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Abstract

Forster and Sober (1994) introduced the “sub-family problem” for model selection criteria
that recommend balancing goodness-of-fit against simplicity. This problem arises when a
maximally simple model (family of hypotheses) is artificially constructed to have excellent
fit with the data. We argue that the problem arises because of a violation of the general
maxim that balancing goodness-of-fit against simplicity leads to desirable inferences only
if one is comparing models for the consideration of which one has a positive reason inde-
pendently of the current data.

1. Introduction
Malcolm Forster and Elliott Sober’s highly influential paper (1994) introduced to the
philosophical literature some of the major developments of the latter half of the
twentieth century statistics on the model selection problem. They argued that
Akaike’s results (1973) on how to correct for over-fitting the data sheds light on a
number of topics in philosophy of science, especially the problem of explaining
why simpler and less ad hoc theories have better predictions. However, Forster
and Sober also posed a potential problem, which they call the “sub-family problem,”
that would arise if one uses model selection criteria in an ad hoc way. This is a prob-
lem for “any proposal that measures simplicity by the paucity of adjustable param-
eters,” including the Akaikean one. They then offer a solution by showing how such ad
hoc use of the Akaikean criterion is disallowed in the broader Akaikean framework
because of a “meta-theorem” about the error in employing Akaike’s results.

Although we find the sub-family problem interesting in itself, we think it can be of
deeper philosophical value by illuminating some of the conditions under which
respecting simplicity-favoring considerations results in desirable inferences. Our goal
in this essay is to establish the following claim.

Independent Motivation Requirement (IMR). Weighing considerations of
simplicity against those of goodness-of-fit, as it is recommended by Akaike
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Information Criterion (AIC) or Bayesian Information Criterion (BIC), results in
reliable inferences only if one’s domain of options (i.e., the set of candidate mod-
els) consists of models for the inclusion of which one has a positive reason inde-
pendently of the current data. Optimizing the balance between simplicity and
goodness-of-fit can lead one astray, if the models are constructed post hoc or
if one liberally adds to the number of models.

IMR is violated in two ways. First, when one allows knowledge of the extant data to
play a role in the design of the model itself (post hoc model construction). Second,
when the number of models is unduly large because one doesn’t have a positive rea-
son for taking some of the candidate models into consideration. In both events,
simplicity-favoring considerations that are appealed to in model selection criteria
cannot amend for systematic over-fitting.

We begin, in section 2, by introducing the Akaikean framework for model selection,
AIC, and the sub-family problem. The problem equally applies to structurally similar
model selection criteria, such as BIC. We discuss this issue and a solution for the prob-
lem in the BIC-based framework in section 3. This solution is a manifestation of our
thesis that violating IMR results in untoward inferential practices. Sections 4 and 5
discuss two solutions to the problem in the Akaikean framework. In section 4, we
examine Forster and Sober’s solution and argue that, although much of what they
say is true, their solution isn’t fully satisfactory. In particular, it appears to follow from
their solution that the AIC scores of simple models with excellent goodness-of-fit
are “unreliable” (epistemically biased) estimates, even if there are reasons indepen-
dent of the current data for considering those models (i.e., even if considering them as
candidate models does not violate IMR). We argue that this idea is false. In section 5,
we offer our own solution, according to which the problem arises because of a viola-
tion of IMR. In section 6, we talk about a case in which one can re-introduce essen-
tially the same error involved in the sub-family problem by considering too many
candidate models—and thereby violating IMR but not through post hoc construction.
We will then explain why such a practice is problematic. In section 7, we conclude our
argument for IMR, presenting the main ideas less technically. We end the paper by
pointing out an important practical consequence of IMR. The Akaikean framework for
model selection tells us why fudged hypotheses that fit the data well (i.e., best-fitting
members of complex models) have poor predictions.1 We will argue that IMR gives us
a clear criterion for determining whether fixing certain parameters in an n-parameter
model results in fudged models with poor predictions and must be avoided.2

2. The Setup of the Problem
In model selection, one is concerned with the comparison of families of hypotheses
(hereafter “models”). We will reserve the term “hypothesis” for individual members
of models. For example, “y= 2x�3�N(0,1)” is a hypothesis belonging to the model

1 See Forster (2006) for how the Akaikean framework helps distinguish between meritorious and
fudged fit.

2 André Kukla (1995) suggests another problem similar to the sub-family problem in which models are
constructed by consulting the data. See also Forster (1995). As we mention in footnote 25, IMR disallows
Kukla’s problem as well.
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{y=ax�b�N(0,1)}. Typically, one’s background theory specifies a finite set of candi-
date models prior to consulting the data and one is interested in comparing them
based on the data. For example, background theory may restrict the set of plausible
models to polynomials of degrees no more than 5. One’s goal can then be to find some
weighted ordering of such models (here, degrees of polynomials) with respect to var-
ious desirable features, such as predictive accuracy or posterior probability.

Suppose you have a suitably large set of observational data consisting of ordered
pairs of values of two variables, X and Y, generated by an unknown “true” function, T.
The data might, for example, record the length of a metallic bar in different temper-
atures. Your background theory tells you that Xs and Ys are linearly related (though
because of the existence of error, the observed values might not exactly fit a line). You
want to find the particular linear function that best fits the data. This is a rather
straightforward statistical problem and doesn’t involve model selection, because
you are considering only one model (you know X and Y are linearly related). The stan-
dard solution on which there is consensus among statisticians is to find the line with
maximum likelihood relative to the data, where the likelihood of a hypothesis is
defined as the probability (or probability density) of the data conditional on the
hypothesis.

A much more difficult question arises if the inference problem concerns the choice
between models, say between parabolic functions and linear functions. Here, one can-
not simply maximize likelihood, because to do so would almost always lead one to
choose a parabolic function (or generally, a member of the largest model). More com-
plicated models have more freedom to fit the data. Thus, the likeliest members of
those models are more likely to fit the noise, as opposed to the main pattern, in
the data. This is called “over-fitting.” There are various model selection techniques
for how to avoid over-fitting. Most of them recommend balancing considerations of
goodness-of-fit with data against considerations of simplicity, though the “optimal”
balance is naturally different for different techniques, since they either pursue dif-
ferent goals or make different assumptions about the inference problem or both.

Before we proceed, some notational conventions must be mentioned. In order to
avoid confusion, we refer to random variables by capital letters, single pieces of data
by lower-case letters and data sets by bolded lower-case letters. In order to distin-
guish between specific data sets and data sets considered as random variables, we
show the former by subscripted, bolded lower-case letters, like y0, and the latter
by non-subscripted, bolded lower-case letters, like, y. Consider a model, F(θ), defined
over a parameter space Θ. For example, if F is the family of linear functions
with a normally-distributed error with mean 0 and variance 1, it can be characterized
as F: {y = ax�b�N(0,1); (a,b) ∈ R2}. Here the parameter space of F is R2.3 We can asso-
ciate a likelihood function, ℒ(θ) = ℒ(θ,z) = g(z|θ), to F, where g(z |θ) is the proba-
bility density of obtaining the n-tuple data set z ={z1,z2, : : : ,zn} [where zi is the ith
observed datum (xi,yi)] conditional on θ being the true parametric value. The value

3 We don’t need to assume that the variance of error is known or that it is normally distributed. It is
sufficient if we can characterize the distribution of error by a general parametric equation, in which case
the unknown parameters of the error distribution are part of the parameters of the model. For example,
if F is the family of linear functions with a normally distributed error of unknown variance
(F:{y=ax�b�N(0,σ)}), the parameter space of F is three-dimensional.
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of θ for whichℒ(θ) is maximized is called the Maximum Likelihood Estimate (MLE) of
F, and we denote it by θ̂. We denote the member of F obtained by taking θ= θ̂ by L(F).4

Note that both θ̂ and L(F) are functions of data; that is, θ̂ = θ̂(y) and L(F) = L(F,y),
where y is the data.

