0.34 0.92 7.30 0.67

500 0.19 0.17 0.34 0.67 0.02 0.03 -0.00 0.94 0.24 0.24 0.49 4.32 0.89
1000 0.14 0.12 0.24 0.49 0.01 0.01 -0.00 0.43 0.18 0.16 0.27 2.02 0.97
2000 0.10 0.08 0.17 0.34 0.01 -0.00 -0.00 0.07 0.13 0.12 0.19 0.62 1.00
4000 0.07 0.06 0.12 0.25 0.01 -0.01 -0.01 -0.00 0.09 0.08 0.13 0.29 1.00
8000 0.05 0.04 0.08 0.17 0.01 -0.00 0.00 0.00 0.06 0.06 0.09 0.19 1.00
16000 0.03 0.03 0.06 0.12 0.01 -0.00 0.00 0.01 0.04 0.04 0.06 0.14 1.00

20 250 0.32 0.24 0.53 1.05 0.03 0.06 -0.01 2.05 0.44 0.36 1.01 8.57 0.53
500 0.20 0.17 0.35 0.70 0.02 0.01 -0.02 0.91 0.26 0.23 0.38 5.01 0.89

1000 0.14 0.12 0.24 0.49 0.01 0.01 0.00 0.48 0.17 0.16 0.26 2.57 0.99
2000 0.10 0.08 0.17 0.35 -0.00 0.00 -0.01 0.09 0.12 0.11 0.18 0.78 0.99
4000 0.07 0.06 0.12 0.24 0.01 0.00 0.00 0.01 0.08 0.08 0.13 0.33 1.00
8000 0.05 0.04 0.08 0.17 0.00 -0.00 -0.00 0.00 0.06 0.05 0.09 0.18 1.00
16000 0.03 0.03 0.06 0.12 0.00 -0.00 -0.00 0.00 0.04 0.04 0.06 0.13 1.00

25 250 0.31 0.24 0.53 0.97 0.03 0.05 0.08 2.39 0.39 0.33 1.16 8.96 0.51
500 0.20 0.17 0.35 0.69 0.01 0.03 0.03 1.18 0.25 0.22 0.47 5.34 0.90

1000 0.14 0.12 0.24 0.49 0.00 0.00 0.01 0.39 0.16 0.15 0.26 2.12 0.97
2000 0.10 0.08 0.17 0.34 0.01 0.00 -0.00 0.01 0.12 0.10 0.18 0.39 0.99
4000 0.07 0.06 0.12 0.25 0.00 -0.00 -0.00 -0.00 0.08 0.07 0.12 0.28 0.99
8000 0.05 0.04 0.08 0.17 0.00 -0.01 0.00 0.00 0.06 0.05 0.09 0.19 1.00
16000 0.03 0.03 0.06 0.12 0.00 -0.01 0.00 0.00 0.04 0.04 0.06 0.13 1.00

30 250 0.29 0.24 0.51 0.97 0.00 0.05 0.05 2.10 0.35 0.31 0.86 8.87 0.44
500 0.20 0.16 0.36 0.69 -0.00 0.01 0.01 0.97 0.25 0.21 0.43 4.93 0.89

1000 0.14 0.12 0.24 0.51 -0.00 -0.00 -0.00 0.31 0.16 0.14 0.26 2.14 0.98
2000 0.10 0.08 0.17 0.35 -0.00 0.00 0.00 0.10 0.11 0.10 0.18 0.78 0.99
4000 0.07 0.06 0.12 0.24 -0.00 -0.01 -0.00 0.01 0.08 0.07 0.13 0.33 1.00
8000 0.05 0.04 0.08 0.17 0.00 -0.01 -0.00 0.01 0.06 0.05 0.09 0.20 1.00
16000 0.03 0.03 0.06 0.12 0.00 -0.01 0.00 0.00 0.04 0.04 0.06 0.13 1.00

Note: “CONV” stands for convergence rate for a simulation condition.

Table 6: Model-fit statistics for an SIRT-MM model without γju and an SIRT-MM model with a
freely-estimated γj2

Model AIC BIC Negative log likelihood Number of parameters
Without γj2 17866.36 18089.68 8879.18 54

With γj2 17778.50 18113.48 8808.25 81
GRM 18896.15 19231.13 9367.08 81
NRM 18832.71 19279.35 9308.35 108
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