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ON A COMPARISON BETWEEN DWORK AND RIGID
COHOMOLOGIES OF PROJECTIVE COMPLEMENTS

JUNYEONG PARK

Abstract. For homogeneous polynomials G1,...,Gk over a finite field, their
Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory.
In this article, we will construct an explicit cochain map from the Dwork
complex of Gi,...,G to the Monsky—Washnitzer complex associated with
some affine bundle over the complement P"\ X of the common zero X¢ of
G1,...,Gy, which computes the rigid cohomology of P"\ X. We verify that
this cochain map realizes the rigid cohomology of P"\ X¢ as a direct summand
of the Dwork cohomology of G1,...,Gr. We also verify that the comparison
map is compatible with the Frobenius and the Dwork operator defined on
both complexes, respectively. Consequently, we extend Katz’s comparison
results in [19] for projective hypersurface complements to arbitrary projective
complements.

81. Introduction

Let X be an algebraic variety over a finite field F, of characteristic p > 0. The zeta
function of X is defined to be the following exponential sum:

N
Z(X/Fg,t) :==exp Z?ts )
s>0

where Ny is the number of [Fs-rational points of X. This function is known to be a rational
function in ¢ with coefficients in Z by Dwork [13]. For a projective hypersurface X, Dwork
expressed the zeta function of X as an alternating product of characteristic polynomials
of a suitably chosen representative of a Frobenius action in a series of articles [14]-[17],
following his proof of the rationality of zeta functions. Based on Dwork’s theory, Adolphson
and Sperber developed a cohomology theory and got an estimate for the zeta function when
X is a closed subvariety of A" x G?, in [1], and when X is a smooth projective complete
intersection in [4], [5].

On the other hand, Monsky and Washnitzer developed rather an intrinsic cohomology
theory in [29] when X is a smooth affine variety admitting a nice p-adic lift. Then Monsky
proved the Lefschetz fixed-point theorem in [25], [27] to express the zeta function of X
as an alternating product of characteristic polynomials of a Frobenius action on Monsky—
Washnitzer cohomology. Later, van der Put [32] removed the technical condition on X
assumed by Monsky and Washnitzer to make the theory work for every smooth affine
variety X over F,. Berthelot [9] extended this theory to not necessarily affine varieties, and
the resulting theory is called rigid cohomology theory.
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Since Dwork cohomology and rigid cohomology compute the same important invariant,
one may ask whether there is a connection between the two theories. For smooth
hypersurfaces in projective spaces, Katz answered this question in [19]. It is strongly believed
that the corresponding comparison results hold for more general cases, but up to the best of
author’s knowledge, there is no written proof so the author hope that this article provides
a detailed proof for general cases with several equations.

Let us briefly explain the contents of [19]. Let k/Q, be a finite extension with the
valuation ring Ok. Given a homogeneous polynomial G € Ok|xy,...,z,]| of degree d > 1,
consider a k-linear span of some monomials (cf. [19, p. 77]):

vd=1ug~+ -+ Up,

0,+ .__ u, v
Z = Z Ay Y € O[k[x7y] Aup = 0

(u,v)EZ§g+2

For a fixed constant v € k, there are differential operators on .#%%:

0 oG
oexp(vyG) = Tig —HVYTig

qu', = exp(—ny) O @i

0 0
D, :=exp(—yyG)o Yoy oexp(vyG) = Ya, +7yG.

On the other hand, suppose that the hypersurface X¢ C Py defined by G is smooth. If
H; C Py is the hyperplane defined by z; =0 for ¢ =0,...,n, and Xg =Xe\ (HoU---UH,,),
then, by [19, Th. 1.16], there is an exact sequence

00— (Dy.i”o’Jr + prig,ﬂo#) L0t O Hr (X0) ——0,
i=0

where the local description of © is given in [19, Th. I]. Here, Hj, denotes algebraic de Rham
cohomology. One way of getting a global description of © is using the complement of X¢.
Namely, denote T} := PP\ (HoU---UH,,) with local coordinates t; := x;/xo for i =1,...,n.
Then there is a k-linear map given by (cf. [19, p. 78])

(—=1)v=t zv dty dty,

R LOF Hig (T X2 “y oo NN
— HJp(Tg \ G) vy e (v—=1! G* t; tn

inducing an exact sequence (cf. [19, p. 79])

0——Y D, 2"F L0+ A g (TR X2) —— 0.
=0

Here, the map is defined via the inhomogeneous coordinates of PP\ Hy. One gets a
description in the homogeneous coordinates using the relation:

dt1 dt " dmo dz; dmn
. - A AN AR
tl Z g -rn

To relate Z and ©, we use the canonical exact sequence:

Res
0——= 0, —— Qpn y (log Xg) — 0%, l—1 ——0,
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where Resg is the residue map uniquely characterized by the property

Resg (dé? /\w) = w.
Then, by [19, Th. 1.18], Resg o Z = ©. The remaining part of [19] is dedicated to compute
representatives of Frobenius actions. To achieve this, we need to develop a p-adic analytic
theory. Then © and Z extend by continuity, and they are compatible with the Frobenius
actions in a suitable sense. Since we discuss the corresponding version of the p-adic analytic
theory in this article, we do not explain the remaining part of [19].

Monsky’s lecture note [26] gave a more detailed discussion of the algebraic version of
the Dwork complex in p-adic setting together with its relations with algebraic de Rham
cohomology and Monsky—Washnitzer cohomology. Then the complex algebraic analog of
Dwork theory together with the connection of de Rham cohomology has been studied.
Adolphson and Sperber dealt with the smooth complete intersections in affine varieties
in [3]. Dimca, Maaref, Sabbah, and Saito studied the singular subvarieties embedded
in smooth varieties in [12] using the theory of algebraic D-modules. These results were
again implemented in the rigid setting by Baldassarri and Berthelot for singular projective
hypersurfaces in [7] using the theory of arithmetic D-modules. On the other hand,
Bourgeois [11] directly constructed a quasi-isomorphism between the Dwork complex used
by Adolphson and Sperber in [1] and the complex of Monsky and Washnitzer in the smooth
affine setting.

The goal of this article is to construct an explicit comparison between the Dwork
cohomology of given homogeneous polynomials and the rigid cohomology of the complement
of their common zero in a projective space, together with Frobenius actions defined on both
sides. This generalizes the complement comparison result in [19] described above, but with
a different choice of cochain complexes. Note that if the given homogeneous polynomials
define a smooth complete intersection, then we can recover the essential information of the
rigid cohomology of the common zero. The more detailed exposition will be given in the
following two subsections.

As mentioned before, Adolphson and Sperber studied Dwork complexes in various
settings, and it seems that the Dwork complex which appears in this article resembles the
one in [5]. Our academic contribution is to find a correct version of the p-adic Dwork complex
which is appropriate to construct the desired comparison map, and give a systematic
treatment of getting a connection between the two theories via the Cayley trick! as the
author did in [31, 22] to study the period integrals in the complex geometric setting.

1.1 The idea and motivation

One remarkable observation so far is that the comparison becomes more transparent when
we consider the complement of the hypersurface X in the ambient projective space qu.
Moreover, we may extract information of H,(X) from H3, (P \ X), where HJ, denotes

rig
rigid cohomology. Indeed, if X C Y is a codimension & closed embedding of smooth varieties

L The Cayley trick gives an isomorphism between the cohomology of the open complement in the projective
space and the cohomology of the hypersurface complement in a larger space. For the detail, see §2.
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over F,, then there is a commutative diagram with exact rows:

e Hg(,rig<Y) Hg/,rig(Y) — H;’\X,ng(Y\X) —

Jz Jz Jz

e HE PN (X) ——— HY (V) ——— Hj (YA X) ———
where the top row is a special case of the excision exact sequence [10, Prop. 2.5], and the
isomorphisms in the columns come from the Gysin isomorphism [23, §9.3]. Therefore, if
X&C Pﬁq is a smooth projective complete intersection given by homogeneous polynomials

Gi,...,Gy € F,lxo,...,z,], then there is a long exact sequence, called the Gysin exact
sequence:

A Hzig(qu) — Hzig(qu \Xé)

J (1.1)

1—2k 7 n
Hrig2 i (Xé) Hri—gl(P]Fq) Tt
which is a rigid cohomology analog of the excision exact sequence of algebraic de Rham
cohomology. As in the case of algebraic de Rham cohomology, this sequence induces an
isomorphism

HEFH PR\ Xg) —— Hn (X)),

rig prim

where H"-¥(X) is the primitive part of H', "(Xg). Using the interpretation of the zeta

prim rig
function as the characteristic polynomial of the Frobenius action on the cohomology (see,

e.g., [18]), one can deduce that the zeta function of X can be written as

P
(1=t)(1—gqt)...(L—qgFt)

and P(t) is completely determined by the Frobenius action on the primitive part. Hence,

Z(Xé/Fmt) =

the computation of the cohomology of the projective complement has its own importance.
Once we decide to focus on the cohomology of the complement, we may forget about the
regularity of Xz C P{B“q because P{F‘q \ Xz is always smooth, being an open subset of the
smooth space qu.

On the other hand, the Dwork complex can be defined for any homogeneous polynomials
Gy,...,Gy € Fylzo,...,xy], regardless of the regularity of their common zero Xz C }P’gq.
Namely, taking the Teichmiiller lifts of the coefficients of each G;, we get homogeneous
polynomials G; defined over some finite extension k/Q, with degG; = degG; such that
the reduction of each G; becomes G;. Then, we define the Dwork complex associated with
G1,...,Gy to be the twisted de Rham complex of the form

(k{% My} ®xfe,y) Qe y) oo B+ RA(yy1Gr + -+ yyuGr) A —) ) (1.2)

where k{z,hy} is the Tate algebra over k (see Definition 4.8), and A,y € k* are some
parameters.
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Although the Dwork complex is defined for homogeneous polynomials, its cohomology
would depend only on their common zero locus. For example, when we are working with
one homogeneous polynomial G € F,[xo,...,z,], there are comparison theorems between
the Dwork cohomology of G and the rigid cohomology of qu \ Xz In the existing results,
[19] and [7], they remove the hyperplane divisors in Pg, defined by o, ...,z to get an affine
open subset, where one can write down a comparison map, and then use the log de Rham
complex to recover the original situation. Consequently, their Dwork complexes are exactly
the ones defined by Adolphson and Sperber in [2, §2].

