
Article

Evolutionary Trends of Polygenic Scores in European Populations
From the Paleolithic to Modern Times

Davide Piffer and Emil O. W. Kirkegaard
Independent Scholars

Abstract

This study examines the temporal and geographical evolution of polygenic scores (PGSs) across cognitive measures (Educational Attainment
[EA], Intelligence Quotient [IQ]), Socioeconomic Status (SES), and psychiatric conditions (Autism Spectrum Disorder [ASD], schizophrenia
[SCZ]) in various populations. Our findings indicate positive directional selection for EA, IQ, and SES traits over the past 12,000 years.
Schizophrenia and autism, while similar, showed different temporal patterns, aligning with theories suggesting they are psychological
opposites. We observed a decline in PGS for neuroticism and depression, likely due to their genetic correlations and pleiotropic effects on
intelligence. Significant PGS shifts from the Upper Paleolithic to the Neolithic periods suggest lifestyle and cognitive demand changes,
particularly during the Neolithic Revolution. The study supports a mild hypothesis of Gregory Clark’s model, showing a noticeable rise in
genetic propensities for intelligence, academic achievement and professional status across Europe from the Middle Ages to the present. While
latitude strongly influenced height, its impact on schizophrenia and autism was smaller and varied. Contrary to the cold winters theory, the
study found no significant correlation between latitude and intelligence.
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Modern Homo sapiens, having existed for approximately 200,000
to 300,000 years, developed foundational cognitive abilities well
before 12,000 years ago. The transition from hunter-gatherer
societies to agricultural and subsequently industrial societies
introduced changes that likely had significant impacts on cognitive
capacities and personality traits. The keymechanisms driving these
evolutionary changes include:

Neolithic Revolution. The shift to agriculture led to increased
population density and greater social complexity, which
necessitated more advanced planning and organizational skills.
This increase in socio-ecological complexity, paralleling
observations in nonhuman primates, likely catalyzed human
cognitive evolution (Shultz & Dunbar, 2022).

Specialization in labor. With the rise of more complex societies,
there emerged a division of labor and role specialization. This
development drove the evolution of a diverse range of cognitive
skills (Vásárhelyi & Scheuring, 2018).

Knowledge transmission. The adoption of a sedentary lifestyle
facilitated enhanced knowledge transfer across generations. This
dynamic favored individuals with superior cognitive skills,
particularly in innovation and learning (Henrich, 2015;
Tomasello, 2019).

Social complexity. Denser societies necessitated advanced social
interaction skills. According to the ‘Machiavellian Intelligence’

hypothesis, the social challenges inherent in complex societies
may have played a role in enhancing cognitive abilities (Byrne &
Whiten, 1988).

Language development. The formation of complex societies was
also conducive to the development of sophisticated languages,
which are closely intertwined with cognitive development
(Wray & Grace, 2007).

Disease and settlement. Permanent settlements increased expo-
sure to infectious diseases. This may have favored cognitive
adaptations that were crucial for survival in these new
environments (Diamond, 1997).

Education and written language. The accumulation of knowl-
edge, coupled with the development of written language, likely
reinforced cognitive abilities. This supported more structured
learning and formal education.

Collectively, these factors suggest a feedback loop wherein
cultural and societal advancements exerted a significant influence
on human cognitive evolution.

Woodley et al. (2017) presented direct empirical evidence
supporting this theory, revealing significantly higher PGSs in
contemporary Europeans compared to ancient individuals from 4.56
to 1.21 kyr BP. However, the study had limitations due to its small
sample size (N= 99). Kuijpers et al. (2022), with a larger sample of
ancient genomes, confirmed these findings and observed an evolu-
tionary acceleration post-Neolithic. Notably, their research depended
onwhat was then an older PGS for education fromOkbay et al. (2016).

Our study explores temporal variations in PGSs through an
enlarged dataset of ancient genomes. We utilize PGSs derived from
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GWAS for traits like educational attainment (EA), cognitive ability
and IQ, implementing the cutting-edge imputation tool,
GLIMPSE2 (Rubinacci et al., 2023). This tool is at the forefront
for imputing low coverage genomes, offering low error rates and
consistent accuracy across both ancient andmodern DNA samples
(Sousa da Mota et al., 2023).

Our analysis includes adjustments for ancestral background and
geographic location. This study expands upon Kuijpers et al. (2022)
by using a GWAS based on a much larger sample (3 million
individuals compared to 293,000) and focusing on different genetic
traits. Unlike Kuijpers et al., we exclude medical phenotypes like
lipoprotein levels and cardiovascular disease, instead incorporating
mental health traits such as neuroticism, autism and schizophrenia.
These were not examined in Kuijpers et al.’s study. Additionally, our
substantial collection of (post-)medieval genomes enables us to
explore more recent time trends. With a much larger sample size
(2625 compared to 827 genomes), our study offers a finer spatio-
temporal analysis of the genetic landscape.

The phenotypic level shows a negative correlation between
cognitive ability and risk for schizophrenia (Keefe, 2008). Cognitive
impairments in schizophrenia patients are distinct from their
clinical condition (Bilder et al., 2000; Glahn et al., 2007; Goldberg
et al., 2009; Gottesman & Gould, 2003; Lencz et al., 2006). These
impairments start in early childhood and persist before illness onset,
affecting educational achievement (Reichenberg et al., 2010; Snitz
et al., 2006). The molecular genetic level also shows an inverse
relationship with cognitive ability (Comes et al., 2019; Hill et al.,
2016; Lam et al., 2017; Lencz et al., 2014; Smeland et al., 2017).

We hypothesize an opposite temporal trend to cognitive ability,
with PGSs decreasing over time, supported by recent studies
(González-Peñas et al., 2023). A similar trend is hypothesized for
depression, negatively correlated to complex cognition (Cullen
et al., 2015; Lim et al., 2013; Snyder, 2013). Autism, especially high-
functioning autism or Asperger’s syndrome, is predicted to follow
a similar trend as IQ and EA (Grove et al., 2019). Urban societies
may have influenced the selection for autism-related traits while
presenting challenges for individuals with schizophrenia
(Lederbogen et al., 2011; Marcelis et al., 1999; van Os et al.,
2010). Modern societies may select against traits associated with
conditions like schizophrenia, contrasting with the value placed on
such traits in traditional societies.

Our access tomedieval genomes fromNorthwest Europe allows
us to evaluate Gregory Clark’s theory (Clark, 2017). Clark suggests
that the traits of the upper echelons in medieval England played a
role in the Industrial Revolution. We dissect this into two
hypotheses: a ‘strong’ hypothesis specific to England and a ‘weak’
hypothesis applicable across Europe. We will use a PGS of
occupational status from a recent GWAS (Akimova et al., 2023) as
our primary measure, along with IQ and educational achievement
as secondary measures, to examine the Cold Winters theory of
intelligence (Lynn, 1991, 2006).

Materials and Methods

PGSs were calculated using GWAS data drawn from various
studies. A recent large-scale genomewide association study
(GWAS) on height, involving a diverse sample of 4 million
individuals from multiple ancestries, identified 7209 loci linked to
height across 12,111 genomewide significant regions. To refine
these findings, we employed linkage disequilibrium (LD) clumping
with a threshold of LD< 0.1 and a significance level of p< 5e-8 on
the complete summary statistics from the multi-ancestry sample.

