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Abstract
We study site and bond percolation in simple directed random graphs with a given degree distribution. We derive
the percolation threshold for the giant strongly connected component and the fraction of vertices in this component
as a function of the percolation probability. The results are obtained for degree sequences in which the maximum
degree may depend on the total number of nodes n, being asymptotically bounded by n

1
9 .

1. Introduction

Percolation in infinite graphs is typically studied in the setting where edges (or vertices) are removed
uniformly at random and some connectivity-related property is being traced as a function of the per-
colation probability c ∈ (0, 1) that a randomly chosen edge (or vertex) is present. Conventionally, this
property is chosen to describe connected components: maximal vertex sets in which any pair of vertices
is connected with a path. Many results about sizes of connected components are known for percolation
in infinite lattices [4] and random graphs [1, 3, 15, 16, 19]. Closely related to percolation are random
graph models that depend on a real parameter, such as the well-studied Erdős Rényi random graph
G(n, p), and also various models for directed random graphs, often referred to as D(n, p) or ®G(n, p)
[17, 26, 29, 30].

Fountoulakis [16] and Janson [19] studied percolation in undirected random graphs with well-
behaved degree sequences using techniques that rely on Molloy and Reed’s existence theorem [22, 23],
which indicates whether a simple undirected random graph with a given degree sequence contains a
giant component and how large it is. These authors showed that if one starts with a simple random
graph generated by the configuration model and then removes edges (vertices) uniformly at random,
the resulting percolated graph can again be studied with the configuration model, albeit with a modified
degree sequence. In this paper, we introduce a similar argument to directed graphs. Although there are
several points of analogy, directed graphs generally require a distinct treatment from that of undirected
graphs.

In digraphs, there exist several non-equivalent definitions for a connected component, all of which
give rise to an interesting percolation problem. Let G = (V , E) be a simple digraph and n = |V |. We
say that C ⊂ V is a strongly connected component (SCC) if for all v1, v2 ∈ C, there are directed paths
that connect v1 with v2 and v2 with v1, and no other vertex from V can be added to C without losing
this property. Suppose Gn is uniformly sampled from the set of all digraphs with a fixed graphic degree
sequence

dn :=
(
(d−

1 , d+
1 ), (d

−
2 , d+

2 ), . . . , (d
−
n , d+

n )
)
, (1)
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where d−
v and d+

v indicate correspondingly the in- and out-degree of vertex v ∈ V . Let additionally
the following limits exist, ` := limn→∞ `(n) and `11 := limn→∞ `11(n), with `(n) := n−1 ∑

v∈V d−
v =

n−1 ∑
v∈V d+

v being the expected number of edges per vertex and `11(n) := n−1 ∑
v∈V d−

v d+
v .

The existence criteria for the giant strongly connected component (GSCC) in directed graphs was
formulated for slightly different models by Cooper and Frieze [10], Bloznelis, G¥otze, and Jaworski
[2], and Penrose [24]. These results have been subsequently improved by weakening the requirement
on the degree sequence by Graf [18] and Coulson [11], and more recently, further generalized by Cai
and Perarnau [7] and Donderwinkel and Xie [14]. All in all, the abovementioned authors state that if
`11 − ` > 0, the size of the largest SCC C (Gn) is of the order n,

lim
n→∞

|C (Gn) |
n

= c > 0, (2)

under some regularity conditions on the degree sequences (dn)n∈N. There are also results about the
structure of the giant component [12], its diameter [8], and the properties of the dynamic processes on
it [5, 6]. Sizes of weakly connected components were studied in [13].

If the limit in equation (2) holds, we say the random graph contains a GSCC. Likewise, if the sign of
the inequality is flipped, `11 − ` < 0, then the size of all SCCs is O (1), and the random graph is said
to contain no GSCC. This result points out the existence of two classes of limiting degree sequences,
those with the size of largest SCC being Θ(n) and those for which this size is O (1).

In this paper, we study a percolated graph Gc
n , in which each edge (vertex) in Gn is randomly removed

with probability 1 − c. We show that if the GSCC exists in the original graph Gn, removing a posi-
tive fraction of edges (or vertices) can modify the degree distribution just in the right way to flip the
sign of the inequality, while keeping the percolated graph to be uniform in the set of all graphs with
a fixed (modified) degree distribution. By combining the latter observation with the theory of Cai and
Perarnau [7], we show that the “phase transition” from O (1) to Θ(n) takes place at the critical prob-
ability cc = `/`11, such that only for c > cc, Gc

n contains a GSCC with high probability (w.h.p.).
The critical threshold cc is the same for bond and site percolation, whereas the fractions of vertices in
GSCC, as defined in Eq. (2), are closely related for bond, cbond(c), and site, csite(c), percolation mod-
els: csite(c) = ccbond(c). This work and the related proofs are inspired by the results for percolation in
undirected graphs by Fountoulakis [16] and are based on Chapter 4 of Thesis [28]. Similar conclusions
were also obtained heuristically by Graf [18] by applying Janson’s exploding method [19].