In the Akaikean framework, the goal is to find a plausible estimate of the predictive
accuracies of various models. The predictive accuracy of a model, M, is a measure of
how close, on average, the predictions of the best fitting member ofM, with respect to
an initial data set, are to subsequent data generated by the same generating function.
Suppose you obtain a data set, y, generated by T and use it to determine L(M,y). Now
obtain a new data set, x, and calculate the logarithm of its likelihood (hereafter, “log-
likelihood”) of L(M,y) with respect to x. The average value—with respect to both x
and y—of this log-likelihood is called the predictive accuracy of M. The following
defines A(M), the predictive accuracy of model M.5

A M� ��dfEyEx�log�g�xjθ̂ y
� ���� � E

θ̂
Ex�log�g�xjθ̂��� (1)

Ey(.) and Ex(.) are both expectations with respect to T. The last term on the right-hand
side better captures the nature of predictive accuracy, by emphasizing that it aver-
ages over the MLE.6

Akaike showed that the AIC value of a model can be used to provide an estimate of
its predictive accuracy. AIC of model F is defined thus.

AIC F� ��df � 2logL�L F� �� � 2k (2)

logℒ(L F� �) is the log-likelihood of L(F). If error is normally distributed, this becomes
the familiar sum of squares of error terms of L(F). k is the dimension of the parameter
space of F, which is usually equal to its number of adjustable parameters.

If one is interested in finding the model with the highest predictive accuracy, the
Akaikean framework7 recommends choosing the model with minimum AIC. However,

4 Note that “L(F)” refers to the best fitting member of F, while ℒ(θ) is the likelihood function over the
parameter space of F. We use this notation in order to maximally stick to the notation used by Forster
and Sober.

5 Forster and Sober define predictive accuracy as the average per datum of this double expectation, “so
that the accuracy of a hypothesis does not change when we consider the prediction of data sets of dif-
ferent sizes” (Forster and Sober 1994, 10). We find this choice sensible. However, since such minutia will
not affect the soundness of our argument, we will use the simpler definition in equation (1).

6 More precisely, the goal is to obtain a reliable estimate of the relative Kullback-Leibler (KL) distance
from the truth of different candidate models. The KL distance of probability density g from f is defined by:
DKL(f||g)=df Ef[log(

f
g)], where Ef(.) is the expectation with respect to f. This equation does not define the KL

distance of a model from f, since a model does not have a single probability density. However, a plausible
way to understand the KL distance of model M from truth, f, is the average KL distance from f of L(M,y)
(average with respect to y). Turns out this quantity is equal to the predictive accuracy of f minus the
predictive accuracy of M. Since the predictive accuracy of f is an unknown constant depending only on f,
the KL distance of a model from truth is equal to a constant minus its predictive accuracy—the more the
accuracy, the less the distance. Thus, to maximize predictive accuracy and to minimize KL distance from
the truth are effectively the same goal.

7 A referee suggested that we clarify what we mean by the “Akaikean framework.” Here is a charac-
terization largely borrowed from Forster and Sober (2011). The goal of this framework is to estimate
predictive accuracy. The criterion by which one approaches this goal is AIC. This practice is justified
by Akaike’s result that AIC is an unbiased estimator of predictive accuracy. Note that not every model
selection practice that tries to find a balance between goodness-of-fit and simplicity belongs to this
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as Forster and Sober observe, blindly minimizing AIC is problematic. Suppose one
wishes to find the predictively most accurate hypothesis among polynomials of
degrees 3 or less. One must find the family with minimum AIC and then select
the likeliest member of that family. Let Mi be the family of polynomials of degree
i-1 with i adjustable parameters. Suppose M3 turns out to have the lowest AIC value.
Since the family of parabolic functions is embedded in the family of cubic func-
tions, the likeliest member of the cubic family (L(M4)) has a better (or equally
good) fit with the data than the likeliest member of the parabolic family
(L(M3)). Now construct an ad hoc family, {L(M4)}, whose only member is L(M4).
The number of adjustable parameters in {L(M4)} is 0 (because it is a singleton
family) and therefore, its AIC value is equal to -2logℒ(L(M4)). We have,
AIC({L(M4)}) = -2logℒ(L(M4)) ≤ -2logℒ(L(M3)) < AIC(M3), where logℒ(L(M4)) is
the log-likelihood of the best fitting member of M4. Indeed, {L(M4)} has the lowest
possible AIC value (relative to the extant data) among all families the members
of which are restricted to polynomials of degrees 3 or less. Thus, if we blindly
minimize AIC scores, we must choose {L(M4)} (hereafter, “the sub-family model”)
as the predictively most accurate model, which is tantamount to choosing the like-
liest hypothesis at our disposal and giving no weight to simplicity. This is what
Forster and Sober have called the sub-family problem.8

In order to show the importance of IMR, we will contrast the sub-family problem
with another inference problem, which is very similar but differs in only one salient
way: in that problem, IMR is respected. Suppose you have reasons independently of
the extant data (e.g., theoretic reasons) for including the singleton model
{5x3�6x2�2x�7�N(0,1)} among your candidate models. Then you obtain a data
set, y0, and you observe that L(M4,y0)=5x3�6x2�2x�7�N(0,1).9 This inference prob-
lem, which we will call the singleton family problem,10 is very similar to the sub-
family problem. The set of candidate models (M1,M2,M3,M4,{L(M4,y0)}) and the data
(y0) are the same. However, they have an important difference: here IMR is respected
because you had reasons to include {5x3�6x2�2x�7�N(0,1)} (which happens to be
identical with {L(M4,y0)}) among your candidate models. As we shall see, this makes a
big difference.

framework. For example, the BIC-based framework has a different goal and a different criterion (BIC), but
tries to strike a balance between goodness-of-fit and simplicity.

8 A referee objected that the sub-family problem might be a “pseudo-problem,” because the way in
which {L(M4)} was constructed “is a way of adjusting 4 parameters and it should be penalized as such.”
Notice that the complexity of a model is the dimension of its parameter space and the parameter space of
{L(M4)} is zero-dimensional. Thus, the AIC score of the sub-family model does not reflect the fact that
{L(M4)} was constructed by adjusting 4 parameters. And that is a problem. A proper solution must account
for this fact by telling us why the AIC score of {L(M4)} is not a good estimate in this case, despite Akaike’s
result that AIC is an unbiased estimator.

9 The exact equality in this condition is unlikely to happen even if 5x3�6x2�2x�7�N(0,1) is
the truth. This is an idealization, which we have made for its theoretic simplicity. However, our
argument is applicable, mutatis mutandis, to the more realistic case in which L(M4,y0) ≈
5x3�6x2�2x�7�N(0,1). We talk about the more realistic case in the context of a numerical example
in section 4.

