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ON SOME COMPLEX SUBMANIFOLDS IN 
KAEHLER MANIFOLDS 

MASAHIRO KON 

1. Introduction. The purpose of this paper is to give some conditions for 
complex submanifolds in a Kaehler manifold of constant holomorphic sectional 
curvature to be Einstein. 

For a complex hypersurface which is Einstein, Smyth [8] has obtained its 
classification and Chern [2] has proved the corresponding local result. More­
over, Takahashi [9] and Nomizu-Smyth [3] generalized this to a complex 
hypersurface with parallel Ricci tensor. We shall consider a condition weaker 
than the requirement that the Ricci tensor be parallel, that is we shall con­
sider a complex submanifold with commuting curvature and Ricci operator, 
which condition was treated by Bishop-Goldberg [1]. For such a complex 
submanifold, we shall prove that it is Einstein if the Ricci operator commutes 
to the second fundamental form (Theorem 1). This condition is satisfied for 
a complex hypersurface automatically. 

We shall also consider a complex submanifold with parallel second funda­
mental form in a Kaehler manifold of constant holomorphic sectional curva­
ture by using Simons' type formula which was given by Simons [7] and studied 
by Ogiue [4] for a complex submanifold. 

2. Preliminaries. Let î b e a Kaehler manifold of complex dimension 
n + p with the structure tensor field / and the Kaehler metric ( , ), and let 
M be an ^-dimensional complex submanifold of M. The Riemannian metric 
induced on M is a Kaehler metric, which is denoted by the same ( , ) and 
all metric properties of M refer to this metric. The Kaehler structure of M is 
written by / as in M. By V, we denote the covariant differentiation in M and 
by V the one in M determined by the induced metric. Then the Gauss-
Weingarten formulas are given by 

VXY = VXY + B(X, F), X, Y £ 3T(M), 

VXN = -AN(X) + DXN, X e 3T(M), N £ SC'(M)1-

where (B(X, Y),N) = (AN(X), Y) and D is the linear connection in the 
normal bundle T(M)A-. Both A and B are called the second fundamental 
form of M. The second fundamental form B is a vector valued bilinear form 
on each Tm(M) taking values in Tm(M)± and the second fundamental form A 
is a cross-section of a vector bundle Hom(T(M)±, S(M)) where S(M) is the 
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bundle whose fibre at each point is the space of symmetric linear transforma­
tions of Tm{M) -> Tm(M), i.e., for w £ Tn(M)\ Aw : Tm{M) -> Tm(M). 

M is called a totally geodesic submanifold of M if its second fundamental 
form is identically zero. Since any complex submanifold of a Kaehler manifold 
is minimal, its mean curvature vanishes, i.e., 2 B(eu Ci) = 0 where eu . . . , e2w 

is a frame for Tm{M). 
Let ^ and i? denote the curvature tensors of M and M respectively. If we 

assume that M is of constant holomorphic sectional curvature c, then we have 

(2.1) Rx,rZ = ic((Y, Z)X - (X, Z)Y + (Z, JY)JX 

- (Z, JX)JY + 2{X, JY)JZ), 

(2.2) RX,YZ = RX,YZ - AB(r-^(X) + AB^X-Z\Y). 

Let vi, . . . , vtj, be a frame for Tm(M)L, and let x,y £ Tm(M). Then the 
Ricci tensor 5 of M is given by 

(2.3) S(x,y) = \{n + l)c(x,y) - £ {A'A^x)^). 

Here we write A1 instead of AVi to simplify the presentation. From (2.3), the 
scalar curvature K of M is represented by 

(2.4) K = n(n+ l)c - \\A\\2 

where ||^4|| denotes the length of the second fundamental form. 
On the other hand, we have the following relations between the second 

fundamental form A and the complex structure J: 

(2.5) ANJ + JAN = 0 and AJN - JAN = 0 for any N G 9£(M)\ 

We also have 

(2.6) S(Jx, Jy) = S(x, y) and JQ = QJ 

where Q is the Ricci operator of M defined by S(x, y) = (Qx, y). 
Next we define operators which we later use. Simons [7] defined the follow­

ing symmetric, positive semi-definite operators: 

2p 

(2.7) A~ = *A-A and A„ = £ a c L 4 W . 

And we define the operator A* by setting 

(2.8) A* = J (Al)\ 
i=l 

Clearly A* is symmetric, positive semi-definite operator. And we have 
Tr A* = \\A\\2 where Tr is the trace of a operator. 

3. Complex submanifolds with certain Ricci tensor. Let ï b e a 
Kaehler manifold of complex dimension n + p and constant holomorphic 
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sectional curvature c, which will be denoted by Mn+P(c). Let M be a complex 
submanifold of M of complex dimension n. In this section we consider a 
condition weaker than the requirement that Q be parallel (VQ = 0): 

(P) RxAQ) = o, 
which is equivalent to RX,Y ' Q = Q * RX,Y (cf. [1]). This condition is also 
equivalent to 

(T) RX,Y(S) = 0. 

