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ON A COMPARISON BETWEEN DWORK AND RIGID
COHOMOLOGIES OF PROJECTIVE COMPLEMENTS

JUNYEONG PARK

Abstract. For homogeneous polynomials G1, . . . ,Gk over a finite field, their

Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory.

In this article, we will construct an explicit cochain map from the Dwork

complex of G1, . . . ,Gk to the Monsky–Washnitzer complex associated with

some affine bundle over the complement Pn \XG of the common zero XG of

G1, . . . ,Gk, which computes the rigid cohomology of Pn \XG. We verify that

this cochain map realizes the rigid cohomology of Pn \XG as a direct summand

of the Dwork cohomology of G1, . . . ,Gk. We also verify that the comparison

map is compatible with the Frobenius and the Dwork operator defined on

both complexes, respectively. Consequently, we extend Katz’s comparison

results in [19] for projective hypersurface complements to arbitrary projective

complements.

§1. Introduction

Let X be an algebraic variety over a finite field Fq of characteristic p > 0. The zeta

function of X is defined to be the following exponential sum:

Z(X/Fq, t) := exp

⎛⎝∑
s≥0

Ns

s
ts

⎞⎠ ,

where Ns is the number of Fqs-rational points of X. This function is known to be a rational

function in t with coefficients in Z by Dwork [13]. For a projective hypersurface X, Dwork

expressed the zeta function of X as an alternating product of characteristic polynomials

of a suitably chosen representative of a Frobenius action in a series of articles [14]–[17],

following his proof of the rationality of zeta functions. Based on Dwork’s theory, Adolphson

and Sperber developed a cohomology theory and got an estimate for the zeta function when

X is a closed subvariety of Ar ×Gs
m in [1], and when X is a smooth projective complete

intersection in [4], [5].

On the other hand, Monsky and Washnitzer developed rather an intrinsic cohomology

theory in [29] when X is a smooth affine variety admitting a nice p-adic lift. Then Monsky

proved the Lefschetz fixed-point theorem in [25], [27] to express the zeta function of X

as an alternating product of characteristic polynomials of a Frobenius action on Monsky–

Washnitzer cohomology. Later, van der Put [32] removed the technical condition on X

assumed by Monsky and Washnitzer to make the theory work for every smooth affine

variety X over Fq. Berthelot [9] extended this theory to not necessarily affine varieties, and

the resulting theory is called rigid cohomology theory.
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Since Dwork cohomology and rigid cohomology compute the same important invariant,

one may ask whether there is a connection between the two theories. For smooth

hypersurfaces in projective spaces, Katz answered this question in [19]. It is strongly believed

that the corresponding comparison results hold for more general cases, but up to the best of

author’s knowledge, there is no written proof so the author hope that this article provides

a detailed proof for general cases with several equations.

Let us briefly explain the contents of [19]. Let k/Qp be a finite extension with the

valuation ring Ok. Given a homogeneous polynomial G ∈ Ok[x0, . . . ,xn] of degree d ≥ 1,

consider a k-linear span of some monomials (cf. [19, p. 77]):

L 0,+ :=

⎧⎪⎨⎪⎩
∑

(u,v)∈Z
⊕n+2
≥0

au,vx
uyv ∈ Ok[x,y]

∣∣∣∣∣∣∣
vd= u0+ · · ·+un,

au,0 = 0

⎫⎪⎬⎪⎭ .

For a fixed constant γ ∈ k, there are differential operators on L 0,+:

Dxi := exp(−γyG)◦xi
∂

∂xi
◦ exp(γyG) = xi

∂

∂xi
+γyxi

∂G

∂xi
,

Dy := exp(−γyG)◦y ∂

∂y
◦ exp(γyG) = y

∂

∂y
+γyG.

On the other hand, suppose that the hypersurface XG ⊆ Pn
k
defined by G is smooth. If

Hi ⊆ Pn
k
is the hyperplane defined by xi = 0 for i= 0, . . . ,n, and X∅

G :=XG \ (H0∪· · ·∪Hn),

then, by [19, Th. 1.16], there is an exact sequence

0 ��

(
DyL

0,++

n∑
i=0

DxiL
0,+

)
�� L 0,+ Θ �� Hn

dR(X
∅
G)

�� 0,

where the local description of Θ is given in [19, Th. I]. Here, H•
dR denotes algebraic de Rham

cohomology. One way of getting a global description of Θ is using the complement of XG.

Namely, denote Tn
k
:= Pn

k
\ (H0∪· · ·∪Hn) with local coordinates ti := xi/x0 for i= 1, . . . ,n.

Then there is a k-linear map given by (cf. [19, p. 78])

R : L 0,+ �� Hn
dR(T

n
k
\X∅

G) xuyv � ��
(−1)v−1

(v−1)!

xu

Gv

dt1
t1

∧· · ·∧ dtn
tn

inducing an exact sequence (cf. [19, p. 79])

0 ��

n∑
i=0

DxiL
0,+ �� L 0,+ R �� Hn

dR(T
n
k
\X∅

G)
�� 0 .

Here, the map is defined via the inhomogeneous coordinates of Pn
k
\H0. One gets a

description in the homogeneous coordinates using the relation:

dt1
t1

∧· · ·∧ dtn
tn

=
n∑

i=0

(−1)i
dx0

x0
∧· · ·∧ d̂xi

xi
∧· · ·∧ dxn

xn
.

To relate R and Θ, we use the canonical exact sequence:

0 �� Ω•
Pn
k
/k

�� Ω•
Pn
k
/k(logXG)

ResG �� Ω•
XG/k[−1] �� 0,
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422 J. PARK

where ResG is the residue map uniquely characterized by the property

ResG

(
dG

G
∧ω

)
= ω.

Then, by [19, Th. 1.18], ResG ◦R =Θ. The remaining part of [19] is dedicated to compute

representatives of Frobenius actions. To achieve this, we need to develop a p-adic analytic

theory. Then Θ and R extend by continuity, and they are compatible with the Frobenius

actions in a suitable sense. Since we discuss the corresponding version of the p-adic analytic

theory in this article, we do not explain the remaining part of [19].

Monsky’s lecture note [26] gave a more detailed discussion of the algebraic version of

the Dwork complex in p-adic setting together with its relations with algebraic de Rham

cohomology and Monsky–Washnitzer cohomology. Then the complex algebraic analog of

Dwork theory together with the connection of de Rham cohomology has been studied.

Adolphson and Sperber dealt with the smooth complete intersections in affine varieties

in [3]. Dimca, Maaref, Sabbah, and Saito studied the singular subvarieties embedded

in smooth varieties in [12] using the theory of algebraic D-modules. These results were

again implemented in the rigid setting by Baldassarri and Berthelot for singular projective

hypersurfaces in [7] using the theory of arithmetic D-modules. On the other hand,

Bourgeois [11] directly constructed a quasi-isomorphism between the Dwork complex used

by Adolphson and Sperber in [1] and the complex of Monsky and Washnitzer in the smooth

affine setting.

The goal of this article is to construct an explicit comparison between the Dwork

cohomology of given homogeneous polynomials and the rigid cohomology of the complement

of their common zero in a projective space, together with Frobenius actions defined on both

sides. This generalizes the complement comparison result in [19] described above, but with

a different choice of cochain complexes. Note that if the given homogeneous polynomials

define a smooth complete intersection, then we can recover the essential information of the

rigid cohomology of the common zero. The more detailed exposition will be given in the

following two subsections.

As mentioned before, Adolphson and Sperber studied Dwork complexes in various

settings, and it seems that the Dwork complex which appears in this article resembles the

one in [5]. Our academic contribution is to find a correct version of the p-adic Dwork complex

which is appropriate to construct the desired comparison map, and give a systematic

treatment of getting a connection between the two theories via the Cayley trick1 as the

author did in [31, 22] to study the period integrals in the complex geometric setting.

1.1 The idea and motivation

One remarkable observation so far is that the comparison becomes more transparent when

we consider the complement of the hypersurface X in the ambient projective space Pn
Fq
.

Moreover, we may extract information of H•
rig(X) from H•

rig(P
n
Fq

\X), where H•
rig denotes

rigid cohomology. Indeed, if X ⊆ Y is a codimension k closed embedding of smooth varieties

1 The Cayley trick gives an isomorphism between the cohomology of the open complement in the projective
space and the cohomology of the hypersurface complement in a larger space. For the detail, see §2.

https://doi.org/10.1017/nmj.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.32


DWORK-RIGID COMPARISON FOR PROJECTIVE COMPLEMENTS 423

over Fq, then there is a commutative diagram with exact rows:

· · · �� Hi
X,rig(Y )

�
��

�� Hi
Y,rig(Y )

�
��

�� Hi
Y \X,rig(Y \X)

�
��

�� · · ·

· · · �� Hi−2k
rig (X) �� Hi

rig(Y ) �� Hi
rig(Y \X) �� · · ·

where the top row is a special case of the excision exact sequence [10, Prop. 2.5], and the

isomorphisms in the columns come from the Gysin isomorphism [23, §9.3]. Therefore, if
XG ⊆ Pn

Fq
is a smooth projective complete intersection given by homogeneous polynomials

G1, . . . ,Gk ∈ Fq[x0, . . . ,xn], then there is a long exact sequence, called the Gysin exact

sequence:

· · · �� Hi
rig(P

n
Fq
) �� Hi

rig(P
n
Fq

\XG)

��

Hi−2k+1
rig (XG)

�� Hi+1
rig (Pn

Fq
) �� · · ·

(1.1)

which is a rigid cohomology analog of the excision exact sequence of algebraic de Rham

cohomology. As in the case of algebraic de Rham cohomology, this sequence induces an

isomorphism

Hn+k−1
rig (Pn

Fq
\XG)

∼ �� Hn−k
prim(XG),

where Hn−k
prim(XG) is the primitive part of Hn−k

rig (XG). Using the interpretation of the zeta

function as the characteristic polynomial of the Frobenius action on the cohomology (see,

e.g., [18]), one can deduce that the zeta function of XG can be written as

Z(XG/Fq, t) =
P (t)(−1)n−k−1

(1− t)(1− qt) . . .(1− qn−kt)

and P (t) is completely determined by the Frobenius action on the primitive part. Hence,

the computation of the cohomology of the projective complement has its own importance.

Once we decide to focus on the cohomology of the complement, we may forget about the

regularity of XG ⊆ Pn
Fq

because Pn
Fq

\XG is always smooth, being an open subset of the

smooth space Pn
Fq
.

On the other hand, the Dwork complex can be defined for any homogeneous polynomials

G1, . . . ,Gk ∈ Fq[x0, . . . ,xn], regardless of the regularity of their common zero XG ⊆ Pn
Fq
.

Namely, taking the Teichmüller lifts of the coefficients of each Gi, we get homogeneous

polynomials Gi defined over some finite extension k/Qp with degGi = degGi such that

the reduction of each Gi becomes Gi. Then, we define the Dwork complex associated with

G1, . . . ,Gk to be the twisted de Rham complex of the form(
k{x,�y}⊗k[x,y]Ω

•
k[x,y]/k,�d+�d(γy1G1+ · · ·+γykGk)∧−

)
, (1.2)

where k{x,�y} is the Tate algebra over k (see Definition 4.8), and �,γ ∈ k× are some

parameters.
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Although the Dwork complex is defined for homogeneous polynomials, its cohomology

would depend only on their common zero locus. For example, when we are working with

one homogeneous polynomial G ∈ Fq[x0, . . . ,xn], there are comparison theorems between

the Dwork cohomology of G and the rigid cohomology of Pn
Fq

\XG. In the existing results,

[19] and [7], they remove the hyperplane divisors in Pn
Fq

defined by x0, . . . ,xn to get an affine

open subset, where one can write down a comparison map, and then use the log de Rham

complex to recover the original situation. Consequently, their Dwork complexes are exactly

the ones defined by Adolphson and Sperber in [2, §2].
Instead of removing hyperplane divisors in Pn

Fq
, we use the Cayley trick to convert the

computation involving polynomials to the computation involving a hypersurface contained

in a larger space. With the above notation, the hypersurface is cut out by y1G1+ · · ·+ykGk

in a projective bundle P(E)→ Pn
k
for a suitably chosen locally free OPn

k
-module E of finite

rank, where y1, . . . ,yk play the role of fiber coordinates. Consequently, we get the Dwork

complex as in (1.2) which resembles Adolphson and Sperber’s Dwork complex defined in

[5, §2]. The difference of our Dwork complex and the one in [5] comes from the different

choice of Dwork’s splitting functions (for a definition, see §5), which causes the different

choice of the lift of y1G1+ · · ·+ykGk ∈ Fq[x0, . . . ,xn] over the p-adic field. Since the lift of

Adolphson and Sperber, denoted by H in [5, eq. (2.10)], is a power series in y1, . . . ,yk, it

does not define a hyperplane in P(E). Hence, we cannot get the desired geometric object.