Instead of removing hyperplane divisors in Pﬁq, we use the Cayley trick to convert the
computation involving polynomials to the computation involving a hypersurface contained
in a larger space. With the above notation, the hypersurface is cut out by y1G1+--- + yxGg
in a projective bundle P(£) — P} for a suitably chosen locally free Opp-module € of finite
rank, where y1,...,yx play the role of fiber coordinates. Consequently, we get the Dwork
complex as in (1.2) which resembles Adolphson and Sperber’s Dwork complex defined in
[5, §2]. The difference of our Dwork complex and the one in [5] comes from the different
choice of Dwork’s splitting functions (for a definition, see §5), which causes the different
choice of the lift of y1G1 + -+ yrGk € Fy[zo,...,7,] over the p-adic field. Since the lift of
Adolphson and Sperber, denoted by H in [5, eq. (2.10)], is a power series in y,..., Yk, it
does not define a hyperplane in P(E). Hence, we cannot get the desired geometric object.
However, our lift y1G1 + -+ -+ yx Gy is linear in y1,...,y% so it indeed define a hypersurface
in P(£). Although the two Dwork complexes are different, their reductions on the finite
field are exactly the same so one may expect that both Dwork complexes have the same
cohomology. This is true when Gy, ..., G}, defines a smooth projective complete intersection
in IP’{FLq (see Remark 4.13). Hence, the two Dwork complexes may be regarded as equivalent
at least for this case.

1.2 The main results
Let k/Q, be a finite extension with the valuation ring (O, my). Denote val, the p-adic

valuation such that val,(p) = 1. Given homogeneous polynomials G1,...,G\ € Ok[zo, ..., Zy]
of positive degrees dy,...,d; not divisible by the uniformizer of Oy, we introduce formal
variables y1,...,yr corresponding to Gfi,...,Gy so that the polynomial

S(z,y) :=11G1+ -+ yr Gk, € Oklz,y]
defines a hypersurface in an affine space. Consider the twisted de Rham complex
(D = 1)

where A,y € Ok are regarded as parameters. Introduce gradings

deg.x; =1 1=0,...,n, deg,z;i:=0 i=0,...,n,
deg.y;:=—d; j=1,...,k, deg,y; =1 j=1,...,k, (1.3)
deg.dx; =1 1=0,...,n, deg,, dz;:=0 i=0,...,n, '
deg.dy; :==—d; j=1,...,k, deg, dy; =1 j=1,...,k,

so that S and dS become homogeneous of bidegree (deg,,deg,,) = (0,1) and the twisted de
Rham complex is graded with respect to deg,.. Then the Dwork complex associated with
G1,...,G will be defined by
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(Qf.i’ Dﬁy’YS) = (k{l‘, hy} ®k[x,y] Qﬂz[m,y}/k’ Dﬁ,'yS) )

where k{xz,hy} will be a version of the Tate algebra (see Remark 4.9).
On the other hand, denote C’; = Op{z,y,5 1} the weak completion (see Definition 4.1
or [29, Th. 2.3]) of Ok[z,y,S7!], and

Q.CL/Ok

° Pyp—
CL/(Ormy) " i+1cye
| |m Q
S cl/ox

i>0

the module of my-separated differentials. Then the above gradings extend to

( L/ (Ormy) DO d) ’

where d is the de Rham differential. With the valuation conditions on v and % for the
convergence (see Theorem 4.11), we have the following comparison map.

THEOREM 1.1. Ifval,y < 1 and val,h > 0, then there is a cochain map

Ps: (Qh’Dh’ws)(degczo’degw>0) - (ch/(ok’mlk) ®o. k’d) (deg,=0,deg,, =0)

defined by the formula

| 4 yY dx, dyg
“ylvlGlel plal T plBly 181 S18]

ps ¢y dzo Adyg) = (1) (ju] 8] - 1)

together with the k-linearity. Here, u,v,c, 8 are multi-indexes with

=y, lul :=up 4+ up,
v._ ,V1 Vk R
y =yt gk, lv| :==v1+ -+ vg,

dxe = dxo, N+ Ndzy,, |af:=1
dyg Z:dygl/\“'/\dygj, ’ﬁ‘ =7.

We will see later that the inclusion

( CL/(Ox,my) ®o k7d) (deg,=0,deg,,=0) < <QC;/(Ok7mk) ©o k’d>

is a quasi-isomorphism, and the inclusion
° [ ]
(Qh’DE,WS)(degc:o,degw>o) - (QhaDh,vs)

induces a surjection of cohomology spaces with one-dimensional kernel generated by the
class [dS]. By Definition 4.6,

1 (013 0 r5) i ().

where F, is the residue field of Ok, and S =y;G1 + -+ yx Gy € Fy[z,y] is the reduction of
S. Since Monsky—Washnitzer cohomology is canonically isomorphic to rigid cohomology for
smooth affine schemes, the pg in Theorem 1.1 is a comparison map from Dwork cohomology
to rigid cohomology.
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On the other hand, if X¢ C Py is the common zero of G'1,...,Gj, then we will see in §2
that there is a canonical map

Spec k[z,y,5 " (deg.=0,deg, —0) — P \ X&

inducing a quasi-isomorphism on rigid cohomology spaces. Moreover, by Corollary 4.7, the
Monsky—Washnitzer cohomology associated with the bidegree (0,0)-subalgebra above is
computed via the complex of my-adically separated forms of C’;. The corresponding state-
ment for algebraic de Rham cohomology is Proposition 2.4. This is a direct generalization
of [26, Th. 9.2] which covers the case of projective hypersurface complement. With the
notations so far, we can say more about the comparison map pg.

THEOREM 1.2. pg induces an isomorphism

H' (0}, Dys) = Hy,' (P"\ Xg) @ Hi, (B"\ Xg)

for every i > 2. On the other hand,

HO(Q;’wDﬁ,’yS):Oa Hl( ;’uDE,’yS):O-

The g¢-power map induces an endomorphism, called the Frobenius endomorphism on
F,[x,y]. This map lifts to endomorphisms

Qg5 (5, Dnys) — (5, Diys)

Fr: (Q’

CL/(O,my) Dok, d) (Q.

CL/(O,my) Qo k, d)

both act on the zero forms by sending x; and y; to its gth power z] and y}z, respectively.
These endomorphisms admit retractions, that is, endomorphisms

U, s:(Q0,Dp~ys) — (23, Dhys)

®okk,d) — ( ®okk,d)

P (Qc;/(ok,mk) CL /(O my)

such that ¥, go®, 5 and 1 oFr are the identity maps, respectively. The detailed expositions
will be given in §5. Now, we have the following comparison of the endomorphisms above.

THEOREM 1.3. pg is compatible with the Frobenius and the Dwork operators defined on
the source and the target, respectively. More precisely, the diagrams

° Ps °
(607 D1r) dog, =0 e, >0) (Qc;/wk,mk) Dok, d)

quYSJ J{Fr

° Ps .
(Qh7 Dha’YS)(degc=07degw>0) (QC;/((’)k,mk) Ko, k, d)
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° Ps °
(wa Dhy’YS)(degc:O,degw>0) < C’;/(Ok7mk) ®Oug k? d)

ql\I/qjsl l"/)

° Ps °
(85 Dh.1) (deg, =0,deg, >0) — ( CL/(Omy) ®Okk’d)

are commutative.

REMARK 1.4. In Theorem 1.3, we dropped the subscript (deg. = 0,deg,, = 0) in the
target of ps because we are not sure that an arbitrary lift Fr of the g-power map preserves
the bidegree (0,0)-subcomplex. However, the particular choice such that

Fr:C';%C; (i,y5) —— (=, 9])

and the 1 coming from this choice are compatible with the bidegrees so we can recover the
subscript (deg, = 0,deg,, = 0) in Theorem 1.3. See §§5.1 and 5.2 for the details. We will
see in Theorem 4.5 that any lifts of the ¢g-power map define homotopic cochain maps so we
can always make such choices.

We have the following remark concerning formal deformation theory of the Dwork
operator, which is not covered in the rest of this article.

REMARK 1.5. Using the twisted de Rham complex in Theorem 1.1, we may directly con-
struct a DGBV (differential Gerstenhaber—Batalin—Vilkovisky) algebra with the isomorphic
underlying complex, as the authors of [20] did on the complex geometry setting, and we
may develop the formal deformation theory as in [31]. Theorem 1.3 enables us to apply this
type of formal deformation theory to the Dwork operator. For the detailed discussion in
the DGBV aspects of Dwork theory, see [21].

1.3 Outline of the article

In §2, we explain the Cayley trick. In particular, Proposition 2.4 gives a direct sum
decomposition of the algebraic de Rham complex of the affine cone and the corresponding
decomposition of the algebraic de Rham cohomology. This identification is used in the rest
of the article.

In §3, we explicitly write down a comparison map pg (Definition 3.1) in a corresponding
algebraic setting. The comparison for this algebraic pg will be given in Propositions 3.10
and 3.16.

After establishing the algebraic theory, we will define the required p-adic analytic
complexes in §4 and give a proof of Theorems 1.1 and 1.2. In §4.1, we recall the basics on
Monsky—Washnitzer cohomology. In particular, Proposition 4.7 is the Monsky—Washnitzer
version of Proposition 2.4. This gives the target complex of the pg in Theorem 1.1. In §4.2,
we recall the basics on Dwork complexes and introduce the source complex of the pg in
Theorem 1.1. Now, the main results of §3 yield Theorem 4.11 which is the combination of
Theorems 1.1 and 1.2.

Finally, in §5, we will prove Theorem 1.3, following Katz’s proof in [19, §III] with some
appropriate changes. Namely, Propositions 5.2 and 5.3 together give Theorem 1.3.

The appendix A is an explanation of the computation of algebraic de Rham cohomology
via the cosimplicial algebra coming from Cech covering of affine open subsets which is in
the proof of Proposition 2.4. Up to the best of author’s knowledge, the suitable reference

https://doi.org/10.1017/nmj.2023.32 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.32

428 J. PARK

for this simplest case is not available in the literature so the appendix is added for this
article to be more self-contained.