We also consider a condition QAj = AjQ, that is, Q and Aj are commuting 
as operators. This condition is satisfied obviously when M is an Einstein 
manifold and we shall prove that this condition is satisfied for any complex 
hypersurface in a Kaehler manifold of constant holomorphic sectional 
curvature. 

Let ei, . . . , e2n be a frame for Tm(M) such that en+t = Jet, and let 
Vi, . . . , v2p be a frame for Tm(M)± such that vp+s = Jps. 

THEOREM 1. Let M be a Kaehler manifold ofcomplex dimension n + p (n > 1) 
and constant holomorphic sectional curvature c, and let M be an n-dimensional 
complex submanifold in M with a condition (P). If c < 0, then M is an Einstein 
manifold. If c > 0, then AI is an Einstein manifold if and only if Q is commuting 
with Aj (j = 1, . . . , p). 

Proof. Let x, y Tm(M). By the condition (T), we obtain 

£ (S(Rei,xei,y) + S(euRei,xy)) = 0. 
i=\ 

By equation (2.2), this becomes 

E {S(Rti.*et,y) + SW^ieù.y) + S(Re„xy,et) 
i = l 

+ S\AB{x'y\et),et) - S^*" 1 » ' (*) ,« , )} = 0. 
In the following, we calculate this equation. First we have, by (2.1), 

g (S(Re„xet,y) + S(Rti,xy,e{)) = \nc ( ~ (x,y) - S(x,y)j. 

We obtain £ S{AB(-X-V){et), et) = 0, by using (2.5) and (2.6), i.e., 

-SiA^-^ie^^i) = -S(JAB™(et),Jet) = S(AB™(Jet), Je,). 

We have 

E (S(ABi*-"\et),y) - S(ABU'-!'\x),et)) 

i= i i - i 

.7=1 
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Consequently, we obtain 

h™ \^n (x,y) ~ S(x,y)j 

+ £ ((QAjAj(x),y) - (AjQAj(x),y)) = 0. 
1=1 

From this, we can see that 

(3.i) nc (C _ l i < 2 ! | 2 ) = 2 % Tr(QA'QA' - QQA'Ai) 

= - E I I [ Ç M 1 | | 2 < O , 
3=1 

where [Q, Aj] = QAj - AjQ. 
On the other hand, we always have K2 ^ 2n||Ç||2, and equality holding if 
and only if M is Einstein. If c < 0, then M is an Einstein manifold by (3.1). 
Let c > 0. If QAj = AjQ, then QJAj = JQAj = JAjQ by using (2.6). There­
fore if QAj = AjQ (j = 1, . . . , p), (3.1) implies that M is Einstein. 

COROLLARY 1. Let M be a complex hyper surface in Mn+1(c), c > 0, n > 1. 
If M satisfies (P), then either M is totally geodesic, or M is a locally symmetric 
Einstein manifold with scalar curvature K = n2c. 

Proof. Let v, Jv be a frame for I^m(M)±. Then we have 

S(x, y) = \(n + l)c(x, y) - 2(A'A'(x), y). 

Hence we have S(Av(x),y) = S(x,Av(y)), which shows that QAV = AVQ. 
By the above theorem, M is an Einstein manifold and we have our assertion 
by Theorem C of Takahashi [9]. 

COROLLARY 2. Let M be a complex hyper surface in Mn+l(c), c < 0, n > 1. 
/ / M has the property (P), then M is totally geodesic. 

Proof. By Theorem 1, M is Einstein and we have our result by the theorem 
of Chern [2], or Takahashi [9]. 

Remark 1. Let i f be a complex hypersurface of M{c). If the Ricci tensor 
of M is parallel, then M is Einstein [3; 9]. Our results are the partial generaliza­
tion of these results. 

4. Simons' type formula of complex submanifolds. Let il? be a 
Kaehler manifold of complex dimension n + p, and let M be an n-dimensional 
complex submanifold of M. We can take a frame e\, . . . , e%n for Tm(M) such 
that en+t = Jei and a frame V\, . . . , v2p for Tm(M)± such that vp+s = Jvs. 
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From (2.5), we obtain JAjAiJAj = -A^AlA\ hence we have (see [7, p . 94]) 

2p 2p 2n 

(A„-A,A)= E IP',;4']||2 = 2 D E (AiAtAi{et),A
i{et)) 

i,j=l i,j=l t=l 
In 

= 2 E ((A*)\et),ei). 

By (2.5), we can see easily J A* = A* J. Since A* is symmetr ic , positive semi-
definite, using a suitable basis, A* is represented by the matr ix form 

"Ai 0 

\+t — Aj, \ t ^ 0. 