2. Main result

This section introduces our main theorems for the percolation threshold of the GSCC. We consider
two types of percolation models on a simple digraph Gn = (Vn, En), n = |Vn | that result in a random
subgraph Gc

n on the same vertex set:

• Bond percolation, fix percolation probability c ∈ (0, 1), then each edge of Gn is removed indepen-
dently of the other edges with probability 1 − c.

• Site percolation, fix percolation probability c ∈ (0, 1), then for each vertex of Gn, all the edges
incident to this vertex are removed together with probability 1−c independently of the other vertices.
Such a vertex is referred to as a deleted vertex.

It should be clear from the context which type of percolation is discussed. Strictly speaking, the
existence of the GSCC is a limiting property of a sequence of graphs (Gn)n∈N, in which each element
is defined by a finite graphic degree sequence dn. Thus, we refer to an infinite sequence of degree
sequences, (dn)n∈N, as the degree progression, where n is the index and the number of vertices in the
nth element of this progression. Although our ultimate goal is to make statements about random graphs
satisfying a specific degree distribution in the limit n → ∞, the bulk of the paper is spent on determining
whether degree progression (dn)n∈N maintains or acquires some property of interest w.h.p. as n → ∞.
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To make valid statements about the GSCC, we need to impose several requirements on the degree
progression. We are interested in simple graphs, which indicates that each degree sequence in the pro-
gression must be graphic as required by the equivalent of Erdős–Gallai theorem for directed graphs
[20, Theorem 4]. In Section 3.1, we progressively add several more technical constraints on (dn)n∈N,
namely Definitions 3.1, 3.2, and 3.3, which we jointly refer to as the requirements for a proper degree
progression. Together, these conditions guarantee sufficient regularity of the degree progression, allow-
ing us to reason about the limiting behavior of the corresponding random graphs and their connected
components. In this condition, the most restricting requirement is that the maximum degree must be
bounded, dmax ≤ n

1
9 .

Definition 2.1. The percolation threshold of a proper degree progression (dn)n∈N is given by

cc = sup
{
c ∈ (0, 1)

�� ∀Y > 0, lim
n→∞
P

[
n−1 ��C (Gc

n )
�� ≥ Y

]
= 0

}
, (3)

with additional superscripts indicating the type of percolation, that is, cbond
c or csite

c .

For each n, the probability in this definition is taken with respect to Gc
n – the random graph that results

from percolation on a uniform simple random graph that obeys (dn)n∈N.
The following theorems determine the percolation threshold for the existence of the GSCC, and, if

this threshold exists, they additionally identify the fraction of the vertices in this component for bond
and site percolation. The theorems can be regarded as the extension of [16, Thm. 1.1] to digraphs.

Theorem 2.2. Consider progression (dn)n∈N is proper and `11 > `, then the thresholds for the giant
component in bond and site percolations are both equal to cc =

`

`11
< 1.

Let Nj,k (n) be the number of vertices with in-/out-degree ( j, k) in Gn, and let pj,k := lim
n→∞

Nj,k (n)
n exist.

Let additionally,

Ubond
c (x, y) :=

∑
j,k≥0

pj,k (1 − c + cx)j (1 − c + cy)k ,

U−
c (x) := (c`)−1 m

my
Ubond

c (x, y) |y=1 and U+
c (y) := (c`)−1 m

mx
Ubond

c (x, y) |x=1

be formal power series in x and y, having probability c ∈ (0, 1) as a parameter. Here Ubond
c (x, y) can

be interpreted as the generating function of the degree of a randomly chosen vertex, and U+
c (y) (corre-

spondingly U−
c (x)) – the generating function for the degree of a vertex at the end of randomly chosen

in- (or out-) edge.

Theorem 2.3. If (dn)n∈N is proper and c ∈ (cc, 1), then for all Y > 0,

lim
n→∞
P

[�����
��C (Gc

n )
��

n
− cbond(c)

����� ≥ Y

]
= 0

for bond percolation, and

lim
n→∞
P

[�����
��C (Gc

n )
��

n
− csite(c)

����� ≥ Y

]
= 0
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for site percolation, with

cbond(c) = 1 − Ubond
c (x∗, 1) − Ubond

c (1, y∗) + Ubond
c (x∗, y∗), csite(c) = ccbond(c)

and x∗, y∗ being the smallest positive solutions of x∗ = U−
c (x∗) and y∗ = U+

c (y∗).