However, our lift y1G1+ · · ·+ykGk is linear in y1, . . . ,yk so it indeed define a hypersurface

in P(E). Although the two Dwork complexes are different, their reductions on the finite

field are exactly the same so one may expect that both Dwork complexes have the same

cohomology. This is true when G1, . . . ,Gk defines a smooth projective complete intersection

in Pn
Fq

(see Remark 4.13). Hence, the two Dwork complexes may be regarded as equivalent

at least for this case.

1.2 The main results

Let k/Qp be a finite extension with the valuation ring (Ok,mk). Denote valp the p-adic

valuation such that valp(p) = 1. Given homogeneous polynomials G1, . . . ,Gk ∈Ok[x0, . . . ,xn]

of positive degrees d1, . . . ,dk not divisible by the uniformizer of Ok, we introduce formal

variables y1, . . . ,yk corresponding to G1, . . . ,Gk so that the polynomial

S(x,y) := y1G1+ · · ·+ykGk ∈ Ok[x,y]

defines a hypersurface in an affine space. Consider the twisted de Rham complex(
Ω•

k[x,y]/k,D�,γS := �d+�d(γS)
)
,

where �,γ ∈ Ok are regarded as parameters. Introduce gradings⎧⎪⎪⎨⎪⎪⎩
degcxi := 1 i= 0, . . . ,n,

degc yj :=−dj j = 1, . . . ,k,

degc dxi := 1 i= 0, . . . ,n,

degc dyj :=−dj j = 1, . . . ,k,

⎧⎪⎪⎨⎪⎪⎩
degw xi := 0 i= 0, . . . ,n,

degw yj := 1 j = 1, . . . ,k,

degw dxi := 0 i= 0, . . . ,n,

degw dyj := 1 j = 1, . . . ,k,

(1.3)

so that S and dS become homogeneous of bidegree (degc,degw) = (0,1) and the twisted de

Rham complex is graded with respect to degc. Then the Dwork complex associated with

G1, . . . ,Gk will be defined by
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(Ω•
�,D�,γS) :=

(
k{x,�y}⊗k[x,y]Ω

•
k[x,y]/k,D�,γS

)
,

where k{x,�y} will be a version of the Tate algebra (see Remark 4.9).

On the other hand, denote C†
S :=Ok{x,y,S−1}† the weak completion (see Definition 4.1

or [29, Th. 2.3]) of Ok[x,y,S
−1], and

Ω•
C†

S/(Ok,mk)
:=

Ω•
C†

S/Ok⋂
i≥0

m
i+1
k

Ω•
C†

S/Ok

the module of mk-separated differentials. Then the above gradings extend to(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
,

where d is the de Rham differential. With the valuation conditions on γ and � for the

convergence (see Theorem 4.11), we have the following comparison map.

Theorem 1.1. If valpγ ≤ 1

p−1
and valp�> 0, then there is a cochain map

ρS : (Ω•
�
,D�,γS)(degc=0,degw>0)

��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
(degc=0,degw=0)

defined by the formula

ρS (x
uyvdxα∧dyβ) := (−1)|v|+|β|−1(|v|+ |β|−1)!

xuyv

γ|v|S|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|S|β|

together with the k-linearity. Here, u,v,α,β are multi-indexes with⎧⎪⎪⎪⎨⎪⎪⎪⎩
xu := xu0

0 · · ·xun
n , |u| := u0+ · · ·+un,

yv := yv1
1 · · ·yvk

k , |v| := v1+ · · ·+vk,

dxα := dxα1 ∧· · ·∧dxαi , |α| := i

dyβ := dyβ1 ∧· · ·∧dyβj , |β| := j.

(1.4)

We will see later that the inclusion(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
(degc=0,degw=0)

⊆
(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

is a quasi-isomorphism, and the inclusion

(Ω•
�,D�,γS)(degc=0,degw>0) ⊆ (Ω•

�,D�,γS)

induces a surjection of cohomology spaces with one-dimensional kernel generated by the

class [dS]. By Definition 4.6,

Hi
(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
∼=Hi

MW

(
Fq[x.y,S

−1
]/k
)
,

where Fq is the residue field of Ok, and S = y1G1+ · · ·+ykGk ∈ Fq[x,y] is the reduction of

S. Since Monsky–Washnitzer cohomology is canonically isomorphic to rigid cohomology for

smooth affine schemes, the ρS in Theorem 1.1 is a comparison map from Dwork cohomology

to rigid cohomology.
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On the other hand, if XG ⊆ Pn
k
is the common zero of G1, . . . ,Gk, then we will see in §2

that there is a canonical map

Spec k[x,y,S−1](degc=0,degw=0)
�� Pn

k
\XG

inducing a quasi-isomorphism on rigid cohomology spaces. Moreover, by Corollary 4.7, the

Monsky–Washnitzer cohomology associated with the bidegree (0,0)-subalgebra above is

computed via the complex of mk-adically separated forms of C†
S . The corresponding state-

ment for algebraic de Rham cohomology is Proposition 2.4. This is a direct generalization

of [26, Th. 9.2] which covers the case of projective hypersurface complement. With the

notations so far, we can say more about the comparison map ρS .

Theorem 1.2. ρS induces an isomorphism

Hi (Ω•
�,D�,γS)∼=Hi−1

rig (Pn \XG)⊕Hi−2
rig (Pn \XG)

for every i≥ 2. On the other hand,

H0 (Ω•
�,D�,γS) = 0, H1 (Ω•

�,D�,γS) = 0.

The q-power map induces an endomorphism, called the Frobenius endomorphism on

Fq[x,y]. This map lifts to endomorphisms

Φq,S : (Ω•
�
,D�,γS) �� (Ω•

�
,D�,γS)

Fr :
(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

both act on the zero forms by sending xi and yj to its qth power xq
i and yqj , respectively.

These endomorphisms admit retractions, that is, endomorphisms

Ψq,S : (Ω•
�
,D�,γS) �� (Ω•

�
,D�,γS)

ψ :
(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

such that Ψq,S ◦Φq,S and ψ◦Fr are the identity maps, respectively. The detailed expositions

will be given in §5. Now, we have the following comparison of the endomorphisms above.

Theorem 1.3. ρS is compatible with the Frobenius and the Dwork operators defined on

the source and the target, respectively. More precisely, the diagrams

(Ω•
�
,D�,γS)(degc=0,degw>0)

qΦq,S

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

Fr
��

(Ω•
�
,D�,γS)(degc=0,degw>0)

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
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(Ω•
�
,D�,γS)(degc=0,degw>0)

q−1Ψq,S

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

ψ

��

(Ω•
�
,D�,γS)(degc=0,degw>0)

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

are commutative.

Remark 1.4. In Theorem 1.3, we dropped the subscript (degc = 0,degw = 0) in the

target of ρS because we are not sure that an arbitrary lift Fr of the q-power map preserves

the bidegree (0,0)-subcomplex. However, the particular choice such that

Fr : C†
S

�� C†
S (xi,yj)

� �� (xq
i ,y

q
j )

and the ψ coming from this choice are compatible with the bidegrees so we can recover the

subscript (degc = 0,degw = 0) in Theorem 1.3. See §§5.1 and 5.2 for the details. We will

see in Theorem 4.5 that any lifts of the q-power map define homotopic cochain maps so we

can always make such choices.

We have the following remark concerning formal deformation theory of the Dwork

operator, which is not covered in the rest of this article.

Remark 1.5. Using the twisted de Rham complex in Theorem 1.1, we may directly con-

struct a DGBV (differential Gerstenhaber–Batalin–Vilkovisky) algebra with the isomorphic

underlying complex, as the authors of [20] did on the complex geometry setting, and we

may develop the formal deformation theory as in [31]. Theorem 1.3 enables us to apply this

type of formal deformation theory to the Dwork operator. For the detailed discussion in

the DGBV aspects of Dwork theory, see [21].

1.3 Outline of the article

In §2, we explain the Cayley trick. In particular, Proposition 2.4 gives a direct sum

decomposition of the algebraic de Rham complex of the affine cone and the corresponding

decomposition of the algebraic de Rham cohomology. This identification is used in the rest

of the article.

In §3, we explicitly write down a comparison map ρS (Definition 3.1) in a corresponding

algebraic setting. The comparison for this algebraic ρS will be given in Propositions 3.10

and 3.16.

After establishing the algebraic theory, we will define the required p-adic analytic

complexes in §4 and give a proof of Theorems 1.1 and 1.2. In §4.1, we recall the basics on

Monsky–Washnitzer cohomology. In particular, Proposition 4.7 is the Monsky–Washnitzer

version of Proposition 2.4. This gives the target complex of the ρS in Theorem 1.1. In §4.2,
we recall the basics on Dwork complexes and introduce the source complex of the ρS in

Theorem 1.1. Now, the main results of §3 yield Theorem 4.11 which is the combination of

Theorems 1.1 and 1.2.

Finally, in §5, we will prove Theorem 1.3, following Katz’s proof in [19, §III] with some

appropriate changes. Namely, Propositions 5.2 and 5.3 together give Theorem 1.3.

The appendix A is an explanation of the computation of algebraic de Rham cohomology

via the cosimplicial algebra coming from Čech covering of affine open subsets which is in

the proof of Proposition 2.4. Up to the best of author’s knowledge, the suitable reference
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for this simplest case is not available in the literature so the appendix is added for this

article to be more self-contained.

§2. The Cayley trick

In this section, we give a detailed explanation of the Cayley trick and its consequences. We

begin with motivation. Let k be a field andX ⊆Pn
k
a smooth projective complete intersection

of codimension k. For a “reasonable” cohomology theory H• defined for quasiprojective

schemes over k, one may obtain the Gysin exact sequence of the following form:

· · · �� Hi(Pn
k
) �� Hi(Pn

k
\X)

ResX
��

Hi−2k+1(X) �� Hi+1(Pn
k
) �� · · ·

(2.1)

The particular cases we consider are:

(1) k is a field of characteristic zero, and H• = H•
dR is algebraic de Rham

cohomology.

(2) k= Fq is a finite field, and H• =H•
rig is rigid cohomology.

Case (2) is mentioned in the introduction (1.1) briefly. For (1), see [30, §3.1] for example.

In particular, in the cases (1) and (2) above,

Hi(X)∼=Hi(Pk) for i 
= n−k, 0≤ i≤ 2(n−k)

by the weak Lefschetz property and Poincaré duality. Denote in this situation

Hn−k
prim(X) := ker

(
Hn−k(X) �� Hn+k(Pn

k
)
)
.

Then ResX induces an isomorphism:

ResX :Hn+k−1(Pn
k
\X) �� Hn−k

prim(X).

Therefore, we may focus on the cohomology of the complement Pn
k
\X. Because we decided

to consider the complements, we may assume that X = XG ⊆ Pn
k
is defined by any finite

set of homogeneous polynomials G1, . . . ,Gk ∈ k[x0, . . . ,xn] of positive degrees d1, . . . ,dk,

respectively. The Cayley trick is a method of translating the computation of H•(Pn
k
\XG)

to a computation of the cohomology of the complement of a hypersurface living in a larger

space. This larger space is simply given by the projective bundle

P(E) := Proj
Pn
k

Sym•
OP

n
k

E �� Pn
k

associated with a locally free OPn
k
-module E := OPn

k
(d1)⊕ ·· · ⊕OPn

k
(dk). Another way of

describing P(E) comes from the toric geometry, via the geometric quotient:

P(E)∼=
(Ak

k
\0)× (An+1

k
\0)

Gm×Gm
,

where the Gm×Gm-action is given by

(α,β) · (y,x) := (α−d1βy1, . . . ,α
−dkβyk,αx0, . . . ,αxn).
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Here, the new variables y1, . . . ,yk correspond to OPn
k
(d1), . . . ,OPn

k
(dk), and the action above

explains the gradings (1.3). Moreover, S := y1G1+ · · ·+ykGk being of degcS=0 is equivalent

to saying that S is a (Gm×1)-invariant element. Hence, it defines a hypersurface XS ⊆ P(E)
and

Speck[x,y,S−1](degc=0,degw=0) = Speck[x,y,S−1]Gm×Gm ∼= P(E)\XS

so that there is a commutative diagram:

Speck[x,y,S−1]

��

�� (Ak
k
\0)× (An+1

k
\0)

��

P(E)\XS

ϕ

��

�� P(E)

��

Pn
k
\XG

�� Pn
k
.

(2.2)

Denote XGi ⊆ Pn
k
the hypersurface cut out by Gi so {Pn

k
\XGi}i=1,...,k is an open covering

of Pn
k
\XG. Since E|Pn

k
\XGi

∼=O⊕k−1
Pn
k
\XGi

is a trivial bundle of rank k−1, ϕ is an Ak−1
k

-bundle.