This process yielded a set of 13,645 single nucleotide poly-
morphisms (SNPs; Yengo et al., 2022). The GWAS summary
statistics for EA came from two distinct studies. One was a study by
Lee et al. (2018), which utilized a multitrait analysis of GWAS
(MTAG) comprising four phenotypes (years of education,
cognitive performance, self-reported math ability, highest math
class taken). This GWAS is commonly referred to as EA3 (Merz
et al., 2022), because it was preceded by two GWAS of EA (Okbay
et al., 2016; Rietveld et al., 2013).

The other was a recent GWAS on EA that relied on a sample of
approximately 3 million participants, employed for EA4 PGS
computations (Okbay et al., 2022). Only the lead SNPs with a
p value < 5 × 10^-8 were utilized in the analysis.

A recent schizophrenia (SCZ) GWAS by Trubetskoy et al.
(2022) identified 313 independent SNPs in the ‘primary’ GWAS
that were significant at a genomewide level (p< 5 × 10^-8) with a
LD of r^2< 0.1. The ‘combined’ GWAS results, which meta-
analyzed primary GWAS results with summary statistics from
deCODE genetics, identified 342 LD-independent significant
SNPs. This study, selected for its extensive, transracial GWAS
that embraced European, East Asian, African and Amerindian
ancestries, was used to calculate PGSs using both SNP sets
(‘primary’ and ‘combined’). The PGS derived from the combined
ancestry GWAS yielded a more profound explanatory insight than
its matched ancestry counterpart for non-European groups, likely
due to the latter’s reduced sample size, thus avoiding the use of
ancestry-specific GWAS summary statistics.

For autism, the largest GWAS of ASDwas employed (Grove et al.,
2019), which identified 88 top loci, 69 of which had p< 5 × 10^−8.
For depression, the most recent and extensive meta-analysis was used
(Als et al., 2023). After executing clumping (r^2= 0.1 within a 250 KB
window and p< 5 × 10^−8), 305 SNPs remained.

For neuroticism, we employed the most recent GWAS of a
general factor of neuroticism (Kim et al., 2023). The authors
identified the lead SNPs using a threshold that was less stringent
than the standard one (p< 10^−5 vs 5 × 10^−8) since their
analysis was powered with biological annotation. We chose to
adhere to this threshold because the number of SNPs below the
conventional one would have been insufficient (N = 19).

Concerning occupational status (SES), 106 genomewide
significant SNPs from the GWAS conducted on the UK
Biobank were used (Akimova et al., 2023). The analysis employing
the Cambridge Social Interaction and Stratification Scale
(CAMSIS) was preferred as it exhibited 50% higher heritability
and more significant SNPs (Akimova et al., 2023).

Metadata for ancient samples, including date, latitude,
longitude, and coverage, were amalgamated from 11 disparate
datasets; ENA numbers: PRJEB23635 (Olalde et al., 2018),
PRJEB50940 (Fischer et al., 2022), PRJEB51862 (Posth et al.,
2023), PRJEB56216 (Skourtanioti et al., 2023), PRJEB31249 (Brace
et al., 2019), PRJEB42866 (Posth et al., 2021), PRJEB54831
(Lazaridis et al., 2022), PRJEB32566 (Antonio et al., 2019),
PRJEB54899 (Gretzinger et al., 2022), PRJEB61818 (Rivollat et al.,
2023), PRJEB37976 (Margaryan et al., 2020), available at the
European Nucleotide Archive. These datasets were individually
loaded, row-bound, and compiled into a comprehensive file. In
summary, the datasets encompassed 2625 genomes, with dates
extending from 32.6 K to 246 years BP (before present).

The allele frequencies were computed using Plink 2.0 (Chang
et al., 2015; Purcell & Chang, 2023), while R 4.1.2 (R Core Team,
2021) was employed for calculating PGSs and conducting
subsequent statistical analyses.
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Incorporation of Contemporary Genomes

Contemporary genomes belonging to the EUR super-population
(N= 503) were incorporated from the 1000 Genomes (The 1000
Genomes Project Consortium, 2015) dataset to facilitate a
comparative analysis between ancient and present-day genetic
architectures.

Genome Imputation

The ancient genomes were imputed using GLIMPSE2, using 1000
Genomes Project phase3 as reference panel (http://ftp.1000
genomes.ebi.ac.uk/vol1/ftp/release/20130502/). For this, raw
sequence data in .bam format were processed to generate imputed
genotypes. The imputation process aimed to infer missing genotypic
information and provide a more comprehensive set of genetic
variants for each individual.

Data Transformation

In our analysis, we combined GWAS summary statistics with allele
frequency information based on SNP identifiers (chr:pos). SNPs
that did not overlap between datasets were excluded. We then
compared the GWAS effect allele (A1) with the allele data to
ascertain whether it corresponded with the reference (REF) or
alternative (ALT) allele in the 1000 Genomes Project (1KG). We
computed a weighted PGS, which we refer to as the Genetic Value
Score (GVS), for each SNP, taking into account its allele frequency
and effect size (beta). Following this, a merged dataset was
constructed containing one PGS value for each individual by
taking the average GVS across all SNPs. The individual’s data were
then augmented with additional attributes, including their dataset
source and other relevant metadata, extracted using a custom
string parsing function.

Admixture Analysis

Admixture components for the samples were computed using
ADMIXTURE software (Alexander et al., 2009), a powerful tool for
estimating individual ancestries from multilocus SNP genotype
datasets. The ADMIXTURE analysis works by decomposing
genotype data of each individual into fractions representing
potential ancestral populations.

The analysis explored various models, and the one with the
lowest cross-validation (CV) error incorporated five components.
The selection of five ancestral populations (K) was based on
rigorous cross-validation. The model with five components
emerged as having the lowest CV, indicating that it best captures
the underlying structure of our dataset without overfitting. Thus, in
the analysis that follows, we rely on this five-component model to
interpret our population’s genetic ancestry.

Admixture data was merged with the PGS dataset in R by
organizing individuals based on their FAM identifiers.

Statistical Analysis

The association between PGS and different population groups was
evaluated using an analysis of variance (ANOVA). Additionally, a
correlation analysis was conducted to examine the relationship
between the PGS values and their corresponding dates, expressed
as Years BP.

Regression analyses were carried out to investigate the effects of
various predictors on PGS values. The first regression model
included Date and Population, the second added Coverage as a

covariate, the third introduced geographic variables (Latitude and
Longitude) to the predictors, and the fourth introduced ancestry
components estimated with ADMIXTURE.

In our regression analysis, we aimed to include the five ancestry
components estimated by ADMIXTURE as predictors. However,
since the ancestry proportions output by ADMIXTURE sum to 1
for each individual, including all five components introduces a
situation of perfect multicollinearity. This means that the value of
one component can be perfectly predicted from the values of the
others, leading to computational difficulties and unstable
coefficient estimates in the regression model. To circumvent this
issue, and based on standard analytical practices in such situations,
we opted to include only four of the five components in the model.
By doing this, the effect of the dropped component is effectively
absorbed into the intercept of the regression, and the coefficients of
the included components are interpreted relative to it. This
adjustment ensures a more stable and interpretable model without
compromising the integrity of our analysis.