The remainder of the paper is structured as follows. Section 3 lays out the technical premise:
Section 3.1 introduces different classes of degree progressions. Section 3.2 introduces the link between
random digraphs and the directed configuration model by repurposing several theorems available for
undirected graphs. Section 3.3 gives the definition of a GSCC and formulates Cai and Perarnau’s exis-
tence theorem, Theorem 3.11. In Section 3.4, we derive a concentration inequality, Theorem 3.13,
enabling the proof of the main result. Section 4 proves Theorems 2.2 and 2.3 separately for the cases
of bond and site percolation in, respectively, Sections 4.1 and 4.2. Both subsections have a similar
structure: first, we show that the configuration model introduced in Section 3.2 can be used to study
percolated digraphs; second, we find the degree distribution after percolation; third, we show that the
corresponding degree progression is almost surely feasible in large graphs, and therefore the existence
theory from Section 3.3 is applicable.

3. Random digraphs

3.1. Degree sequence, degree progression, and degree distribution

The degree sequence of a given digraph can be uniquely defined by adopting the lexicographic order, as
demonstrated in, for example, [20]. Let Gdn be the set of all directed multigraphs having degree sequence
dn. Since we are interested in sampling from Gdn , we want to be sure that for given dn, Gdn ≠ ∅. This is
always the case for valid degree sequences.

Definition 3.1. A degree sequence dn is called valid if m :=
∑n

i=1 d−
i =

∑n
i=1 d+

i , where m = |E | is the
number of edges in graph Gdn .

If Gdn contains a simple graph, dn is called graphical, and Theorem 4 in [20] gives necessary and
sufficient criteria for this property. Suppose dn is graphical and let Gdn ∈ Gdn be a uniformly chosen
simple digraph. To be on the safe side, we need to ensure that the subset of simple graphs in Gdn is not
vanishing for large n by imposing restrictions on the limiting behavior of dn. Let

dmax(n) := max
{
max{d−

1 , d−
2 , . . . , d−

n }, max{d+
1 , d+

2 , . . . , d+
n }

}
be the largest degree in dn for each index n ∈ N. We will refer to this quantity as simply dmax.

Definition 3.2. A degree progression (dn)n∈N is called feasible if (1) all dn are graphical, (2) the follow-
ing limits exist yielding bivariate degree distribution pj,k := lim

n→∞
(Nj,k (n))/n with finite partial moments

up to order 2:

`ab := lim
n→∞

∞∑
j,k=0

jakbNj,k (n)
n

=

∞∑
j,k=0

jakbpj,k ∈ (0,∞), 0 ≤ a + b ≤ 2,

and (3) dmax = O
(√

n
)
. Note that according to Definition 3.1, we have ` := `10 = `01.

We refer to pj,k as the degree distribution of a feasible degree progression. The theorem of Cai and
Perarnau [7] holds for feasible degree progressions. However, to show that the degree progression
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remains feasible after percolation, we need to narrow down the class of initial degree progressions
further.

Definition 3.3. A feasible degree progression (dn)n∈N is called proper if dmax ≤ n
1
9 .

Thus far, we have defined a chain of classes for (dn)n∈N: valid ⊃ graphical ⊃ feasible ⊃ proper, where
the definitions of valid and graphical are extended from dn to (dn)n∈N element-wisely.

3.2. Directed configuration model

The behavior of simple random digraphs can be studied with the directed configuration model, as defined
below.

Definition 3.4. Let dn be a valid degree sequence. For all vertices enumerated with i ∈ [n], let the
set of in-stubs W−

i consist of d−
i unique elements and the set out-stubs W+

i contains d+
i elements. Let

W− = ∪i∈[n]W−
i and W+ = ∪i∈[n]W+

i . Then a configuration M is a random perfect bipartite matching
of W− and W+, that is a set of tuples (a, b) such that each tuple contains one element from W− and one
from W+ and each element of W− and W+ appears in exactly one tuple.

A configurationM prescribes a matching between in-subs and out-stubs and hence defines a multigraph
G̃dn with vertex set V = [n] and edge multiset

E = [(i, j) | W+
i 3 a, W−

j 3 b and (a, b) ∈ M] . (4)

Note that multiple configurations may correspond to the same graph. We will now study the probability
that the configuration model generates a specific multigraph G̃dn .

Proposition 3.5. Let G̃dn be a multigraph with degree sequence dn and Υi,j be the multiplicity of edge
(i, j) in G̃dn . Then it holds that

P
[
CMn (dn) = G̃dn

]
=

1
m!

∏n
i=1 d−

i !
∏n

i=1 d+
i !∏

1≤i,j≤n Υi,j!
. (5)

Proof. This proof is based on [27, Prop. 7.4] formulated for undirected graphs. There are m! different
configurations. As the configuration is chosen uniformly at random,

P
[
CMn (dn) = G̃dn

]
=

1
m!