§2. The Cayley trick

In this section, we give a detailed explanation of the Cayley trick and its consequences. We
begin with motivation. Let k be a field and X C P! a smooth projective complete intersection
of codimension k. For a “reasonable” cohomology theory H® defined for quasiprojective
schemes over k, one may obtain the Gysin exact sequence of the following form:

s Hi(B) —— HIB\X)
lResX (2.1)

Hi—2k+1(X) , HHl(P]@ S
The particular cases we consider are:

(1) k is a field of characteristic zero, and H® = H3 is algebraic de Rham
cohomology.
(2) k=T, is a finite field, and H® = H}, is rigid cohomology.

rig

Case (2) is mentioned in the introduction (1.1) briefly. For (1), see [30, §3.1] for example.
In particular, in the cases (1) and (2) above,

HY (X)= H (Py) for i#n—k, 0<i<2(n—k)
by the weak Lefschetz property and Poincaré duality. Denote in this situation

H™ F(X) := ker ( HF(X) —— HHR(Bp) ) .

prim
Then Resx induces an isomorphism:

Resy : H" P F=1(PP\ X) —— H"2F(X).

prim

Therefore, we may focus on the cohomology of the complement Py \ X. Because we decided
to consider the complements, we may assume that X = X C P} is defined by any finite
set of homogeneous polynomials Gi,...,Gy € k[xg,...,x,] of positive degrees d,...,dx,
respectively. The Cayley trick is a method of translating the computation of H* (PP \ X¢)
to a computation of the cohomology of the complement of a hypersurface living in a larger
space. This larger space is simply given by the projective bundle

P(€) = ProjP{LSymbMé’ — PP

associated with a locally free Opp-module & := Opn(d1) @ --- @ Opp (dy). Another way of
describing P(€) comes from the toric geometry, via the geometric quotient:

(AF\0) x (AF1\0)
Gm X Gm ’

P(E) =
where the G,, X G,,-action is given by

(a,B) (y,x) := (oz_dl/Byl, " By axg, . .. , QT ).
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Here, the new variables y1,...,yx correspond to Opp (dy),...,Opy(dx), and the action above
explains the gradings (1.3). Moreover, S :=y1G1 +- - - +yx Gy, being of deg,. S =0 is equivalent
to saying that S is a (G,, x 1)-invariant element. Hence, it defines a hypersurface Xg CP(&)
and

Speck|z,y, S_l](degC:O,degw:O) = Speck|[z,y, S_I]G"LXG’" =PE)\ Xs
so that there is a commutative diagram:

Speck[z,y, 7] —— (AF\0) x (AlT\0)

|

e
N~—

P(£)\ Xg P (2.2)
PP\ X Py

Denote X¢, C Py the hypersurface cut out by G; so {Py \ X¢, }i=1,... .k is an open covering

of P\ X¢. Since E‘P]{Z\XG- = Og?nk\;(lc is a trivial bundle of rank k—1, ¢ is an Aﬂlzfl-bundle.
K k k3

In this setting, if an abstract cohomology theory H® satisfies the Kiinneth formula, and
H*(Af~') 2k, then ¢ induces an isomorphism

" H* (PP \ Xg) —— H*(P(€)\ Xs) , (2.3)

which is true for the cases (1) and (2) above. In this section, we focus on H® = H3y over a
characteristic zero field k. Then ¢ in (2.3) induces an isomorphism

v Hig (P \ Xo) —— Hig(P(€)\ X5s) .
Since P(€)\ X is affine with coordinate ring A := k[z,y, S™]®=*Cm  we have
Hin (PP Xo) = Hig (P(E)\ X) = H* (24 ),
where (0% /k,d) is the algebraic de Rham complex of A.
NOTATION 2.1. In what follows, we denote
A:=K[z,y,5 ) (deg.=0,deg,=0)» B :=Kk[z,4,5 aeg,—0, Cs:=klz,y,57"]
so that A C B C (Cg.

In the rest of this section, we will describe the algebraic de Rham cohomology of A using
the algebraic de Rham cohomology of Cg. Note that Spec A is smooth over k, being an
open subset of a smooth k-scheme P(£), and Spec B is smooth over k, being an open subset
of Pﬂlzfl X AHZL“. Since A, B, and Cg are smooth over k, the inclusions A C B C Cys induces
embeddings

(90 0d) — (2 d) — (2, 0d) -
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We will see in Proposition 2.4 that these induce split injections of cohomology spaces. Since
the de Rham differential preserves the bidegree (deg,.,deg,,), the inclusion from % /i to
Q% /k factors through

(Q‘.“/k’d)(—> (Q.B/k’d> degCZOC—> (Q.CS/k’d> (deg,=0,deg,, =0)

where the bidegree (0,0) part of Q¢ & /i is the k-linear span of differential forms

U,V

d
LY drg NS0

SIBl

where u,v,«, 8 are multi-indexes following convention (1.4) such that
lu| +i— (vidy + - +vpdi) — (dg, +---+dg;) = 0.

This explains the gradings (1.3) in the introduction. Then each grading has the correspond-
ing Euler vector field:

" 0 o 0 0 0
E.:= Zdegc(%)xi% +Zdegc(yj)yj87yj = 2%8731 + (~djys) -
1=0 j=

i=0 j=1 0y;

FE, = Zdegw(xi):m +Zdegw y] Yia— a Zyj a
1=0

respectively. Denote
Oc :=(Ec, =), Ouw:=(Ew,—)
the contraction with each Euler vector field.
LEMMA 2.2. 6. and 6, above have the following properties.

(1) 62=0, 62 =0, and 6,00, + 0, 00. = 0.
(2) 6. and 0,, are derivations of the wedge product, that is, if « is a differential
£-form, then

Oc(anB)=0.anB+(—1)and.p,
Ouw(aAB) = OpaAB+ (=1 anb,p.
(3) For a homogeneous f and X € k, if we denote
D)\j = )\d—f—)\df/\ -,
then for a homogeneous &,

(D)\,f00+90D>\7f)€ = (Adegcg_‘_ ()‘degcf) f)£7

(D)erw +9wD>\7f)£ = (Adegwf_‘_ ()‘degw f) f)f?
where the A € k is regarded as degree zero elements.
Proof. The results follow from direct computations. O

There are several basic but important consequences of Lemma 2.2.
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LEMMA 2.3.  With the notations above, the following hold.

(1) All inclusions in the following commutative square are quasi-isomorphisms:

(QES o d Cs /k? d) deg, =0

) (deg,.=0,deg,,=0)

(Q.Cs/k’ d) deg,,=0 (QE’S/M d) ’
(2) There are cochain maps induced from 0. and 6, respectively:

b : (Qas/k,d>degczo 7 (QBS/k’d)degc:O =1

ew : (Qés/k’ d) deg,,=0 <Qas/k’ d) deg,,=0 [71]
(3) We can identify

Ql/k = ker@c mkergw g ( &S/k’d) (degc=0,degw20)

and there is a cochain map

00 (08, pod — (2 0d) 2.

) (deg.=0,deg,,=0)

Moreover, the following relations hold:
(9 ped) =Fertu (o),

( A/k’d> = kerf. C ( 23/“"al)degczo < ( és/“"d) (deg,=0,deg,,=0)

Proof. From Lemma 2.2(3), we get relations

(dec‘i‘@cd)f = (degcg)éa (dew +9wd)§ = (degw g)é‘

(1) If d¢ =0, then ¢ is in the image of d unless (deg,¢,deg,, &) = (0,0) so (1) follows.

(2) The above relations also show that each § becomes a cochain map on the subcomplex
of homogeneous elements of degree zero.

(3) By Lemma 2.2(1), the image of 6.0,, is contained in kerf.Nkerf,,. The asserted
identifications follow from general theory of toric varieties (see, e.g., [8, Lem. 8.2]). 0

PROPOSITION 2.4. With the notations above, there is a decomposition of complexes

(98 0d),, = %/k’d)@gA( Biod)

and for every i € Z, an isomorphism

H'(Q% ), d) = Hig (P(€) \ Xs) & Hig' (P(E)\ Xs).
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Consequently, there is an isomorphism for every i € Z:
H' (92, ) = Hin (P(E)\ Xs) & Hig (P(€)\ Xs)®2 & HiZ2(P(€) \ Xs).

Proof.  Each § € Qg _ /i can be decomposed into

as as
§=0y (S/\£> +§/\9w€

SO we span Q&S /K 88 follows:

O = ker, + % Nkerf,,. (2.4)

If¢e Q&S /K is contained in the intersection of summands, that is,

£ ekerf, N % Nkerf,,,

then we may rewrite & as

&= %/\w, w € kerf,,,.

Since 6, =0 and 6,w =0,
w =10, (f/\w) =0, =0.
Therefore, (2.4) becomes a direct sum decomposition:
Q&S/k =kerf,, ® % ANkerf,,.

Since the restriction of 6,, on the subspace of deg,, =0 induces a cochain map by Lemma 2.3,
we get a direct sum as a complex:

[ ] [ ] dS [ ]
( C’s/]kvd)deg o ( B/u@d)@g/\( B/]kvd>' (2.5)
To compute the direct summand, consider the open subsets for j =1,...,k

Uj :=P(E)\ (XsUXy,a,) =Spec(B))deg,—0,  Bj = Bl(y;G;)" 5],

where X, g, is the zero locus of y;G;. These open subsets form an affine open covering of
P(€)\ Xs. On each Uj, there is a section of 6. given by

dljdcij/\_ : ( ;]j/k’d> I <Q.Bj/k7d>degc=0 ‘

They combine to give a section of the associated Cech-de Rham complex by Proposition A.6
and Example A.7. Since (Q;‘/k,d) =kerf. by Lemma 2.3, we obtain

H'(Q% ), d) = Hig (P(E)\ Xs) & Hig' (P(E)\ Xs).

Now, the rest part of the proposition follows from combining the two observations
so far. 0
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83. Cayley trick and twisted de Rham complexes

In this section, we develop the algebraic de Rham version of Theorems 1.1 and 1.2.
This section is a generalization of Monsky’s lecture note [26, Ch. 9]. We continue with
the notation of §2. For fixed A, € k* which we regard as formal parameters, consider the
twisted de Rham complex over k|xz,y]:

(Qﬂ:[x,y}/kaDﬁ,WS’) = <Qu2[x,y]/kvhd+ﬁd(75)/\*)

equipped with the gradings as in (1.3). Then the corresponding comparison map is given
as follows.

DEFINITION 3.1. Define the map

s+ (e 41 Do) — (e y 5-109)

(deg,=0,deg,,>0) (deg,=0,deg,,=0)
by the formula

| zyY dx, dyg
Aol STl plal T plBl 181 S8

ps ¢y dza Adyg) = (1) (ju] 8] - 1)

together with the k-linearity.

Under this map, we will obtain comparison results Propositions 3.10 and 3.16. These
will be properly completed to give Theorems 1.1 and 1.2. We saw in Lemma 2.3 that the
target complex of pg in Definition 3.1 computes the algebraic de Rham cohomology of
Cs =k[z,y,571]. On the other hand, the following lemma explains the effect of taking the
subcomplex.

LEMMA 3.2. The inclusion

(QH;[w,y]/k7Dh,'yS> — (Qﬂz[%y}/k’Dh”S)

deg,.=0

s a quasi-isomorphism. On the other hand, the inclusion

(Qﬂ:[mvyl/k’ D;ms> (deg,=0,deg,, >0) (Qﬂz[x’y]/k’ Dh’ﬁys)deng

nduces a surjection on cohomology spaces with one-dimensional kernel spanned by the class

of dS.
Proof. Since deg,dS = 0, the differential Dy, s = hd + hd(7S) A — is compatible with

deg, so the subcomplex is well-defined. Moreover, by Lemma 2.2(3), each £ € Qk[z ul/k
homogeneous with respect to deg, satisfies the relation

(Dﬁ,'ySHc + QCDFL,’yS)g = (hdegc g) 5

so if Dy 45§ =0, then £ is in the image of Dp, s unless deg,& = 0. Hence, the first inclusion
is a quasi-isomorphism.