The analysis centers on the Holocene epoch, spanning the last
12,000 years, which is believed to have driven significant
evolutionary shifts in humans. Dietary shifts, lifestyle alterations,
selection pressures, and migrations during this time are evidenced
to have profoundly transformed the genetic and physical traits of
West Eurasians (Irving-Pease et al., 2024). Sparse genomic data
available for prior periods also contributes to the emphasis on this
timeframe.

Results

General Results

After utilizing the conventional GWAS significance threshold as
the p value cut-off (5*10^-8), the GWAS summaries for EA3, EA4,
SCZ, IQ, height and autism exhibited SNP counts of 3269, 3951,
342, 241, 3779 and 69 respectively. After merging with the allele
frequency file, the SNPs matches and matching rates were 3269
(100% for EA3), 3936 (99.6% for EA4), 333 (97.4% for SCZ), 239
(99.2% for IQ), 3775 (99.9% for height), and 56 (81.15% for
autism). For neuroticism and depression, match rates were 100%
(139/139 and 305/305 respectively), and 99% for SES (105/106).

The ADMIXTURE plot (Figure 1a) shows each individual’s
ancestry proportions. Each individual is represented by a vertical
bar, divided into colored segments. The length of each segment
shows the proportion of the individual’s genome that comes from
each ancestral population. By analyzing the plot, we can discern
patterns of population structure and admixture. The ancestry
components can also be visualized by group (Figure 1b).

Recent consensus identifies three major sources of ancestry for
European populations: (a) Mesolithic European hunter-gatherer
(HG) ancestry, (b) Anatolian farmer ancestry from Neolithic Near
East farmers, and (c) Steppe pastoralist ancestry from Yamnaya
pastoralists of Russia and Ukraine (Allentoft et al., 2015; Haak
et al., 2010; Mathieson et al., 2018; Skoglund et al., 2014).

Further analyses differentiate HG ancestry into Eastern and
Western HG, which reveal Caucasus hunter-gatherers (CHG)
from Georgia linked to Iran’s first farmers, and identify a cluster
(GoyetQ2) tied to Spain and Portugal’s Magdalenian culture
(Chintalapati et al., 2022).

The five ADMIXTURE components potentially represent: V1—
West Asian/Iranian ancestry, V2 — Western European Hunter-
Gatherer (WHG), V3 — Eastern European Hunter-Gatherer
(EHG), V4 — Near Eastern Ancestry, V5 — Anatolian/European
Neolithic farmer.
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EHG is often considered a proxy for Yamnaya ancestry, with
these terms frequently used interchangeably in literature (Racimo
et al., 2020).

EA3 and EA4

Both EA3 and EA4 showed strong negative correlations with
chronological age, indicating a significant shift in EA over time. For
EA3, the correlation was r= −0.286 for all samples (p< 2.2 × 10−16,
N= 2431 post-outlier removal), and for samples aged under 12,000
years with N= 2393, r = −0.305. ANOVA tests yielded highly
significant differences in EA3 and EA4 across population groups
(p= 5.76e-60, Ω2= 0.152 and p= 2.18e-108, Ω²= 0.235).

EA4 displayed a correlation with age of −0.338 (p< 2.2e-16),
and for samples aged under 12,000 years, r = −0.313.

Regression models showed a significant effect of Years BP on
EA3 and EA4 (p< 0.001). Specifically, the models that included
Coverage had coefficients of -0.301 for EA3 and −0.359 for EA4.
When Latitude and Longitude were added, these coefficients
changed to−0.289 for EA3 and−0.324 for EA4. In the models that
incorporated ancestry information, the coefficients further
adjusted to −0.127 for EA3 and −0.141 for EA4, as detailed in
Supplementary Tables S1 and S2.

Analysis by historical or archaeological periods and
comparison with contemporary Europeans. Historical analysis
showed a pronounced rise in EA3 from theUpper Paleolithic to the
Neolithic with other minor increases (Supplementary Figure S1)
Cohen’s d between the Neolithic and Upper Paleolithic was 1.176
(p < .001), indicating a large effect size, between Iron Age and
Bronze Age was 0.478 (p < .001), and between contemporary and
medieval was 0.396 (p < .001).

EA4’s historical trend was similar to EA3 but included a
decrease from the Neolithic to the Bronze Age (Supplementary
Figure S2). Cohen’s d for EA4 between the Neolithic and Upper
Paleolithic was 1.616 (p < .001), between Copper Age and
Neolithic was −0.410 (p = 0.035), between Iron Age and Bronze
Age was 0.825 (p< .001), and between contemporary andmedieval
was 0.534 (p < .001).

IQ PGS

Correlation analysis showed that IQ PGSs negatively correlated
with Years BP (r = −.19, p< 2.2 × 10−16 overall; r = −.178 for
samples under 12,000 years, p< 2.2× 10−16). Regressionmodels, as
detailed in Supplementary Table S3, support these findings.

Regression analyses indicated a significant effect of Years BP on
IQ (p < .001). Specifically, the models that included Coverage had
coefficients of −.209. When Latitude and Longitude were added,
the coefficient changed to −.199. In the model that incorporated
ancestry information, the coefficient further adjusted to −0.111
(Supplementary Table 3S).

Analysis by historical or archaeological periods and
comparison with contemporary Europeans. The most pro-
nounced rise in IQ PGS occurred from the Upper Paleolithic to the
Neolithic, complemented by minor surges from the Bronze Age to
the Iron Age, and from theMiddle Ages to modern-day Europeans
(Suppementary Figure S3).Tukey’s post-hoc test indicated signifi-
cant differences between adjacent time periods. Notably, Cohen’s d
between the Neolithic and Upper Paleolithic was 1.09 (p < .001),
and between the contemporary and medieval periods was 0.313
(p < .001). No significant differences were observed in other
comparisons.

Figure 1a. Admixture plot (K = 5).
The ancestry components can also be visualized by group (1b).
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These Cohen’s d values suggest a substantial increase in IQ from
the Upper Paleolithic to the Neolithic, with a smaller but still
significant rise from the Middle Ages to the present.

Similar trends for EA and IQ. The correlation between Years BP
and PGSs can be visualized in a scatterplot (Figure 2). Similar
evolutionary trajectories were observed for EA3, EA4 and IQ. Since
the data becomemuch less dense before 12 Kya, the data older than
that date are omitted.

Figure 3 shows the correlation between Years BP and the
cognitive variable in the full sample (including the oldest genomes).

Fitting a nonlinear model. Second-degree polynomial models,
fitted to explore the relationship between EA3 and EA4 PGSs and
Years BP, showed a superior fit and high significance compared to
linear models.

In the polynomial models, both first-degree (EA3 = −14.07 and
EA4 = −15.08, p< 2 × 10−16) and second-degree (EA3 = −2.95,
p= .007; EA4=−3.41, p< .001) termswere highly significant for EA3
and EA4.