N
(
G̃dn

)
,

with N
(
G̃dn

)
being the number of distinct configurations inducing G̃dn . It follows from Eq. (4) that

permuting the stub labels results in a different configuration that induces the same multigraph. There
are

∏n
i=1 d−

i !
∏n

i=1 d+
i ! such permutations. For a, a′ ∈ W+

i and b, b′ ∈ W−
j with (a, b), (a′, b′) ∈ M, any

permutation swapping a with a′ and b with b′ results in the same configuration. We compensate for this
by a factor Υi,j! to obtain

N
(
G̃dn

)
=

∏n
i=1 d−

i !
∏n

i=1 d+
i !∏

1≤i,j≤n Υij!
,

�

Corollary 3.6. Conditional on the event that configuration model generates a simple digraph, an
element of Gdn is chosen uniformly.

https://doi.org/10.1017/S0269964823000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000128


Probability in the Engineering and Informational Sciences 273

Generally speaking, we are interested in the statements of the form

lim
n→∞
P

[
G̃dn ∈ A (dn)

]
= 1, (6)

where A (dn) is the set of all graphs that obey the degree sequence dn and additionally satisfy some
desired property. If this limit holds for a given property A, then we say that the random graph has this
property w.h.p or asymptotically almost surely (a. almost surely). The goal of the remainder of this
section is to show that if Eq. (6) holds, then

lim
n→∞
P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 1.

First, we show that the probability that the configuration model generates a simple graph is bounded
away from zero.

Proposition 3.7. Chen and Olvera-Cravioto [9, Thm. 4.3] Let (dn)n∈N be a feasible degree pro-
gression. The probability that the configuration model generates a simple graph is asymptotically

e−
`11
`

−
(
`20−`

) (
`02−`

)
` > 0.

Proof. The proof follows from the proof of [9, Thm. 4.3]. It suffices to replace Condition 4.1 and
Lemma 5.2 from Ref. [9] with the requirement of a feasible degree progression. �

Lemma 3.8. Let (dn)n∈N be a feasible degree progression, and let A (dn) be a set of multigraphs all
satisfying dn. Let G̃dn be a random multigraph generated by the configuration model.

(1) If lim
n→∞
P

[
G̃dn ∈ A (dn)

]
= 0, then lim

n→∞
P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 0.

(2) If lim
n→∞
P

[
G̃dn ∈ A (dn)

]
= 1, then lim

n→∞
P

[
G̃dn ∈ A (dn)

�� G̃dn is simple
]
= 1.

3.3. Giant strongly connected component in a directed graph

A natural definition of a path in a directed graph requires that a path respects edge directions:

Definition 3.9. Let G = (V , E) be a digraph. A pair of vertices v1, vk ∈ V is connected by a directed
path if there are distinct vertices v2, v3, . . . , vk−1 ∈ V such that for all i ∈ {2, 3, . . . , k}, (vi−1, vi) ∈ E.
We refer to such a sequence as a directed v1 − vk path.

This definition of connectivity can be extended to define connected components:

Definition 3.10. SCC of a directed graph G = (V , E) is a maximal subset of C ⊂ V such that for any
u, v ∈ C, there are directed paths u − v and v − u.

Let C (Gn) be the largest SCC. The notion of a giant component is introduced as a limiting property of
the sequence of C (Gn). Let x∗, y∗ be the smallest positive solutions of, respectively, x∗ = U− (x∗) and
y∗ = U+(y∗), where

U+(y) := `−1 m

mx
U (x, y) |x=1,

U− (x) := `−1 m

my
U (x, y) |y=1,
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and U (x, y) :=
∑∞

j,k=0 pj,kxjyk is the generating function of pj,k . Let further,

Z := 1 − U (x∗, 1) − U (1, y∗) + U (x∗, y∗).

Theorem 3.11. (Existence of GSCC [7, Theorem 1.2]). Consider a feasible degree progression
(dn)n∈N and a uniformly random sequence of simple graphs (Gdn)n∈N. Then,

(1) If `11/` < 1, the size of any SCC is O (1) with high probability.
(2) If `11/` > 1, then with high probability, the largest SCC has vertex set of size |C (Gn) | ∼ Zn.

3.4. Concentration inequality

We introduce a concentration inequality based on McDiarmid’s method of bounded differences, stated
below. The inequality is used later in the proof of Theorem 2.2.

Theorem 3.12. [21, Theorem 7.4] Let (V , d) be a finite metric space. Suppose there exists a sequence
P0,P1, . . . ,Ps of increasingly refined partitions, with P0 being the trivial partition consisting of V
and Ps consisting of singletons. Take a sequence of positive integers c1, . . . , cs such that for all k ∈
{1, 2, . . . , s}, whenever A, B ∈ Pk and A, B ⊆ C ∈ Pk−1 for some C, there exists a bijection q : A → B
with d (x, q(x)) ≤ ck for all x ∈ A. Let the function f : V → R satisfy |f (x) − f (y) | ≤ d(x, y) for all
x, y, ∈ V. Then, for X uniformly distributed over V and any t> 0,

P [|f (X) − E [f (X)] | > t] ≤ 2 exp

(
− 2t2∑s

k=1 c2
k

)
.

