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ON SOME COMPLEX SUBMANIFOLDS IN
KAEHLER MANIFOLDS

MASAHIRO KON

1. Introduction. The purpose of this paper is to give some conditions for
complex submanifolds in a Kaehler manifold of constant holomorphic sectional
curvature to be Einstein.

For a complex hypersurface which is Einstein, Smyth [8] has obtained its
classification and Chern [2] has proved the corresponding local result. More-
over, Takahashi [9] and Nomizu-Smyth [3] generalized this to a complex
hypersurface with parallel Ricci tensor. We shall consider a condition weaker
than the requirement that the Ricci tensor be parallel, that is we shall con-
sider a complex submanifold with commuting curvature and Ricci operator,
which condition was treated by Bishop-Goldberg [1]. For such a complex
submanifold, we shall prove that it is Einstein if the Ricci operator commutes
to the second fundamental form (Theorem 1). This condition is satisfied for
a complex hypersurface automatically.

We shall also consider a complex submanifold with parallel second funda-
mental form in a Kaehler manifold of constant holomorphic sectional curva-
ture by using Simons’ type formula which was given by Simons [7] and studied
by Ogiue [4] for a complex submanifold.

2. Preliminaries. Let M be a Kaehler manifold of complex dimension
n =+ p with the structure tensor field J and the Kaehler metric (, ), and let
M be an n-dimensional complex submanifold of /7. The Riemannian metric
induced on M is a Kaehler metric, which is denoted by the same (,) and
all metric properties of M refer to this metric. The Kaehler structure of M is
written by J as in M. By V¥, we denote the covariant differentiation in 7 and
by V the one in M determined by the induced metric. Then the Gauss-
Weingarten formulas are given by

ﬁXy=vXY+B(Xv Y)r X,YEQ/(]‘/I),
where (B(X, Y), N) = (4¥(X), Y) and D is the linear connection in the
normal bundle 7°(M)+L. Both A and B are called the second fundamental
form of M. The second fundamental form B is a vector valued bilinear form

on each 7',(M) taking values in T',(M)L and the second fundamental form A4
is a cross-section of a vector bundle Hom (7' (M)L, S(M)) where S(M) is the

Received May 23, 1973 and in revised form, October 19, 1973.
1442

https://doi.org/10.4153/CJM-1974-138-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-138-5

COMPLEX SUBMANIFOLDS 1443

bundle whose fibre at each point is the space of symmetric linear transforma-
tions of T,(M) — T, (M), i.e., for w € T, (M)+, A®: T,,(M) — T, (M).

M is called a totally geodesic submanifold of 7 if its second fundamental
form is identically zero. Since any complex submanifold of a Kaehler manifold
is minimal, its mean curvature vanishes, i.e., >_ B(e;, e;) = 0 whereey, . . ., e,
is a frame for 7', (M).

Let R and R denote the curvature tensors of M and M respectively. If we
assume that 7 is of constant holomorphic sectional curvature ¢, then we have

2.1) RyyZ = 3c(Y,2)X — (X, Z)Y + (Z,TJY)IX
—(Z,JX)TY + 2X,JY)JZ),
(22) RyyZ = Ry yZ — APCD(X) 4 APX 2(Y),

Let v1,...,v2, be a frame for T, (M)+L, and let x,y € T,,(M). Then the
Ricci tensor S of M is given by

(23) SE,3) = 4+ Dol 3) — 3 (4°4"@), )

Here we write A® instead of 47¢ to simplify the presentation. From (2.3), the
scalar curvature K of M is represented by

(24) K =n(m+ 1c — [|4]]?

where |[4]| denotes the length of the second fundamental form.
On the other hand, we have the following relations between the second
fundamental form 4 and the complex structure J:

(2.5) A¥J 4+ JAY =0 and AN — JAY = 0forany N € Z (M)*L.
We also have
(2.6) SUx,Jy) =Sk,y) and JQ = QJ

where Q is the Ricci operator of M defined by S(x, y) = (Qx, »).
Next we define operators which we later use. Simons [7] defined the follow-
ing symmetric, positive semi-definite operators:
2p ) )
(27) A~='4-A and A_= ), add’ad4’.

i=1

And we define the operator A* by setting

(2.8) A* = _,S_p,l 49

Clearly A* is symmetric, positive semi-definite operator. And we have
Tr A* = ||4||? where Tr is the trace of a operator.

3. Complex submanifolds with certain Ricci tensor. Let M be a
Kaehler manifold of complex dimension # + p and constant holomorphic

https://doi.org/10.4153/CJM-1974-138-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-138-5

1444 MASAHIRO KON

sectional curvature ¢, which will be denoted by 3" (c). Let M be a complex
submanifold of A/ of complex dimension n. In this section we consider a
condition weaker than the requirement that Q be parallel (VQ = 0):

(P)  Rxy(Q) =0,

which is equivalent to Ry y-Q = Q- Ry,y (cf. [1]). This condition is also
equivalent to

(T) RX,Y(S) =0.