Then we have 

2rc -j / 2w \ 2 

( ^ • A i ) = 2 E x«*>r(E x,l , 
/ / In \ 2 2 W \ 

< ^ - ^ , ^ ) = 2 E Xi) - E XiXJ 

( 2w \ 2 n 

£ X«) - 8 £ X,X,- ( ^ - ^ , 4 ) . 
On the other hand, we obtain (^2i=i2n\i)2 = ||^4||4- Consequently, we get the 
following 

(4.1) 
1 

< (A„ - A,A)< \\A\\\ 

From this, we obtain the following 

PROPOSITION 1. Let M be an (n + p)-dimensional Kaehler manifold, and 
let M be an n-dimensional complex submanifold of M. If AiAj — A jAi for all 
i, j , then M is totally geodesic. 

Remark 2. If il? is a Kaehler manifold and M its complex submanifold, then 
AiAi = AjAl for all i,j if and only if (Rj^yN)1- = RX,YN for any 
X, Y e&(M), N t&tM)1-, where R1- is the normal connection of M, 
because we can see, by the direct calculation, 

(RX,YN)± = RX,YN - B(AN(Y), X) + B(AN(X), Y). 

Let il? be a real space form and M be a submanifold of M. Then AiAi = 
AiAi if and only if the normal connection of M is trivial (R1- = 0) . 
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For the operator A~, JA~ = A~J (see Simons [7, p. 76]). By the similar 
way as in the case of A*, A~ is represented by the matrix form, for a suitable 
basis, 

A- = 

Then we have 

Mi 0 

M2p_ 

Vp+t = Vu Vt è 0. 

(A-A~,A)= £ (A-A-fp^A*) = £ ^(A-(vt)9vt) = £ »l 
i= 1 i= 1 i= 1 

From this we obtain the following: 

(4.2) ^ iMir<^-^~,^)<i iMi i 4 . 

LEMMA 1. Let M be a complex submanifold of complex dimension n (n > 1 ) 
in Mn+P(c). Then M is Einstein if and only if (A„ -A, A) = (l/n)\\A\\\ 

Proof. We have already that 

In 

( ^ ^ , ^ > = 2 S ( ( i * ) 2 ( 4 ^ > and Q=$(n + l)cI-A*. 

Therefore we obtain 

(A„-A,A) = - -nK2 + 2\\Q\\\ 

where ||Q|| denotes the length of the Ricci operator Q. Generally, K2 fg 2w||Ç||2 

and equality holding if and only if M is Einstein. Hence M is Einstein if and 
only if (A„-A,A) = (l/n)\\A\\\ 

If it? is of constant holomorphic sectional curvature c, then the Simons' 
type formula is given by (see [4] and [7, p. 81]) 

(4.3) V M = h(n + 2)cA - A - A~ - A„-A. 

Here we notice that if the length of the second fundamental form A is con­
stant, then (VA, VA) = -(V2A,A). 

PROPOSITION 2. Let M be an Einstein complex hyper surface of Mn+l(c). Then 
the second fundamental form A of M is parallel (VA = 0). 
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Proof. By (4.2), (4.3) and Lemma 1, we get 

(VA,VA) = ± ^ ] - Q\A\\> - nc)\\A\\\ 

By Corollary 1 and (2.4), we get ||^4||2 = nc, hence V.4 = 0. 

Remark 3. Let M be a complex hypersurface of M(c). If A is parallel, then 
Q is parallel. Hence by Corollary 1, i f is Einstein. Consequently, M is Einstein 
if and only if VA = 0. (Compare also Nomizu-Smyth [3, p. 507, Lemma 5].) 

THEOREM 2. Let M be an n-dimensional complex submanifold of Mn+P(c) 
with parallel second fundamental form (VA = 0). If c ^ 0, then M is totally 
geodesic. If c > 0, then the scalar curvature K of M satisfies 

R > n2c(n+ p + l) 
= (» + 2p) 

and if equality holds, then M is an Einstein manifold. 

Proof. From (4.1), (4.2) and (4.3), we get the following inequality: 

0 = (VA,VA)> ( « ^ i w i ' - i » ^ ) m \ 

Hence if c ^ 0, then M is totally geodesic in M. 
Let c > 0. Then we obtain ||^4||2 ^ pn(n + 2)c/(n + 2p). From this and 

(2.4), we can see that K ^ n2c(n + p + l)/(w + 2p). If equality holds, 
then p | | 2 = pn(n + 2)c/(n + 2p) and hence, by (4.1), (4.2) and (4.3), 

which imply (A„ - A, A) = (l/w)||^4||4. Therefore, by Lemma 1, M is an 
Einstein manifold. 

Remark 4. For an Einstein complex hypersurface, Chern [2] proved that if 
c ^ 0, then M is totally geodesic. By Proposition 2, our theorem is the exten­
sion of this. (See also Nomizu-Smyth [3] and Takahashi [9].) 
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