Theorem 3.13. Consider two finite sets A0 and A1 with |A0 | = a0 and |A1 | = a1.
Let S := ∪i∈{0,1}{(x, i) | x ∈ Ai}. A subset of S containing b0 elements with i= 0 and b1 elements

with i= 1 is called a (b0, b1)-subset of S. Let V be the space of all (b0, b1)-subsets of S. Let f : V → R
be a function such that for any B, B′ ∈ V, it holds | f (B) − f (B′) | ≤ |B4B′ |. Here, B4B′ denotes the
symmetric difference, that is, B4B′ = (B ∪ B′) \ (B ∩ B′). Then, for X distributed uniformly over V and
any t> 0,

P [|f (X) − E [f (X)] | > t] ≤ 2 exp
(
− t2

8(b0 + b1)

)
. (7)

Proof. Consider a (b0, b1)-subset of S. Assign each element a unique number from the index set
{1, 2, . . . , b0+b1} such that for all elements with i= 0, this number is at most b0. We call a (b0, b1)-subset
of S with such a numbering a (b0, b1)-ordering of S. Define W to be the set of all (b0, b1)-orderings
of S. The function f : V → R naturally gives rise to a function f : W → R by regarding each (b0, b1)-
ordering as (b0, b1)-subset. Note that |f (x) − f (y) | ≤ x4y, that is, it holds for x, y ∈ W as well. This is
true since for any two orderings x, y, their symmetric difference as (b0, b1)-orderings is bounded from
below by their symmetric difference as (b0, b1)-subsets. The next step in proving Eq. (7) is applying
Theorem 3.12 to the metric space (W ,4).

We will now define a sequence of refined partitions on W using the notion of an i-prefix. An i-prefix
determines the first i elements of an ordering. This allows for all k ∈ {0, 1, . . . , b0 + b1} to construct the
partition Pk by defining its elements to be the sets of orderings with the same k-prefix. The partition P0
is the trivial partition consisting of W. The partition Pb0+b1 will be the partition where each element is
a single ordering. Next, the values ck need to be determined for k ∈ {1, 2, . . . , b0 + b1}. Take B, D ∈ Pk
with C satisfying B, D ⊂ C ∈ Pk−1. This implies that any ordering in B has the same k − 1-prefix as an
ordering in D. Furthermore, these orderings must differ at the kth element. The remaining b0 + b1 − k
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elements can be any element that is not present in the k-prefix that leads to a valid ordering. Denote the
kth element of any ordering in B by aB,k . Similarly, let aD,k denote the kth element of any ordering in
D. Define the bijection q : B → D by taking x ∈ B and mapping its kth element to aD,k . If x contains
aD,k at some position l > k, map the lth element of x to aB,k . All the other elements are unchanged by
the bijection. By definition, this is an element of D.

According to the definition of q, for any x ∈ B, we have |x4q(x) | ≤ 4. Thus, we may take ck = 4
for all k ∈ {1, 2, . . . , b0 + b1}. Applying Theorem 3.12, we find that Eq. (7) holds for any t > 0 and X
distributed uniformly over W. Remark that each element in V gives rise to b0! + b1! different orderings.
All these orderings have the same value under f. Thus, the probability that f (X) = c does not change
when we take X to be a uniformly random element of V instead of W. Together with Eq. (7) being valid
for a X uniformly random element of W, this proves the claim. �

4. Proofs of Theorems 2.2 and 2.3

Theorems 2.2 and 2.3 are proven separately for bond and site percolation using similar techniques as
in the proof of [16, Theorem 1.1], which determines the percolation threshold in undirected graphs.
Although these theorems are formulated for simple digraphs, we instead prove the statements on random
directed multigraphs introduced in Section 3.2. The results on the multigraphs are then transferred to
simple digraphs using Lemma 3.8. After percolation with probability c, dn becomes a random variable
Dn

c , which will be considered separately for bond and site percolation.

4.1. Bond percolation

Bond percolation removes edges in a graph, thus in the configuration, it removes in-stubs together with
their matched out-stubs. Let W−,c and W+,c denote the in-stubs and out-stubs surviving percolation.
Given that the degree sequence after percolation is fixed, Dn

c = dn
c , there is a bijection between the

configurations on the surviving stubs (W−,c , W+,c) and the configurations on the stubs of dn
c , which

we denote
(
W−

dn
c
, W+

dn
c

)
. Let us fix such a bijection. Now, to show that the perfect matching on the

remaining stubs (conditional on the degree sequence after percolation) is uniformly distributed on the set
of perfect matchings on the stubs that survive percolation, it is sufficient to show that perfect matchings
on

(
W−

dn
c
, W+

dn
c

)
appear equally likely. LetDn be the probability space containing all degree sequences dn

c

that can be obtained by applying percolation to a random configuration on (W− , W+). The probability
assigned to each dn

c is the probability that it is induced by (W−,c , W+,c). The probability space for the
degree progression

(
dn
c

)
n∈N is the product space D =

∏∞
n=1 Dn with the product measure a.