Note that 1 € Qu'([%y] P is the only bidegree (deg,.,deg, ) = (0,0) element up to scalar
multiplication by k. Since

Dpys(1) =hydS, Dpys(dS) =0,
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1€ Qg 1/ does not contribute to the cohomology and kills the class [dS]. On the other
hand, if deg,, f > 0, then the equation

Dns(f) = hydS <= df = (1— f)ydS
has no solutions in k[z,y]. Hence, [dS] defines a nontrivial class in the subcomplex with
(deg, = 0,deg,, > 0). 0

REMARK 3.3. Since (—1)! is not a well-defined number, in order to extend pg to the
deg, = 0 complex, we have to choose the value manually. Since 1 is the only bidegree
(deg,.,deg,,) = (0,0) element up to scalar multiplication by k, it suffices to consider ps(1)
only. For pg to be a cochain map, pg(1) must satisfy

as

dps(1) = ps(Dps(1)) = ps(hydS) = <

so ps(1) =logS. However, this is impossible in the polynomial ring, and even in the
corresponding overconvergent power series ring (Definition 4.1).

NoOTATION 3.4. In what follows, we will often denote

g. = (Q. )
0,+) k[z,y]/k (deg,.=0,deg,,>0)

as a Z-graded k-vector space so that

<‘$(T),+)’Dh,v5) - (Qﬂz[xay]ﬂk’Dh”S>

Also, we will often abbreviate the subscripts

(deg,=0,deg,,>0)

(0,0) := (deg,. = 0,deg,, =0), (0,+) := (deg, =0,deg,, >0)
to indicate the bidegree restrictions whenever it is clear from the context.

LEMMA 3.5. Properties of ps.

(1) ps is a k-linear cochain map.

(2) ps commutes with . and 0,,. Here, 0,, is regarded as a degree —1 map of
Z-graded k-vector spaces.

(3) If &1 and & are deg,,-homogeneous of positive degree, then

(degw 51 + degw 52 B 1)'
(degw 51 - 1)'(degw 52 - ]')
In particular, if € is deg,,-homogeneous of positive degree, then
i (deg,, £ +i—1)!

ps(E1NE) =— 25 (&) A ps(&2)-

ps(7'5°€) = (-1) ps(€)
for every integer i > 0.
Proof. The results follow from direct computation. O

To describe the kernel of pg, we introduce the following auxiliary map:

DEFINITION 3.6. Define the map

€w,S ‘= Dh,’ySQw +9wDﬁ,’yS : (Qﬂ:[m,y]/k7Dh»’YS> e (Qﬂz[z,y}/k’Dﬁﬁs) .
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By Lemma 2.2, if £ is homogeneous with respect to deg,,, then

€w,5(§) = (hdeg,, § + Iy S)E.

REMARK 3.7. This map corresponds to the one in [26, Lem. 9.1] which is defined via
the congruence condition on the degree of a defining hypersurface. However, we are working
reversely via the Cayley trick. In our context, [26, Lem. 9.1] becomes Definition 3.6, and
Monsky’s definition follows from Lemma 2.2.

REMARK 3.8. One may analogously consider €. g := Dp 50, +0.Dp, s, but this vanishes
on the subspace of deg, =0 by Lemma 2.2.

LEMMA 3.9. Properties of €, s.

(1) €w,s is a k-linear cochain map.
(2) €w,s is injective.
(3) €w,s restricts to the bidegree (deg. = 0,deg,, > 0)-subcomplez:

.5 (L4 Dins) — (L4 Dnas )

Ifge.,iﬂ('oﬂr

) 1s a deg,, -homogeneous element, then
(deg, &+i—1)

Proof. (1) €y,s is k-linear by construction and is a cochain map by

o 4 ! .
v S = (1) §mod €y, 5 LG 1)

Dp ~s€w,s = Dpns0wDh ys = (€w,5 — 0w Dr~s)Dhys = €w,5Dpi ~s-

(2) If € is a nonzero deg, -homogeneous element, then

€w,5(§) = (hdeg,, § +MS)¢

is nonzero by our choice of S.
(3) We proceed by induction on the power i. The case i = 1 follows immediately from
construction. If ¢ > 1, then

(v8)'¢ = (v8)(v8)" "¢
—(deg,, &+i—1)(yS)" " émod ew,g.i”('(LJr)
(deg,, & +1i—2)

_ ! .
—(deg,, &+i—1)- (1)1 §mod €y, 5.7 1y

(deg,, £ —1)!
=(-1) (deg, £ 1)1 §mod €y, 5L 4y,
where the third line follows from induction hypothesis. 0

PRroOPOSITION 3.10. With notation 3./, there is an exact sequence of cochain complezes
. €w,S ° ps .
0—— (g(o,—i-)’Dha‘YS) _— (%07+),Dh773> —_— (ch/k,d> 0.0) —0.

Consequently, there is an exact sequence

0— H* (L3 1) Do) 25 H (0, ) = HH (L

.4 Dis) =0
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for every i € Z, and in particular,
HO (£0,4) Dnys) =0, H' (L8 1), Drys ) = [dS].
Proof. Since the target of pg admits a k-basis

{ T 4%a M gia]
which is in the image of pg, the surjectivity of ps follows. The injectivity of €, g follows
from Lemma 3.9. If £ € ,,2”(6 n is deg,,-homogeneous, then

(psoew,s)(&) = ps ((hdeg,, §)E+hySE) =0

|+ |a =’U1d1+"'+’l)kdk+d51+"'+d5m}

by Lemma 3.5. Hence, pg induces

Dt aip(z)r") D (Qo d)
s\ews s T ey
Define the map of graded k-vector spaces
o (92.) L.
CS/k (070) EUJ,SD%(?)H’,)

by the formula

zthy? dys |v|+|/8|71h|a\+|5|7|v|+|5| w o
@ = (-1 «a
J( Sl dxg A SIBI) (—1) oIF 3= z'ydzo Ndyg

for |v|+|B| > 0 together with the k-linearity. From

0<S Ty dzx /\dy@>

Si Slel e glAl
| Blal+1Bly o+ IBl+i

—_ (_1\|v|+IB|+i—
= CEIEESES

Siaty’dre A dyg

: 1)|v|+|ﬁ|71hla\+|5|7|v|+|ﬁ| i A L g
=(— —= Lo mod €,

(o[+18[—1r " Y vs SL0)
_a< STl dxaASﬂ>,

we see that o is well-defined. Note that this forces (1) = vS. By construction, pgo is the
identity. Since cokere,, g is spanned over k by S'z%y"dz, Adys with i >0 and |v]+ 3| > 0,
and

Qi U, v — Z(|U|+’,B’+Z—1)' u, v .
V'St ydre Ndyg = (—1) o[+ 13 = 1! z"y"dra Ndys mod €, s LG 1)

is in the image of o, we conclude that o is surjective. Hence, pg and o are mutually inverses.

Therefore, we achieve the desired exactness.
For the second part, take the cohomology long exact sequence. Since €, s is homotopic to
zero by definition of €,, ¢ and Lemma 3.9, we get the desired exact sequences. In particular,
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the long exact sequence begins with

0 HO (5 ). Diss)

o
70 (Dg(;)’+)7phﬁs> _PS o (Qo d) — g (3(57+),Dh,75>

Cs/k’
o

1 °
H (°§€(O,+)7th’75) .
Hence, we get the desired vanishing and the § becomes an isomorphism

5:HO<Q'

Cs/k,d) -~ H! <%67+),Dh,vs) )

Since SpecCs = Speck|x,y, S7!] is connected, the right-hand side is one-dimensional with
a basis [dS] coming from 3.2. 0

COROLLARY 3.11. The cohomology groups of the twisted de Rham complex

H' <QH:[ac,y]/k7Dﬁy’YS>

are finite-dimensional k-vector spaces for every i € Z. In particular,

HO (041, 170 Das ) =05 H' (011310 Drns ) = 0.

Proof. By Lemma 3.2, we may compute the cohomology of the twisted de Rham complex

by using (.,?(’O +),Dﬁ7ﬂ,s>. Hence, the results follow from Proposition 3.10 and the finiteness
of the algebraic de Rham cohomology of smooth k-algebras [28, Th. 3.1]. 0

To describe the image of ps on the cohomology spaces, we introduce the following
auxiliary map.

DEFINITION 3.12. Define the k-linear map

(i) — ()
X ( k[z,y]/k (deg,=0,deg,, >0) kfz,y]/k (deg.=0,deg,,>0)
as follows: If £ is a deg,, &-homogeneous of positive degree, then denote
0, it deg,(=1,

Xee=q _(pp Lty 1 it d 1
(+2+ +degw§—1 , i eg, &> 1,

and define x(§) := x¢ - € on deg,, {-homogeneous elements.

REMARK 3.13. This map corresponds to the one in [26, p. 110]. The additional grading
deg,, coming from the Cayley trick replaces the role of the congruence condition on the
degree of a defining hypersurface in Monsky’s definition.

LEMMA 3.14. As a cochain map, the following hold.

dsS
ps© (XDhys — Drysx) = < Aps.
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Proof. If ¢ is a deg,,-homogeneous element, then
(XDh,ys = DnysX)(§) = xehd€ + XasnehydS N§ — xehd§ — xehydS N §
___Mm
 deg, €
because deg,,(dS A &) = deg,, £+ 1. By Lemma 3.5, this gives

dS A&

K
(ps o (XDnys — Drysx))(€) = — degv gps(dS NE)

_ Ty (deg, )
degw 5 (degw § - 1)
ds

= g/\ﬂs(f)

so the lemma follows. U

!Ps(ds)/\ﬂs(ﬁ)

LEMMA 3.15. With Notations 2.1 and 3.4, the square

(.,%(;H),Dms) s | % A (

(%0 Phas) ——5— (920) o,

commutes up to homotopy where we use the identification coming from the decomposition
in Proposition 2.4.

. ,d)
B/k deg,.=0

c

Proof. Using Lemmas 3.5, 3.9, and 3.14, and Proposition 3.10, we get

dPSQwX + pSngDﬁ,'yS = pSDﬁ,"/SGwX + pSGwXDh,'yS
= ps(Dnysbw +0uwDp~s)X + psO(XDhys — Dhysx)
= ps€uw,sX +0uwps(XDns — DnsX)

dsS
- 9w (S /\PS)

— ﬁ N
where 0,,p5 maps into Q;B/k by Lemma 2.3. O

PROPOSITION 3.16. In the exact sequence as in Proposition 3.10 for i € Z:
) . ) . g 3 °
0— H' (L3 1) Dros ) 25 H (92, o) =25 (L3 4 Diys ) —0
ps and & above induce isomorphisms
5 : Hz (Q.B/]k7d> % H’L+1 (og/ﬂ(.o +)7DFL,’YS> ’

ps: H (L’%#),Dhﬁg) ~, %AHH( ;B/k,d) .
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Here, we use the identification of Proposition 2.4. Consequently, ps induces
H' (981, 170 Dy ) = Hig (B(E)\ Xo) & Hi2(P(€)\ Xs)
for every i > 2.