In this setting, if an abstract cohomology theory H• satisfies the Künneth formula, and

H•(Ak−1
k

)∼= k, then ϕ induces an isomorphism

ϕ∗ :H•(Pn
k
\XG)

∼ �� H•(P(E)\XS) , (2.3)

which is true for the cases (1) and (2) above. In this section, we focus on H• =H•
dR over a

characteristic zero field k. Then ϕ in (2.3) induces an isomorphism

ϕ∗ :H•
dR(P

n
k
\XG)

∼ �� H•
dR(P(E)\XS) .

Since P(E)\XS is affine with coordinate ring A := k[x,y,S−1]Gm×Gm , we have

H•
dR(P

n
k \XG)∼=H•

dR(P(E)\XS)∼=H•(Ω•
A/k,d),

where (Ω•
A/k,d) is the algebraic de Rham complex of A.

Notation 2.1. In what follows, we denote

A := k[x,y,S−1](degc=0,degw=0), B := k[x,y,S−1]degw=0, CS := k[x,y,S−1]

so that A⊆B ⊆ CS .

In the rest of this section, we will describe the algebraic de Rham cohomology of A using

the algebraic de Rham cohomology of CS . Note that SpecA is smooth over k, being an

open subset of a smooth k-scheme P(E), and SpecB is smooth over k, being an open subset

of Pk−1
k

×An+1
k

. Since A, B, and CS are smooth over k, the inclusions A⊆B ⊆ CS induces

embeddings (
Ω•

A/k,d
)
� � ��

(
Ω•

B/k,d
)
� � ��

(
Ω•

CS/k
,d
)
.
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We will see in Proposition 2.4 that these induce split injections of cohomology spaces. Since

the de Rham differential preserves the bidegree (degc,degw), the inclusion from Ω•
A/k to

Ω•
CS/k

factors through(
Ω•

A/k,d
)
� � ��

(
Ω•

B/k,d
)
degc=0

� � ��

(
Ω•

CS/k
,d
)
(degc=0,degw=0)

,

where the bidegree (0,0) part of Ω•
CS/k

is the k-linear span of differential forms

xuyv

S|v| dxα∧
dyβ
S|β| ,

where u,v,α,β are multi-indexes following convention (1.4) such that

|u|+ i− (v1d1+ · · ·+vkdk)− (dβ1 + · · ·+dβj ) = 0.

This explains the gradings (1.3) in the introduction. Then each grading has the correspond-

ing Euler vector field:

Ec :=
n∑

i=0

degc(xi)xi
∂

∂xi
+

k∑
j=1

degc(yj)yj
∂

∂yj
=

n∑
i=0

xi
∂

∂xi
+

k∑
j=1

(−djyj)
∂

∂yj

Ew :=
n∑

i=0

degw(xi)xi
∂

∂xi
+

k∑
j=1

degw(yj)yj
∂

∂yj
=

k∑
j=1

yj
∂

∂yj
,

respectively. Denote

θc := 〈Ec,−〉, θw := 〈Ew,−〉

the contraction with each Euler vector field.

Lemma 2.2. θc and θw above have the following properties.

(1) θ2c = 0, θ2w = 0, and θc ◦θw+θw ◦θc = 0.

(2) θc and θw are derivations of the wedge product, that is, if α is a differential

�-form, then

θc(α∧β) = θcα∧β+(−1)�α∧θcβ,

θw(α∧β) = θwα∧β+(−1)�α∧θwβ.

(3) For a homogeneous f and λ ∈ k, if we denote

Dλ,f := λd+λdf ∧−,

then for a homogeneous ξ,

(Dλ,fθc+θcDλ,f )ξ = (λdegc ξ+(λdegc f)f)ξ,

(Dλ,fθw+θwDλ,f )ξ = (λdegw ξ+(λdegw f)f)ξ,

where the λ ∈ k is regarded as degree zero elements.

Proof. The results follow from direct computations.

There are several basic but important consequences of Lemma 2.2.
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Lemma 2.3. With the notations above, the following hold.

(1) All inclusions in the following commutative square are quasi-isomorphisms:(
Ω•

CS/k
,d
)
(degc=0,degw=0)� �

��

� � ��

(
Ω•

CS/k
,d
)
degc=0� �

��(
Ω•

CS/k
,d
)
degw=0

� � ��

(
Ω•

CS/k
,d
)
.

(2) There are cochain maps induced from θc and θw, respectively:

θc :
(
Ω•

CS/k
,d
)
degc=0

��

(
Ω•

CS/k
,d
)
degc=0

[−1],

θw :
(
Ω•

CS/k
,d
)
degw=0

��

(
Ω•

CS/k
,d
)
degw=0

[−1].

(3) We can identify

Ω•
A/k = kerθc∩kerθw ⊆

(
Ω•

CS/k
,d
)
(degc=0,degw=0)

and there is a cochain map

θcθw :
(
Ω•

CS/k
,d
)
(degc=0,degw=0)

��

(
Ω•

A/k,d
)
[−2].

Moreover, the following relations hold:(
Ω•

B/k,d
)
= kerθw ⊆

(
Ω•

CS/k
,d
)
degw=0

,(
Ω•

A/k,d
)
= kerθc ⊆

(
Ω•

B/k,d
)
degc=0

⊆
(
Ω•

CS/k
,d
)
(degc=0,degw=0)

.

Proof. From Lemma 2.2(3), we get relations

(dθc+θcd)ξ = (degc ξ)ξ, (dθw+θwd)ξ = (degw ξ)ξ.

(1) If dξ = 0, then ξ is in the image of d unless (degc ξ,degw ξ) = (0,0) so (1) follows.

(2) The above relations also show that each θ becomes a cochain map on the subcomplex

of homogeneous elements of degree zero.

(3) By Lemma 2.2(1), the image of θcθw is contained in kerθc ∩ kerθw. The asserted

identifications follow from general theory of toric varieties (see, e.g., [8, Lem. 8.2]).

Proposition 2.4. With the notations above, there is a decomposition of complexes(
Ω•

CS/k
,d
)
degw=0

=
(
Ω•

B/k,d
)
⊕ dS

S
∧
(
Ω•

B/k,d
)

and for every i ∈ Z, an isomorphism

Hi(Ω•
B/k,d)

∼=Hi
dR(P(E)\XS)⊕Hi−1

dR (P(E)\XS).
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Consequently, there is an isomorphism for every i ∈ Z:

Hi
(
Ω•

CS/k
,d
)
∼=Hi

dR(P(E)\XS)⊕Hi−1
dR (P(E)\XS)

⊕2⊕Hi−2
dR (P(E)\XS).

Proof. Each ξ ∈ Ω•
CS/k

can be decomposed into

ξ = θw

(
dS

S
∧ ξ

)
+

dS

S
∧θwξ

so we span Ω•
CS/k

as follows:

Ω•
CS/k

= kerθw+
dS

S
∧kerθw. (2.4)

If ξ ∈ Ω•
CS/k

is contained in the intersection of summands, that is,

ξ ∈ kerθw ∩ dS

S
∧kerθw,

then we may rewrite ξ as

ξ =
dS

S
∧ω, ω ∈ kerθw.

Since θwξ = 0 and θwω = 0,

ω = θw

(
dS

S
∧ω

)
= θwξ = 0.

Therefore, (2.4) becomes a direct sum decomposition:

Ω•
CS/k

= kerθw⊕ dS

S
∧kerθw.

Since the restriction of θw on the subspace of degw =0 induces a cochain map by Lemma 2.3,

we get a direct sum as a complex:(
Ω•

CS/k
,d
)
degw=0

=
(
Ω•

B/k,d
)
⊕ dS

S
∧
(
Ω•

B/k,d
)
. (2.5)

To compute the direct summand, consider the open subsets for j = 1, . . . ,k

Uj := P(E)\
(
XS ∪XyjGj

)∼= Spec(Bj)degc=0, Bj :=B[(yjGj)
−1S],

where XyjGj is the zero locus of yjGj . These open subsets form an affine open covering of

P(E)\XS . On each Uj , there is a section of θc given by

1

dj

dGj

Gj
∧− :

(
Ω•

Uj/k
,d
)
[−1] ��

(
Ω•

Bj/k
,d
)
degc=0

.

They combine to give a section of the associated Čech–de Rham complex by Proposition A.6

and Example A.7. Since
(
Ω•

A/k,d
)
= kerθc by Lemma 2.3, we obtain

Hi(Ω•
B/k,d)

∼=Hi
dR(P(E)\XS)⊕Hi−1

dR (P(E)\XS).

Now, the rest part of the proposition follows from combining the two observations

so far.
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§3. Cayley trick and twisted de Rham complexes

In this section, we develop the algebraic de Rham version of Theorems 1.1 and 1.2.

This section is a generalization of Monsky’s lecture note [26, Ch. 9]. We continue with

the notation of §2. For fixed �,γ ∈ k× which we regard as formal parameters, consider the

twisted de Rham complex over k[x,y]:(
Ω•

k[x,y]/k,D�,γS

)
:=
(
Ω•

k[x,y]/k,�d+�d(γS)∧−
)

equipped with the gradings as in (1.3). Then the corresponding comparison map is given

as follows.

Definition 3.1. Define the map

ρS :
(
Ω•

k[x,y]/k,D�,γS

)
(degc=0,degw>0)

��

(
Ω•

k[x,y,S−1]/k,d
)
(degc=0,degw=0)

by the formula

ρS (x
uyvdxα∧dyβ) := (−1)|v|+|β|−1(|v|+ |β|−1)!

xuyv

γ|v|S|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|S|β|

together with the k-linearity.

Under this map, we will obtain comparison results Propositions 3.10 and 3.16. These

will be properly completed to give Theorems 1.1 and 1.2. We saw in Lemma 2.3 that the

target complex of ρS in Definition 3.1 computes the algebraic de Rham cohomology of

CS = k[x,y,S−1]. On the other hand, the following lemma explains the effect of taking the

subcomplex.

Lemma 3.2. The inclusion(
Ω•

k[x,y]/k,D�,γS

)
degc=0

� � ��

(
Ω•

k[x,y]/k,D�,γS

)
is a quasi-isomorphism. On the other hand, the inclusion(

Ω•
k[x,y]/k,D�,γS

)
(degc=0,degw>0)

� � ��

(
Ω•

k[x,y]/k,D�,γS

)
degc=0

induces a surjection on cohomology spaces with one-dimensional kernel spanned by the class

of dS.

Proof. Since degc dS = 0, the differential D�,γS = �d+ �d(γS)∧− is compatible with

degc so the subcomplex is well-defined. Moreover, by Lemma 2.2(3), each ξ ∈ Ω•
k[x,y]/k

homogeneous with respect to degc satisfies the relation

(D�,γSθc+θcD�,γS)ξ = (�degc ξ)ξ

so if D�,γSξ = 0, then ξ is in the image of D�,γS unless degc ξ = 0. Hence, the first inclusion

is a quasi-isomorphism.

Note that 1 ∈ Ω•
k[x,y]/k is the only bidegree (degc,degw) = (0,0) element up to scalar

multiplication by k. Since

D�,γS(1) = �γdS, D�,γS(dS) = 0,
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1 ∈ Ω•
k[x,y]/k does not contribute to the cohomology and kills the class [dS]. On the other

hand, if degw f > 0, then the equation

D�,γS(f) = �γdS ⇐⇒ df = (1−f)γdS

has no solutions in k[x,y]. Hence, [dS] defines a nontrivial class in the subcomplex with

(degc = 0,degw > 0).

Remark 3.3. Since (−1)! is not a well-defined number, in order to extend ρS to the

degc = 0 complex, we have to choose the value manually. Since 1 is the only bidegree

(degc,degw) = (0,0) element up to scalar multiplication by k, it suffices to consider ρS(1)

only. For ρS to be a cochain map, ρS(1) must satisfy

dρS(1) = ρS(D�,γS(1)) = ρS(�γdS) =
dS

S

so ρS(1) = logS. However, this is impossible in the polynomial ring, and even in the

corresponding overconvergent power series ring (Definition 4.1).

Notation 3.4. In what follows, we will often denote

L •
(0,+) :=

(
Ω•

k[x,y]/k

)
(degc=0,degw>0)

as a Z-graded k-vector space so that(
L •

(0,+),D�,γS

)
=
(
Ω•

k[x,y]/k,D�,γS

)
(degc=0,degw>0)

.

Also, we will often abbreviate the subscripts

(0,0) := (degc = 0,degw = 0), (0,+) := (degc = 0,degw > 0)

to indicate the bidegree restrictions whenever it is clear from the context.

Lemma 3.5. Properties of ρS.

(1) ρS is a k-linear cochain map.