The remainder of this section is as follows: in Section 4.1.1, we show that conditional on the degree
sequence after percolation, each configuration on W−

dn
c

and W+
dn
c

is equally likely. In Section 4.1.2, we
determine the limit of the expected number of vertices with degree ( j, k) after percolation and show
the concentration. Combining these results in Section 4.1.3, the proofs of Theorems 2.2 and 2.3 are
completed by showing that an element of D is a- almost surely feasible, which authorizes applying
Theorem 3.11.

4.1.1. A percolated configuration is a uniformly random configuration

In this section, we show that conditional on the degree sequence after percolation, the configuration on
(W−,c , W+,c) is also a uniformly random one. The proof is split into two lemmas.

Lemma 4.1. Apply bond percolation to a uniformly random configuration M on (W− , W+).
Conditional on the elements of (W−,c , W+,c), each configuration on these elements is equally likely.

Proof. Choosing the elements of (W−,c , W+,c) implies that the configuration M is the union of a
configuration on (W− \ W−,c , W+ \ W+,c) with one on (W−,c , W+,c). As M is a uniformly random
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configuration obeying this split and the elements of (W−,c , W+,c) are fixed, the configuration on
(W−,c , W+,c) will be a uniformly random one. �

Lemma 4.2. Conditional on having degree sequence dn
c after bond percolation, that is, Dn

c = dn
c , all

configurations of W−
dn
c

with W+
dn
c

are equally likely.

Proof. Define l = |W−,c | and let S(dn
c) contain all sets of surviving stubs (W−,c , W+,c) that induce

the degrees sequence dn
c . Fix a matching Mc of

(
W−

dn
c
, W+

dn
c

)
. Then, using the bijection between

(W−,c , W+,c) and
(
W−

dn
c
, W+

dn
c

)
,

P
[
Mc |Dn

c = dn
c

]
=

∑
(A,B) ∈S (dn

c )
P

[
Mc |Dn

c = dn
c ,

(
W−,c , W+,c ) = (A, B)

]
×

P
[ (

W−,c , W+,c ) = (A, B) |Dn
c = dn

c

]
.

Remark that P
[
Mc |Dn

c = dn
c , (W−,c , W+,c) = (A, B)

]
= P [Mc | (W−,c , W+,c) = (A, B)] by defini-

tion of S(dn
c). Using Lemma 4.1, we find

P
[
Mc |

(
W−,c , W+,c ) = (A, B)

]
=

1
l!
.

Furthermore, combining these observations with∑
(A,B) ∈S (dn

c )
P

[ (
W−,c , W+,c ) = (A, B) |Dn

c = dn
c

]
= 1

following from the definition of S(dn
c), we obtain

P
[
Mc |Dn

c = dn
c

]
=

1
l!

∑
(A,B) ∈S (dn

c )
P

[ (
W−,c , W+,c ) = (A, B) |Dn

c = dn
c

]
=

1
l!

,

completing the proof. �

4.1.2. The expected number of vertices with degree (j, k) after bond percolation

In this section, we derive an expression for the degree distribution after bond percolation. This uses the
following auxiliary lemma.

Lemma 4.3. Let l out of m edges survive bond percolation applied to a uniformly random configuration
M on (W− , W+). Then the surviving stubs W−,c⊂W− and W+,c ⊂ W+ are uniformly distributed among
all pairs of subsets of W− and W+ of size l.

Proof. The graph contains m matches of which l = |W−,c | = |W+,c | survive percolation. Thus, the
probability that l matches remain is 1(m

l
) . It is left to investigate the probability that all stubs in W−,c have

their match in W+,c , that is, that M can be decomposed into a perfect bipartite matching of W−,c with
W+,c and a perfect bipartite matching of W− \ W−,c with W+ \ W+,c . Between two sets of size l, there
are l! perfect bipartite matchings; hence, the probability that M decomposes as desired is l!(m− l)!/m!.
Thus, the probability that (W−,c , W+,c) are the stubs surviving percolation is l! (m−l)!

m!
1(m
l
) = 1(m

l
)2 . This

is the probability that W−,c ⊂ W− and W+,c ⊂ W+ are uniformly random subsets both of size l. �
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Lemma 4.4. Let N c
j,k (n) be the number of vertices in the bond-percolated graph (or configuration) with

in-degree j and out-degree k. The following limit exists

pbond
j,k := lim

n→∞

E
[
N c

j,k (n)
]

n
for j, k ∈ N0 (8)

and

pbond
j,k =

∞∑
d−=j

∞∑
d+=k

pd− ,d+

(
d−

j

) (
d+

k

)
cj+k (1 − c)d−−j+d+−k . (9)