10 As we shall argue, both BIC and AIC treat this problem very differently from the sub-family problem.
We call it a “problem” only because it involves an inference problem, not because there is anything
problematic in it.
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3. BIC
In the BIC-based framework, the average likelihood of a model11 is estimated by −½
times exponential of its BIC defined as follows,

BIC F� ��df � 2logL�L F� �� � klog n� �; (3)

where n is the number of data points. Lower BIC scores are better. Since this is a
Bayesian framework, its ultimate goal is to determine the posterior probabilities
of candidate models. It is customary—though by no means necessary—to assign
equal prior probabilities to all candidate models. Thus, the most probable model is
often the one with the lowest BIC value. Now, the sub-family model has the lowest
possible BIC value, since it has no adjustable parameters and its only member has
maximum log-likelihood. Thus, we are faced with the sub-family problem: the sub-
family model appears to be the most probable model.

A referee suggests that some of the general problems for the BIC-based framework
might complicate our solution to the sub-family problem. Thus, before offering our
solution, we will briefly mention one of those problems, which is most relevant. If the
models are nested (as in our example of polynomial models), then larger models
entail smaller ones. (The set of polynomials of degree n contains the set of polyno-
mials of degree n-1.) It follows that P(Mn)≥ P(Mn-1), no matter what the data is. If so, it
is difficult, in this framework, to make sense of the fact that scientists sometimes
prefer smaller models to larger ones. To the best of our knowledge, there has been
no fully satisfactory response to this problem. Forster and Sober (1994) discuss the fol-
lowing way to address this difficulty. Instead ofM2, constructM2*= M2 - M1 (and so on for
larger models), so that no model entails any other. Then compare those newly-
formulated models. Forster and Sober find this maneuver unsatisfactory, because it
changes the subject. The question was why scientists prefer M1 to M2, not M1 to M2*.
This is a fair objection, a proper reply to which (if it exists) goes beyond the scope of
this essay. Here we use this mathematical maneuver to offer a solution for the sub-family
problem, but we don’t claim to offer a solution for the above problem or any other gen-
eral problem for BIC. All we wish to establish is that if BIC can be rescued from the general
difficulties it faces, it won’t be further subject to the sub-family problem.

Construct the non-nested models (M1-M4*) as described above. Make sure that the
prior probability functions over the members of your non-nested models do not have
probability masses. That is, if π4(θ) is the prior probability function over the members
of M4*, then make sure for no single value of θ, π4(θ)> 0. (If this is not the case, BIC is
not a good approximation of average likelihood. This is another limitation of BIC,
again, independently of the sub-family problem.) How can you make sure this is
the case? If for θ1, π4(θ1)> 0, construct the singleton model {θ1}, where P({θ1}) =
π4(θ1). Then redefine M4* in the following way, M4*new = M4*old -{θ1}, with P(M4*new) =
P(M4*old) - P({θ1}). Once this is done, BIC can be used as an estimate of average
likelihood of the non-nested models. Now suppose we obtain a data set y0 and

11 The likelihood of a model, unlike that of a hypothesis, isn’t determined solely by the content of the
data and the model. We have ℒ(F(θ),y)=P(y|F(θ�)=�P�yjθ��π θ� �dθ, where the integral is over the param-
eter space of F and π θ� � is the prior probability function over the members of F. Therefore, to talk about
the likelihood of a model is to talk about its average likelihood.
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{L(M4,y0)} = {5x3�6x2�2x�7�N(0,1)}. There are two possibilities. Either
P({5x3�6x2�2x�7�N(0,1)})> 0, or P({5x3�6x2�2x�7�N(0,1)})= 0, where P(.) is
the prior probability function.

If P({5x3�6x2�2x�7�N(0,1)})> 0, then you had a positive reason to include
{5x3�6x2�2x�7�N(0,1)} among your candidate models independently of the data12

and this is an instance of the singleton family problem—considering
({5x3�6x2�2x�7�N(0,1)}) does not violate IMR. The likelihood of a model is propor-
tional to the exponential of −½BIC and since {5x3�6x2�2x�7�N(0,1)} has an excep-
tionally low BIC, its likelihood will be massively higher than other models. Thus,
unless its prior probability is extremely lower than other models, it will be by far
the most probable model among the non-nested ones. This is a welcome result. If
one had theoretic reasons that a single parameter value has positive probability,
and one subsequently learns that this single hypothesis fits data excellently well,
the data provides very powerful evidence for that hypothesis and ought to make
one significantly more confident of its truth. Again, this doesn’t solve the above-
mentioned general difficulty about BIC. In the singleton family problem,
{5x3�6x2�2x�7�N(0,1)} might end up having a higher posterior probability than
M4

* but it can never have a higher probability than M4.
The sub-family problem corresponds to the case where P({5x3�6x2�2x�

7�N(0,1)})= 0. Here you have no reason to include {5x3�6x2�2x�7�N(0,1)} among
the candidate models independently of the data. Thus, to choose {5x3�6x2�
2x�7�N(0,1)} because of its excellent BIC score involves violating IMR. The BIC-based
framework disallows choosing {5x3�6x2�2x�7�N(0,1)}, because if P({5x3�6x2�
2x�7�N(0,1)})=0, no matter how likely {5x3�6x2�2x�7�N(0,1)} is (no matter how
good its BIC score is), its posterior probability will remain zero. As we shall see, although
the Akaikean framework doesn’t appeal to model priors, it equally presupposes IMR.

4. Forster and Sober’s Solution
For large data sets, AIC is an approximately unbiased estimator of predictive accuracy.
An estimator is statistically unbiased if its expected value equals the value it esti-
mates. The following equation expresses this fact.

Ey �1=2AIC M; y
� �� � � A M� �; (4)

where y is a random data set. In this paper, we are not concerned with the approxi-
mate nature of this equation. So we will talk about the “unbiasedness” of AIC for
convenience.

Forster and Sober argue that the AIC of the sub-family model is an unbiased esti-
mator of its predictive accuracy, but statistical unbiasedness is not the only criterion
by which to judge an estimate. They introduce another such criterion called “episte-
mic unbiasedness” by the following example. Consider a simple measurement of an
object’s mass with a kitchen scale. Normally, the measured value is an unbiased esti-
mator of the actual value, because it is just as likely to over-measure the mass by a
given amount as it is to under-measure it by that same amount.

12 Notice that typically no single hypothesis has a positive prior probability. So when it does, you must
have a reason for thinking that the hypothesis is particularly good.
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But now suppose that we modify this estimate by adding �10 or -10 depending on
whether a fair coin lands heads or tails, respectively. Suppose that themeasured value
of mass was 7 kg, and the fair coin lands heads. Then the new estimate is 17 kg.
Surprisingly, this new estimate is also a statistically unbiased estimate of the true
mass! The reason is that in an imagined series of repeated instances, the �10 will
be subtracted as often as it is added, so that the value of the average value of the
modified estimate will still be equal to the true mass value. However, we know that
the modified estimate is an overestimate in this instance, because we know that the
coin landed heads. If the coin had landed tails, then the estimate would have been
-3 kg, and would have been known to be an underestimate. In either case, we say
that the modified estimate is epistemically biased. (Forster and Sober 1994, 19)

It is helpful to make a distinction between an “estimator” and an “estimate” here. An
estimator is a function of data that yields individual estimates. Statistical unbiasedness
is a feature of an estimator, while epistemic bias is a feature of an individual estimate.
Forster and Sober argue that AIC of the sub-family model is statistically unbiased (qua
estimator) but epistemically biased (qua estimate).13 They argue that the AIC of the
sub-family model is not a good estimate because it is epistemically biased. To show
this, they appeal to the following “meta-theorem” about AIC.

