
ANZIAMJ. 43(2002), 513-524

FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR
GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN
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Abstract

For a three-dimensional gravity capillary wave packet in the presence of a thin thermocline
in deep water two coupled nonlinear evolution equations correct to fourth order in wave
steepness are obtained. Reducing these two equations to a single equation for oblique plane
wave perturbation, the stability of a uniform gravity-capillary wave train is investigated.
The stability and instability regions are identified. Expressions for the maximum growth
rate of instability and the wavenumber at marginal stability are obtained. The results are
shown graphically.

1. Introduction

Coherent interactions of two surface waves and one internal wave have been investi-
gated by Ball [1], Thorpe [24], Watson, West and Cohen [25] and others. Olbers and
Herterich [21] have given a mechanism for the generation of internal waves through
their coupling with surface waves, in which they used the theoretical model of Has-
selman [14] for incoherent three wave interaction. The resonant interaction between
long internal waves and surface waves has been studied by Funakoshi and Oikawa
[11] and Ma [19]. The problem of the influence of internal waves on surface waves
was investigated by Das [4], Rizk and Ko [22] and very recently by Bhattacharyya
and Das [2]. In [2], the authors studied the nonlinear evolution of a three-dimensional
surface gravity wave packet in the presence of a thin thermocline. They also derived
fourth order nonlinear evolution equations to study the stability of a uniform surface
gravity wave train. Dysthe [9] first showed that a fourth order nonlinear evolution
equation is a good starting point for the study of the stability of surface waves in deep
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water. Since then many authors [3,6-8,12,13,15,16,23] have derived fourth order
non-linear evolution equations in different contexts.

A study, similar to that made by Bhattacharyya and Das [2] for surface gravity
waves, is made in the present paper for gravity-capillary waves in the presence of a
thin thermocline. Two coupled nonlinear evolution equations correct to fourth order
in wave steepness are derived for gravity-capillary waves. Assuming that the space
variation of the amplitudes takes place along a line making an arbitrary fixed angle
with the direction of propagation of the wave packet, the two coupled equations are
reduced to a single equation. This single nonlinear evolution equation is employed
in studying the stability of a uniform gravity-capillary wave train. The instability
conditions are deduced. It is found that there exists instability for sufficiently short and
sufficiently long waves. The regions of instability are shown in Figure 1. Expressions
are obtained for the maximum growth rate of instability and for the wave number at
marginal stability. Both these expressions have been plotted against wave steepness for
different values of thermocline depth and perturbation angle. In the long wavelength
region of instability, the maximum growth rate of instability is found to decrease with
an increase in thermocline depth. But this effect is reversed in the short wavelength
region of instability with very little increase in thermocline depth.

The paper is organised as follows. Basic equations are given in Section 2. The
evolution equations are derived in Section 3. Stability of a uniform wave train is
investigated in Section 4. Finally a conclusion is given in Section 5.

2. Basic equations

Following Bhattacharyya and Das [2] the velocity potential </> and free surface
elevation £ are broken up into two parts as follows:

4> = <po + <Pu £ = £o + £i (1)

where (</>0,£o) and (0i,£i) correspond to the internal and gravity-capillary waves
respectively.

The following are the equations for 0i and £i in which we disregard the existence
of the thermocline. Since capillary-gravity and internal waves interact nonlinearly,
in the following we keep full expressions for <p and £ in the nonlinear terms without
breaking:

V20i = 0 , -oo < z < f,

^ = (V^).(V^), atz = £,at
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-3 /2

V

as z -*• —oo.

Here VA is the horizontal gradient operator, g is the acceleration due to gravity and v
is the ratio of the surface tension T to the water density.