Comparison with linear models demonstrated that the
quadratic models provided a significantly better fit for both
EA3 (p = .007) and EA4 (p < .001).For IQ, the quadratic model
showed a better yet marginally significant fit (p < .001),
suggesting a potential nonlinear relationship warranting further
investigation.

These results indicate a complex relationship between Years BP
and PGSs for EA, which could not be adequately captured by linear
models. The significantly better fit of the quadratic models suggests
that the effect of Years BP on EA PGSs has both linear and
quadratic components.

Increase in SDs per 1K years. The average rate of change in
standardized PGS (Z) per century, correlated with Years BP, was
calculated using the slope formula from a simple linear
regression (b = r × s_Y/s_X), adjusted to a per-millennium
scale. Here, r is the correlation coefficient between PGS and age
in years BP, s_Y is the standard deviation of the z scores, and s_X
is the standard deviation of age. To adapt this to a per-century
scale, b was multiplied by 1000. The resulting value, ‘b per

Figure 1b. Ancestry components by group.
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millenium’, quantifies the average change in the standardized
variable z per 1000 years, providing a robust metric to
understand long-term trends in the data. The values were
0.14 for EA3 and EA4 and 0.084 for IQ. This translates to an
increase of approximately 0.12 SDs per millennium, suggesting
that cognitive ability PGSs were around 1.2 SDs lower 10,000
years ago than today.

Autism and Schizophrenia

Analysis of PGS values for ASD and SCZ revealed contrasting
trends over chronological age. ASD exhibited a negative
correlation with Years BP (r = −.082, p= 8.995e-05 overall;
r = −.068, p = .001 for samples under 12,000 years; see Figure 4).

Conversely, SCZ showed a positive correlation with age
(r = .151, p= 8.828e-14 overall; r = .165, p< 3.709e-16 for
samples under 12,000 years; see Figure 5).

For ASD, the models that included Coverage had coefficients of
−0.097. When Latitude and Longitude were added, the coefficient
changed to -0.084. In the model that incorporated ancestry
information, Years BP had no significant effect (β = −0.014,
p = .551). (Supplementary Table S4).

The effect of Years BP on SCZ was significant (p < .001) in
regression models with Coverage (β = 0.144), with Latitude þ
Longitude (β= 0.131) but not with ancestry (β= 0.025, p = .243;
Supplementary Table S5).

Analysis by historical/archaeological periods and comparison
with contemporary Europeans. ASD PGS significantly increased
from the medieval to the contemporary period (d= 0.29, p < .001;
Supplementary Figure S4).

SCZ had a notable decrease in PGS from the Bronze to the Iron
Age. Significant Cohen’s d values were observed: −0.448 (p< .001)
between the Bronze and Iron Age, and−0.337 (p< 0.001) from the
medieval to contemporary periods (Supplementary Figure S5).

Depression and Neuroticism

For both depression and neuroticism PGS, positive correlations
were observed with chronological age. Depression PGS correlated
positively with age (r = .128, p= 2.572e-10 overall; r = .160,
p= 2.842e-15 for samples under 12,000 years; see Figure 6).

Neuroticism PGS also positively correlated with age (r = .109,
p= 9.404e-08 overall; r = .115, p= 1.557e-08 for samples under
12,000 years; see Figure 7). Regressionmodels showed that Years BP
significantly affected depressionPGS, with beta values of 0.133 in the
model including Coverage and 0.153 in the models with Latitude
and Longitude. After controlling for ancestry, however, the effect
was reduced (β= 0.062, p = .011, Supplementary Table S6).

For neuroticism, Years BP had a significant effect in models
with Coverage (β= 0.116) and Latitude þ Longitude (β= 0.100),
but it was reduced in the model with Ancestry (β = 0.053, p =.477;
Table S7).

Figure 2. Temporal trends for EA3, EA4 and IQ
PGS.
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Figure 4. Temporal trend of ASD PGS.

Figure 3. Temporal trend for EA and IQ PGS
including samples >12K BP.
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Figure 5. Temporal trend of Schizophrenia PGS.

Figure 6. Temporal trend of Depression PGS.
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Analysis by historical/archaeological periods and comparison
with contemporary Europeans. Depression PGS generally
decreased across historical period. Tukey’s post-hoc test showed
a significant difference between contemporary and medieval
periods (Cohen’s d = −0.191, p = .018, Supplementary
Figure S6).

Neuroticism PGS showed significant differences observed in
the Iron Age to Bronze Age (Cohen’s d = −0.346; p = 0.041) and
contemporary to medieval periods (Cohen’s d = −0.95, p = .009;
Supplementary Figure S7).

Occupational Status

Correlation analysis of SES PGS with age yielded a correlation
coefficient of r = −.136 for all samples (p= 1.523e-11) and
r = −.125 for samples younger than 12,000 years (p= 8.094e-10).
These findings are further supported by regression models detailed
in Supplementary Table S8, and the temporal trends in SES PGS
can be visualized in Figure 8.

The effect of Years BP on SES was significant (p < .001) in
regression models with Coverage (β= −0.146), with Latitude þ
Longitude (β = −0.148) and with ancestry (β = −0.087)
(Supplementary Table S8).

Analysis by historical or archaeological periods and
comparison with contemporary Europeans. Tukey’s post-hoc
test revealed significant differences between Upper Paleolithic and
Neolithic (Cohen’s d= 0.843, p< .001) and between contemporary

and medieval (Cohen’s d= 0.202, p = .005) (Supplementary
Figure S8).

Anthropometric Traits (Height and Intracranial Volume)

Height. Height PGS negatively correlated with age (r = −.296,
p< 2.2 × 10−16 for all samples; r = −.416, p< 2.2 × 10−16 for
samples under 12,000 years, N = 2393 post-outlier exclusion).
Figure 9 illustrates the relationship between Height PGS and
Years BP.

Regressionmodels indicated a significant impact of Years BP on
Height PGS, with coefficients of −.31 in the model including
coverage, −.22 in the model with Latitude and Longitude, and
−.095 in the model including Ancestry (p = .002 for Ancestry;
Supplementary Table S9).

Analysis by historical/archaeological periods and comparison
with contemporary Europeans. The most pronounced decrease
in Height PGS occurred from the Paleolithic to the Neolithic
(Supplementary Figure S9). This fits the archaeological record of a
reduction in stature in the bones of Neolithic farmers compared to
Paleolithic foragers (Mummert et al., 2011).

Tukey’s post-hoc test revealed significant differences. Reporting
only the adjacent time periods, the standardized effect size
(Cohen’s d) between the Neolithic and the Paleolithic was −1.21
(p < .001), between Copper Age and Neolithic = 0.851 (p < .001),
between medieval and Imperial = 1.353 (p < .001), between
contemporary and medieval = −0.774 (p < .001). The other
differences were not significant.

Figure 7. Temporal trend of Neuroticism PGS.
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Intracranial volume. The correlation analysis between ICV PGS
and Years BP showed a coefficient of r = −.077 for all samples
(p< 8.63 × 10−6). For samples younger than 12,000 years with a
sample size of N= 2394 after outlier exclusion, the coefficient was
r = −.078 (p< 9.62 × 10−5). The relationship between ICV PGS
and Years BP can be visualized in Figure 10.