(2) ρS commutes with θc and θw. Here, θw is regarded as a degree −1 map of

Z-graded k-vector spaces.

(3) If ξ1 and ξ2 are degw-homogeneous of positive degree, then

ρS(ξ1∧ ξ2) =− (degw ξ1+degw ξ2−1)!

(degw ξ1−1)!(degw ξ2−1)!
ρS(ξ1)∧ρS(ξ2).

In particular, if ξ is degw-homogeneous of positive degree, then

ρS(γ
iSiξ) = (−1)i

(degw ξ+ i−1)!

(degw ξ−1)!
ρS(ξ)

for every integer i > 0.

Proof. The results follow from direct computation.

To describe the kernel of ρS , we introduce the following auxiliary map:

Definition 3.6. Define the map

εw,S :=D�,γSθw+θwD�,γS :
(
Ω•

k[x,y]/k,D�,γS

)
��

(
Ω•

k[x,y]/k,D�,γS

)
.
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By Lemma 2.2, if ξ is homogeneous with respect to degw, then

εw,S(ξ) = (�degw ξ+�γS)ξ.

Remark 3.7. This map corresponds to the one in [26, Lem. 9.1] which is defined via

the congruence condition on the degree of a defining hypersurface. However, we are working

reversely via the Cayley trick. In our context, [26, Lem. 9.1] becomes Definition 3.6, and

Monsky’s definition follows from Lemma 2.2.

Remark 3.8. One may analogously consider εc,S :=D�,γSθc+θcD�,γS , but this vanishes

on the subspace of degc = 0 by Lemma 2.2.

Lemma 3.9. Properties of εw,S.

(1) εw,S is a k-linear cochain map.

(2) εw,S is injective.

(3) εw,S restricts to the bidegree (degc = 0,degw > 0)-subcomplex:

εw,S :
(
L •

(0,+),D�,γS

)
��

(
L •

(0,+),D�,γS

)
.

If ξ ∈ L •
(0,+) is a degw-homogeneous element, then

γiSiξ ≡ (−1)i
(degw ξ+ i−1)!

(degw ξ−1)!
ξmod εw,SL •

(0,+).

Proof. (1) εw,S is k-linear by construction and is a cochain map by

D�,γSεw,S =D�,γSθwD�,γS = (εw,S −θwD�,γS)D�,γS = εw,SD�,γS .

(2) If ξ is a nonzero degw-homogeneous element, then

εw,S(ξ) = (�degw ξ+�γS)ξ

is nonzero by our choice of S.

(3) We proceed by induction on the power i. The case i = 1 follows immediately from

construction. If i > 1, then

(γS)iξ = (γS)(γS)i−1ξ

≡−(degw ξ+ i−1)(γS)i−1ξmod εw,SL •
(0,+)

≡−(degw ξ+ i−1) · (−1)i−1 (degw ξ+ i−2)!

(degw ξ−1)!
ξmod εw,SL •

(0,+)

≡ (−1)i
(degw ξ+ i−1)!

(degw ξ−1)!
ξmod εw,SL •

(0,+),

where the third line follows from induction hypothesis.

Proposition 3.10. With notation 3.4, there is an exact sequence of cochain complexes

0 ��

(
L •

(0,+),D�,γS

)
εw,S

��

(
L •

(0,+),D�,γS

)
ρS ��

(
Ω•

CS/k
,d
)
(0,0)

�� 0 .

Consequently, there is an exact sequence

0 �� Hi
(
L •

(0,+),D�,γS

)
ρS �� Hi

(
Ω•

CS/k
,d
)

δ �� Hi+1
(
L •

(0,+),D�,γS

)
�� 0
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for every i ∈ Z, and in particular,

H0
(
L •

(0,+),D�,γS

)
= 0, H1

(
L •

(0,+),D�,γS

)
= k · [dS].

Proof. Since the target of ρS admits a k-basis{
xuyv

S|v| dxα∧
dyβ
S|β|

∣∣∣∣ |u|+ |α|= v1d1+ · · ·+vkdk+dβ1 + · · ·+dβ|β|

}
which is in the image of ρS , the surjectivity of ρS follows. The injectivity of εw,S follows

from Lemma 3.9. If ξ ∈ L •
(0,+) is degw-homogeneous, then

(ρS ◦ εw,S)(ξ) = ρS ((�degw ξ)ξ+�γSξ) = 0

by Lemma 3.5. Hence, ρS induces

ρS :

(
L •

(0,+)

εw,SL •
(0,+)

,D�,γS

)
��

(
Ω•

CS/k
,d
)
(0,0)

.

Define the map of graded k-vector spaces

σ :
(
Ω•

CS/k

)
(0,0)

��
L •

(0,+)

εw,SL •
(0,+)

by the formula

σ

(
xuyv

S|v| dxα∧
dyβ
S|β|

)
:= (−1)|v|+|β|−1�

|α|+|β|γ|v|+|β|

(|v|+ |β|−1)!
xuyvdxα∧dyβ

for |v|+ |β|> 0 together with the k-linearity. From

σ

(
Si

Si

xuyv

S|v| dxα∧
dyβ
S|β|

)
= (−1)|v|+|β|+i−1 �

|α|+|β|γ|v|+|β|+i

(|v|+ |β|+ i−1)!
Sixuyvdxα∧dyβ

≡ (−1)|v|+|β|−1�
|α|+|β|γ|v|+|β|

(|v|+ |β|−1)!
xuyvdxα∧dyβ mod εw,SL •

(0,+)

= σ

(
xuyv

S|v| dxα∧
dyβ
S|β|

)
,

we see that σ is well-defined. Note that this forces σ(1) = γS. By construction, ρSσ is the

identity. Since cokerεw,S is spanned over k by Sixuyvdxα∧dyβ with i≥ 0 and |v|+ |β|> 0,

and

γiSixuyvdxα∧dyβ ≡ (−1)i
(|v|+ |β|+ i−1)!

(|v|+ |β|−1)!
xuyvdxα∧dyβ mod εw,SL •

(0,+)

is in the image of σ, we conclude that σ is surjective. Hence, ρS and σ are mutually inverses.

Therefore, we achieve the desired exactness.

For the second part, take the cohomology long exact sequence. Since εw,S is homotopic to

zero by definition of εw,S and Lemma 3.9, we get the desired exact sequences. In particular,

https://doi.org/10.1017/nmj.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.32


DWORK-RIGID COMPARISON FOR PROJECTIVE COMPLEMENTS 437

the long exact sequence begins with

0 �� H0
(
L •

(0,+),D�,γS

)
0
��

H0
(
L •

(0,+),D�,γS

)
ρS �� H0

(
Ω•

CS/k
,d
)

δ �� H1
(
L •

(0,+),D�,γS

)
0
��

H1
(
L •

(0,+),D�,γS

)
.

Hence, we get the desired vanishing and the δ becomes an isomorphism

δ :H0
(
Ω•

CS/k
,d
)

∼ �� H1
(
L •

(0,+),D�,γS

)
.

Since SpecCS = Speck[x,y,S−1] is connected, the right-hand side is one-dimensional with

a basis [dS] coming from 3.2.

Corollary 3.11. The cohomology groups of the twisted de Rham complex

Hi
(
Ω•

k[x,y]/k,D�,γS

)
are finite-dimensional k-vector spaces for every i ∈ Z. In particular,

H0
(
Ω•

k[x,y]/k,D�,γS

)
= 0, H1

(
Ω•

k[x,y]/k,D�,γS

)
= 0.

Proof. By Lemma 3.2, we may compute the cohomology of the twisted de Rham complex

by using
(
L •

(0,+),D�,γS

)
. Hence, the results follow from Proposition 3.10 and the finiteness

of the algebraic de Rham cohomology of smooth k-algebras [28, Th. 3.1].

To describe the image of ρS on the cohomology spaces, we introduce the following

auxiliary map.

Definition 3.12. Define the k-linear map

χ :
(
Ω•

k[x,y]/k

)
(degc=0,degw>0)

��

(
Ω•

k[x,y]/k

)
(degc=0,degw>0)

as follows: If ξ is a degw ξ-homogeneous of positive degree, then denote

χξ :=

⎧⎨⎩ 0, if degw ξ = 1,

−
(
1+

1

2
+ · · ·+ 1

degw ξ−1

)
, if degw ξ > 1,

and define χ(ξ) := χξ · ξ on degw ξ-homogeneous elements.

Remark 3.13. This map corresponds to the one in [26, p. 110]. The additional grading

degw coming from the Cayley trick replaces the role of the congruence condition on the

degree of a defining hypersurface in Monsky’s definition.

Lemma 3.14. As a cochain map, the following hold.

ρS ◦ (χD�,γS −D�,γSχ) =
dS

S
∧ρS .
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Proof. If ξ is a degw-homogeneous element, then

(χD�,γS −D�,γSχ)(ξ) = χξ�dξ+χdS∧ξ�γdS∧ ξ−χξ�dξ−χξ�γdS∧ ξ

=− �γ

degw ξ
dS∧ ξ

because degw(dS∧ ξ) = degw ξ+1. By Lemma 3.5, this gives

(ρS ◦ (χD�,γS −D�,γSχ))(ξ) =− �γ

degw ξ
ρS(dS∧ ξ)

=
�γ

degw ξ

(degw ξ)!

(degw ξ−1)!
ρS(dS)∧ρS(ξ)

=
dS

S
∧ρS(ξ)

so the lemma follows.

Lemma 3.15. With Notations 2.1 and 3.4, the square(
L •

(0,+),D�,γS

) dS
S ∧θwρS

��
dS

S
∧
(
Ω•

B/k,d
)
degc=0� �

��(
L •

(0,+),D�,γS

)
ρS

��

(
Ω•

CS/k
,d
)
(0,0)

commutes up to homotopy where we use the identification coming from the decomposition

in Proposition 2.4.

Proof. Using Lemmas 3.5, 3.9, and 3.14, and Proposition 3.10, we get

dρSθwχ+ρSθwχD�,γS = ρSD�,γSθwχ+ρSθwχD�,γS

= ρS(D�,γSθw+θwD�,γS)χ+ρSθ(χD�,γS −D�,γSχ)

= ρSεw,Sχ+θwρS(χD�,γS −D�,γSχ)

= θw

(
dS

S
∧ρS

)
= ρS − dS

S
∧θwρS ,

where θwρS maps into Ω•
B/k by Lemma 2.3.

Proposition 3.16. In the exact sequence as in Proposition 3.10 for i ∈ Z:

0 �� Hi
(
L •

(0,+),D�,γS

)
ρS �� Hi

(
Ω•

CS/k
,d
)

δ �� Hi+1
(
L •

(0,+),D�,γS

)
�� 0

ρS and δ above induce isomorphisms

δ :Hi
(
Ω•

B/k,d
)

∼ �� Hi+1
(
L •

(0,+),D�,γS

)
,

ρS :Hi
(
L •

(0,+),D�,γS

)
∼ ��

dS

S
∧Hi−1

(
Ω•

B/k,d
)
.
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Here, we use the identification of Proposition 2.4. Consequently, ρS induces

Hi
(
Ω•

k[x,y]/k,D�,γS

)
∼=Hi−1

dR (P(E)\XS)⊕Hi−2
dR (P(E)\XS)

for every i≥ 2.

Proof. Suppose that ξ ∈ Ωi+1
k[x,y]/k is a D�,γS-closed form. If we take

ω := θwρSξ = ρSθwξ,

then ω ∈ Ωi
B/k and

dω = dθwρSξ = θwρSD�,γSξ = 0.

Since ω is in the image of ρS , it represents a class in Hi(Ω•
B/k,d). Now, θwξ is a lift of ω

along ρS and, since D�,γSξ = 0, we have

D�,γSθwξ = (D�,γSθw+θwD�,γS)ξ = εw,S(ξ).

Therefore, by the construction of connecting map δ,

δ[ω] =
[
ε−1
w,SD�,γSθwξ

]
= [ξ]

so δ restricted to Hi(Ω•
B/k,d) is surjective.

On the other hand, ρS defines an injection into Hi−1(Ω•
B/k,d) by Proposition 3.10 and

Lemma 3.15. If ξ ∈Hi−1(Ω•
B/k,d), then there is ξ̃ ∈Hi(Ω•

B/k,d) with

δξ̃ = δ

(
dS

S
∧ ξ

)
by the surjectivity of δ observed above. Hence,

ξ̃− dS

S
∧ ξ ∈ ρSH

i
(
L •

(0,+),D�,γS

)
but this implies ξ̃ = 0 by Lemma 3.15. Hence, ρS is surjective as well, that is, it is an

isomorphism. By the identification of Proposition 2.4, this implies that δ is an isomorphism

as well. The last assertion follows from Proposition 2.4 together with Lemma 3.2.