Proof. Suppose that € € Q[fg—[tcly]/k is a Dj ~s-closed form. If we take

W= 9wPS§ = psawéa

then w € QiB/k and

dw = dby,ps§ = 0wpsDps§ = 0.

Since w is in the image of pg, it represents a class in Hi(Q'B/k,d). Now, 0,¢ is a lift of w
along ps and, since Dp, 5§ =0, we have

Dh,*ysgwg = (DFL,"\{SQ’UJ +0wDﬁ,'yS)£ = Ew,S(g)-

Therefore, by the construction of connecting map 6,
Sw] = EI_U}SDh,'ySQu)g} = [¢]

so 0 restricted to Hi(Q]‘B/k,d) is surjective.
On the other hand, pg defines an injection into Hi_l(ng/k,d) by Proposition 3.10 and

Lemma 3.15. If £ € H'~'(Q% ., d), then there is £e H'(Q% 5., d) with

- /dS
SE=0 <S/\§>

by the surjectivity of § observed above. Hence,
>~ ds % .
§— 5 NE € psH (g(o,Jr),Dh,vS)

but this implies 5: 0 by Lemma 3.15. Hence, pg is surjective as well, that is, it is an
isomorphism. By the identification of Proposition 2.4, this implies that § is an isomorphism
as well. The last assertion follows from Proposition 2.4 together with Lemma 3.2. [

§4. p-adic cohomology and Cayley trick

In this section, we will prove Theorems 1.1 and 1.2, by constructing p-adic models of the
complexes studied in §2 and §3, respectively. From now on, k will be a finite extension of
Q, with the valuation ring (O, my) and the residue field F,. Also, we keep the notation
in §2 and §3, but we assume that Gi,...,Gj belong to Ok[xg,...,z,] and their reductions
G1,...,Gy are nonzero in Fy[zg,...,z,].

4.1 Monsky—Washnitzer cohomology

In this subsection, we briefly review the theory of Monsky—Washnitzer cohomology,
which gives a p-adic model of algebraic de Rham cohomology studied in §2. Using this,
we translate Proposition 2.4 into Monsky—Washnitzer setting and get the corresponding
results in Proposition 4.7.
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DEFINITION 4.1. Denote the ring of overconvergent power series over Oy by

) there is r > 1 such that
Ocftr, . ta}T =< Y7 eyt € Oulftr, . 1] lim e, =0

on Uu|—oo
uGZzg [ul

Then a weakly complete finitely generated algebra over O is a homomorphic image of some
overconvergent power series ring.

PrRoPOSITION 4.2. Ok{tl,...,tm}T satisfies Weierstrass’ preparation and division.
Consequently,

(1) Ox{ty,...,tn}t is Noetherian, and
(2) the inclusion Oglty,...,t,] € Ox{t1,...,t,}" is flat.

Proof. This is [32, Prop. 2.2]. O
DEFINITION 4.3. Given an Og-algebra A, denote

Q° Q°

. A/ Ok s . . A/Oy
% = 2im| m
/ (O, my) o A/O A1ye )
o ﬂ muiJrlQA/ok ‘ /\LZO w0,

A>0
which is called the my-separated (or mg-continuous) differentials on A.

DEFINITION 4.4. Given an (usually smooth) F,-algebra A, a w.c.f.g. Og-algebra A4 is
called a lift if A is flat over Oy and A/m A = A.

THEOREM 4.5. Given a smooth F,-algebra A, there is always a lift A of A. Moreover,
the following hold.

(1) Every lift of A is isomorphic to A as an Ok-algebra.
(2) Let B be a smooth Fy-algebra with a lift B. If o: A— B is an F,-algebra map,
then there is an Ok-algebra map ¢ : A — B such that

@ mod my =7.
(3) If p,0b: A— C are two maps into a w.c.f.g. Ok-algebra such that
© mod my = ¢ mod my,
then the induced maps
P QA/(Okvmk) ®ok — QE’/(Okvmk) ®o.k
are homotopic.
Proof. This is [32, Th. 2.4.4]. 0

DEFINITION 4.6. Let A be a smooth F,-algebra. Define

Hipw (A/%) i= H' (20, my) @0, K, d)

where A is any lift of A given by Theorem 4.5.
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Return to the situation of §2, but with the assumption that Gi,...,G belong to
Ok|zo,...,x,] and their reductions G, ...,Gy in Fy[xo,...,x,]| are nonzero. As we observed
in §2, there is an isomorphism

o*: HY (PR \ Xg) —— HYL(P(E)\ X3)
coming from (2.3). Following Notations 2.1 and 3.4, we denote
Oy = Ok[:c,y,S_l](o,o), Op = Ok[x,y,S_l]degw:o, Ocy = Ok[:v,y,S_l].
Then the w.c.f.g. Ok-algebra

_ Ox{z,y 15}Jr
= Nt o YUY
CS Ok{'xayvs } (tS—l)
satisfies
) Fylz,y,t] -1
S ~ q[ Yy ]:Fq[:c,y,S ]

m,CL (£ -1)
Moreover, its subalgebras
AT = (O 0.0, B = (CL)deg, -0
are still w.c.f.g. Og-algebras such that

AT
mkAT

Bf —1

7_1 P P
=Fy[z,y,5 J0,0)=Oa, @gl@q[%y,s Jaeg,—0 = Op.

Hence, AT, BT, and Cg compute the Monsky—Washnitzer of O 4, O, and O¢y, respectively:
for R=A, B, or Cg,

Hew (Or/k) = H* ( ‘e Oume) B0 ]k,d) .

PROPOSITION 4.7. With the notations above, there is a decomposition of complexes

( é’;/(@k,mk)’co deg,,=0 - (Q.BT/(Ok,mk)ad) D % N ( .BT/(O]k,m]k)7d>

and for every i € Z, an isomorphism

Hy (O /k) 2 Hyi, (P(€)\ X5) @ Hy ' (P(E)\ Xg).

rig
Consequently, there is an isomorphism for every i € Z:

Hiyw (Oc k) = Hys (P(€)\ X5) ® Hy, ' (P(E)\ X5)*° @ Hy,* (P(E) \ X3)-
Proof. Note that Qé*/(o ) is generated over C’; by dxg,...,Tn,dy1,...,dyr and
S kM
similarly for Q}BT/(Ok my) and Q}M/(Ok my (cf. [29, Th. 4.5]). Since 6. and 6,, in §2 acts
only on dzx and dy, the proof of Proposition 2.4 works for overconvergent algebras to give

the desired decomposition:

< ;Jj;/(ok,mk)’d) deg,, =0 - < 79T/(Ollumlk)’d) ® % A ( ;S’T/(Ok,mk)’d) :

To get the second assertion, consider the affine weak formal scheme (P(€)\ Xs)' in the
sense of [24, Def. 15], that is, the topological space P(€)\ Xg endowed with the structure
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sheaf associated with Af. Then the open subsets for j =1,...,k

U, :=P(&)\ (Xguxyj@_) ~ Spec(Op, Jacg.—0, O, = Op[(y;G;) 18]

give a covering {U ]T }ic1,..k of (P(€)\ Xs)T by principal open subsets associated with the
w.c.f.g. Ok-algebras (B;)degczo where B;r = (’)Ej. From the vanishing of higher cohomology
[24, Th. 14] of finitely generated modules on affine weak formal schemes, we deduce that the
Cech-de Rham complexes of my-separated differentials compute the Monsky—Washnitzer
cohomology of the corresponding reduction. On the other hand, the section of 8, on each U jT ,

LdGi (0
d; G; ( Ul /(Oxm)

®%k@>}u4—%( ®mkd)

B;/(O”"mk) deg,.=0
as in the proof of Proposition 2.4 still works. Since restriction to a principal open subset is
given by tensoring with weakly completed principal localizations (cf. [24, p. 4]), the Cech—de
Rham cosimplicial algebra for my-separated differentials is 0-coskeletal as in algebraic de
Rham case (Example A.7). Hence, we obtain

H (0310, my B0,k d) 2 H, (P(E)\ Xg) & HY (P(E)\ X).

rig
Now, the rest part of the proposition follows from combining the two observations so far.[]

4.2 Dwork cohomology

In this subsection, we introduce the Dwork complex associated with Gjy,..., Gy, which
gives a p-adic model of twisted de Rham complexes studied in §3. Then, we extend the
ps in Definition 3.1 to the Dwork complex in Proposition 4.11, which proves Theorems 1.1
and 1.2.

DEFINITION 4.8. Denote

. (’)k[zl ZN]
Ox{z1,...,2n} :=lim L
Y g)mﬂi‘JrlOk[zl,...,zN]

the ring of restricted power series over Ok (in N variables), and
k{zla"'7ZN} ::k®0k Ok{zla"-azN}
the Tate algebra over k (in N variables).

REMARK 4.9. Tate algebra can be written as

k{z1,...,2n} = Z awz® €K[[z1,...,2n]] | lm a, =0
|w|—o0
wEZeZ)éV
Hence, given an N-tuple € = (€1,...,€ex) of positive real numbers, we denote
ke 21,... et 2N} = Z awz? €K[[z1,...,2n]] | lim au,e” =0
|w|—00
wEZgé\’
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We sometimes use notation k{e~'z}. In terms of rigid geometry, this algebra corresponds
to the closed polydisk of radius e. If € = |¢| for some ¢ € k®V | then

k{c 'z} = Z awe 2V €k[[2] | lim =0p=k{c 'z},
|w|—o0
wezgff
where k{c~!z} is the Tate algebra with respect to the variables cl_lzl,...,cﬁlzN.

Denote N :=n+k+1, and denote for h € k with val,h >0
C(h):= ay ozt y? € k x, lim a,,=0
() Z@N , y* eklleyll | lim
(u,v)eZzO
so that C'(h) = k{z,hy}. Then the twisted de Rham complex of the form

(98, Dnys) i= (C(N) @ugey) Wty Dis)

will be called the Dwork complex associated with Gi,...,Gk, or to Gi,...,Gj. The
gradings (1.3) is valid on our Dwork complex.

NoTATION 4.10. We will often denote
-gh.,(oHr) 1= C(N) ®xlzy "g’ﬂ(:)ﬂ*)
as a Z-graded k-vector space so that

("gh.,((),Jr) ’ Dh,’vs) = (2%, Dhﬁs)(degczo,degw >0)°

Now, Theorems 1.1 and 1.2 follow from the following theorem.