Assuming that the thermocline is confined between two planes z = — d + 8 and
z = —d — 8, where the thermocline thickness 28 is small, the equation for <p0 and
4>'o, the velocity potentials above and below the thermocline respectively, can be
written as follows [10]. The terms responsible for long wavelength internal waves are
assumed to be sufficiently small and so their product and higher degree terms have
been neglected [10]:

V20o = 0, -d + 8 < z < f,

V2#, = 0, -oo <z < -d-8,

_d_s, (2)

^ V u > + N(z)Vlw = 0, -d-8 <z<-d + S, (3)
at2

d<p'0/dz -*• 0, as z -*• —oo,

where N2(z) = —(gdp/dz)/p is the square of the Brunt-Vaisala frequency. In
deriving (3) two more realistic assumptions have been made. These are the Boussinesq
approximation and the neglect of nonlinear terms, the latter being due to the sufficiently
small amplitude of long internal waves.

Since we assume that the thickness of the thermocline is small, (2) and (3) are
replaced by equations obtained from them by approaching the limit 8 -*• 0.

The equation obtained from (2) by approaching the limit 8 -*• 0 is

If we integrate (3) with respect to z between the limits — d — 8 to — d + 8 and then
proceed to the limit 8 -*• 0 we get
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where Sp — p(—d — 0) — p(—d + 0) is the density increase through the thermocline.

3. Derivation of evolution equations

Following the standard multiple scale method we expand <j> and f given in (1) as
follows [4]:

4> =

where an asterisk denotes the complex conjugate; <f>0, <f>'Q, </>„, <\>*n are functions of
% = €(x — Cst), T) = ey,x = e2t, z; fo> £n> C are functions of £, rj, r ; r̂ = kx — cot.
Here e is a small parameter which measures the slowness of space-time variation of
the amplitude of different harmonics of the wave; co, k satisfy the following linear
dispersion relation of the gravity capillary wave and Cs = dco/dk is the group velocity

co2 = gk + vk3.

As in Bhattacharyya and Das [2] we get the following solutions for <j>n, (p0, <p'o:

cf>n = exp(zAn)i4n , 72 = 1 , 2 , . . . ,

V04>'o = CQeeh,

w h e r e A n i s a f u n c t i o n o f £ , rj, r ; A Q , B o , C o a r e f u n c t i o n s o f k$, kn, x;k = Jk2 + k2;

A n i s t h e o p e r a t o r

11/2

An =

operating on An; and 0O and 0O are the Fourier transforms of </>0 and <p'o respectively
given by

(V27TJ

Perturbation expansions of An, £„, E = Ao + Bo, F = AQ — Bo and ^0 are as follows
([4]):

j=n j=n
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j=n

The rest of the derivation process for the nonlinear evolution equations is similar to
that of Bhattacharyya and Das [2]. So following this procedure the following two
coupled nonlinear evolution equations are obtained for a gravity-capillary wave packet
in the presence of a thin thermocline:

(4)

where ^ = £u + etn, E — Ei + eE2, H is the two dimensional version of the Hilbert
transform given by

H* = ±- IT di-'dri H-=^-W, ij'), r = [($' - ?)2 + („' - nff2 ,
2.TC J J —no T

F = Sp/p, d = kd and the coefficients C, ,djyM are given by

«^3

A

, j
"3

3m2 + 6m - 1
8(1+m)2 '
(1 -m)(l+6m + m2)

16(1+ m)3

8 + m + 2m2

4(1 + m)(l - 2m) '
(1 -m)(8-|-m-|-2m2)

8(l+m)2( l-2m) '

r

A

M

l + 3m
4(1+ m)'
3 + 2m + 3m2

8(1+m)2 '
3(4W4 + 4 m 3 _ 9 m 2

4(l+m)2(l -
1 + m

(H-3m)2'

+ m-8)

2m) 2

vfc2

g

The two evolution equations (4) and (5) have been made dimensionless by intro-
ducing the following dimensionless quantities in primes and then finally dropping the
primes:

T ' = cor, £' = *§ , »j' = ikij, £" = (2

In the absence of a thermocline (5) reduces to
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Eliminating 3E/9£ between (4) and (6) we get a single nonlinear evolution equation
for a gravity-capillary wave packet in deep water in the absence of a thermocline,
and this equation when compared with (2.20) of Hogan [15] provides a check on our
computation.