§4. p-adic cohomology and Cayley trick

In this section, we will prove Theorems 1.1 and 1.2, by constructing p-adic models of the

complexes studied in §2 and §3, respectively. From now on, k will be a finite extension of

Qp with the valuation ring (Ok,mk) and the residue field Fq. Also, we keep the notation

in §2 and §3, but we assume that G1, . . . ,Gk belong to Ok[x0, . . . ,xn] and their reductions

G1, . . . ,Gk are nonzero in Fq[x0, . . . ,xn].

4.1 Monsky–Washnitzer cohomology

In this subsection, we briefly review the theory of Monsky–Washnitzer cohomology,

which gives a p-adic model of algebraic de Rham cohomology studied in §2. Using this,

we translate Proposition 2.4 into Monsky–Washnitzer setting and get the corresponding

results in Proposition 4.7.
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Definition 4.1. Denote the ring of overconvergent power series over Ok by

Ok{t1, . . . , tn}† =

⎧⎪⎨⎪⎩
∑

u∈Z
⊕n
≥0

cut
u ∈ Ok[[t1, . . . , tn]]

∣∣∣∣∣∣∣
there is r > 1 such that

lim
|u|→∞

cur
u = 0

⎫⎪⎬⎪⎭ .

Then a weakly complete finitely generated algebra over Ok is a homomorphic image of some

overconvergent power series ring.

Proposition 4.2. Ok{t1, . . . , tm}† satisfies Weierstrass’ preparation and division.

Consequently,

(1) Ok{t1, . . . , tn}† is Noetherian, and

(2) the inclusion Ok[t1, . . . , tn]⊆Ok{t1, . . . , tn}† is flat.

Proof. This is [32, Prop. 2.2].

Definition 4.3. Given an Ok-algebra A, denote

Ω•
A/(Ok,mk)

:=
Ω•

A/Ok⋂
λ≥0

m
λ+1
k

Ω•
A/Ok

∼= im

⎛⎝ Ω•
A/Ok

�� lim←−
λ≥0

Ω•
A/Ok

m
λ+1
k

Ω•
A/Ok

⎞⎠ ,

which is called the mk-separated (or mk-continuous) differentials on A.

Definition 4.4. Given an (usually smooth) Fq-algebra A, a w.c.f.g. Ok-algebra A is

called a lift if A is flat over Ok and A/mkA∼=A.

Theorem 4.5. Given a smooth Fq-algebra A, there is always a lift A of A. Moreover,

the following hold.

(1) Every lift of A is isomorphic to A as an Ok-algebra.

(2) Let B be a smooth Fq-algebra with a lift B. If ϕ :A→B is an Fq-algebra map,

then there is an Ok-algebra map ϕ :A→B such that

ϕ mod mk = ϕ.

(3) If ϕ,ψ :A→ C are two maps into a w.c.f.g. Ok-algebra such that

ϕ mod mk = ψ mod mk,

then the induced maps

ϕ,ψ : Ω•
A/(Ok,mk)

⊗Ok
k �� Ω•

C/(Ok,mk)
⊗Ok

k

are homotopic.

Proof. This is [32, Th. 2.4.4].

Definition 4.6. Let A be a smooth Fq-algebra. Define

Hi
MW(A/k) :=Hi

(
Ω•

A/(Ok,mk)
⊗Ok

k,d
)
,

where A is any lift of A given by Theorem 4.5.
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Return to the situation of §2, but with the assumption that G1, . . . ,Gk belong to

Ok[x0, . . . ,xn] and their reductions G1, . . . ,Gk in Fq[x0, . . . ,xn] are nonzero. As we observed

in §2, there is an isomorphism

ϕ∗ :H•
rig(P

n
Fq

\XG)
∼ �� H•

rig(P(E)\XS)

coming from (2.3). Following Notations 2.1 and 3.4, we denote

OA :=Ok[x,y,S
−1](0,0), OB :=Ok[x,y,S

−1]degw=0, OCS
:=Ok[x,y,S

−1].

Then the w.c.f.g. Ok-algebra

C†
S =Ok{x,y,S−1}† ∼= Ok{x,y, t}†

(tS−1)

satisfies

C†
S

mkC
†
S

∼= Fq[x,y, t]

(tS−1)
∼= Fq[x,y,S

−1
].

Moreover, its subalgebras

A† := (C†
S)(0,0), B† := (C†

S)degw=0

are still w.c.f.g. Ok-algebras such that

A†

mkA†
∼= Fq[x,y,S

−1
](0,0) ∼=OA,

B†

mkB†
∼= Fq[x,y,S

−1
]degw=0

∼=OB.

Hence, A†, B†, and C†
S compute the Monsky–Washnitzer of OA, OB, and OCS

, respectively:

for R=A, B, or CS ,

H•
MW(OR/k)∼=H•

(
Ω•

R†/(Ok,mk)
⊗Ok

k,d
)
.

Proposition 4.7. With the notations above, there is a decomposition of complexes(
Ω•

C†
S/(Ok,mk)

,d
)
degw=0

=
(
Ω•

B†/(Ok,mk)
,d
)
⊕ dS

S
∧
(
Ω•

B†/(Ok,mk)
,d
)

and for every i ∈ Z, an isomorphism

Hi
MW(OB/k)∼=Hi

rig(P(E)\XS)⊕Hi−1
rig (P(E)\XS).

Consequently, there is an isomorphism for every i ∈ Z:

Hi
MW(OCS

/k)∼=Hi
rig(P(E)\XS)⊕Hi−1

rig (P(E)\XS)
⊕2⊕Hi−2

rig (P(E)\XS).

Proof. Note that Ω1
C†

S/(Ok,mk)
is generated over C†

S by dx0, . . . ,xn,dy1, . . . ,dyk and

similarly for Ω1
B†/(Ok,mk)

and Ω1
A†/(Ok,mk)

(cf. [29, Th. 4.5]). Since θc and θw in §2 acts

only on dx and dy, the proof of Proposition 2.4 works for overconvergent algebras to give

the desired decomposition:(
Ω•

C†
S/(Ok,mk)

,d
)
degw=0

=
(
Ω•

B†/(Ok,mk)
,d
)
⊕ dS

S
∧
(
Ω•

B†/(Ok,mk)
,d
)
.

To get the second assertion, consider the affine weak formal scheme (P(E) \XS)
† in the

sense of [24, Def. 15], that is, the topological space P(E)\XS endowed with the structure
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sheaf associated with A†. Then the open subsets for j = 1, . . . ,k

U j := P(E)\
(
XS ∪XyjGj

)
∼= Spec(OBj )degc=0, OBj :=OB[(yjGj)

−1S]

give a covering {U †
j }j=1,...,k of (P(E)\XS)

† by principal open subsets associated with the

w.c.f.g. Ok-algebras (B
†
j )degc=0 where B†

j :=O†
Bj

. From the vanishing of higher cohomology

[24, Th. 14] of finitely generated modules on affine weak formal schemes, we deduce that the

Čech–de Rham complexes of mk-separated differentials compute the Monsky–Washnitzer

cohomology of the corresponding reduction. On the other hand, the section of θc on each U †
j ,

1

di

dGi

Gi
∧− :

(
Ω•

U†
j /(Ok,mk)

⊗Ok
k,d
)
[−1] ��

(
Ω•

B†
j/(Ok,mk)

⊗Ok
k,d
)
degc=0

as in the proof of Proposition 2.4 still works. Since restriction to a principal open subset is

given by tensoring with weakly completed principal localizations (cf. [24, p. 4]), the Čech–de

Rham cosimplicial algebra for mk-separated differentials is 0-coskeletal as in algebraic de

Rham case (Example A.7). Hence, we obtain

Hi
(
Ω•

B†/(Ok,mk)
⊗Ok

k,d
)
∼=Hi

rig(P(E)\XS)⊕Hi−1
rig (P(E)\XS).

Now, the rest part of the proposition follows from combining the two observations so far.

4.2 Dwork cohomology

In this subsection, we introduce the Dwork complex associated with G1, . . . ,Gk, which

gives a p-adic model of twisted de Rham complexes studied in §3. Then, we extend the

ρS in Definition 3.1 to the Dwork complex in Proposition 4.11, which proves Theorems 1.1

and 1.2.

Definition 4.8. Denote

Ok{z1, . . . , zN} := lim←−
λ≥0

Ok[z1, . . . , zN ]

m
λ+1
k

Ok[z1, . . . , zN ]

the ring of restricted power series over Ok (in N variables), and

k{z1, . . . , zN} := k⊗Ok
Ok{z1, . . . , zN}

the Tate algebra over k (in N variables).

Remark 4.9. Tate algebra can be written as

k{z1, . . . , zN}=

⎧⎪⎨⎪⎩
∑

w∈Z
⊕N
≥0

awz
w ∈ k[[z1, . . . , zN ]]

∣∣∣∣∣∣∣ lim
|w|→∞

aw = 0

⎫⎪⎬⎪⎭ .

Hence, given an N -tuple ε= (ε1, . . . , εN ) of positive real numbers, we denote

k{ε−1
1 z1, . . . , ε

−1
N zN} :=

⎧⎪⎨⎪⎩
∑

w∈Z
⊕N
≥0

awz
w ∈ k[[z1, . . . , zN ]]

∣∣∣∣∣∣∣ lim
|w|→∞

awε
w = 0

⎫⎪⎬⎪⎭ .
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We sometimes use notation k{ε−1z}. In terms of rigid geometry, this algebra corresponds

to the closed polydisk of radius ε. If ε= |c| for some c ∈ k⊕N , then

k{ε−1z}=

⎧⎪⎨⎪⎩
∑

w∈Z
⊕N
≥0

awc
−wzw ∈ k[[z]]

∣∣∣∣∣∣∣ lim
|w|→∞

= 0

⎫⎪⎬⎪⎭= k{c−1z},

where k{c−1z} is the Tate algebra with respect to the variables c−1
1 z1, . . . , c

−1
N zN .

Denote N := n+k+1, and denote for � ∈ k with valp�> 0

C(�) :=

⎧⎪⎨⎪⎩
∑

(u,v)∈Z
⊕N
≥0

au,v�
|v|xuyv ∈ k[[x,y]]

∣∣∣∣∣∣∣ lim
|(u,v)|→∞

au,v = 0

⎫⎪⎬⎪⎭
so that C(�)∼= k{x,�y}. Then the twisted de Rham complex of the form

(Ω•
�,D�,γS) :=

(
C(�)⊗k[x,y]Ω

•
k[x,y]/k,D�,γS

)
will be called the Dwork complex associated with G1, . . . ,Gk, or to G1, . . . ,Gk. The

gradings (1.3) is valid on our Dwork complex.

Notation 4.10. We will often denote

L •
�,(0,+) := C(�)⊗k[x,y] L

•
(0,+)

as a Z-graded k-vector space so that(
L •

�,(0,+),D�,γS

)
= (Ω•

�,D�,γS)(degc=0,degw>0) .

Now, Theorems 1.1 and 1.2 follow from the following theorem.

Theorem 4.11. If valpγ ≤ 1

p−1
and valp� > 0, then the ρS in Definition 3.1 extends

continuously to p-adic analytic complexes, that is, there is a commutative square(
L •

(0,+),D�,γS

)
� �

��

ρS ��

(
Ω•

CS/k
,d
)•
(0,0)� �

��(
L •

�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
(0,0)

.

Moreover, the extended ρS induces an isomorphism

ρS :Hi (Ω•
�
,D�,γS)

∼ �� Hi−1
rig (Pn \XG)⊕Hi−2

rig (Pn \XG)

for every i≥ 2. On the other hand,

H0 (Ω•
�,D�,γS) = 0, H1 (Ω•

�,D�,γS) = 0.
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Proof. To extend ρS , we need to check the overconvergence of the expression. To see

this, it suffices to show that there is some r > 1 such that

lim
|v|→∞

(
valp

(
(|v|+ |β|−1)!

�|v|−|α|−|β|

γ|v|+|β|

)
− (|u|+2|v|+ |β|) logp r

)
=∞.

From the degree condition, we have

|u|+ |α|= v1d1+ · · ·+vkdk+dβ1 + · · ·+dβj ≤ (|v|+k)dmax.

Since |α| ≤ n+1 and |β| ≤ k are bounded by constants, we may ignore them so roughly

|u| ∼ |v|dmax for large |u|. On the other hand, we have

valp

(
(|v|+ |β|−1)!

�|v|−|α|−|β|

γ|v|+|β|

)
− (|u|+2|v|+ |β|) logp r

≥ |v|+ |β|−1

p−1
− logp(|v|+ |β|)+

+(|v|− |α|− |β|)valp�− (|v|+ |β|)valpγ− (|u|+2|v|+ |β|) logp r.

Consequently, it suffices to take r such that

0< logp r <
1

2+dmax

(
1

p−1
+valp�−valpγ

)
.