1
THEOREM 4.11. If val,y < T and val,h > 0, then the ps in Definition 5.1 extends

continuously to p-adic analytic complexes, that is, there is a commutative square

ps

(8.0,P105) —— (@2 ),

(%

Ps °
h,<o,+)7thS> — (Q

CL/(Onmy) Do, k, d) (0,0)
Moreover, the extended ps induces an isomorphism
ps: H' (5, Dy qs) —— Hi (P"\ Xg) @ Hi (P \ Xgg)

for every i > 2. On the other hand,

H®(Q,Dyrs) =0, H'(Q},Dp~s)=0.
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Proof. To extend pg, we need to check the overconvergence of the expression. To see
this, it suffices to show that there is some r > 1 such that

' plvi=lal—15]
h]rnoo (valp <(|v\ + 18] — 1)!’Y|”|+B|> — (Ju|+2|v| + ]ﬁ)logpr> = 00.

lv]—
From the degree condition, we have
|u] + |Oé| =wvidi + -+ vpdg +d51 —+ .. —i—dgj < (”U| + k‘)dmax.

Since |a| <n+1 and |5| <k are bounded by constants, we may ignore them so roughly
|u| ~ |v]|dmax for large |u|. On the other hand, we have

Blvl—lal—18]
vy (ol 191~ DV ) =l 200+ 3D log,

v|+1|8]—1
> PEEPZE o o]+ )+

+ (lv[ = lal = [B)valph— (Jv] +[B])valyy = (Ju] 4 2[v| + | 5]) log ,

Consequently, it suffices to take r such that

0 <log,r <

1 1
+ val,h — val .
2 + dmax <p -1 P p7>
Next, since €, s acts only on dxo,...,dz,,dyi,...,dys, it extends to Dwork complexes.
Then, we get a commutative diagram

. €w,S ° P °
0— (ozﬂ(O,Jr),Dhﬁg) — (3(07+),Dh773) LN (ch/k,d> 00 — 0

. €w,S . Ps °
0= (0 Do) 3 (L 0,0y Drs) 25 (QC;/wmk) @0,k d) 00 "

where the top row is exact by Proposition 3.10. Since the polynomial complexes are dense
and the maps are all my-adically continuous, the bottom row is exact as well. Since the
relation in Lemma 3.9 holds on ,,?h' (0,4) by continuity, €, s becomes the zero map on the
Dwork cohomology. Therefore, we get an exact sequence

0— H* (.i”’

PS, rri o) S, rri .
h,(0,+)’DMS> — Hyw (Ocs /k) = H™ (gn,(o,+)7Dh,ws> —0

together with (since O¢y = F,[z,y,S™!] is geometrically connected)

H° (ff{,(o,HthwS) =0, H' (fh',(o,ﬂ»Dh,ws) =k-[dS].

Moreover, since Lemma 3.2 applies to the inclusions

(%

h,(0,+)’DﬁwS>(—> (7, Dhys)

deg,=0 (Q%’Dhﬂs) )
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we get the desired vanishing of H' (Q}, Dy, s). On the other hand, we have
L1+ ! +- L > —1
va — ce — — 10, m
P 2 m) ~ &p

for every positive integer m so psx, pDn~sX, and pgf,x in Lemmas 3.14 and 3.15,

all converge as maps from £ 4 to QET/(O my) Qo
Uy s koMK

Proposition 3.16 works in p-adic setting to give isomorphisms

k. Therefore, the argument as in

§: Hipy (Op/k) — Hit1 (.z,;’ o +),DMS)

ps i H (.z,; o +),Dh,ys) — 2 A Hiny (On/k) -

Here, we use the identification of Proposition 4.7. Then pg induces an isomorphism

ps : H (5, D ys) —— H ' (P"\ Xg) @ H 2 (P™\ Xg)

for every i > 2. Note that here we use the canonical isomorphism

Hiig(P"\ Xg) = Hypw (P*\ Xg)

rig

which exists because P(£) \ X is smooth affine. Finally, there is an isomorphism

" He (Pp \ Xg) —— HE, (P(€)\ X5)
as we have observed in (2.3). Therefore, the proposition follows. 0
The following corollary is a generalization of Monsky’s remark in [26, p. 115].

COROLLARY 4.12.  With the assumptions in Proposition 4.11, if X& C ]P)]’FLQ s a smooth
complete intersection, then the inclusion

(Qﬂz[m,y]/kv Dh,vS> —— (O}, Dn,vs)
s a quasi-isomorphism.
Proof. By Lemma 3.2, it suffices to show that the inclusion

('g(t)ﬂr) ’ DFWS) — ("?h.,(o,—i-) ) Dh,w)

is a quasi-isomorphism. By Propositions 3.16 and 4.11 together with its proof, this follows
if we show that the inclusion

(Q'CS e d)<—> (Q

CL/(Ox,my) Dok, d)

is a quasi-isomorphism. Since X is smooth and proper,

Hip(Xe) = Hi(Xg) = Hiy(XG)

cris rig
and these isomorphisms are compatible with the Gysin sequences for Hjp and Hp,,
we conclude that the above inclusion of algebraic de Rham complexes coming from
Oklx,y,S7 — Cg is a quasi-isomorphism. U
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REMARK 4.13. The condition on ~ given in Proposition 4.11:

va
= p’}/_ 1

guarantees that
C(hy) =k{zo,...,xn,hyy1,...,hyyr}
is a subring of C'(h). Then
;’L'y = C(hr)/) ®k[m7y] Qﬂ;[x,y]/[k

is an C'(hy)-submodule of Q3. Arguing as in the proof of Proposition 4.11, we see that all
inclusions

(981010 Prrs ) € (s D) € (@4 Dnys)

are quasi-isomorphisms. On the other hand, C(hy) admits a filtration

FeC(hy) := Z o (B 2y? € C(R) | @y € 7O
(u,0) €Ly
which induces a ring isomorphism

Ouf{z,y} o FOC(h)
7Op{z,y}  F'C(hy)

1

Fq[xay]
The filtration on C'(hy) extends to

7.1’7 = C(h"}/) ®k[m,y] Qﬂ.([a:,y]/[k
given as follows:
FeQp = @ @ (W) FeC(hy)daa, A+ ANdza, Adyg, A+ Ndyg,.
i+j=m0<a; < <a; <n
121 <-<B; <k
Then the above ring isomorphism extends to the isomorphism

F°Q2 _
2l ~ .
(Flg;w’DhﬂS) (QFq[mvy]/Fq’dS/\ _> ’

where we denote S € F,[x,y] the reduction of S. By this observation, we may apply [5,
Prop. A.2] to lift a basis for the cohomology of <Q]3‘q[1‘ . /Fq,dg/\—> to get a basis for

the cohomology of (QF,Ds s) whenever the cohomology over the residue field is finite-
dimensional. For the detailed computation over the residue field when G4,...,G} define a
smooth projective complete intersection, see [4].

85. Operators on p-adic analytic cohomologies

In this section, we will give more precise statement of Theorem 1.3 together with its
detailed proof. This section is a generalization of [19, §III]. We begin with reviewing some
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necessary constructions. For each ¢ > 1, the equation

p '’
th—t ot =0
p p p

has a solution ~; with
1
1
For each choice of «;, the corresponding Dwork’s splitting functions is defined to be

0;(t) :=exp (’yit—l—(%;)p_|_(%t)p2+...+w>.

p? P’

val,y; =

Each 6; has integral coefficients and converges for
1t > ! + L (i +1+ !
va -t — 1 — .
PTop—1 pitt p—1
In this section, we will take v =7 so that =1 = —p and

PP
i ) = exp(yt —tP).
p

01(t) = exp <7t+

If ¢ = p®, then
1

exp(yt —yt7) = 01 (£)01 (") ---O(t7" )

converges for

val,t > g
In this section, we denote for a nonzero F € Ok[z,y] by cl = Ow{z,y, F~}1, the
corresponding weakly complete finitely generated algebra over O. Still we mainly consider
S :=y1G1+ -+ yrGp, where each G; is not divisible by the uniformizer m € my, in which
case, we denote pg the cochain map as in Proposition 4.11. The following lemma is an
analog of [19, Lem. 2.13].

LEMMA 5.1. Let S,T € Oklx,y| be homogeneous with respect to deg,,. If S and T are of
deg,, =1, and S—T =0mod 7, then

° PS °
('z““)’Dh”S) 7 <Qc;/<ok,mk> Box k’d>

exp(WS"/T)J Jz

(%

h,(0,+>’DMT> ’

pT (QE}/(OH«MM«) Bo. k’d>

18 commutative.
Proof. Note that if S—T =0 mod 7, then

1 1 S—T)m
1 —:Z( )
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converges in C’g SO C; = C} are canonically identified. Then the commutativity follows
from direct computation:

pr (exp(vS —~T)z" (hy)dzo ANdyg) = pr Z %(S —T)"x"(hy)’dxq Ndygs

m>0
(S —T)™ hlvlztyv da, dys
ymTm Aol Tl plal © plBIy 18I TIAl

_lyl = _ m glu| u v 1 d
_ (1Bt Y | =81\ [ S—T\" hlvlzvy® da, "
- (lvis 1)'Z< m T STl el " RIBISIBITA]

ZL 1)mHPIHBI=1 (1 4 o] + 8] — 1)!
S0 m!

m>0
S—_T —|v] =8| ﬁ'”‘m“y“ du dy
_ (—1)lel+el-1 (L 8-T ) ;
( 1) (|U|+’ﬁ| 1)-<1+ T > ,y\vlT\u\ plal h|ﬁ|’y|5|T|5|
7 v
h‘ |.CC y dg;a dyﬁ

= (=1 (o] 48] - 1)

= ps (z"(hy)'dxo Ndyg).

~lolSlol plal ™ plBly 181 16

5.1 The Frobenius operator
Denote Fr the endomorphism on Cg lifting the gth power endomorphism over the residue
field such that

Fr:Cg%C; (i, y;) —— (=f,v]) -
This map is injective and extends to a cochain map

(Q'c;/wk,mk)’d) - (Q;wc;)/(ok,mk)’d) '

Note that the above Fr sends the bidegree (¢, w)-subspace to the bidegree (gc, qw)-subspace.
Hence, our Fr restricts to the bidegree (0,0)-subcomplex:

(QC;/wk,mk) d) (0,0) (ch;)/(ok,mk)’d) (0,0)

On the other hand, denote

®,: C(h) — C(h) Y aw ety Y ayhltlaty,

(u,v)EZGEB(I)V (u,’u)EZgé\]

then ®, satisfies

0 0
Z»L'aiZioq)q :q¢q OZiTZi.