We also consider a condition Q47 = 47Q, that is, Q and 47 are commuting
as operators. This condition is satisfied obviously when M is an Einstein
manifold and we shall prove that this condition is satisfied for any complex
hypersurface in a Kaehler manifold of constant holomorphic sectional
curvature.

Let ey, ...,e, be a frame for 7,,(M) such that e, , = Je, and let
91, . . ., U2y be a frame for 7, (M)+ such that v,,, = Jv,.

THEOREM 1. Let M be a Kaehler manifold of complex dimensionn -+ p (n > 1)
and constant holomorphic sectional curvature ¢, and let M be an n-dimensional
complex submanifold in M with a condition (P). If ¢ < 0, then M is an Einstein
manifold. If ¢ > 0, then M is an Einstein manifold if and only if Q is commuting
with A7 (G =1,...,p).

Proof. Let x,y T,,(M). By the condition (T), we obtain

2n
; (S(Rei w0y y) + Slesy Rei2y)) = 0.

By equation (2.2), this becomes

2n

Z {S(]Qci'reiv y) + S(AB(I‘“) (ei)yy) + S(Rei,ryy ei)

i=1
+ S (), ) — SA™ (@), e0)) = 0.
In the following, we calculate this equation. First we have, by (2.1),

; (SR, y) + SR, .y, €2)) = 3nc (‘-_)_I—(ﬁ (x,y) — Slx, y)),

We obtain > S(4%“ ¥ (e;), e;) = 0, by using (2.5) and (2.6), i.e.,
—S(APEN(e;), e;) = —SUTAPEY (e;), Je;) = S(ABEN (Jey), Je,).
We have

2n
2 (SUPe)y) = STV ), )
2n 2p

; ; (A7(ed), Qu)(A7(x), ei) — (A7 (x), Qei)(A’(y), e))

Il

I

2, ((Q4747(), 5) = (47Q47(x), ¥)).
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Consequently, we obtain
K

+ 2 Q4747 (), 3) — (47047 (), »)) = 0.

From this, we can see that

@1 " (% - I|QH2) =2 ]Z:; Ir(Q4°047 — QQA’4Y)

2p

= — > o, 41| <o,

=1
where [Q, 47] = Q47 — A4Q.
On the other hand, we always have K? < 2x||(C]|?, and equality holding if
and only if M is Einstein. If ¢ < 0, then M is an Einstein manifold by (3.1).
Letc¢ > 0. If Q47 = A7Q, then QJA? = JQA’ = JA?Q by using (2.6). There-
fore if Q47 = 47Q (j =1,...,p), (3.1) implies that M is Einstein.

COROLLARY 1. Let M be a complex hypersurface in M™*'(c), ¢ > 0, n > 1.
If M satisfies (P), then either M 1is totally geodesic, or M is a locally symmetric
Einstein manifold with scalar curvature K = n’c.

Proof. Let v, Jv be a frame for T,,(M)L. Then we have
S, y) = 3(n + Delx, y) — 2(4"4°(x), v).

Hence we have S(4%(x),y) = S(x, A°(y)), which shows that QA4A° = A4°Q.
By the above theorem, M is an Einstein manifold and we have our assertion
by Theorem C of Takahashi [9].

COROLLARY 2. Let M be a complex hypersurface in M™(c), ¢ < 0, n > 1.
If M has the property (P), then M is totally geodesic.

Proof. By Theorem 1, M is Einstein and we have our result by the theorem
of Chern [2], or Takahashi [9].

Remark 1. Let M be a complex hypersurface of M (c). If the Ricci tensor
of M is parallel, then M is Einstein [3; 9]. Our results are the partial generaliza-
tion of these results.

4. Simons’ type formula of complex submanifolds. Let M be a
Kaehler manifold of complex dimension # + p, and let M be an n-dimensional
complex submanifold of . We can take a frame ey, . . ., e, for 7', (M) such
that e,y; = Je, and a frame v, ..., vy, for T,,(M)+ such that v,,, = Jv,.
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From (2.5), we obtain J414JA7 = —A34%47 hence we have (see [7, p. 94])

2p 2n

2 At AN =230 3 (4atal(e), A'e))

i,j=1 (=1

(A_- A, A4)

i, =

230 (4%, )

By (2.5), we can see easily J4* = A*J. Since A* is symmetric, positive semi-
definite, using a suitable basis, 4* is represented by the matrix form

A 0
4* = ) My =Ny, N 20
_0 )\27:
Then we have
2n 1 2n 2
<A~ A7A>=2 >‘12>—_(Z )\z)y
i=1 n =1
2n 2 2n
(A - A4,4) = 2(( xi) - xixj)
i=1 =]
2n 2 n
i=1 =

On the other hand, we obtain (X ,.-:2"\;)? = ||4||*. Consequently, we get the
following

(1) (4] < (4. - 4,4) < ||4]I"

From this, we obtain the following

ProrosITION 1. Let M be an (n + p)-dimensional Kaehler manifold, and
let M be an n-dimensional complex submanifold of M. If A*A7 = AA* for all
1, §, then M 1s totally geodesic.