Next, since εw,S acts only on dx0, . . . ,dxn,dy1, . . . ,dyk, it extends to Dwork complexes.

Then, we get a commutative diagram

0 ��

(
L •

(0,+),D�,γS

)
� �

��

εw,S
��

(
L •

(0,+),D�,γS

)
� �

��

ρS ��

(
Ω•

CS/k
,d
)
(0,0)� �

��

�� 0

0 ��

(
L •

�,(0,+),D�,γS

)
εw,S

��

(
L •

�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
(0,0)

�� 0,

where the top row is exact by Proposition 3.10. Since the polynomial complexes are dense

and the maps are all mk-adically continuous, the bottom row is exact as well. Since the

relation in Lemma 3.9 holds on L •
�,(0,+) by continuity, εw,S becomes the zero map on the

Dwork cohomology. Therefore, we get an exact sequence

0 �� Hi
(
L •

�,(0,+),D�,γS

)
ρS �� Hi

MW

(
OCS

/k
) δ �� Hi+1

(
L •

�,(0,+),D�,γS

)
�� 0

together with (since OCS
= Fq[x,y,S

−1] is geometrically connected)

H0
(
L •

�,(0,+),D�,γS

)
= 0, H1

(
L •

�,(0,+),D�,γS

)
= k · [dS].

Moreover, since Lemma 3.2 applies to the inclusions(
L •

�,(0,+),D�,γS

)
� � �� (Ω•

�
,D�,γS)degc=0

� � �� (Ω•
�
,D�,γS) ,
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we get the desired vanishing of H1 (Ω•
�
,D�,γS). On the other hand, we have

valp

(
1+

1

2
+ · · ·+ 1

m

)
≥− logpm

for every positive integer m so ρSχ, ρD�,γSχ, and ρSθwχ in Lemmas 3.14 and 3.15,

all converge as maps from L •
�,(0,+) to Ω•

C†
S/(Ok,mk)

⊗Ok
k. Therefore, the argument as in

Proposition 3.16 works in p-adic setting to give isomorphisms

δ :Hi
MW

(
OB/k

) ∼ �� Hi+1
(
L •

�,(0,+),D�,γS

)
ρS :Hi

(
L •

�,(0,+),D�,γS

)
∼ ��

dS

S
∧Hi−1

MW

(
OB/k

)
.

Here, we use the identification of Proposition 4.7. Then ρS induces an isomorphism

ρS :Hi (Ω•
�
,D�,γS)

∼ �� Hi−1
rig (Pn \XS)⊕Hi−2

rig (Pn \XS)

for every i≥ 2. Note that here we use the canonical isomorphism

H•
rig(P

n \XS)
∼=H•

MW(Pn \XS)

which exists because P(E)\XS is smooth affine. Finally, there is an isomorphism

ϕ∗ :H•
rig(P

n
Fq

\XG)
∼ �� H•

rig(P(E)\XS)

as we have observed in (2.3). Therefore, the proposition follows.

The following corollary is a generalization of Monsky’s remark in [26, p. 115].

Corollary 4.12. With the assumptions in Proposition 4.11, if XG ⊆ Pn
Fq

is a smooth

complete intersection, then the inclusion(
Ω•

k[x,y]/k,D�,γS

)
� � �� (Ω•

�
,D�,γS)

is a quasi-isomorphism.

Proof. By Lemma 3.2, it suffices to show that the inclusion(
L •

(0,+),D�,γS

)
� � ��

(
L •

�,(0,+),D�,γS

)
is a quasi-isomorphism. By Propositions 3.16 and 4.11 together with its proof, this follows

if we show that the inclusion(
Ω•

CS/k
,d
)
� � ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

is a quasi-isomorphism. Since XG is smooth and proper,

H•
dR(XG)∼=H•

cris(XG)
∼=H•

rig(XG)

and these isomorphisms are compatible with the Gysin sequences for H•
dR and H•

rig,

we conclude that the above inclusion of algebraic de Rham complexes coming from

Ok[x,y,S
−1] ↪→ C†

S is a quasi-isomorphism.
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Remark 4.13. The condition on γ given in Proposition 4.11:

0≤ valpγ ≤ 1

p−1

guarantees that

C(�γ) := k{x0, . . . ,xn,�γy1, . . . ,�γyk}

is a subring of C(�). Then

Ω•
�γ := C(�γ)⊗k[x,y]Ω

•
k[x,y]/k

is an C(�γ)-submodule of Ω•
�
. Arguing as in the proof of Proposition 4.11, we see that all

inclusions (
Ω•

k[x,y]/k,D�,γS

)
⊆
(
Ω•

�γ ,D�,γS

)
⊆ (Ω•

�,D�,γS)

are quasi-isomorphisms. On the other hand, C(�γ) admits a filtration

F eC(�γ) :=

⎧⎪⎨⎪⎩
∑

(u,v)∈Z
⊕N
≥0

au,v(�γ)
|v|xuyv ∈ C(�)

∣∣∣∣∣∣∣ au,v ∈ πeOk

⎫⎪⎬⎪⎭
which induces a ring isomorphism

Fq[x,y]∼=
Ok{x,y}
πOk{x,y}

∼= F 0C(�γ)

F 1C(�γ)
.

The filtration on C(�γ) extends to

Ω•
�γ := C(�γ)⊗k[x,y]Ω

•
k[x,y]/k

given as follows:

F eΩm
�γ :=

⊕
i+j=m

⊕
0≤α1<···<αi≤n
1≤β1<···<βj≤k

(�γ)jF eC(�γ)dxα1 ∧· · ·∧dxαi ∧dyβ1 ∧· · ·∧dyβj .

Then the above ring isomorphism extends to the isomorphism(
F 0Ω•

�γ

F 1Ω•
�γ

,D�,γS

)
∼ ��

(
Ω•

Fq[x,y]/Fq
,dS∧−

)
,

where we denote S ∈ Fq[x,y] the reduction of S. By this observation, we may apply [5,

Prop. A.2] to lift a basis for the cohomology of
(
Ω•

Fq[x,y]/Fq
,dS∧−

)
to get a basis for

the cohomology of (Ω•
�
,D�,γS) whenever the cohomology over the residue field is finite-

dimensional. For the detailed computation over the residue field when G1, . . . ,Gk define a

smooth projective complete intersection, see [4].

§5. Operators on p-adic analytic cohomologies

In this section, we will give more precise statement of Theorem 1.3 together with its

detailed proof. This section is a generalization of [19, §III]. We begin with reviewing some
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necessary constructions. For each i≥ 1, the equation

t+
tp

p
+

tp
2

p2
+ · · ·+ tp

i

pi
= 0

has a solution γi with

valpγi =
1

p−1
.

For each choice of γi, the corresponding Dwork’s splitting functions is defined to be

θi(t) := exp

(
γit+

(γit)
p

p
+

(γit)
p2

p2
+ · · ·+ (γit)

pi

pi

)
.

Each θi has integral coefficients and converges for

valpt >− 1

p−1
+

1

pi+1

(
i+1+

1

p−1

)
.

In this section, we will take γ = γ1 so that γp−1 =−p and

θ1(t) = exp

(
γt+

γptp

p

)
= exp(γt−γtp).

If q = pa, then

exp(γt−γtq) = θ1(t)θ1(t
p) · · ·θ(tpa−1

)

converges for

valpt >
1−p

pq
.

In this section, we denote for a nonzero F ∈ Ok[x,y] by C†
F := Ok{x,y,F−1}†, the

corresponding weakly complete finitely generated algebra over Ok. Still we mainly consider

S := y1G1+ · · ·+ykGk, where each Gi is not divisible by the uniformizer π ∈mk, in which

case, we denote ρS the cochain map as in Proposition 4.11. The following lemma is an

analog of [19, Lem. 2.13].

Lemma 5.1. Let S,T ∈Ok[x,y] be homogeneous with respect to degw. If S and T are of

degw = 1, and S−T ≡ 0 mod π, then(
L •

�,(0,+),D�,γS

)
exp(γS−γT )

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

�
��(

L •
�,(0,+),D�,γT

)
ρT

��

(
Ω•

C†
T /(Ok,mk)

⊗Ok
k,d
)

is commutative.

Proof. Note that if S−T ≡ 0 mod π, then

1

T
=

1

S

(
1− S−T

S

) =
∑
m≥0

(S−T )m

Sm+1
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converges in C†
S so C†

S
∼= C†

T are canonically identified. Then the commutativity follows

from direct computation:

ρT (exp(γS−γT )xu(�y)vdxα∧dyβ) = ρT

⎛⎝∑
m≥0

γm

m!
(S−T )mxu(�y)vdxα∧dyβ

⎞⎠
=
∑
m≥0

γm

m!
(−1)m+|v|+|β|−1(m+ |v|+ |β|−1)!

(S−T )m

γmTm

�|v|xuyv

γ|v|T |v|
dxα

�|α|
∧ dyβ
�|β|γ|β|T |β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
∑
m≥0

(
−|v|− |β|

m

)(
S−T

T

)m
�|v|xuyv

γ|v|T |v|
dxα

�|α|
∧ dyβ
�|β|γ|β|T |β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!

(
1+

S−T

T

)−|v|−|β|
�|v|xuyv

γ|v|T |v|
dxα

�|α|
∧ dyβ
�|β|γ|β|T |β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
T |v|+|β|

S|v|+|β|
�|v|xuyv

γ|v|T |v|
dxα

�|α|
∧ dyβ
�|β|γ|β|T |β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
�|v|xuyv

γ|v|S|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|S|β|

= ρS (x
u(�y)vdxα∧dyβ) .

5.1 The Frobenius operator

Denote Fr the endomorphism on C†
S lifting the qth power endomorphism over the residue

field such that

Fr : C†
S

�� C†
S (xi,yj)

� �� (xq
i ,y

q
j ) .

This map is injective and extends to a cochain map

Fr :
(
Ω•

C†
S/(Ok,mk)

,d
)

��

(
Ω•

Fr(C†
S)/(Ok,mk)

,d
)
.

Note that the above Fr sends the bidegree (c,w)-subspace to the bidegree (qc,qw)-subspace.

Hence, our Fr restricts to the bidegree (0,0)-subcomplex:

Fr :
(
Ω•

C†
S/(Ok,mk)

,d
)
(0,0)

��

(
Ω•

Fr(C†
S)/(Ok,mk)

,d
)
(0,0)

.

On the other hand, denote

Φq : C(�) �� C(�)
∑

(u,v)∈Z
⊕N
≥0

au,v�
|v|xuyv � ��

∑
(u,v)∈Z

⊕N
≥0

au,v�
|v|xquyqv,

then Φq satisfies

zi
∂

∂zi
◦Φq = qΦq ◦zi

∂

∂zi
.

Using this, we may extend Φq to the cochain map as follows:

Φq,Pn
k
: (Ω•

�
,D�,0) �� (Ω•

�
,D�,0) fdxα∧dyβ

� �� Φq(f)dx
q
α∧dyqβ
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with the k-linearity. We may write

Φq,Pn
k
(fdxα∧dyβ) = Φq(f)q

|α|xq−1
α dxα∧ q|β|yq−1

β dyβ

=
1

xαyα
Φq(xαyβf)q

|α|dxα∧ q|β|dyβ,

where we extend convention (1.4) to monomials:

xα := xα1 . . .xαi , dxα := dxα1 ∧ . . .∧dxαi,

yβ := yβ1 . . .yβj , dyβ := dyβ1 ∧ . . .∧dyβj .

For S := y1G1+ · · ·+ykGk as before, define

Φq,S : (Ω•
�
,D�,γS) �� (Ω•

�
,D�,γS)

by the formal identity

Φq,S := exp
(
−γ

�
S(x,�y)

)
◦Φq,Pn

k
◦ exp

(γ
�
S(x,�y)

)
,

which converges because we can rewrite

Φq,S = exp(γFr(S)−γS)◦Φq,Pn
k

=

(
k∏

i=1

exp(γyqiFrxGi−γyqiG
q
i )exp(γy

q
iG

q
i −γyiGi)

)
◦Φq,Pn

k

and the final expression converges. Since we may formally write

D�,γS = exp
(
−γ

�
S(x,�y)

)
◦D�,0 ◦ exp

(γ
�
S(x,�y)

)
Φq,S is still a cochain map. Now, we may compare Fr and Φq,S via ρS .

Proposition 5.2. There is a commutative diagram(
L •

�,(0,+),D�,γS

)
qΦq,S

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

Fr
��(

L •
�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
.

Proof. We will follow Katz’s computation in the proof of [19, Th. 2.14] and [19, Th. 2.8].