Error[Estimated(A(F))] =df A(F) – (−½)AIC(F) = Residual Fitting Error � Common
Error � Sub-family Error (Forster and Sober 1994, 19).

This theorem concerns the error involved in taking −½AIC as an estimate of pre-
dictive accuracy. Forster and Sober argue that the first two terms on the right-hand
side are both statistically and epistemically unbiased, but the third term, although
statistically unbiased, is sometimes epistemically biased, which (given the epistemic
unbiasedness of the other two terms) makes the total error sometimes epistemically
biased. They further argue that an important occasion in which this happens is in the
sub-family problem. Thus, a fuller understanding of the Akaikean framework, which
includes this meta-theorem, dissolves the sub-family problem.

Here is why Forster and Sober believe the sub-family error is epistemically biased
for the sub-family model. Suppose we embed the parameter spaces of all our models in a
larger parameter space (call it K) that contains the truth, T. Forster and Sober state that
this space can be considered as a vector space in such a way that i) the closer a point in
this space is to truth, the higher its predictive accuracy; and ii) the sub-family error is
equal to the scalar product of the following two vectors in this space: the vector that goes
from T to the likeliest hypothesis in K, L(K), (i.e., T:L K� ����������!

) and the vector T:θ0
����!

that goes
from T to the (unknown) predictively most accurate member of M, which we denote by
θ0.14 These vectors are shown in figure 1 below.15

13 Forster and Sober don’t offer an exact definition for epistemic bias. A referee expressed skepticism
about the usefulness and clarity of the concept. Although we disagree with this assessment, notice that
the idea that epistemic bias is hopelessly unclear, if true, adds to the motivation for our solution, because
our solution only uses the notion of statistical bias. All discussion of epistemic bias in this paper is for the
purposes of examining Forster and Sober’s solution.

14 θ0 is generally different from θ̂. The former is the member of the model that is predictively most
accurate and doesn’t depend on data. The latter is the likeliest member given the extant data.

15 Figure 1 essentially represents the same idea represented by figure 4 in Forster and Sober (1994),
although our notations are slightly different.
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All three points are in general unknown. However, the scalar product of T:L K� ����������!
and

T:θ0
����!

is equal to the product of their lengths multiplied by the cosine of the angle
between them. Forster and Sober argue that for the sub-family model, the tips of
the two vectors tend to be close. Here is their argument.

The Akaike estimate for a low dimensional family whose best fitting case is close
to the data (and such families are the dangerous “pretenders,” for they
“unfairly” combine high log-likelihoods with small penalties for complexity)
exhibits an epistemic bias, as we now explain. The most predictively accurate
hypothesis in such small families will also be close to the data, and therefore
close to L(K). The danger is that the tips of the two vectors will be close together.
Then the cosine factor is close to �1 and the subfamily error is large and
positive.16 (Forster and Sober 1994, 20–21)

On Forster and Sober’s view, we shouldn’t follow the sub-family policy, because if we
do, the AIC values of the models we construct, although statistically unbiased, tend to be
epistemically biased (over)estimates of the predictive accuracies of these models.

Before discussing what we find potentially problematic about this argument, we
would like to give a summary of what we will claim, in order to avoid confusion.
When Forster and Sober say that the AIC of the sub-family model is statistically unbi-
ased, they are referring to the fact that the estimate AIC({L(M4,y0)},y0) is an instanti-
ation of the estimator AIC({L(M4,y0)},y), which is—we agree—an unbiased estimator.
We also agree that in the sub-family problem, AIC({L(M4,y0)},y0) is epistemically
biased. However, we suggest that a better estimator (than AIC({L(M4,y0)},y)) for deter-
mining the (de)merits of the estimate AIC({L(M4,y0)},y0) in the sub-family problem is
AIC({L(M4,y)},y), which is statistically biased. This is because in the sub-family prob-
lem, AIC({L(M4,y0)},y0) is more similar to other instantiations of AIC({L(M4,y)},y) than
to other instantiations of AIC({L(M4,y0)},y). The exact opposite situation holds for the
singleton family problem. There the statistical bias of AIC({L(M4,y0)},y) provides more
relevant information (than that of AIC({L(M4,y)},y)) for deciding how good the esti-
mate AIC({L(M4,y0)},y0) is. Therefore, we will argue that the Akaikean framework
treats the sub-family problem and the singleton family problem differently.

L(K)

T
θ0 (The hypothesis in M closest to T) 

Figure 1. T is the truth. L(K) is the likeliest hypothesis in K, which contains T. For a Gaussian distribution of
error, L(K) is equally likely to fall on any point on the circle. T and L(K) are independent of the model. θ0 is
the predictively most accurate hypothesis in the model (i.e., the closest member of the model to T).

16 Forster and Sober define AIC as the negative value of our equation (2); thus, a positive error means
overestimation of predictive accuracy.
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Now we will unpack this. Consider the singleton family problem first. That is, sup-
pose we had reasons independently of y0 for considering the model
{5x3�6x2�2x�7�N(0,1)}. Then we obtained y0 and observed that L(M4,y0)=
5x3�6x2�2x�7�N(0,1). Thus, including {5x3�6x2�2x�7�N(0,1)} among the models
doesn’t violate IMR. Is AIC({5x3�6x2�2x�7�N(0,1)},y0) an epistemically biased esti-
mate in this case, according to Forster and Sober? We don’t know for sure because
they don’t discuss this problem. However, if we are to infer from the literal meaning
of their argument, they would have to say “yes,” because in every relevant respect to
their solution, the two problems are identical. In their argument, the relevant factors
are the low-dimensionality of the model and its closeness to data, which are shared in
the two problems. If they are committed to this idea, then this is the only point of dis-
agreement between our account and theirs. We believe that in the singleton family
problem, the exceptionally low AIC score of {5x3�6x2�2x�7�N(0,1)} is exceptionally
good reason that {5x3�6x2�2x�7�N(0,1)} has high predictive accuracy. There is
nothing “unfair” in the AIC score of a low-dimensional model with good fit per se.
The AIC scores of such models are “too good to be true” only if the model has these
features because it was designed in an ad hoc fashion to have a low AIC score.