Since the coefficients du d2, d3 of the evolution equation (4) contain the factor
1 — 2m in their denominators, the two coupled evolution equations (4) and (5) do not
remain valid when m = 1/2. This corresponds to the second harmonic resonance,
which was considered in detail by McGoldrick [20].

Now to reduce the two coupled equations (4) and (5) to a single equation we
assume the space variation of the amplitudes takes place in a direction making an
arbitrary angle 9 with the direction of propagation of the wave. We then transform the
horizontal co-ordinates £, TJ into the new co-ordinates £', v[ according to the relations

£' = f cos# + rjsin9, r\ = — £ sin0 + rjcosO,

and then assume that £, E depend on £' only and not on T)'. Then following the same
procedure as in Bhattacharyya and Das [2], we arrive at the following single nonlinear
evolution equation for gravity capillary waves in deep water in the presence of a thin
thermocline, where we drop primes on f:

(7)

where

A!

A3

By

" r f l

= d3

= c,

8FM cos2 9
1

cos20-4rJM '

cos 9,

cos2 9+ C2sin29,

A2

A4

B2

— d2cos9,

2cos40

cos2 9 - 4TdM '
= C3 cos3 6 + C4 cos 0 sin2 0.

Since cos20 - 4FdM is a factor of the denominators of A] and A4, the evolution
equation (7) does not remain valid when cos2 9 — 4TdM = 0. This is the resonance
condition and is satisfied when the component of group velocity of the gravity-
capillary wave along a line making an angle 9 with the direction of the propagation
wave becomes equal to the phase velocity of the long internal wave. These resonance
curves in the {m, 9)-plane for some different values of thermocline depths have been
drawn in Figure 1. Further since the evolution equation (7) has been derived on
the assumption that d is finite, the evolution equation does not also remain valid for
d -*• oo .
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FIGURE 1. Regions of instability in the (m, 0)-plane: instability occurs in the shaded areas. Resonance
curves are indicated by a dashed line.

4. Stability of uniform wave trains

We consider the stability of a Stokes wave train taken in the form

which is a uniform wave train solution of the evolution equation (7). Consequently
Aco = AIOQ. where ao is a real constant and is the wave steepness. Thus Aco is the
amplitude dependent frequency-shift and it changes sign across m — 1/2.

Now to make a stability analysis of the Stokes wave train, we consider the following
perturbation of the uniform solution:

v v(0)["i i yth f\\ /Q\

s = C L1 +?(?> r)J- W

Substituting (8) into the evolution equation (7), linearizing with respect to I, £* and
then separating into real and imaginary parts after setting £ = £r + /£,-> £r and £, being
real, we arrive at the two equations for £r and £,. Finally taking Fourier transforms of
these two equations with respect to £, we get the following two equations:

3(6)
' 3r

(9)

or
W = 0, (10)
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where (£r) and (£,) denote Fourier transforms of £r and £,• respectively defined by

The following nonlinear dispersion relation is now obtained from (9) and (10) by
assuming that the T dependence of (fr) and (£,) is of the form exp(—i

Q = -fop - A2a
2

0l ± [frlHfal2 + 2A,a2 - 2A4a0
2|/|)]1/2. (11)

In this nonlinear dispersion relation order e5 terms have been neglected, since the
nonlinear evolution equation (7), from which this dispersion relation has been derived,
is correct up to order e4 terms.

The nonlinear dispersion relation (11) shows that there is instability if

and this is possible when the wavenumber of perturbation satisfies the inequality

where

lr = aoJ-lkjK + A4a
2/0,. (12)

In the case where there is instability, the maximum growth rate of instability is given
by

(13)

and this maximum occurs at the wavenumber of perturbation lM given by

IM = W - A . / 0 , + 3A4ao740,.