Since the Frobenius on Fq[x,y] can be decomposed into

Fq[x]⊗Fq Fq[y]

�
��

(·)q⊗Fq1
�� Fq[x]

(q)⊗Fq Fq[y]
1⊗Fq (·)q

�� Fq[x]
(q)⊗Fq Fq[y]

(q)

�
��

Fq[x,y]
(·)q

�� Fq[x,y]
(q),

where the superscript (q) on each ring means that Fq acts by qth power. Denote the lifting

of each factor by

Frx : C†
S

�� C†
S Fry : C

†
S

�� C†
S .
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We abuse notation to denote FrGS := y1G
q
1+ · · ·+ykG

q
k. Then there is a diagram(

L •
�,(0,+),D�,γS

)
Φx

q,Pn
k

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

Frx
��(

L •
�,(0,+),D�,γFrxS

)
exp(γFrxS−γFrGS)

��

ρFrxS
��

(
Ω•

C†
FrxS/(Ok,mk)

⊗Ok
k,d

)
�
��(

L •
�,(0,+),D�,γFrGS

)
q exp(γFryFrGS−γS)◦Φy

q,Pn
k

��

ρFrGS
��

(
Ω•

C†
FrGS/(Ok,mk)

⊗Ok
k,d

)
Fry
��(

L •
�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
,

where in the second and the third rows, we set degc yi := −qdi. The top square is

commutative because

(Frx ◦ρS)(xuyvdxα∧dyβ)

= (−1)|v|+|β|−1(|v|+ |β|−1)!Frx

(
xuyv

γ|v|S|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|S|β|

)
= (−1)|v|+|β|−1(|v|+ |β|−1)!

xuyv

γ|v|FrxS|v|
q|α|xq−1

α dxα

�|α|
∧ dyβ
�|β|γ|β|FrxS|β|

= ρFrxS

(
q|α|xq−1

α xuyvdxα∧dyβ

)
=
(
ρFrxS ◦Φx

q,Pn
k

)
(xuyvdxα∧dyβ) .

The middle square is commutative by Lemma 5.1. For the bottom square, we first compute

(Fry ◦ρFrGS)(x
uyvdxα∧dyβ)

= (−1)|v|+|β|−1(|v|+ |β|−1)!Fry

(
xuyv

γ|v|FrGS|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|FrGS|β|

)
= (−1)|v|+|β|−1(|v|+ |β|−1)!

xuyqv

γ|v|FryFrGS|v|
dxα

�|α|
∧

q|β|yq−1
β dyβ

�|β|γ|β|FryFrGS|β| .

If we write

exp(γtq−γt) =
∑
m≥0

amtm,

then

ρS
(
q exp(γFryFrGS−γS)Φy

q,Pn
k

(xuyvdxα∧dyβ)
)

= ρS

⎛⎜⎝q
∑

m∈Z
⊕k
≥0

am1 . . .amk(y1G1)
m1 . . .(ykGk)

mkxuyqvdxα∧ q|β|yq−1
β dyβ

⎞⎟⎠
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= q
∑

m∈Z
⊕k
≥0

am(−1)|m|+q|v|+q|β|−1(|m|+ q|v|+ q|β|−1)!
(yG)m

γ|m|S|m|
xuyq|v|

γq|v|Sq|v|
dxα

�|α| ∧
q|β|yq−1

β dyβ

�|β|γq|β|Sq|β|

= q
∑

m∈Z
⊕k
≥0

am(−1)|m|+q|v|+q|β|−1(|m|+ q|v|+ q|β|−1)!
(yG)m

γ|m|S|m|
γ|v|+|β|FryFrGS|v|+|β|

γq|v|+q|β|Sq|v|+q|β| ×

×Fry

(
xuyv

γ|v|FrGS|v|
dxα

�|α| ∧
dyβ

�|β|γ|β|FrGS|β|

)
.

Hence, the commutativity follows if we show that

q
∑

m∈Z
⊕k
≥0

am(−1)|m|+q|v|+q|β|−1(|m|+ q|v|+ q|β|−1)!
(yG)m

γ|m|S|m|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
γq|v|+q|β|Sq|v|+q|β|

γ|v|+|β|FryFrGS|v|+|β| .

(5.1)

To do this, consider

f(t) := tqw−1 exp

(
FryFrGS · tq
γq−1Sq

− t

)
= tqw−1

k∏
i=1

exp

(
(yiGi)

qtq

γq−1Sq
− yiGit

S

)

= tqw−1
k∏

i=1

∑
m≥0

am
(yiGi)

mtm

Sm
=
∑

m∈Z
⊕k
≥0

am
(yG)mt|m|+qw−1

S|m|

and

g(t) :=
∑
�≥0

(−1)�
d�f

dt�
.

Note that g satisfies

g(0) =
∑

m∈Z
⊕k
≥0

am(−1)|m|+qw−1(|m|+ qw−1)!
(yG)m

S|m| .

Moreover, g is by definition a formal solution of the differential equation

g+
dg

dt
= f

which converges for valpt >
1

p−1
− p−1

pq
. Since the only solution of

g+
dg

dt
= 0

is a constant multiple of exp(−t) which converges only for valpt >
1

p−1
, g is the unique

power series solution. On the other hand, there is a solution of the form

h(tq)exp

(
FryFrGS · tq
γq−1Sq

− t

)
.
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After substituting and dividing by the exponential, we get

h(tq)+
d

dt
h(tq)+

(
qFryFrGS · tq−1

γq−1Sq
−1

)
h(tq) = tqw−1,

which is equivalent to

qFryFrGS

γq−1Sq
tqh(tq)+ t

d

dt
h(tq) = tqw.

By change of variables, it is equivalent to

qFryFrGS

γq−1Sq
th(t)+ qt

d

dt
h(t) = tw.

Hence, we may write

h(t) =

(
1+

γq−1Sq

FryFrGS

d

dt

)−1(
γq−1Sq

qFryFrGS
tw−1

)
with the condition

h(0) = (−1)w−1(w−1)!
γqwSqw

qγwFryFrGSw
.

Therefore, since g(0) = h(0) by the observation so far,∑
m∈Z

⊕k
≥0

am(−1)|m|+qw−1(|m|+ qw−1)!
(yG)m

S|m| = (−1)w−1(w−1)!
γqwSqw

qγwFryFrGSw
.

Substituting w = |v|+ |β|, we get equality (5.1), and the proof is completed.

5.2 The Dwork operator

Since Fr(C†
S) ⊆ C†

S is a finite locally free ring extension of integral domains, there is a

cochain map

Tr :
(
Ω•

C†
S/(Ok,mk)

,d
)

��

(
Ω•

Fr(C†
S)/(Ok,mk)

,d
)

as in [32, Prop. 3.1]. Denote ψ the composite

ψ :
(
Ω•

C†
S/(Ok,mk)

,d
)

Tr ��

(
Ω•

Fr(C†
S)/(Ok,mk)

,d
)

Fr−1
��

(
Ω•

C†
S/(Ok,mk)

,d
)

that is, the unique map satisfying Fr◦ψ = Tr. By the description of [32, Prop. 3.1], Tr on

the differential forms fits into the commutative diagram

Ω•
C†

S/(Ok,mk)

Tr

��

�� Ω•
C†

S/(Ok,mk)
⊗C†

S
K(C†

S)
∼ �� Ω•

Fr(C†
S)/(Ok,mk)

⊗Fr(C†
S)
K(C†

S)

1⊗
Fr(C

†
S
)
Tr

��

Ω•
Fr(C†

S)/(Ok,mk)
�� Ω•

Fr(C†
S)/(Ok,mk)

⊗Fr(C†
S)
K(Fr(C†

S)),
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where the isomorphism comes from the inclusion Ω•
Fr(C†

S)/(Ok,mk)
⊆ Ω•

C†
S/(Ok,mk)

, and Tr :

K(C†
S)→K(Fr(C†

S)) is the usual trace map for fields extends of finite degree. This gives a

description of ψ:

ψ (fdxα∧dyβ) = ψ

(
f

xq−1
α yq−1

β

dxq
α

q|α|
∧
dyqβ
q|β|

)

= Fr−1

(
Tr

(
f

xq−1
α yq−1

β

)
dxq

α

q|α|
∧
dyqβ
q|β|

)

= Fr−1

(
Tr

(
f

xq−1
α yq−1

β

))
dxα

q|α|
∧ dyβ
q|β|

,

where, following (1.4), we denote

xq
α := xq

α1
· · ·xq

αi
, dxq

α := dxq
α1

∧· · ·∧dxq
αi
,

yqβ := yqβ1
· · ·yqβj

, dyqβ := dyqβ1
∧· · ·∧dyqβj

.

By our choice of Fr in §5.1, Fr−1 sends the bidegree (qc,qw)-subspace to the bidegree

(c,w)-subspace. Hence, the corresponding Tr restricts to the bidegree (0,0)-subcomplex;

and hence, our ψ restricts to the bidegree (0,0)-subcomplex:

ψ :
(
Ω•

C†
S/(Ok,mk)

,d
)
(0,0)

��

(
Ω•

C†
S/(Ok,mk)

,d
)
(0,0)

.

On the other hand, denote

Ψq : C(�) �� C(�)
∑

(u,v)∈Z
⊕N
≥0

au,v�
|v|xuyv � ��

∑
(u,v)∈Z

⊕N
≥0

aqu,qv�
|v|xuyv,

then Ψq satisfies

Ψq ◦zi
∂

∂zi
= qzi

∂

∂zi
◦Ψq.

Using this, we may extend Ψq to the cochain map analogously to Φq,Pn
k
:

Ψq,Pn
k
: (Ω•

�
,D�,0) �� (Ω•

�
,D�,0) fdxα∧dyβ

� ��
qn+k+1

xαyβ
Ψq(xαyβf)

dxα

q|α|
∧ dyβ
q|β|

.

For S := y1G1+ · · ·+ykGk as before, define

Ψq,S : (Ω•
�
,D�,γS) �� (Ω•

�
,D�,γS)

by the formal identity

Ψq,S := exp
(
−γ

�
S(x,�y)

)
◦Ψq,Pn

k
◦ exp

(γ
�
S(x,�y)

)
,
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which converges because we can rewrite

Ψq,S =Ψq,Pn
k
◦ exp(γS−γFr(S))

= Ψq,Pn
k
◦
(

k∏
i=1

exp(γyiGi−γyqiG
q
i )exp(γy

q
iG

q
i −γyqiFrxGi)

)

and the final expression converges. Hence, Ψq,S is still a cochain map by the same reason

as in §5.1. Now, we may compare ψ and Ψq,S via ρS .

Proposition 5.3. There is a commutative diagram(
L •

�,(0,+),D�,γS

)
q−1Ψq,S

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

ψ

��(
L •

�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
.

Proof. We will follow Katz’s trick in the proof of [19, Th. 2.15]. We may decompose

ψ = ψx ◦ψy as in the case of Fr = Fry ◦Frx. Hence, there is a diagram(
L •

�,(0,+),D�,γS

)
q−1Ψy

q,Pn
k

◦exp(γS−γFryFrGS)

��

ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)

ψy

��(
L •

�,(0,+),D�,γFrGS

)
exp(γFrGS−γFrxS)

��

ρFrGS
��

(
Ω•

C†
FrGS/(Ok,mk)

⊗Ok
k,d

)
�
��(

L •
�,(0,+),D�,γFrxS

)
Ψx

q,Pn
k

��

ρFrxS
��

(
Ω•

C†
FrxS/(Ok,mk)

⊗Ok
k,d

)
ψx

��(
L •

�,(0,+),D�,γS

)
ρS ��

(
Ω•

C†
S/(Ok,mk)

⊗Ok
k,d
)
,

where in the second and the third rows, we set degc yi = −qdi. The bottom square is

commutative because

(ψx ◦ρFrxS)(xuyvdxα∧dyβ)

= (−1)|v|+|β|−1(|v|+ |β|−1)!ψx

(
xuyv

γ|v|FrxS|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|FrxS|β|

)
= (−1)|v|+|β|−1(|v|+ |β|−1)!Fr−1

x

(
Trx

(
xu

xq−1
α

))
dxα

�|α|q|α|
∧ yv

γ|v|S|v|
dyβ

�|β|γ|β|S|β|

= ρS

(
Fr−1

x

(
Trx

(
xu

xq−1
α

))
dxα

q|α|
∧yvdyβ

)
= ρS

(
1

xα
Fr−1

x (Trx(xαx
u))

dxα

q|α|
∧yvdyβ

)
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= ρS

(
qn+1

xα
Ψq(xαx

u)
dxα

q|α|
∧yvdyβ

)
=
(
ρS ◦Ψx

q,Pn
k

)
(xuyvdxα∧dyβ) .