The effect of Years BP on ICV was significant (p < .001) in
regression models with Coverage (β= -0.080), and with Latitudeþ
Longitude (β = −0.063), but not with ancestry (β = −0.013,
p = .580) (Supplementary Table S10).

Analysis by historical/archaeological periods and comparison
with contemporary Europeans. Overall, there were no sharp
shifts in the ICV PGS. In stark contrast to EA and IQ, there was a
small decrease from the Upper Paleolithic to the Neolithic period
(Fig. S9). This fits the archaeological record of a reduction in
cranial capacity during the transition from the Pleistocene to the
Holocene (Stibel, 2021).

Tukey’s post-hoc test revealed a significant difference between
Upper Paleolithic and Neolithic (−0.417, p = .014) and between
contemporary and medieval = −0.169 (p = .048). This recent
decrease in ICV PGS is in line with the brain size reduction over the
last 3000 years reconstructed from fossil data (DeSilva et al., 2021).

Testing Clark’s Model

Our data supports Clark’s model’s weak hypothesis, suggesting a
widespread increase across Europe in genetic predispositions for
intelligence and EA traits. Comparing contemporary and
medieval Europeans, we observed increases in EA3 (Cohen’s

d = 0.389, p < .001), EA4 (Cohen’s d = 0.537, p < .001), IQ PGS
(Cohen’s d = 0.31, p < .001), and SES (Cohen’s d = 0.201). This
trend is notable, considering no significant increases in these
traits since the Iron Age, as delineated by historical period
analysis (Figures 2, 4, 6).

Our analysis included a sizable dataset of 467 genomes from five
Northwestern European populations, spanning Late Antiquity to
the Middle Ages (277 to 1175 CE). A one-way ANOVA showed no
significant differences between groups for EA3, IQ, and SES, with
the exception of EA4 showing significant variation (EA4:
Omega2 = 0.072, p= 7.49e-08).

In a focused analysis on Great Britain, comparing medieval
English to contemporary British genomes revealed effect sizes for
EA3, EA4, IQ, and SES as follows: 0.195, 0.494, 0.389, and 0.140,
respectively (Figure 11). These magnitudes are similar or smaller
than those observed in the broader sample, not supporting Clark’s
strong hypothesis.

Temporal trends in South-East Europe. Our dataset comprised
a large sample (N= 767) from Southeastern Europe and Anatolia
(Lazaridis et al., 2022). This allowed us to run a separate analysis
for this region for the two main cognitive phenotypes (EA3, EA4).
We found a significant negative correlation between EA3 and
Years BP (r = −.185, p= 2.644e-07) (Figure S11). Regression
results supported the effect of Years BP (β = −0.11) after
accounting for the first 10 principal components (PCs) and
coverage’s effect was not significant (β = −0.04, p = .41). A similar
correlation with Years BP was found for EA4 (r = −.22)
(Supplementary Figure S12). The effect was reduced but still

Figure 8. Temporal trend of SES PGS.
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significant (β=−0.11) in the regressionmodel with the first 10 PCs
and coverage had no significant effect (β = −0.04, p = .19).

Height PGS in NW Europeans. Height PGS computed for five
Northwestern European populations showed significant
differences (Omega2= 0.004, p= 7.96e-05) via one-way ANOVA.

Cohen’s d for height differences between medieval England and
contemporary Britain was −0.477, with a range of −0.703
to −0.251.

Height PGS was calculated for all cultural groups, excluding
groups with fewer than 10 individuals (N < 10). To address small
sample sizes, neighboring populations were merged (e.g.,
Etruscans and Republican Rome into Iron Age Italy; BA
Scotland, BA England, and BA Wales into BA Britain).

This analysis indicated medieval Northwestern Europeans,
particularly the Dutch, exhibited the highest height PGS, followed
by English and Viking samples (Supplementary Figure S13).
Conversely, European Neolithic farmers recorded the lowest
height PGS.

EA3, EA4 and IQ by historical culture. An analysis of average
PGS by historical culture was carried out for the three main
cognitive PGSs (EA3, EA4, IQ). The overall rankings were quite
similar, with lowest scores for hunter-gatherers, Neolithic Middle
Easterners and Copper Age Iberians and highest for Iron Age and
medieval Italy (Supplementary Figures S14, S15, S16). The same
analysis was repeated for the other polygenic scores and the results
are visualized in Supplementary Figures S17−S22.

Correlations between PGSs at the individual and group level
(historical culture). We computed the intercorrelations between
all the PGSs at the individual level (Supplementary Figure S23).

The mean PGS for the traits were computed for each historical
culture group and the group-level correlations were computed.
These tended to have similar direction, but larger magnitude
(Figure 12), than the individual-level correlations.

Discussion

This study’s examination of PGSs across cognitive, psychiatric and
physical traits reveals distinct temporal and ancestral influences.

In cognitive variables, a robust negative correlation with age
was noted for EA3, IQ and SES, suggesting an evolutionary trend in
these traits (Figure 3). The effect size for EA3 and EA4 was reduced
by approximately 50% after accounting for ancestry but continued
to be significant (β = −0.127 and −0.141, p < .001). The impact of
genome age on IQ and SES was slightly less (−0.111) compared to
EA after ancestry control, yet remained noteworthy.

The increase in cognitive PGSs was about 0.12 SDs per 1000
years, implying that 10,000 years ago the PGSs for cognitive
abilities were about 1.2 SDs lower than they are today.

The scatterplot shows that the increase in EA and IQ PGS
started around 20 Kya, whereas between 20 and 33 Kya there was
no clear trend (Figure 4). The period between 20 and 33 Kya
witnessed a decrease in human population density in Europe due to
the expansion of the ice sheets, which reached the maximum
extension about 20 Kya during the Last Glacial Maximum (LGM;
Tallavaara et al, 2015). Subsequently, population density started
increasing, and this would have initiated a cycle of gene-culture

Figure 9. Temporal trend of height PGS.
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coevolution due to increased intergroup conflict and social
complexity. Indeed, intergroup conflict in Europe during the
Holocene has been shown to be density dependent, and to be the
main cause of population booms and busts (Kondor et al., 2023).

This is reflected by the sharp increase in EA3, EA4 and IQ PGSs
between the Upper Paleolithic and the Neolithic (Supplementary
Figures S1, S2, S3). Hunter-gatherer ancestry (particularly V2 or
WHG) was negatively associated with EA3, EA4 and IQ in the
regression models (Supplementary Tables S1−S3) even after
accounting for Years BP (β = -0.314, -0.4, -0.249), suggesting that
the increase in cognitive capacity was not solely driven by the
Neolithic revolution but was partly mediated by admixture with
the immigrants that accompanied it. Anatolian Neolithic farmers
who intermixed with native HGs contributed between approx-
imately 40% and 98% of Neolithic European ancestry (Chintalapati
et al., 2022). Near-Eastern ancestry (V4) had a similar negative
effect on the three phenotypes (−0.31, −0.88 and −0.313).