Remark 2. If M is a Kaehler manifold and M its complex submanifold, then
AiA7 = 44" for all 4,j if and only if (Ryx yN)L = Rt yN for any
X, YcZ M), NCZ (M)+L, where RL is the normal connection of M,
because we can see, by the direct calculation,

(RX,YN)J- = RX.YN - B(AN(Y), X) + B(AN(X), Y).

Let M be a real space form and M be a submanifold of M. Then 447 =
A’A%if and only if the normal connection of M is trivial (RL = 0).
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For the operator 4~, JA~ = A~J (see Simons (7, p. 76]). By the similar

way as in the case of 4%, 4~ is represented by the matrix form, for a suitable
basis,

A~ = : , Moty = My ke = 0.

| 0 K2p_]
Then we have

2p

(4-4, 4) = ;,,1 (A A7), 4" = 3, wiA~ @), v:) = ;,,1 i

=

From this we obtain the following:
1 -
@2) 5ol < 447 4) < 3lja])

LemMmA 1. Let M be a complex submanifold of complex dimension n (n >1)
in M™?(c). Then M is Einstein if and only if (A_- A, A) = (1/n)||4]|%

Proof. We have already that

(A - 4,4y =2 i_jl ((A*)*(e,),e;) and Q = L(n + 1)l — A*.

Therefore we obtain
]. 4 1 2 2
(.- 4,4) =~ |[A][" =~ K +2[[QI[,

where ||Q|| denotes the length of the Ricci operator Q. Generally, K2 < 2x||Q||2
and equality holding if and only if M is Einstein. Hence M is Einstein if and
only if (4 -4, 4) = (1/n)||A4]]*

If M is of constant holomorphic sectional curvature ¢, then the Simons’
type formula is given by (see [4] and [7, p. 81])

(4.3) V4 =3n-+2)cAd —A4-4A~—A_-A.

Here we notice that if the length of the second fundamental form 4 is con-
stant, then (V4, VA) = —(V?24, 4).

PROPOSITION 2. Let M be an Einstein complex hypersurface of M™1(c). Then
the second fundamental form A of M 1is parallel (VA = 0).
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Proof. By (4.2), (4.3) and Lemma 1, we get
2
(va,vay =L (a4
By Corollary 1 and (2.4), we get ||4||*> = nc, hence V4 = 0.

Remark 3. Let M be a complex hypersurface of M (c). If A is parallel, then
Q is parallel. Hence by Corollary 1, M is Einstein. Consequently, M is Einstein
if and only if V4 = 0. (Compare also Nomizu-Smyth [3, p. 507, Lemma 5].)

THEOREM 2. Let M be an n-dimensional complex submanifold of M™7(c)
with parallel second fundamental form (VA = 0). If ¢ = 0, then M is totally
geodesic. If ¢ > 0, then the scalar curvature K of M satisfies
nicn+p+1)

(n + 2p)

and if equality holds, then M is an Einstetn manifold.

Kz

Proof. From (4.1), (4.2) and (4.3), we get the following inequality:

0= (V4,V4) > (f’—ﬂfZ la][* —‘LJ;J—)f) Al

Hence if ¢ < 0, then M is totally geodesic in 7.

Let ¢ > 0. Then we obtain ||4||2 £ pn(n + 2)c/(n + 2p). From this and
(2.4), we can see that K = n’c(n+ p + 1)/(n + 2p). If equality holds,
then [|4]]?> = pu(n + 2)¢/(n + 2p) and hence, by (4.1), (4.2) and (4.3),

{E42e_ Ly jae > @z a5 Ly

4+ 2)
2

which imply {(4_-4,4) = (1/n)||4]|* Therefore, by Lemma 1, M is an
Einstein manifold.

1 2 1 2
QEHAII = [l4l1,

Remark 4. For an Einstein complex hypersurface, Chern [2] proved that if
¢ = 0, then M is totally geodesic. By Proposition 2, our theorem is the exten-
sion of this. (See also Nomizu-Smyth [3] and Takahashi [9].)
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