Using this, we may extend ®, to the cochain map as follows:

Dy 1 (2, Dro) — (2, Dno) fdza Ndyg —— @4(f)dzd, Adyj
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with the k-linearity. We may write

ey (fdza Ndyg) = ®4(f)g el dzo A gPlyf dys

1
= Y @Q(xayﬁf)qlaldxa/\qw‘dyﬁﬂ

Tala

where we extend convention (1.4) to monomials:
Taq ' =Tay ---Tay, dry :=dre, N...Ndxq,,
YB = Ypy - YB, dys :=dyg, N...Ndyg,.
For S :=4y1G1+---+yiG} as before, define
®g5: (2, Dhys) — (, Dnys)

by the formal identity

®, 5 :=exp (—%S(w,hy)) o®, pr oexp (%S(m,ﬁy)) ,
which converges because we can rewrite

Dg,5 = exp(VFr(S) —75) 0 By pp
k
= (H exp (VY Fra G —yy] GY) exp (vyi G — 'yini)> o By pr
=1

and the final expression converges. Since we may formally write

Dy, 5 = exp (—%S(x, hy)) o Dy goexp (%S(m, hy))

®, s is still a cochain map. Now, we may compare Fr and ®, 5 via ps.

PROPOSITION 5.2. There is a commutative diagram

° Ps .
(L 047 Drs) =2 (20, my B 1)

q(I’q,Sl J(Fr

° Ps .
(gh’(o"") ’ Dh"ys) (QC;/(OL«mk) Dok, d) )

Proof. We will follow Katz’s computation in the proof of [19, Th. 2.14] and [19, Th. 2.8].
Since the Frobenius on Fy[z,y| can be decomposed into

()@, 1 185, ()"
e —_—

Fq[x] ®Fq Fq [y] ]Fq [x](q) ®1Fq Fq[y] Fq [x](q) ®]Fq IE?q [y](q)

[ [

Fylo.y = Fylz,4](@,

where the superscript (¢) on each ring means that I, acts by ¢th power. Denote the lifting
of each factor by

Fr,:CL ——CL Fr,:CL —— CL.
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We abuse notation to denote FrgS :=y1G] + -+ +yxG}. Then there is a diagram

(] ps [ ]
(gh’(07+)’Dh”yS> <ch/(ok7mk) Bo. k’d)

<1>2 PP lFrz

° PFr. S °

exp(yFry S—+vFrgS) J(Z
pFrGS
oy D —— Q° o k,d
< h,(07+)a h”yF‘I'GS) ( C;‘rGS/(Okvmk) 9
qexp('yFryFrc;Sf~yS)o<I>z’]P7h11 J'Fry

(] Ps °
(gh’(o""'),Dh"YS) (QCE‘/(Okvm]k) Ox k’d) ’

where in the second and the third rows, we set deg.y; := —qd;. The top square is
commutative because

(Frpops) (z"y"dxq ANdyp)

_ (_p)lelHBI-1 1 vty dwe  dys
(=1) (o] +181=1)!Fra (7|v|5|v| Flal "\ FIT, BTG 1A
u, v || q—1g d
[ol+18]-1 zy’  gllaitde, vs
= (=07 e o Y R AT HIBT T Fr, 511

= PFr, s (q“"ﬂfi_lx“y”dxa A dyﬁ)
= (pFI“LS o @27]:?)]1?) (:Uuyvdxa A dyB) .
The middle square is commutative by Lemma 5.1. For the bottom square, we first compute

(Fry © IOFrGS) (xuyvd$a A dyﬁ)

— (_1)lol+IBI-1 Ry z'y”  dx, dys
( 1) (|U|+|ﬁ‘ 1)‘Fry <’y|”|FrgS|U| hlel h‘m'y‘mFrGS|ﬁ|
"y’ dzg qPlyd dygs

1)lvl+18]-1
( ) (|U|+|,B‘ ) 7|U‘Fr FrGS|”| Alel h|/8|fy|/8|FryFrGS|f3|‘

If we write

exp(yt? —~t) = Z amt™,
m>0

then

ps (qexp('yFryFrgS - 'yS)(bg’Pu? (z"y dzo N dyg))

=pPs |49 Z Amy ---Qmy, ylGl) 1 ,..(yka)mkxuyquxa/\q‘myg*ldyﬁ
rnEZeB’C
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O™ zvy il da, q'B‘yg_ldyﬁ

\m|+q|v|+q|6\ 1
=7 ) e (jml+alvl+ g8l = D remmr e garel flal * HAT,alATgaTel
mGZ@]‘
m o+l vl+18|
_ pylmitalvl+al Bl -1 WG FryFrgS
=7 ) a (el +alvl +alBl = 1)} S gmmr —amTraar gavrratel
mEZEBk
muyv d& dyB
X Fry <7|v|FrG5|v| e hwwaerm) '
Hence, the commutativity follows if we show that
1 (ya)™
q Z |m|+q|v|+q\5\ (jm| +q|v| +¢| 8] —1)! |m|S|m‘
mEZej’g

(5.1)
yalvl+alBl galvi+alBl

~lvI+18Fr FrGS\UIHﬁ\

= (=1 (fo] + 18] - 1)

To do this, consider

ft):=t""texp (

)ity Git
quw—1 | | K]
- o (7‘1 g5 >
yG mt\m\—‘rqw 1

— Iw— IHZ . yz zm Z am o

=1m> Bk
i=1m2>0 meZE§

FryFrgS-t4
yi-1Ga

and

Note that ¢ satisfies

(yG)™

9(0) = Z am(—1)|m‘+q“’_1(|m|+qw—1)! Sl

DOk
ezt

Moreover, g is by definition a formal solution of the differential equation

dg

=f

, L p—1 .
which converges for val,t > o Since the only solution of
pb— pq

dg

“Z_0
T

1
is a constant multiple of exp(—t) which converges only for val,t > 19 is the unique
power series solution. On the other hand, there is a solution of the form

Fr,FrgS -t
q Y —
h(t?)exp ( yiga > .
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After substituting and dividing by the exponential, we get

d <qFryFrgS~tq_1

q _ q -1 q) — quw—1
A1)+ h () + (g )h(t) prot,

which is equivalent to

qkryFrgS

d
ap(+4 Zh(49) — £qw
150 th(t)+tdth(t) v,

By change of variables, it is equivalent to

gFr,FrgS d w

dt
Hence, we may write
a-1ga g\ ! a-1gaq
h(t) = (1 + 7) (715“)1)
Fr FrgS dt qFr,FrgS

with the condition

h0) = (=1)“ (w— 1)1&
N qyVFr, FrgSv

Therefore, since g(0) = h(0) by the observation so far,

G)m B ,.quSqw
m(—1)lmi+aw=1 WO gy gy ST
S (=D (g~ U = (1) -
mezﬂg’g
Substituting w = |v| +|5|, we get equality (5.1), and the proof is completed. U

5.2 The Dwork operator
Since Fr(C:;) C C’g is a finite locally free ring extension of integral domains, there is a
cochain map

Tr: (Q'

C;/(o]k,mk)’d> - (Q.

FF(C;)/(Ok,mL«)’d>

as in [32, Prop. 3.1]. Denote v the composite

P (Q.C;/(Okvmk)’d> — (Q;r(CQ)/(Ok,mk)’d> £> (Q.CL/(Ok,mk)’d)

that is, the unique map satisfying Fro = Tr. By the description of [32, Prop. 3.1], Tr on
the differential forms fits into the commutative diagram

° ° T ~ ° T
Bt oum) 01 0nm) Bt K(Cs) —— D o1y 0, my) Ol K (Cs)

T{ f@Fr(c;)Tr

K (Fr(CY)),

ch;)/(ok,mk) QH(C;)/(Ok,mk) ®Fr(C§)
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. : . . . cQoe :
where the isomorphism comes from the inclusion QFr (L (Oumy) S Q L) (O’ and Tr

K (C’;) - K (Fr(Cg)) is the usual trace map for fields extends of finite degree. This gives a
description of :

B fo dzy  dyj
Y (fdra Ndyg) =1 <{Wq|a/\q,3

f dwd, dyj
=1 a=1 | Jal Al
Lo yﬁ q q

=Fr ' Tr _if — dma/\dﬂ,
LIT?X yg) q|a‘ q‘m

[ R | 9 .= dpd A--- q
xl =ad -xl dxl :=dxd N---Ndxl_,

where, following (1.4), we denote

q._ .9 q q .__ q q
Ys = Ys, Vs, dyg := dyg, N---Ndyg. .

By our choice of Fr in §5.1, Fr™' sends the bidegree (gc,qw)-subspace to the bidegree

(c,w)-subspace. Hence, the corresponding Tr restricts to the bidegree (0,0)-subcomplex;
and hence, our 1 restricts to the bidegree (0,0)-subcomplex:

v (QC;/(Okme«)’d> (0,0) (ch/((’)k,mk)’d) 0,0)

On the other hand, denote

U, : C(h) — C(h) > aw ety — >

v| u, v
aqu,qvh‘ |.%' Yy,
(u,v)ezgé\f

(uw)ezEy

then W, satisfies

0 0
\I’q Oziaiz’i == qzi% O\I’q.

Using this, we may extend ¥, to the cochain map analogously to ®, pn:

n+k+1

. . q dyp
‘IIQPH? : (Qﬁ,Dhyg) — (Qh,Dmo) fdz,, /\dyﬁ — Tats \Ifq(l'aylgf) q|0‘| A w

dza
For S :=y1G1+---+yiG as before, define

g5 (27, Dpys) — (O, Dpys)
by the formal identity

U, s :=exp (—%S(x,hy)) oW, pr 0eXp (%S(m,hy)) ,
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which converges because we can rewrite

Vg5 =Wy pp oexp(vS —vFr(9))
k
=W, pno (H exp (vyiGi — vy G}) exp (vyi G — vyﬁFrxGi)>
=1

and the final expression converges. Hence, ¥, s is still a cochain map by the same reason
as in §5.1. Now, we may compare 9 and ¥, g via pg.