In the regression model (Supplementary Tables S1−S3),
Anatolian/European farmer ancestry (V5) positively predicted
EA3, EA4 and IQ PGS. As V5 was omitted from the regression to
deal with multicollinearity, its effect was absorbed into the
intercept, and all the other components had negative beta. The
positive effect on EA and IQ was confirmed by re-running the
regression analysis by including V5 and omitting each of the other
four components in turn.

Psychiatric phenotypes displayed complex relationships with
time, heavily influenced by ancestry. For example, the temporal
changes in ASD and SCZ were not solely attributable to time but
were significantly mediated by ancestral components. This implies

that the temporal alterations in these PGSs are significantly
influenced by authentic ancestry transitions or by the uneven
representation of ancestries and geographical diversity in our
sample. For instance, there was a higher representation of
Northern European samples during the Middle Ages and
Southern European samples during the Neolithic period.

Shifts in ancestry can underlie authentic alterations in
phenotype risk if the new genetic variants introduced into a
population alter the inherent risk or manifestation of certain traits
or conditions. For example, populations from regions with varying
sunlight exposure (e.g., closer to the equator vs. farther away) have
different skin pigmentation due to the differential selective
pressures of UV light exposure. If these populations mix, the
resulting generations might exhibit a wider range of skin
pigmentation due to the blending of genes influencing this trait
and a different average skin darkness.

Conversely, if the GWAS did not fully account for potential
population stratification (especially that mediated by environ-
mental factors), the observed associations between certain genetic
markers and traits or disease might be misleading or confounded.
This is because the genetic differences might be coincidentally
associated with the trait or disease due to the unaccounted-for
environmental factors rather than having a direct biological
connection.

Theoretically, if a PGS for a trait increases over time, and the
ancestry is related to the trait independently of environmental
biases in the GWAS, this indicates a genuine change in genetic
predisposition even if the association with time is entirelymediated
by ancestry. However, selection still cannot be ruled out, because

Figure 10. Temporal trend of intracranial
volume PGS.
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ancestry shifts might indicate that individuals belonging to a
particular ancestry were favored in certain environments because
of different genetic predisposition to some advantageous trait.

Middle Eastern ancestry (V4) positively predicted the schizo-
phrenia and neuroticism PGS (Supplementary Tables S5 and S7) in
the regression models but negatively predicted autism PGS
(Supplementary Table S4).

Intriguingly, schizophrenia and autism demonstrated diver-
gent temporal trends, aligning with the theory that these
disorders embody opposite ends of the psychological spectrum
(Crespi et al., 2010). Furthermore, their correlation with Years
BP aligned with pleiotropic impacts on cognitive abilities, given
that schizophrenia and autism present reciprocal genetic
correlations to IQ.

Lastly, inclinations towards psychotic tendencies may have
been advantageous in traditional societies where mystical beliefs
and hallucinations were often considered normative, in contrast to
contemporary societies that demand heightened concentration
and specialization, thereby prioritizing autistic traits.

The presence of contrasting selection pressures on schizophrenia
and autism is also hinted at by the inverse effects of latitude
(β = −0.187 and 0.05 respectively). This suggests that a colder
climate might have favored a higher genetic predisposition towards
autism while simultaneously selecting against a risk for
schizophrenia.

Both neuroticism and depression PGSs have demonstrated a
decline over time, consistent with their substantial genetic and
phenotypic correlation. The observed trend may also be attributed
to pleiotropic effects on intelligence, which bears a weak, yet
negative, relationship with both neuroticism and depression.

The correlations observed at individual (Supplementary Figure S1)
and temporal levels aligned with expectations from existing literature.
Group-level correlations for PGSs had a similar direction but were
more pronounced (Figure 12). This perspective sheds light on the
potential shared or contrasting selective pressures on various
phenotypes.

Autism exhibited a significant positive correlation with EA3
and EA4 (.59 and .68 respectively), contrasting with a substantial
negative correlation with schizophrenia (−.83). This supports the
hypothesis that schizophrenia and autism are at different extremes
of the psychological spectrum (Crespi & Badcock, 2008; Crespi
et al., 2010), possibly representing divergent cognitive-behavioral
adaptation strategies in socio-cultural environments. The positive
link between autism and cognition corroborates previous findings
of a genetic correlation at the individual level (Grove et al., 2019)].

In contrast, depression was negatively correlated with EA3, EA4
and height, but showed a positive correlation with schizophrenia
(r = .42). This is consistent with the commonly observed negative
genetic and phenotypic correlation between depression and
cognition (Xu et al., 2015). EA3 and EA4 not only had a strong
correlation with each other (r = .86) but also with IQ (r ∼ .8) and
SES (r∼ .75), while showing negative correlations with neuroticism
(r ∼ −.65) and schizophrenia (r = −.55 and −.77 respectively).
These findings reflect the positive association within populations
between SES and intelligence (Trzaskowski et al., 2014) but the
negative genetic correlations of cognition with neuroticism
(Anglim et al., 2022) and schizophrenia (Ohi et al., 2018).
Interestingly, although EA shows a slight positive correlation with
schizophrenia within populations, it negatively correlates with
intelligence. This discrepancy indicates that EA3 and EA4 aremore

Figure 11. Polygenic scores in medieval and
contemporary England.
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indicative of selective pressures on intelligence rather than on
noncognitive skills related to EA.

An unexpected finding was the strong positive correlation
between height and intracranial volume (.7), yet no significant
correlation with IQ. However, this correlation between height and
intracranial volume was anticipated, considering the established
positive relationship between brain and body size across and
within species (Grabowski, 2016).

In general, we identified the most substantial discrepancies across
phenotypes between the Upper Paleolithic and Neolithic periods,
likely attributable to the profound cultural and lifestyle shifts
occurring between these two epochs. According to the model
outlined in the introduction, the Neolithic Revolution, marking the
transition from hunter-gatherer ways of life to agriculture-centered
settlements, initiated a surge in population density, escalated social
complexity, and necessitated enhanced planning and organization.
Consequently, cognition underwent selection to navigate the
intricacies of labor division, specialization, and the hurdles of social
competition and collaboration. A significant ‘leap’ in the PGSs for EA
and IQ was also observed between the Bronze Age and the Iron Age,
hinting at a period of selection favoring sophisticated cognitive
abilities.

The research findings support the weak hypothesis of Clark’s
model, highlighting a distinct rise in the genetic predispositions for
traits associated with intelligence and EA across Europe after the
Middle Ages. When PGSs for cognitive phenotypes were analyzed
within the context of Great Britain — by contrasting English
medieval genomes with their modern British counterparts — the
effect sizes (denoted through Cohen’s d) were either comparable or
slightly reduced relative to the overall sample, ranging from d= 0.15
to 0.5 (Figure 11). Hence, Clark’s strong hypothesis — that the
increase was more pronounced in Britain than elsewhere — is not
supported by the analyzed dataset.

Our study included an analysis of a subsample consisting of
767 individuals from Southeastern Europe and Anatolia,
specifically concentrating on two primary cognitive PGSs:
EA3 and EA4. We observed a significant negative correlation
between EA3 and Years BP, with a correlation coefficient of
−.185 (p = 2.644e-07), as illustrated in Supplementary
Figure S11. This suggests an increase in EA3 over time.
Regression analysis, considering the first 10 PCs and sequence
coverage, revealed a consistent effect of Years BP (β = −0.11),
although the impact of sequence coverage alone was not
significant (β = −0.04, p = .41).