The middle square is commutative by Lemma 5.1. For the top square, we first compute

(ψy ◦ρS)(xuyvdxα∧dyβ)

= (−1)|v|+|β|−1(|v|+ |β|−1)!ψy

(
xuyv

γ|v|S|v|
dxα

�|α|
∧ dyβ
�|β|γ|β|S|β|

)
= (−1)|v|+|β|−1(|v|+ |β|−1)!Fr−1

y

(
Try

(
yv

yq−1
β γ|v|+|β|S|v|+|β|

))
xudxα

�|α|
∧ dyβ
�|β|q|β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
1

yβ
Fr−1

y

(
Try

(
yβy

v

γ|v|+|β|S|v|+|β|

))
xudxα

�|α|
∧ dyβ
�|β|q|β|

= (−1)|v|+|β|−1(|v|+ |β|−1)!
qk

yβ
Ψy

q

(
yβy

v

γ|v|+|β|S|v|+|β|

)
xudxα

�|α|
∧ dyβ
�|β|q|β|

.

If we write

exp(γt−γtq) =
∑
m≥0

bmtm,

then, denoting eβ := eβ1 + · · ·+eβj where j = |β| and eβi is the βith standard basis for Z⊕k,

ρFrGS

(
1

q
Ψy

q,Pn
k

(exp(γS−γFryFrGS)x
uyvdxα∧dyβ)

)

= ρFrGS

⎛⎜⎝1

q
Ψy

q,Pn
k

⎛⎜⎝ ∑
m∈Z

⊕k
≥0

bm(yG)mxuyvdxα∧dyβ

⎞⎟⎠
⎞⎟⎠

= ρFrGS

⎛⎜⎝1

q

qk

yβ
Ψy

q

⎛⎜⎝ ∑
m∈Z

⊕k
≥0

bm(yG)myβy
v

⎞⎟⎠xudxα∧
dyβ
q|β|

⎞⎟⎠
= ρFrGS

⎛⎜⎝1

q

qk

yβ

∑
m∈Z

⊕k
≥0

bqm−v−eβy
mGqm−v−eβxudxα∧

dyβ
q|β|

⎞⎟⎠
=

qk

yβ

1

q

∑
m∈Z

⊕k
≥0

bqm−v−eβ (−1)|m|−1(|m|−1)!
ymGqm−v−eβ

γ|m|FrGS|m|
xudxα

�|α|
∧ dyβ
�|β|q|β|

.

Hence, the commutativity follows if we show that

(−1)|v|+|β|−1(|v|+ |β|−1)!Ψy
q

(
yβy

v

γ|v|+|β|S|v|+|β|

)
xudxα

�|α|
∧ dyβ
�|β|q|β|

=
1

q

∑
m∈Z

⊕k
≥0

bqm−v−eβ (−1)|m|−1(|m|−1)!
ymGqm−v−eβ

γ|m|FrGS|m| .
(5.2)
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For this, consider the space of power series in t with the “usual” growth condition

L :=

⎧⎨⎩f =
∑
m≥0

fmtm

∣∣∣∣∣∣ fm ∈ k[x,y]

valp(fm)≥ bm+ c

⎫⎬⎭
for some fixed b > 0 and c ∈ R, depending on each f, and denote L0 := tL. Define

t
∂

∂t
: L �� L0 Ψy,t

q : L �� L

in the usual way so that

Ψy,t
q ◦ t ∂

∂t
= qt

∂

∂t
◦Ψy,t

q .

Now, define for f,g ∈ k[x,y],

Ψy,t
q,f,g := exp(−γgt)◦Ψy,t

q ◦ exp(γft), Ψy,t
q,f := Ψy,t

q,f,f

Df := exp(−γft)◦ t ∂
∂t

◦ exp(γft) = t
∂

∂t
+γft

so that there is a commutative diagram

(L0,DS)

exp(−γFrGS·t+γSt)

��

Ψy,t
q,S,FrGS

����
���

���
���

���
���

Ψy,t
q,S

�� (L0,DS)

exp(−γFrGS·t+γSt)

��

(L0,DFrGS)
Ψy,t

q,FrGS
�� (L0,DFrGS),

(5.3)

where each (L0,Df ) is regarded as a two term complex. On L0/DfL
0, we have

(γf)mtm+1 =−m(γf)m−1tm = · · ·= (−1)mm!t.

At this point, we use the growth condition on L0. The differential equation

t
∂P

∂t
+γftP = t

with the condition P ∈ tk[x,y][[t]] has a unique power series solution

P =
1− exp(−γf)

γf
.

However, this does not belong to L0 by the growth condition. Hence, t 
= 0 in L0/DfL
0 so

it is a free k[x,y]-module of rank 1 with basis {t}. For ξ ∈ k[x,y],

Ψy,t
q,f (ξ) = Ψy,t

q

⎛⎝∑
m≥0

γm

m!
(ft−f(x,yq) · tq)mξ

⎞⎠
=Ψy,t

q

⎛⎝∑
m≥0

m∑
�=0

(
m

�

)
(−1)m−�(f(x,yq)tq)m−�(ft)�ξ

⎞⎠
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=
∑
m≥0

m∑
�=0

(
m

�

)
(−1)m−�(ft)m−�Ψy,t

q

(
(ft)�ξ

)
≡Ψy

q(ξ) mod t

so we deduce that

Ψy,t
q,f (Df (1)) = qDf

(
Ψy,t

q,f (1)
)
= qDf (1)+ qDf (ω)

for some ω ∈ L0. Hence, Ψy,t
q,f on L0/DfL

0 is merely

L0/DfL
0 �� L0/DfL

0 ξt � �� qΨy
q(ξ)t.

Therefore,

Ψy
q

(
(−1)|v|+|β|−1(|v|+ |β|−1)!

yβy
v

γ|v|+|β|S|v|+|β|

)
t

=
1

q
Ψy,t

q,S

(
(−1)|v|+|β|−1(|v|+ |β|−1)!

yβy
v

γ|v|+|β|S|v|+|β| t

)
=

1

q
Ψy,t

q,S,FrGS

(
yβy

vt|v|+|β|
)

=
1

q
Ψy,t

q

(
exp(γSt−γFryFrGSt

q)yβy
vt|v|+|β|

)

=
1

q
Ψy,t

q

⎛⎜⎝ ∑
m∈Z

⊕k
≥0

bm(yG)myβy
vt|m|+|v|+|β|

⎞⎟⎠
=

1

q

∑
m∈Z

⊕k
≥0

bqm−v−eβy
mGm−v−eβ t|m|

=
1

q

∑
m∈Z

⊕k
≥0

bqm−v−eβ (−1)|m|−1(|m|−1)!
ymGm−v−eβ

γ|m|FrGS|m| t,

that is, (5.2) holds, and the proof is completed.

§A Remarks on algebraic de Rham cohomology

Definition A.1. Given a map of schemes X → S, define its (relative) de Rham

cohomology to be

Hn
dR(X/S) :=Hn

(
RΓ(X,Ω•

X/S)
)
,

where Ω•
X/S is the algebraic de Rham complex.

Lemma A.2. Given a map of affine schemes X → S, if A = Γ(S,OS), X = Γ(X,OX),

and A→B the corresponding ring map, then

RΓ(X,Ω•
X/S)

∼=Ω•
B/A

https://doi.org/10.1017/nmj.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.32


458 J. PARK

in D(A), the derived category of A. Consequently,

Hn
dR(X/S)∼=Hn(Ω•

B/A,d),

where d is the usual de Rham differential.

Proof. Since Ωp
X/S is quasicoherent OX -module and X is affine,

Hq(X,Ωp
X/S) =

{
Γ(X,Ωp

X/S), if q = 0,

0, if q > 0.

In other words, Ω•
X/S is a bounded below complex of Γ(X,−)-acyclic objects so the canonical

map

Ω•
B/A

∼ �� Γ(X,Ω•
X/S)

�� RΓ(X,Ω•
X/S)

is an isomorphism.

Remark A.3. To show the second assertion of Lemma A.2, one may argue with the

Čech spectral sequence for a chosen covering U of X :

Ep,q
2 =Hp

(
Tot
(
Č•(U ,Hq(Ω•

X/S))
))

=⇒ Hp+q(X,Ω•
X/S),

where Hq(Ω•
X/S) is the presheaf associate with U, a complex of abelian groups

Hq(U,Ω0
X/S)

�� Hq(U,Ω1
X/S)

�� · · ·

and Tot takes the total complex of a double complex. For this, one may even use the covering

{IdX :X →X} to get the desired vanishing because X is affine.

In computing algebraic de Rham cohomology of affine schemes, one may rely on

cosimplicial de Rham algebras. For this, we introduce some terminologies on (co-)simplicial

objects. Let Δ be the simplex category and C a finitely bicomplete category, that is, C has

finite limits and finite colimits. For n ∈N, denote Δ≤n the full subcategory of Δ consisting

of [0], . . . , [n] and the obvious inclusion

in : Δ≤n
� � �� Δ .

Since C has finite limits and finite colimits, there are adjoint pairs[
Δop

≤n,C
]

in!

��

in∗
��

[Δop,C ]

i∗n

��

given as in [6, V. 7.1]. Using these, we introduce the following terminologies.

Definition A.4. Let Δ be the simplex category.

(1) The nth truncation is

trn := i∗n : [Δop,C ] ��

[
Δop

≤n,C
]
.
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(2) The nth skeleton is

skn := in!i
∗
n : [Δop,C ] �� [Δop,C ].

(3) The nth coskeleton is

coskn := in∗i
∗
n : [Δop,C ] �� [Δop,C ].

A simplicial object X in C is said to be n-skeletal (resp. n-coskeletal) if X is isomorphic to

its nth skeleton (resp. nth coskeleton).

In our context, we will only work with 0-coskeletal simplicial objects. Namely, given a

map of schemes X → S, that is, an object in Sch/S , the category of S -schemes, we may

regard it as a constant simplicial object in Sch/S . Since Sch/S has finite limits, we may take

its 0th coskeleton, which will be given by

Δop �� Sch/S [n] � �� X×S X×S · · ·×S X (n+1 times),

where the ith boundary map forgets ith factor and the ith degeneracy map duplicates the

ith factor, counted from 0. When X → S is a map of affine schemes corresponding to a ring

map A→B, the above simplicial object defines a cosimplicial A-algebra:

(B/A)• : Δ �� CAlgA [n] � �� B⊗AB⊗A · · ·⊗AB (n+1 times).

If, furthermore, A→B is a k-algebra map over a ground ring k, then we may take the de

Rham complex degreewisely to get a cosimplicial de Rham algebra:

Ω•
(B/A)•/k : Δ

�� CDGA≥0
k

[n] � �� Ω•
(B/A)n/k.

Lemma A.5. If A → B is an étale k-algebra map, then the associated cosimplicial de

Rham algebra Ω•
(B/A)•/k is 0-coskeletal (in the opposite category).

Proof. Recall that for n≥ 0,

(B/A)n =B⊗AB⊗A · · ·⊗AB (n+1 times)

so A→ (B/A)n remains étale for every n≥ 0. Hence, the exact sequence

0 �� (B/A)n⊗AΩ1
A/k

�� Ω1
(B/A)n/k

�� Ω1
(B/A)n/A

�� 0

together with Ω1
(B/A)n/A = 0 shows that

Ω1
(B/A)n/k

∼= (B/A)n⊗AΩ1
A/k.

This, together with the flatness of A→ (B/A)n, gives

Ω•
(B/A)•/k

∼= (B/A)•⊗AΩ•
A/k

so the assertion follows.

Proposition A.6. Let k be a ring. If A→B is a faithfully flat étale k-algebra, then

Ω•
A/k

�� Ω•
(B/A)•/k

is a 0-coskeletal cosimplicial resolution.
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Proof. Being a 0-coskeletal object follows immediately from Lemma A.5. Being a

cosimplicial resolution means that the given map induces a quasi-isomorphism of cochain

complexes:

Ω•
A/k

�� Tot
(
C•Ω•

(B/A)•/k

)
,

where C• takes the unnormalized complex (see, e.g., [33, Def. 8.2.1]) in the cosimplicial

direction, and Tot takes its total complex. In fact, the total complex will be a Čech–de

Rham complex of Ω•
A/k with respect to the covering {SpecB → SpecA} which is surjective

as A→ B is faithfully flat. Therefore, the total complex computes the algebraic de Rham

cohomology of A over k, and the above map becomes the augmentation map.

Example A.7. Given an affine scheme X and a finite affine open covering {Ui}i∈I of

X, the induced map

U :=
∐
i∈I

Ui
�� X

is a faithfully flat étale map of affine schemes. Here, the finiteness of I is necessary for

the coproduct to be affine. Then the total complex induced from the cosimplicial de Rham

algebra Ω•
(U/X)•/k

will be the Čech–de Rham complex with respect to the Zariski cover

{Ui}i∈I of X. However, being 0-coskeletal cosimplicial objects, maps of such de Rham

algebras are determined at the level of 0th truncation:∏
i∈I

Ω•
Ui/k

.
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