PrOPOSITION 5.3. There is a commutative diagram

. Ps °
(L 047 Dras) =2 (%0, my B 1)

q_l‘qu,Sl J/w

° ps °
(Do) 2 (82 010

Proof. We will follow Katz’s trick in the proof of [19, Th. 2.15]. We may decompose
1 =1, 01, as in the case of Fr = Fr, oFr,. Hence, there is a diagram

° P
(gh,(o,—i-)’Dh»’YS) — " 5 Ko, k,d)

(Qc;/wk,mk)

q71@37P£ oexp(yS—~FryFrgS) J{’pr

° pFrGS °
<gh’<0’+>’Dh”FrGS> 7 (ch o/ (Opmy) DO k’d>

Frgo

exp(vFrgS—~Fr;S) i

° PFry S °

x
\IJQJF’]I? "pz

. Ps °
(L2007 D00s) —=— (2

CL/(Ox,my) ®o.k, d) ’

where in the second and the third rows, we set deg.y; = —qd;. The bottom square is
commutative because

(¢x © pFrIS) (xuyvdxa A dy,a)
_ (—1)lvl+IBI-1 1) zhy’  dze dys
=) (ol 18] = 1) <7|vFrxS|vl hlel " BlBl~IBIFY, S18]
= (O o - e (T (25 ) ) e n
Lo

Hlalglal " STl Tol RlBIA 181 S1]
s (i (1 (G5) ) i o)

dx,,

1
= ps (xFr_;l (Trp(xox®)) — A y”dyg)
q

. o]
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(67

_ qn—',-l u dl’a "
= ps (I‘I’q(xaw )W Ny dyg
= (/)S o \Ijg,Pu?) (xy"dxo Ndyg).
The middle square is commutative by Lemma 5.1. For the top square, we first compute

(wy % pS) (xuyvdxoe A dyﬁ)

_(_ ‘UH"B‘*]- _ | x“yv d:L’a dyﬁ
(1) -+ 131 01, iy 5 A g

— (—1)lvI+IBI-1 1yl Y’ rldz,  dys
(-1) (Jo]+]8] =1, (Try (yg_1’7|”|+|5|51’+|5|>> ARSI

1 v zldx d
— (—1)lvI+IBI-1 DY Ml YpyY a Ys

k v u ] d
— (_1)\v|+‘5\—1(‘v|+‘6| . 1)'q—\llg < YpY ) AT o A Ys
Ys

~lol+IBISlvl+IA] Rl BlBlglBl
If we write

exp(yt —t?) = Z b t™,
m>0

then, denoting eg :=eg, +---+eg, where j = || and eg, is the f;th standard basis for AL

1
PFreS <qugvﬂ"i§f (exp(vS —vFr FrgS)z"y dra A dyg))

1 m_ u,,v
= PFres 6\112/’% Z b (yG) "z "y  dzo Ndyp
mezgg
14 dy
= prrgs | - VY Z b (yG) " ypy’ | 2 dza A Tf\(
qys mez q

14F d
= prres | = q § : qu v—es yqum v—eg l‘udﬂja yﬁ
qys qlBl
Z@k

mi=1/, Y G e, dys
Z qu v— 65 ) (|m’ 1) ’y‘m‘FI'Gslml h|6¥\ /\h\ﬁ\qlﬁl

ez@k

Hence, the commutativity follows if we show that

(-1 )|v|+|6| 1(|v\+|ﬁ|—1) < YY"’ >x“ala:aA dyg

[v|+18] Slvl+|B] Rl hlBlglAl
qum—’U—eB (52)
E Im|—1 B Y -
me v— eB ) (’m‘ 1>")/|m|FI'GS‘m‘ .

mEZEB)C
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For this, consider the space of power series in ¢ with the “usual” growth condition

= valy(fm) > bm+c

for some fixed b > 0 and ¢ € R, depending on each f, and denote L° :=tL. Define

6
:L——1I° VYt [ —— L
875 4
in the usual way so that
0 0
UWlot— =qt—o WY’
1ot = g0 Vi

Now, define for f,g € k[z,y],

Wy o = exp(—ygt) o Wy oexp(vft), Wi i= Wi

Dy :=exp(—vft) Ot@at oexp(vft) = taat +ft

so that there is a commutative diagram

0 v 7‘2 0
(L 7DS)—>(L 7DS)

Qe

‘ijlts' Fro S
Lore exp(—vFrgS-t+~St) (53)

exp(—vFra S~t+'ySt)J(

Q@
»1—11*

7
(LO,DF‘rGS) 4> (L DFrgS)
where each (L, Dy) is regarded as a two term complex. On L°/D;L°, we have

(PF)™ 74 = ()T = = (< 1)l

At this point, we use the growth condition on L°. The differential equation

6P
tP=t
top T/
with the condition P € tk[z,y][[t]] has a unique power series solution
1 —exp(=7f)

vf

However, this does not belong to L° by the growth condition. Hence, ¢ # 0 in LY/D;L° so
it is a free k[z,y]-module of rank 1 with basis {t}. For £ € k[z,y],

P=

\I/yt(g Z 7 ft—f(.’IJ y ) tq)mé-
m>0 !
ﬂ%ZZ@%m%me%ﬁ
m>0 =0
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so we deduce that
WL (D (1) = Dy (W25(1)) = aDs (1) +aD; ()

for some w € LY. Hence, \IIZ’; on LY/D;L° is merely

0 0 0 0
LO/D;L0 — L°/DyL ¢t — qUY(E)L.
Therefore,
y ol +18]-1 _ ysy"
g <( 1 (ol 181 = Dt mrar groremar ) ¢
1 Ysy"
Yt lv|+|B]—1 B
i <( 1) (jol +15] = 1)! |v|+BIS|v|+|B|t>
1
:5\1; e <yﬁyvt|v|+|5|)
1
== exp(ySt — vFr, FrqSt?)yzy” tv |+‘5‘>
q
S b (yG) syt
meZEBk
_ 1 Z oo eﬁyme v— eBt\m\
Y ezt
1 _ yme—'L)—eﬂ
I _1)lml-1 =
q bi]m—v—eg( 1) (’m‘ 1>.")/|m|FI"Gs‘m|t7
ezg
that is, (5.2) holds, and the proof is completed. U

8A Remarks on algebraic de Rham cohomology
DEFINITION A.l. Given a map of schemes X — S, define its (relative) de Rham
cohomology to be

Hi(X/8) := H" (RD(X, Q% s) )
where Q% /s is the algebraic de Rham complex.

LEMMA A.2. Given a map of affine schemes X — S, if A=T(5,05), X =T(X,0x),
and A — B the corresponding ring map, then

RI(X, 0% /s) = Q%4
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in D(A), the derived category of A. Consequently,
Hig(X/S) = H"(Qp)4,4d),
where d is the usual de Rham differential.

Proof. Since QF /s is quasicoherent O x-module and X is affine,

D(X,9%q), if q¢=0,

HY(X, Q0P )=
(X 2%s) {o, if ¢>0.

In other words, Q% /s is a bounded below complex of I'( X, —)-acyclic objects so the canonical
map

QJ‘B/A /= F(X,QB(/S) *HRF(X,QE(/S)
is an isomorphism. U

REMARK A.3. To show the second assertion of Lemma A.2, one may argue with the
Cech spectral sequence for a chosen covering U of X:

ERY = 1P (Tot (C* U, H'(Q% 5)) ) ) = HPH(X, 0% ),
where H9(Q% / ) is the presheaf associate with U, a complex of abelian groups
Hq(U,Qg(/S) —)HQ(U,Q}X/S) —

and Tot takes the total complex of a double complex. For this, one may even use the covering
{Idx : X — X} to get the desired vanishing because X is affine.

In computing algebraic de Rham cohomology of affine schemes, one may rely on
cosimplicial de Rham algebras. For this, we introduce some terminologies on (co-)simplicial
objects. Let A be the simplex category and % a finitely bicomplete category, that is, ¥ has
finite limits and finite colimits. For n € N, denote A«,, the full subcategory of A consisting
of [0],...,[n] and the obvious inclusion

in: Acy—— A

Since € has finite limits and finite colimits, there are adjoint pairs

s

7]

in! ’Lr .

A% %]
given as in [6, V. 7.1]. Using these, we introduce the following terminologies.

DEFINITION A.4. Let A be the simplex category.

(1) The nth truncation is

tr, 1= 0% [A%P,G] —— [A%pn,%} .
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(2) The nth skeleton is
sky, :=ini) : [AP, €] —— [AP,F].
(3) The nth coskeleton is
cosk,, :=in.ik  [A°P, €] —— [A°P,F.

A simplicial object X in € is said to be n-skeletal (resp. n-coskeletal) if X is isomorphic to
its nth skeleton (resp. nth coskeleton).

In our context, we will only work with 0-coskeletal simplicial objects. Namely, given a
map of schemes X — S, that is, an object in Sch/g, the category of S-schemes, we may
regard it as a constant simplicial object in Sch/g. Since Sch /g has finite limits, we may take
its Oth coskeleton, which will be given by

A°P —— Sch /g [ X xg X Xg---xgX (n+1 times),

where the ith boundary map forgets ith factor and the ith degeneracy map duplicates the
ith factor, counted from 0. When X — S is a map of affine schemes corresponding to a ring
map A — B, the above simplicial object defines a cosimplicial A-algebra:

(BJ/A)*: A —— CAlg, F——B®s4B®a---®@4B (n+1 times).

If, furthermore, A — B is a k-algebra map over a ground ring k, then we may take the de
Rham complex degreewisely to get a cosimplicial de Rham algebra:

. . >0 .
Q%5 /aye i A —— CDGAL [P —— Q%5 /4y i

LEMMA A.5. If A— B is an étale k-algebra map, then the associated cosimplicial de
Rham algebra QEB/A)VIK is 0-coskeletal (in the opposite category).

Proof. Recall that for n > 0,
(B/A" =B®aB®a---®4B (n+1 times)
so A — (B/A)™ remains étale for every n > 0. Hence, the exact sequence
0—— (B/A)" @4y — Qg ay e = Ypjaynja —0
together with Q%B/A)H/A = 0 shows that
g ayn i = (B/A)" @4
This, together with the flatness of A — (B/A)", gives
g aye i = (B/A)* @4 Q%
so the assertion follows. []
PrOPOSITION A.6. Letk be a ring. If A — B is a faithfully flat étale k-algebra, then
Q% e —— Up/aye ik

is a 0-coskeletal cosimplicial resolution.
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Proof. Being a 0-coskeletal object follows immediately from Lemma A.5. Being a
cosimplicial resolution means that the given map induces a quasi-isomorphism of cochain
complexes:

i — Tot (C‘QEB aye /k) :

where C* takes the unnormalized complex (see, e.g., [33, Def. 8.2.1]) in the cosimplicial
direction, and Tot takes its total complex. In fact, the total complex will be a Cech—de
Rham complex of Q% /k with respect to the covering {Spec B — Spec A} which is surjective
as A — B is faithfully flat. Therefore, the total complex computes the algebraic de Rham
cohomology of A over k, and the above map becomes the augmentation map. O

EXAMPLE A.7. Given an affine scheme X and a finite affine open covering {U, };cs of
X, the induced map

U::HUi—>X
el

is a faithfully flat étale map of affine schemes. Here, the finiteness of I is necessary for
the coproduct to be affine. Then the total complex induced from the cosimplicial de Rham
algebra QEU /X)e /K will be the Cech-de Rham complex with respect to the Zariski cover
{Ui}ier of X. However, being 0-coskeletal cosimplicial objects, maps of such de Rham
algebras are determined at the level of Oth truncation:

HQ;]l_ ke

iel
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