Figure 12. Correlation matrix showing genetic intercorrelations at the level of historical cultures.
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Similarly, for EA4, a negative correlation with Years BP was
noted (r = −.22), as depicted in Supplementary Figure S12. The
regression analysis, adjusted for the first 10 PCs and sequence
coverage, demonstrated a diminished yet significant effect
(β = −0.11). This finding adds further support to the notion that
polygenic selection influencing cognitive abilities extended beyond
Northwestern Europe, encompassing regions of Western Asia and
Southeastern Europe, thereby challenging the more stringent
interpretation of Clark’s theory. While the impact of Years BP
was slightly diminished in comparison to the total sample, a more
robust inference about the differential in selection strength between
these two regions would necessitate a larger sample size.

Our examination of key cognitive phenotypes (EA3, EA4, IQ)
across historical cultures aligns with the patterns observed in
ancestry and time-based analyses. The earliest samples, consisting
of hunter-gatherers and those from theMiddle East, had the lowest
scores (Supplementary Figures S14, S15, S16). In contrast, samples
from Iron Age and Medieval Italy showed the highest scores. This
reinforces the conclusions of our recent study (Piffer et al., 2023),
which indicated that Europe’s PGSs reached their zenith in central
Italy during the Republican era. Additionally, incorporating a new
Etruscan sample (N = 48), genetically akin to the Republican
Romans as per Posth et al. (2021), into our Iron Age Italian dataset,
further corroborates these results.

A significant divergence was noted in the sample of ancient
Greeks from the Bronze Age in the comparison between IQ and
EA. The Bronze Age Greeks, while displaying average scores on
EA, manifested the highest scores in IQ PGS. This result was
predicted based on their renowned cultural accomplishments and
is in agreement with the historical estimates by Galton (Galton,
1869). The marked disparity between the EA and IQ PGS among
ancient Greeks merits additional research for a deeper
understanding.

The analysis of physical traits, such as height, highlighted the
influence of environmental factors, as shown by the positive effect
of latitude on the height PGS (β = 0.5) in the regression model
(Supplementary Table S9). This aligns with Bergmann’s rule,
suggesting adaptations to varying climatic conditions. However, as
shown in Supplementary Table S9, the impact of Years BP was
reduced when controlling for ancestry (from β = −0.306
to −0.095).

Notably, a decline in height PGS was observed from the
Paleolithic to the Neolithic periods, implying that the post-
agricultural revolution reduction in body size could be attributed
not only to dietary limitations and heightened prevalence of
diseases (Mummert et al., 2011), but also to genetic factors. We
found a positive impact of EHG ancestry on the height PGS
(β= 0.93). This result replicates the finding that differences in
height between contemporary northern and southern Europeans
are due to different amounts of Steppe ancestry (which is used as a
proxy for EHG) rather than selection (Irving-Pease et al., 2024).

Indeed, polygenic height scores achieved their highest levels in
medieval Dutch, English and Viking populations (Supplementary
Figure S13). In contrast, contemporary British samples exhibited
lower polygenic height scores compared to their medieval English
counterparts. This observation raises two plausible interpretations:
either there has been negative selection against height since the
Middle Ages, or the ancestral composition of the medieval sample
leaned more towards continental ancestry, resembling the Dutch
and Scandinavian populations.

The latter scenario gains further support from the context in
which the samples were collected— a research initiative primarily

centered around Anglo-Saxon cemeteries aimed at investigating
the extent of continental migration to England, as detailed in the
study by Gretzinger et al. (2022). Their findings indicate that
continental (‘Anglo-Saxon’) ancestry started spreading during the
earlyMiddle Ages but later blended with the pre-existing ‘Celtic’ or
native genetic pool, resulting in a dilution of its genetic influence
(Gretzinger et al., 2022). Hence, the decrease in continental
ancestry inferred by the study is likely due to a mix of genuine
change in ancestry within England and the oversampling of
cemeteries with continental ancestry. In turn, the decrease in
continental ancestry is likely the cause of the observed decline in
the height PGS for England.

Notably, in contemporary times, the Dutch population holds
the distinction of being the tallest globally, and at the very least,
within Europe. This observation lends credence to the notion that
their genetic inclination towards greater height was already
pronounced during medieval periods. As an intriguing historical
anecdote, Dante, in the Divina Commedia (canto XXXI), poetically
illustrates this height differential by noting that even when stacked
three Friesians (‘frisoni’, from a region in the northern
Netherlands) on top of one another, they could not reach the
towering stature of the giant Nembrot.

Consequently, the significant increase (around 20 cm) in height
among the Dutch over the last 200 years is likely attributable to
environmental factors rather than natural selection, as outlined by
Stulp et al. in their 2023 study.

Intriguingly, we observed a reduction in the intracranial volume
PGS from the Middle Ages to the contemporary period.

There was also a decrease (Cohen’s d = −0.42) from the Upper
Paleolithic to the Neolithic period (Supplementary Figure S10).
This fits the archaeological record of a reduction in cranial capacity
during the transition from the Pleistocene to the Holocene (Stibel,
2021). This effect is likely driven by the decrease in body size
during the Holocene transition, as Height and ICV were strongly
correlated at the group level (Figure 12).

A significant decrease in ICV PGS was observed between the
medieval and the contemporary sample (Cohen’s d = −0.17). This
is in line with the brain size reduction over the last 3000 years
reconstructed from fossil data (Stibel, 2021). Importantly, these
findings show that the reduction in cranial capacity was not due to
a reduction in the genotypic intelligence, as the IQ and EA PGS had
the largest increases at the Pleistocene-Holocene and Medieval-
Contemporary transitions. Regression models showed that the
trajectory of ICV was largely determined by pleiotropic effects,
primarily from EA4 and Height (see Supplementary information).

Consequently, these findings underscore the limitations of
using cranial size in archaeological studies as a sole measure for
tracking changes in complex cognition throughout recent evolu-
tionary history.

Indeed, the temporal changes observed in several traits appear
to be influenced more by pleiotropic effects resulting from
selection on other traits than from direct selection effects (Suppl.
info). Specifically, changes in ASD over time were shaped by
common selective pressures on EA4 and SCZ. Evolutionary
changes in Neuroticism are also best explained by pleiotropic
effects frommultiple traits, such as Depression, EA4 and SCZ. The
changes in SCZ over time are attributed to pleiotropic effects from
traits like ASD, Depression, EA3, EA4, Height and Neuroticism.
Conversely, traits like EA3, EA4 and Height showed evidence of
direct selection over time.

Admittedly, the persistence of an effect after accounting for the
other traits depends on the amount of signal of each PGS. In fact,
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EA3, EA4 and Height were based on the largest GWAS and likely
contain more signal than the other traits.

Collectively, these findings emphasize the intricate nature of
evolutionary patterns, suggesting that trait changes over time
can be shaped not just by direct selection effects but also by
pleiotropic effects.