For this to be true, something must be missing in Forster and Sober’s account of
the sub-family error as applied to the singleton family problem. Here is what is missing.
They offer a consideration (hereafter consideration1) that θ0 tends to be close to L(K),
which leads to the sub-family error for {5x3�6x2�2x�7�N(0,1)} being large and pos-
itive. However, there is a competing consideration (hereafter, consideration2) that mit-
igates the effect of consideration1: for models with low AIC scores, θ0 tends to be close
to T. (A low AIC score means high predictive accuracy, which means closeness to
truth.) Consideration2 is a reason for sub-family error to be small, because the error
is equal to the product of the lengths of the two vectors T:L K� ����������!

and T:θ0
����!

times the
cosine of the angle between them. Consideration2 is a reason that the length of T:θ0

����!
is

small. In both the sub-family problem and the singleton family problem,
AIC({5x3�6x2�2x�7�N(0,1)},y0) is exceptionally low, which is a reason to think that
5x3�6x2�2x�7�N(0,1) is close to truth. This is the case, unless one otherwise knows
that AIC({5x3�6x2�2x�7�N(0,1)}) is not a good estimate of the predictive accuracy
of {5x3�6x2�2x�7�N(0,1)}. We will argue in the next section that in the sub-family
problem, one knows this independently. Thus, consideration2 is irrelevant to the sub-
family problem and AIC({5x3�6x2�2x�7�N(0,1)},y0) is epistemically biased in that
problem. However, our argument in the next section doesn’t apply to the singleton
family problem. In that problem, we are left with two competing considerations bear-
ing on how good an estimate AIC({5x3�6x2�2x�7�N(0,1)},y0) is, and in general we
have no way of comparing the relative strengths of these considerations. Notice that
consideration2 doesn’t tell us anything about the sign of the sub-family error
(whether it is negative or positive). Thus, we must expect to have a positive epistemic
error but smaller in absolute value relative to the sub-family problem.

The amount of bias matters a lot. In both the sub-family problem and the singleton
family problem, AIC({5x3�6x2�2x�7�N(0,1)},y0) is significantly better than the AIC
of other models. For example, AIC({5x3�6x2�2x�7�N(0,1)},y0) =AIC(M4,y0) – 4,17

17 Since AIC(M3) ≥ AIC(M4) - 1, AIC({5x3�6x2�2x�7�N(0,1)},y0) is at least 3 units better than AIC(M3,
y0) and so on for other models.
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and 4 units of AIC difference is usually a big difference. (To have an intuitive idea for
why this is the case, consider the fact that if the data is perfectly linear, M2 will have
only a 2 units AIC advantage relative to M4.) In the sub-family problem, the average
sub-family error is exactly 4, which means that the entire difference in AIC score
(between ({5x3�6x2�2x�7�N(0,1)} andM4) is due to error. However, in the singleton
family problem, little of the AIC difference between {5x3�6x2�2x�7�N(0,1)} and M4

(which is 4 units) is due to epistemic error. Therefore, {5x3�6x2�2x�7�N(0,1)} is in
great shape relative to M4. This is a welcome result. If you have a singleton model
among the candidate models for reasons independently of the extant data, and it fits
the data as precisely as the family of cubic functions, you ought to be very confident of
its predictive accuracy even if its AIC score is slightly biased.

The following numerical example can help illustrate our point. Here all the data is
generated by the function T= 0.2x5–0.2x4–3x3�x2–1�N(0,1). Figure 2a depicts the
sub-family error of the model {L(M4,y)} for 107 values of y each consisting of 100 data
points.18 That is, for each data set, y, L(M4,y) is determined separately and then its
corresponding sub-family error is calculated.19 This is essentially a 107 repetition
of the sub-family problem. Evidently, the sub-family error of {L(M4,y)} tends to be
positive and large, as Forster and Sober rightly argue. Figure 2b depicts the sub-family
error of the fixed singleton model M0:{–3x3�x2–1�N(0,1)}, which is chosen because it
is close to T. The sub-family error of this fixed model is statistically unbiased, again as
observed by Forster and Sober.

The difficult part is how to simulate the singleton family problem, because in that
problem you must have a singleton family for reasons independently of the data and
then something amazing happens: the only member of that model turns out to be
equal to the best fitting member of your largest model. (Even if your singleton family
contains the truth, this is unlikely to happen, unless the data is huge.) However, we
can approximate this situation. Figure 3a is the histogram of the distance between M0

and {L(M4,y)} for the 107 data sets. Instead of looking at cases where {–3x3�x2–
1�N(0,1)}={L(M4,y)}, we first looked at cases in which M0 is “close” to {L(M4,y)}.
This corresponds to cases where the member of the singleton family is not exactly
identical with L(M4,y) but is close to it (both in the parameter space and in terms of
log-likelihood). In 3b, the sub-family error for M0 is depicted only for those cases in
which ||M0-L(M4,y)||< 0.3 (cases that are left of the red line in 3a). The choice of 0.3 is
arbitrary. We chose this value so that we can still have a large number of cases.
(Smaller values result in larger errors because for them consideration1 becomes
stronger, but due to the small number of cases, the histograms become very jagged.)

The average sub-family error for cases depicted in figure 3b is 0.4286. When we
took this condition to the limit (i.e., ||M0-L(M4,y)||→0), the error approached a value
slightly less than 1. A comparison between 2a and 3b shows the mitigating effect
of consideration2. In 2a, the average L(M4,y) is not particularly close to T; thus, the
only relevant consideration is consideration1. The average sub-family error was

18 The values of X were first generated randomly from the uniform distribution on [-1,1]. Then those
values were fixed throughout the data generating process.

19 The sub-family error is the second item in the right-hand side of equation 4.55 in Sakamoto et al.
(1986, 77). We have used -1 times the value in that equation in order to simplify things, so that a positive
error means (as Forster and Sober also mean it) an overestimation of predictive accuracy.
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3.9991 in 2a.20 In 3b, the model is still singleton and close to the data (thus consider-
ation1 is still pertinent), but because M0 is close to T, the average sub-family error was
0.4286, quite smaller than 3.9991. The importance of this fact can be best understood

Figure 2. Histogram of the Sub-family Error of {L(M4,y)}. Histogram of the Sub-family Error for
M0:{–3x3�x2–1�N(0,1)}.

20 See equation (9) for why this average for large data sets is equal to 4.
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with the help of figure 4, which depicts the histogram of AIC(M4)-AIC(M0) for those
cases depicted in 3b. For ||M0-L(M4,y)||< 0.3, the average AIC difference was 3.2197.

The important point is that as we focus on data sets for which M0 is closer and
closer to L(M4,y), AIC(M0) becomes smaller and smaller (better) but at the same time
the sub-family error becomes larger and larger. For ||M0-L(M4,y)||→0, (AIC(M0,y)–
AIC(M4,y))→ -4 and the sub-family error approached 1 in this particular case. That
is, if you correct for the sub-family error, AIC(M0,y) is still 3 units better than that of

Figure 3. Histogram of the distance betweenM0 and L(M4,y). Histogram of the sub-family error forM0 only
for those data sets for which ||M0-L(M4,y)||< 0.3 (left of the red line in 3a).
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AIC(M4,y). For the average case that satisfied ||M0-L(M4,y)||< 0.3, if you correct for the
sub-family error (i.e., subtract the average sub-family error, 0.4286), you still have a
better AIC value of 2.7911. This illustrates the main point of our argument. In the
singleton family problem, our model is singleton and very close to the data.
However, its excellent AIC score (although slightly biased) is excellent evidence that
it is predictively accurate.

Objection: the difference between the sub-family problem and the singleton family
problem is only a historical fact about how the model was constructed. So it cannot
affect how good an estimate AIC({5x3�6x2�2x�7�N(0,1)},y0) is.