Proof. When j, k > dmax, pbond
j,k = N c

j,k (n) = Nj,k (n) = 0. Let j, k ≤ dmax and remark that

E
[
N c

j,k (n)
]
=

m∑
l=0
E

[
N c

j,k (n) | |W
−,c | = l

]
P [|W−,c | = l] , (10)

which, when conditioned on |W−,c | = l, can be rewritten as

E
[
N c

j,k (n) | |W
−,c | = l

]
=

dmax∑
d−=j

dmax∑
d+=k

Nd− ,d+ (n) P
[
(d− , d+) → (j, k) | |W−,c | = l

]
,

where event (d− , d+) → (j, k) is a shorthand for a vertex of degree (d− , d+) has degree (j, k) after per-
colation. Since Lemma 4.3 implies that the surviving stubs are chosen uniformly at random, conditional
on |W−,c |, we have

P
[
(d− , d+) → (j, k) | |W−,c | = l

]
=

(
d−

j

) (m−d−

l−j
)(m

l
) (

d+

k

) (m−d+

l−k
)(m

l
) .

The edges are removed independently of each other; hence, |W−,c | is the sum of m independent
Bernoulli variables, each having expectation c. Let

In :=
[
mc − ln n

√
n, mc + ln n

√
n
]

, (11)

applying Hoefdding’s inequality shows that |W−,c | concentrates

P [|W−,c | ∉ In] ≤ exp
[
−Ω(ln2 n)

]
. (12)

Note that as an immediate consequence of this inequality, we have P [l ∉ In] = o (nU) for any U < 0.
Therefore, we have

P
[
(d− , d+) → (j, k) | |W−,c | = l

]
=

(
d−

j

) (
d+

k

)
cj+k (1 − c)d−+d+−j−k

(
1 +O

(
ln n
n7/18

))
,

uniformly for all d− , d+ ≤ dmax ≤ n
1
9 and l ∈ In. In combination with Eq. (10) and the bound N c

j,k (n) ≤
n, we find

E
[
N c

j,k (n)
]
=

(
1 +O

(
ln n
n7/18

)) dmax∑
d−=j

dmax∑
d+=k

Nd− ,d+ (n)
(
d−

j

) (
d+

k

)
cj+k (1 − c)d−+d+−j−k + o

(
1
n3

)
, (13)
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where we set U = 5 in the estimate for P [l ∉ In] when calculating the error term. We will now show that
for all n > 0, there exist ^ (n) and N (n) such that for all n > N ,

1
n

(dmax,dmax )∑
(d− ,d+ )=(j,k)

d−≥^+1 or d+≥^+1

Nd− ,d+ (n)
(
d−

j

) (
d+

k

)
cj+k (1 − c)d−+d+−j−k ≤ 1

n

(dmax,dmax )∑
(d− , d+ )=(j,k)

d−≥^+1 or d+≥^+1

Nd− , d+ (n) < n.

(14)

The left inequality follows from the binomial theorem, and the right – since lim
n→∞

Nj,k (n)
n = pj,k for j, k ≥ 0

and (pj,k) is a probability distribution, which follows from the degree progression being proper. When
combined together, Eqs. (13) and (14) prove the claim. �

Elementary calculations show that pbond
j,k is a probability distribution and has the following moments:

`c,bond :=
∞∑
j=0

∞∑
k=0

jpbond
j,k =

∞∑
j=0

∞∑
k=0

kpbond
j,k = c`,

`
c,bond
11 :=

∞∑
j,k=0

jkpbond
j,k = c2

∞∑
d−=0

∞∑
d+=0

d−d+pd− ,d+ = c2`11.

(15)

The generating function Ubond
c of pbond

j,k and auxiliary functions U+
c , U−

c analogous to those used in
Section 3.3 are given by

Ubond
c (x, y) := U (1 − c + cx, 1 − c + cy),

U+
c (x) := U+(1 − c + cx),

U−
c (y) := U− (1 − c + cy).

(16)

The moments (15) and generating functions (16) provide sufficient information for applying
Theorem 3.11 to pbond

j,k and hence formally defining the percolation threshold as such a value of c = ĉbond

that `c,bond = `
c,bond
11 , that is

ĉbond =
`

`11
.

In the following section, we will show that this quantity is indeed the desired threshold for bond perco-
lation, cbond

c = ĉbond. To this end, we show that pbond
j,k is indeed a-a.s the limit of the degree distribution

of the percolated graph, which itself is a configuration model with the percolated degree sequence.