However, the data do not support the cold winters theory of
intelligence (Lynn, 1991, 2006), as the effect of latitude on EA3 and
IQ in the regression models (Supplementary Tables S1 and S3)
tended to be slightly negative (β=−0.055 and−0.097, p= .022 and
p < .001 respectively), contrary to the theory’s prediction. This
implies that, at least within the temperate zone from which our
samples were derived (30.64 to 69.65°), and within the last 12,000
years, climate did not exert a discernible selective pressure. Indeed,
Eastern Hunter Gatherer ancestry, which derived up to 70% of
ancestry fromAncient North Eurasians living in the extremely cold
climates of Siberia (Posth et al., 2023), was a negative predictor of
EA or IQ in the regressions. It is possible that any selective pressure
on intelligence from challenging natural environments was offset
by the difficulties in forming complex, highly populated societies in
ancient times, thereby disabling the gene-culture coevolutionary
mechanism that appears to have accompanied humans over the
last 12,000 years.

Our results underscore the complex interplay between genetic
predispositions and environmental factors. For instance, the shift
in height PGS from the Paleolithic to the Neolithic period suggests
genetic adaptations alongside dietary and lifestyle changes.

The observed shifts in PGSs during key historical periods, such
as the Neolithic Revolution and before the Industrial Revolution,
align with major cultural and societal transformations. These
findings provide empirical support for theories of gene-culture
coevolution, particularly in cognitive traits.

While our study provides significant insights, it has limitations,
such as potential biases in sample representation. Future research
could focus on more diverse populations to further elucidate the
genetic underpinnings of these traits.

Ascertainment bias, especially regarding traits tied to social
status or intelligence, stems from the nonrandom selection of
samples available for analysis. This bias can significantly distort
our understanding of ancient populations and the prevalence or
distribution of certain genetic traits, such as height, EA and IQ.

Burial practices often varied significantly across different cultures
and historical periods, with certain individuals more likely to be
preserved and discovered, based on their social status, wealth or
other societal factors. High-status individuals might have been
buried in ways that better preserve their remains (e.g., in tombs or
with goods that deter grave robbers), making their genomes more
accessible to researchers. This can lead to an overrepresentation of
the genetics of the elite in ancient DNA studies.

There is also a tendency for research to focus on sites and
samples that are more accessible or better preserved, which might
not be representative of the broader ancient population. This can
lead to a form of ascertainment bias where the conclusions drawn
from such studies disproportionately reflect the genetics of specific
subgroups.

Another potential source of significant biases is the practice of
cremation. In cultures where cremation was preferred, the high
temperatures effectively destroy organic material, including DNA,
making it impossible to recover genetic information from
cremated remains. This practice contrasts with burial, where
DNA can be preserved for thousands of years under the right
conditions.

This variation can lead to a form of bias in ancient DNA studies,
as the genetic information accessible to researchers may
disproportionately represent cultures or subpopulations that
favored burial. Moreover, if cremation practices varied by social
status or religion within each society, this would represent another
source of bias.

Among ancient Greeks, lavish cremations and ceremonies were
common, with famous examples like Achilles and Hector from the
Iliad illustrating the elaborate nature of these rites. Following the
Greeks, the Romans adopted cremation, especially for their
military heroes. Cremation became a status symbol in Rome, where
urns containing ashes were placed in columbaria (Borbonus, 2019;
Hope, 2007; Pearce et al., 2000).

However, around 100 CE, cremation practices declined, partly
due to the spread of Christianity. Cremation could have introduced
bias also in the representativeness of our large Viking sample, as
this practice was particularly common, especially during the early
Viking age.

Furthermore, although our total sample size was relatively large
(N = 2625), the sample size for some historical periods (e.g.,
Paleolithic, Imperial) lacked the power to detect significant effects.

Additionally, our analysis did not incorporate gene-environ-
ment interactions. Notably, allele effects on traits may vary
temporally, such that certain alleles contributing to a trait’s risk in
ancestral environments may not have the same impact in
contemporary contexts. While this phenomenon is well docu-
mented in Mendelian diseases (e.g., the interaction of PKU with
diet, theMAOA gene with childhood maltreatment, and sickle cell
anemia with malaria exposure), detecting similar effects in
polygenic traits is more challenging due to the involvement of
numerous genetic loci, each exerting minor influences. A reviewer
hypothesized that such gene-environment interactions might
falsely appear as an increase in the PGS for EA over time, resulting
from the loss of alleles that were advantageous in historical
environments but are no longer beneficial. It is also important to
consider that alleles associated with enhanced cognitive abilities in
ancient times may still be advantageous in modern environments.
This is because the underlying structure of general intelligence has
been shown to predict success in a wide range of activities, from
physical fitness to academic achievement (Gil-Espinosa et al., 2020;
Plomin & Deary, 2015).

Furthermore, extending this hypothesis to other traits we
analyzed, one might expect a uniform rise in PGS across all traits.
However, our results indicated a decrease in PGS for traits such as
neuroticism, depression and schizophrenia, pointing to a more
complex evolutionary narrative than the one suggested. For
instance, assuming the GWAS identified schizophrenia risk alleles
relevant predominantly in contemporary settings, one would
predict lower schizophrenia PGS in ancient samples, reflecting the
loss of these risk alleles in modern populations. Contrary to this
expectation, we observed an elevated schizophrenia PGS in ancient
samples, a trend paralleled in neuroticism and depression.

It is crucial to recognize that GWAS identify both positive and
negative genetic correlations with traits. These findings are
integrated into the calculation of PGS, which aggregates the
varied impacts of genetic variants, both augmenting and
diminishing the trait, weighted by their respective effect sizes. If
alleles that increase a trait’s likelihood diminish in influence in
ancient populations, the same principle should apply to alleles that
decrease the trait’s likelihood. Ideally, these contrasting effects
should neutralize each other, maintaining a balance in the PGS
across different time periods.
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In conclusion, our study highlights the intricate nature of
genetic evolution, influenced by cultural, societal, and environ-
mental factors. It affirms the weak hypothesis of Clark’s model,
showing a notable increase in genetic predispositions for
intelligence and EA across Europe post-Middle Ages. These
insights contribute to our understanding of human evolutionary
dynamics over the last several millennia
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Stella, C., Gurriarán, X., Fañanás, L., Bobes, J., González-Pinto, A.,
Crespo-Facorro, B., Martorell, L., Vilella, E., Muntané, G., Molto, M. D.,
Gonzalez-Piqueras, J. C., Parellada, M., Arango, C., & Costas, J. (2023).
Recent natural selection conferred protection against schizophrenia by non-
antagonistic pleiotropy. Scientific Reports, 13, 15500. https://doi.org/10.1038/
s41598-023-42578-0

Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in
psychiatry: Etymology and strategic intentions. American Journal of
Psychiatry, 160, 636–645. https://doi.org/10.1176/appi.ajp.160.4.636

Grabowski, M. (2016). Bigger brains led to bigger bodies?: The correlated
evolution of human brain and body size. Current Anthropology, 57, 174–196.
https://doi.org/10.1086/685655

Gretzinger, J., Sayer, D., Justeau, P., Altena, E., Pala, M., Dulias, K.,
Edwards, C. J., Jodoin, S., Lacher, L., Sabin, S., Vågene, Å. J., Haak, W.,
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