Answer: certain facts about AIC({5x3�6x2�2x�7�N(0,1)},y0) are not affected by
this historical fact, including the definition of A({5x3�6x2�2x�7�N(0,1)}), the value
of AIC({5x3�6x2�2x�7�N(0,1)},y0) itself and the statistical bias of the estimator
AIC({5x3�6x2�2x�7�N(0,1)},y). However, this list does not exhaust all the relevant
information bearing on how good an estimate AIC({5x3�6x2�2x�7�N(0,1)},y0) is.
Indeed, Forster and Sober introduced the notion of epistemic bias in order to be able
to account for the intuitive idea that in the sub-family problem there is something
wrong with AIC({5x3�6x2�2x�7�N(0,1)},y0) as an estimate, which cannot be cap-
tured by the items in the above list. We think what is wrong with this estimate is
that in the sub-family problem, our model is tailored to y021 in an ad hoc fashion
in order to have an optimal AIC score. However, this is not the case in the singleton
family problem. In that problem, {5x3�6x2�2x�7�N(0,1)} is a contender model for
independent reasons. And that such a simple model fits y0 so well (without us having

Figure 4. Histogram of the AIC difference between M0 and M4 for data sets for which ||M0-L(M4,y)||< 0.3
(left of the red line in 3a).

21 The term “our model” can refer rigidly to {5x3�6x2�2x�7�N(0,1)} and non-rigidly to whatever
model we construct. That our model is tailored to data in the sub-family problem is true only if “our
model” is understood non-rigidly, which is what we intend in this paragraph.
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chosen it because it fits y0 well) is excellent reason that it is highly predictively accu-
rate. In other words, the historical fact that constitutes the difference between the two prob-
lems bears important information about the ad hocness of AIC({5x3�6x2�2x�7�N(0,1)},y0) as
an estimate. Of course, this intuitive idea needs a technical explanation. That is what
we will offer in the next section.

5. Our Solution
We think a better solution for the sub-family problem can be given by studying
another estimator namely AIC({L(M4,y)},y) (instead of AIC({L(M4,y0)},y)) one of the
instantiations of which is the estimate AIC({L(M4,y0)},y0). But how can one decide which
estimator provides better information about the merits/demerits of the individual
estimate? In order to answer this question, consider why statisticians study the statis-
tical biases of estimators in the first place. Suppose a1 is an estimate of the quantity, a.
For example, a1 might be the value one reads on a kitchen scale when one weighs an
apple. Naturally, one might wish to know how good an estimate a1 is, but usually one
cannot directly talk about how good or bad a single estimate is. However, sometimes
one can talk about how good, in general, the estimates obtained by the “same” proce-
dure tend to be. That is, one can talk about various features of an estimator by consid-
ering repeated estimates obtained by the “same” procedure. Statistical bias is one such
feature. An estimator whose expected value equals the value it estimates is statistically
unbiased. But what exactly does this tell us about the individual estimate? Insofar as the
individual estimate is similar to the other instantiations of the estimator, the expected error of
the estimator (its statistical bias) contains information about how good the estimate is.
Importantly, the inherent vagueness in what it means for the procedure to be the
“same” makes it the case that a particular estimate can be an instantiation of more
than one estimator.22 However, it doesn’t follow that the statistical biases of those esti-
mators bear equally valuable information on the merits of the individual estimate. If
the estimate a1 is an instantiation of two estimators A and A*, and if other instantia-
tions of A better resemble a1 than other instantiations of A* in ways that affect the
value of the estimate, then the statistical bias of A bears more pertinent information
than the statistical bias of A* on the merits/demerits of a1.

In ordinary inference problems, there is only one estimator one would naturally
associate with an individual AIC score (qua estimate). Thus, these considerations are
usually unimportant. However in the sub-family problem, things are different because
not only the individual AIC score is a function of the data, but the model itself is
designed on the basis of the data too. Thus, the AIC score one calculates -
AIC({L(M4,y0)},y0) - is an instantiation of two estimators: AIC({L(M4,y0)},y) and
AIC({L(M4,y)},y). Notice that both of these estimators can be understood as the AIC
of “the sub-family model.” If you understand “the sub-family model” rigidly to refer

22 There is a well-known criticism of frequentist statistics that the same individual estimate can be
produced by many different estimation procedures. (Though see Hájek [2007] for why this is everyone’s
problem.) However, this criticism doesn’t sanction an “anything goes” kind of attitude towards the
estimate-estimator relation. We believe the notion of statistical bias is a helpful notion to the extent
that one chooses estimators the other instantiations of which are not different from the estimate in
question in intuitively salient ways. Otherwise, the average error of the estimator bears no or little infor-
mation on how good the particular estimate is.
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to the model constructed after obtaining y0, you’ll have AIC({L(M4,y0)},y); and if you
understand it nonrigidly to refer to whichever model one constructs on the basis of
data, you’ll have AIC({L(M4,y)},y). The former is an unbiased estimator, as Forster and
Sober correctly claim. The latter is a biased estimator, as we shall argue later. But
which one gives us better information about the merits/demerits of the individual
estimate AIC({L(M4,y0)},y0)? In order to answer this question, consider another instan-
tiation of each estimator, say for data set y1. The estimator AIC({L(M4,y0)},y) yields
AIC({L(M4,y0)},y1). This keeps the model {5x3�6x2�2x�7�N(0,1)} and calculates
the AIC score of that fixed model with respect to y1. However AIC({L(M4,y)},y)
yields AIC({L(M4,y1)},y1). Here one constructs the model {L(M4,y1)} and calculates
AIC({L(M4,y1)}) with respect to y1. AIC({L(M4,y0)},y1) is dissimilar to AIC({L(M4,y0)},
y0) in the sub-family problem in an important respect. In AIC({L(M4,y0)},y1) the model
is chosen because it fits one data set (y0) well but its AIC score is calculated with
respect to another data set (y1). Whereas in AIC({L(M4,y0)},y0), the model is chosen
because it has excellent fit with y0 and its AIC score is calculated with respect to that
same data set. Obviously, AIC({L(M4,y0)},y0) and AIC({L(M4,y1)},y1) are similar in this
respect. Another way one can see this point is by considering the following question:
What would have been the AIC estimate if instead of y0 one had obtained y1 in the
sub-family problem? Clearly the answer is AIC({L(M4,y1)},y1). This is the reason we
believe the statistical bias of the estimator AIC({L(M4,y)},y) provides better informa-
tion about the estimate AIC({L(M4,y0)},y0) in the sub-family problem.23

What about the singleton family problem? Things are quite different in that prob-
lem. What would have been the AIC estimate if instead of y0 one had obtained y1 in
the singleton family problem? Clearly AIC({5x3�6x2�2x�7�N(0,1)},y1), which hap-
pens to be equal to AIC({L(M4,y0)},y1), because here {5x3�6x2�2x�7�N(0,1)} is a con-
tender model regardless of the fact that 5x3�6x2�2x�7�N(0,1) = L(M4,y0).
Therefore, for this problem the estimator AIC({L(M4,y)},y) is irrelevant, because we
care about the singleton family {5x3�6x2�2x�7�N(0,1)}. Here the statistical bias
of AIC({L(M4,y0)},y) gives one the relevant information on how good an estimate
AIC({5x3�6x2�2x�7�N(0,1)},y0) (or incidentally, AIC({L(M4,y0)},y0)) is.

Now we would like to show that AIC({L(M4,y)},y) is in fact a biased estimator. This
might appear to contradict Akaike’s results, but it doesn’t. Those results presuppose
IMR according to which the set of candidate models must be determined indepen-
dently of the current data. In fact, Akaike’s results about models that respect IMR
help us prove that AIC({L(M4,y)},y) is biased.