From the expression of lr given by (12) we find that there is instability if Ai and f}x

have opposite signs. In the (6, w)-plane P\ changes sign accross the curve fi\ = 0 and
due to the smallness of F, A] changes sign only across the line m — 1/2. We can thus
identify the regions in this plane where there are instabilities. These unstable regions
in the (9, m)-plane when m = (k/kc)

2 ait shown in Figure 1. In this figure the curves
cos2 9 — ATdM = 0 are drawn for some different values of thermocline depth d. Our
analysis of stability does not remain valid in the neighbourhood of these lines. For
any particular value of 9, we get two ranges of m, (i) 0 < m < m0 and (ii) m > 1/2
for which there are instabilities. Here m0 depends on 9. For 9 = 35.25°, m0 = 0,
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FIGURE 2. Maximum growth rate YM against wave steepness ao for some values of 9, m and d.
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FIGURE 3. Wave number of perturbation lr at marginal stability against wave steepness Oo for some values

of B,m andd.

that is, for d > 35.25°, there is only one range of m namely m > 1/2 for which there
is instability. For Q = 0°, we easily find that m0 = (2/V3 - 1) as calculated by

Hogan [15].
For numerical computation we have taken T = 10~3, which is the case for a

seasonal thermocline. The maximum growth rate of instability yM given by_(13) has
been plotted against wave steepness ao for some different values of m,9,d. These
are shown in Figures 2 (aHh). From these graphs it is seen that in the instability
regions for which 0 < m < m0, the growth rate of instability yM decreases with an
increase in thermocline depth d. But in the instability region for which m > 1/2, the
increase in thermocline depth causes a slight increase in Yu, that is, the thermocline
depth has negligible influence on the growth rate of instability of sufficiently short
gravity capillary waves.

We have also plotted the perturbation wave number lr at marginal stability given
by (12) against the wave steepness ao for some diferent values of m, 9, d, showing
stable-unstable regions in the (oo, /)-plane. These are shown in Figures 3 (aMd).
From these graphs we find that for comparatively long gravity-capillary waves for
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which 0 < m < m0, the unstable region in the (ao, /)-plane shrinks considerably
with an increase in thermocline depth. But this effect is negligibly small and exactly
opposite to that for sufficiently short waves for which m > 1/2.

5. Conclusion

It has been pointed out by Dysthe [9] that a fourth order nonlinear evolution equation
is a good starting point for the study of the stability of uniform wave trains in deep
water since this gives results consistent with the exact results of Longuet-Higgins
[17,18]. In view of this we have derived two coupled nonlinear evolution equations
in order to study the stability of a uniform gravity-capillary wave train in deep water
in the presence of a thin thermocline. These two coupled equations are reduced
to a single equation under the assumption that the space variation of the amplitude
takes place in an arbitrary fixed direction. This single equation does not remain valid
(i) when the component of group velocity of the gravity-capillary wave along the
direction of perturbation becomes equal to the phase velocity of the long wavelength
internal wave and (ii) when there is a second harmonic resonance. From the single
nonlinear evolution equation the instability condition for a uniform gravity-capillary
wave train is derived. We find two regions of instabilty in the (m, #)-plane, where
m is the square of the ratio of k (the wavenumber of the gravity-capillary wave)
and kc = ^/g/v and 6 is the angle made by the direction of perturbation with the
direction of propagation of the gravity-capillary wave train. These two regions of
instability have been shown in Figure 1. One of the two regions corresponds to waves
of sufficiently short wavelength and the other corresponds to waves of sufficiently
long wavelength. Both the maximum growth rate of instability and the wavenumber
at marginal stability have been plotted against wave steepness ao for some different
values of thermocline depth and m. The latter graphs give stable-unstable regions
in the (ao, /)-plane, where / is the perturbation wavenumber. The unstable region
in this plane is found to shrink with an increase in thermocline depth in the long
wavelength region of instability. But this effect gets reversed in the short wavelength
region of instability and is very little influenced by an increase in thermocline depth.
Similar results are observed for the maximum growth rate of instability, as this is
found to decrease with an increase in thermocline depth in the long wavelength region
of instability. In the short wavelength region of instability an increase in thermocline
depth causes a slight increase in the maximum growth rate of instability.
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