In order to show this, we first show that the expectation of −½(AIC({L(M4,y)},y)
with respect to y is larger than the predictive accuracy of any singleton family whose
only member is a member of M4. Suppose f is a variable that ranges over the members
of M. For each value of f, we can define the singleton family {f}. Also suppose m is an
arbitrary member of M and {m} is the singleton family whose only member is m.
By definition of L(M4,y) we have,

23 It is worth mentioning that this is not a criticism of Forster and Sober’s argument. They introduce
the notion of epistemic bias in order to express the same idea (in a different way than we do) that the
statistical unbiasedness of the estimator AIC({L(M4,y0)},y) does not exhaust all the relevant information
on the demerits of the estimate AIC({L(M4,y0)},y0) in the sub-family problem.
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� 1=2AIC L M4; y
� �� �

; y
� � � max��1=2�AIC ff g; y� �

; f 2 M4� ≥ � 1=2AIC mf g; y� �
(5)

If we take expectation with respect to y we have:

Ey��1=2AIC� L M4; y
� �� �

; y
� �� � Ey max� � � 1=2AIC ff g; y� �

; f

2 M4�� ≥ Ey �1=2AIC mf g; y� �� � � A fmg� � (6)

The last equality obtains because of (4). In (6), only if m = L(M4) the equality holds.
However, L(M4) is a function of data. For any m, such that m = L(M4,yi), there is
(almost always) a data set yj generated by the same generating function such that
m is not the likeliest member of M4 with respect to yj. Thus, in fact we have a stronger
result than (6):

Ey ��1=2AIC L M4; y
� �� �

; y
� �� � Ey max� � � 1=2AIC ff g; y� �

; f

2 M4 > Ey

� � � 1=2AIC mf g; y� �� � � A fmg� � (7)

It follows from (7) that the average value of −½AIC({L(M4,y),y}) is strictly larger than
the predictive accuracy of any singleton family one can construct from the members
of M4 (since m is an arbitrary member of M4)—including, of course, {L(M4,y0)}.

Since {L(M4,y)} is a random variable and a function of data, A({L(M4,y)}) is a random
variable too and will vary for different data sets. This is unlike the usual application of
the Akaikean framework, where the model is fixed and its predictive accuracy is a
fixed number. Indeed if {L(M4)} was not a function of y, then by (4),
−½AIC({L(M4)}) would have been an unbiased estimator of A({L(M4)}). However,
regardless of the data at hand, since L(M4) is a member of M4, we have A({L(M4,
y)}) ≤ max[(A({f}), f ∈ M4]. And since (7) is true for all m, m ∈ M4, then we have,

Ey �1=2AIC L M4; y
� �� �

; y
� �� �

> A fL M4; y
� �g� �

(8)

That is, AIC({L(M4,y)},y) is statistically biased. A comparison between equations (4)
and (8) shows the difference between AIC({L(M4)}) and AIC of ‘normal’ models that
are constructed independently of the data. In the same way that equation (4) moti-
vates using AIC scores of ‘normal’models as an estimate of their predictive accuracies,
equation (8) shows why −½ times AIC({L(M4,y0)},y0) is not a good estimate of
A({L(M4,y0)}).

There is another way of looking at AIC({L(M4,y)},y) that makes it obvious why it is a
biased estimator. Since {L(M4,y)}is singleton,

AIC L M4; y
� �� �

; y
� � � �2logL L M4; y

� �� �
; y

� � � AIC M4; y
� � � 4; (9)

The last equality obtains becauseM4 has 4 adjustable parameters. But by the definition
of predictive accuracy (equation (1)) for model M4, the average predictive accuracy of
{L(M4,y)} (i.e., Ey[A({L(M4)})]) must equal A(M4). It follows that AIC({L(M4,y)},y) is on
average 4 units lower than A({L(M4,y)}). The fact that the estimator AIC({L(M4,y)},y)
is biased gives us information about why the individual estimate AIC({L(M4,y0)},y0)
is not a good estimate of predictive accuracy. This concludes our technical treatment
of the sub-family problem. In the next section, we will talk about another inference
problem in which IMR is violated.
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7. Too Many Models
Post hoc model construction is not the only way one can violate IMR. Another way is
by adding models to one’s set of candidate models without any reason for them to be
considered. This simply increases the probability that a model with low predictive
accuracy will have a good AIC score because it fits the current data well. An extreme
version of this strategy is to add every member of the largest candidate model as a
singleton model. In our working example of polynomial models, this would involve
adding a singleton family {Ma,b,c,d: y = ax3�bx2�cx�d�N(0,1)} for all (a,b,c,d) ∈ R4.
The number of candidate models will be infinite, but the one with the lowest AIC score
is obviously {L(M4,y)}. Therefore, in this case one would always choose the same model
as one does in the sub-family problem. No doubt this is a problematic practice, but the
question is why?

In order to see why, first consider the rather common practice of computing AIC
scores for all candidate models, choosing the model with minimum AIC as the winner
and taking its AIC value as an estimate of its predictive accuracy. Call this policy the
minimizing policy. We can define the error involved in this policy as follows.

Error minimizing
� ��df � 1=2AIC Mmin y

� �� � � A Mmin y
� �� �

; (10)

where Mmin(y) is the model with the minimum AIC score given the data y. The mini-
mizing policy seems quite unproblematic, but here is an interesting fact: the expec-
tation of Error(minimizing) is positive; that is, the AIC score of Mmin(y) is a biased
estimator of its predictive accuracy. Generally, if r̂ and ŝ are unbiased estimators
of r and s, max(r̂, ŝ) is usually a biased estimator (in fact over-estimator) of
max(r,s). Suppose r is in fact bigger than s. Obviously, max(r̂, ŝ) ≥ r̂, and after taking
expectation, E(max(r̂, ŝ)) ≥ E(r̂) = r = max(r,s). However, if P(r̂ < ŝ)> 0, max(r̂, ŝ) > r̂
with positive probability and therefore, E(max(r̂, ŝ)) > max(r, s). But unless r and s
are massively different or r̂ and ŝ are estimators with extremely small variances,
P(r̂ < ŝ)> 0. In fact, in the case of AIC scores, even if model A is significantly predic-
tively more accurate than model B, there is still a positive (however small) probability
that one acquires a data set for which AIC(B) < AIC(A).

The expected value of Error(minimizing) is normally small. However, its size grows
with an increase in the number of models. Without going into the technical details, we
will only gesture towards an explanation for why this happens.24 Recall that the AIC
score of a model, unlike its predictive accuracy, is a random variable; it varies with
different data sets. Equation (4) states that the average value of AIC equals predictive
accuracy, but it doesn’t say anything else about the distribution of AIC. In the most
straightforward cases, −½AIC has an approximately chi-squared distribution plus a
constant. Thus, in an inference problem with N models, M1, M2, : : : , MN, we can think
of −½AICs as N approximately chi-squared distributed random variables (plus a con-
stant) with means equal to predictive accuracies, A(M1), A(M2), : : : , A(MN). For
simplicity, suppose that predictive accuracies are not very different. (Neither this
assumption nor the chi-square distribution is necessary for the validity of our argu-
ment, but they make things easier for our explanatory purposes.) It is unlikely for

24 Giraud (2015, 33–38) contains a rather technical treatment.
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each such variable to be significantly smaller than the mean value, but if N is large, it
is very likely that at least one of the variables (and thereby the minimum of all of them)
is significantly smaller than the mean. Therefore, the more candidate models you
have, the more biased the AIC value of Mmin will be.

The fact that AIC is an unbiased estimator of predictive accuracy can mislead one
into thinking that one can add to one’s candidate models at will, in the hope that if
any model is not plausible it will have a poor AIC score and will thus be discarded. This
is a mistaken idea. Choosing the model with minimum AIC score can be a hopelessly
misguided practice if one isn’t stingy about which models to consider in the
first place.

8. Concluding Remarks
We discussed Forster and Sober’s solution to the sub-family problem. Although we
agree with much of what they say, we disagree about a potential implication of their
argument concerning the singleton family problem. We offered our own solution for
the sub-family problem, which makes the difference between the two problems
salient.

Although we find the sub-family problem interesting in itself, we believe a much
more important lesson about simplicity-favoring considerations can be learned from
our solution to the problem. Here we would like briefly to discuss what is going on
beyond the technicalities. The fundamental difference between the sub-family prob-
lem and the singleton family problem is that the sub-family model is itself a random
variable dependent on and tailored to the data. (Hence the difference between equa-
tions [4] and [8].) Simple models that are designed to have excellent goodness-of-fit
with the extant data tend to perform poorly in predicting future data.25 Here is a non-
technical explanation for this. Consider the very idea behind the Akaikean framework.
Why is it a bad idea to use the goodness-of-fit of the best fitting member of a model as
an estimate of the model’s predictive accuracy? Because to do so would essentially
amount to using the current data twice: both in determining the best fitting member
of the model and in determining how close the model is to the data, which is mea-
sured in terms of the fit of that same best fitting member. If the data was not used to
pick out the representative (best fitting) member of the model (as is the case in sin-
gleton models), the fit of the model with the extant data was a good (unbiased) esti-
mator of its predictive accuracy. Thus, the source of the problem with this proposal is
essentially the double-use of the data.26 But the more complex the model is, the more
effective such double-use will be, because the data will have more power in selecting
among the members of the model. That is why the bias in taking the goodness-of-fit of
the model as an estimator of its predictive accuracy increases when the complexity of

25 This also explains why other post hoc model construction policies (such as the one described in
Kukla 1995) are likewise disallowed by the Akaikean framework.

26 Note that this is a weaker claim than what is sometimes called the “no double-counting rule” in the
debate over the thesis of predictionism (see Steele and Werndl 2018). According to that idea, no piece of
evidence that was used in the construction of a theory can provide support for it. Whereas the idea
discussed here simply asserts that if a piece of data is used in the construction of a theory, the support
it provides for the theory is diminished (not necessarily nullified).
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the model increases. The beauty of Akaike’s results is in offering a way to calculate
this bias. Now, when one designs one’s model to be simple and to have an excellent
degree of fit with the current data, one re-introduces that bias into one’s estimation of
predictive accuracy. In such an event, AIC is no longer an unbiased estimator, because
the bias introduced by the double-use of the data is not relevant only to the number of
adjustable parameters (which AIC corrects for) but also to the construction of the
model itself (which AIC does not correct for).

We also discussed another problematic practice, which involves considering too
many candidate models. We showed that one can effectively re-introduce the same
error involved in the sub-family problem by engaging in an extreme version of this
practice. Although post hoc model construction and comparing too many candidate
models are problematic for two different reasons, there is a unified solution for both,
namely, to respect IMR.

Before ending the paper, we would like to mention an important practical conse-
quence of IMR. Respecting IMR gives rise to a clear criterion for determining whether
a given model is gerrymandered or not. In the highly artificial examples in which the
sub-family problem or similar problems are usually formulated (such as in Kukla
1995), it is crystal clear which models are fudged or gerrymandered (e.g., the sub-
family model). However, in more realistic cases, it is sometimes not so clear. Thus,
Douglas and Magnus write: “it would be perverse to do this arbitrarily, but in the
general case of n-parameter models it may be possible to motivate specific values
for some of the parameters. There is no formal rule for when this is or is not legiti-
mate” (Douglas and Magnus 2013, 583). A comparison between the sub-family prob-
lem and the singleton family problem suggests exactly such a rule: models in which
certain parameters are held fixed are not fudged just in case there are grounds inde-
pendently of the current data for holding them so fixed.

Acknowledgments. We are grateful to Adam Elga, Elliott Sober, Erfan Salavati, David Schroeren, two
anonymous referees, and an audience at Institute for Research in Fundamental Sciences in Tehran for
their helpful feedback.

References
Akaike, Hirotugu. 1973. “Information Theory as an Extension of the Maximum Likelihood Principle.” In

Second International Symposium on Information Theory, edited by B. N. Petrov and F. Csaki, 267–81.
Budapest: Akademiai Kiado.

Douglas, Heather, and P.D. Magnus. 2013. “State of the Field: Why Novel Prediction Matters.” Studies in the
History and Philosophy of Science 44 (4):580–89.

Forster, Malcolm R. 1995. “The Golfer’s Dilemma: A Reply to Kukla on Curve-Fitting.” British Journal for the
Philosophy of Science 46 (3):348–60.

Forster, Malcolm R. 2006. “A Philosopher’s Guide to Empirical Success.” Philosophy of Science 74 (5):
588–600.

Forster, Malcolm R., and Elliott Sober. 1994. “How to Tell when Simpler, More United, or Less
Ad Hoc Theories Will Provide More Accurate Predictions.” British Journal for the Philosophy of Science
45 (1):1–35.

Forster Malcolm R., and Elliott Sober. 2011. “AIC Scores as Evidence – a Bayesian Interpretation.”
In Philosophy of Statistics, edited by Prasanta S. Bandyopadhyay and Malcolm R. Forster, 535–49.
Amsterdam: Elsevier.

Giraud, Christophe. 2015. Introduction to High-Dimensional Statistics. Boca Raton, FL: CRC Press.
Hájek, Alan. 2007. “The Reference Class Problem Is Your Problem Too.” Synthese 156 (3):563–85.

Philosophy of Science 667

https://doi.org/10.1017/psa.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.32


Kukla, André. 1995. “Forster and Sober on the Curve-Fitting Problem.” British Journal for the Philosophy of
Science 46 (2):248–52.

Sakamoto, Y., M. Ishiguro, and G. Kitagawa. 1986. Akaike Information Criterion Statistics. Tokyo: KTK
Scientific Publishers.

Steele, Katie, and Charlotte Werndl. 2018. “Model-Selection Theory: The Need for a More Nuanced Picture
of Use-Novelty and Double-Counting.” British Journal for the Philosophy of Science 69 (2):351–75.

Cite this article: Fatollahi, Alireza and Kasra Alishahi. 2023. “Simplicity and the Sub-Family Problem for
Model Selection.” Philosophy of Science 90 (3):648–668. https://doi.org/10.1017/psa.2022.32

668 Alireza Fatollahi and Kasra Alishahi

https://doi.org/10.1017/psa.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.32
https://doi.org/10.1017/psa.2022.32

	Simplicity and the Sub-Family Problem for Model Selection
	1.. Introduction
	2.. The Setup of the Problem
	3.. BIC
	4.. Forster and Sober's Solution
	5.. Our Solution
	7.. Too Many Models
	8.. Concluding Remarks
	References