4.1.3. Determining cbond
c and cbond

We make use of Lemma 4.2, stating that instead of actually removing edges, one may view the per-
colated multigraph G̃c

dn as a uniformly random configuration obeying the percolated degree sequence
dn
c . We show that

(
dn
c

)
n∈N is indeed a- almost surely feasible (Lemma 4.5) and hence, Theorem 3.11 is

applicable to
(
G̃c

dn

)
n∈N

. This means that Theorem 3.11 may be applied to almost all degree progressions(
dn
c

)
n∈N to determine cbond

c and cbond for random multigraphs. Conditioning on the graph before perco-
lation being simple will ensure that the percolated graph is simple as well. Finally, we apply a variant of
Lemma 3.8 and show that similar assertions hold for a graph progression

(
Gc

n
)
n∈N for percolated simple
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graphs obeying (dn)n∈N, hence proving Theorem 2.3 for the case of bond percolation. In the remainder
of this section, we make the above-stated argument formal.

Lemma 4.5. The degree progression after bond percolation is feasible a- almost surely

Proof. By definition, sequence
(
dn
c

)
n∈N is graphical. We need to show that it also satisfies the other

requirements of Definition 3.2 a- almost surely. To demonstrate that

lim
n→∞

N c
j,k (n)
n

= pbond
j,k , a−a.s. for j, k ∈ N0, (17)

it suffices to show (see, e.g., [25, Lemma 6.8]) that for all n > 0,

∞∑
n=1
P

[����1nN c
j,k (n) − pbond

j,k

���� > n

]
< ∞. (18)

By definition of pbond
j,k , for any fixed n > 0, there is K such that for all n>K����1nE [

N c
j,k (n)

]
− pbond

j,k

���� ≤ n

2
.

This implies that

P

[����1nN c
j,k (n) − pbond

j,k

���� > n

]
≤ P

[
1
n

���N c
j,k (n) − E

[
N c

j,k (n)
] ��� > n

2

]
.

Lemma 4.3 states that conditional on |W−,c | = l, the stubs surviving percolation (W−,c , W+,c) are
uniformly distributed among all pairs of subsets of (W− , W+) of size l. N c

j,k (n) is a function of W−,c ∪
W+,c . Furthermore, for two sets W−,c ∪ W+,c and W ′−,c ∪ W ′+,c , their values of N c

j,k (n) differ by
at most the number of elements in their symmetric difference. This implies that the requirements of
Theorem 3.13 are fulfilled by setting A0 = W− , A1 = W+, b0 = b1 = l, and N c

j,k (n) as function f.
Applying this theorem gives

P
[���N c

j,k (n) − E
[
N c

j,k (n)
] ��� > nn

2
| |W−,c | = l

]
≤ 2 exp

(
− n2n2

64l2

)
.

For l ∈ In, defined in Eq. (11), this probability is o
(

1
n3

)
. By Eq. (12), the probability that l ∉ In is o

(
1
n3

)
.

Combining these observations, we find that for all n > 0, the terms in Eq. (18) are vanishing:

P
[���N c

j,k (n) − E
[
N c

j,k (n)
] ��� > nn

]
= o

(
1
n3

)
, (19)

which in turn proves that the limit in Eq. (17) holds a- almost surely
It remains to show that the first, first mixed and second moments of

N c
j,k (n)
n converge a- almost

surely to those of pbond
j,k . In Section 4.1.2, we showed that

∑∞
j,k=0 jpbond

j,k =
∑∞

j,k=0 kpbond
j,k , and due to

the graph context of the problem,
∑∞

j,k=0 jN c
j,k (n) =

∑∞
j,k=0 kN c

j,k (n). Therefore, it is sufficient to show
that only one of the first moments converges. Define Q′

n := 1
n
∑∞

j,k=0 jN c
j,k (n), we will then show that

Q := limn→∞ Q′
n = c`, a-a.s. Let X^ ,n := 1

n
∑^

j=0
∑^

k=0 jN c
j,k (n) and remark that X^ ,n ≤ Q′

n. Since
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(dn)n∈N is a proper degree progression, for all n > 0, there exists ˜̂(n) , m̃ (n) such that for all ^ > ˜̂and
n > m̃

1
n

(dmax,dmax )∑
(j,k)=(0,0) ,
j>^ or k>^

jNj,k (n) < n. (20)

Thus, for ^ > ˜̂, we have X^ ,n ≤ Q′
n ≤ X^ ,n + n . This implies that if

X̃^ := lim
n→∞

X^ ,n =
∑̂
j=0

∑̂
k=0

jpbond
j,k , a − a.s., (21)

then lim
n→∞

Q′
n = Q holds a- almost surely as well [16, (3.5)]. Thus, the goal is to prove Eq. (21). Applying

[25, Lemma 6.8], we can show that this limit holds a- almost surely, if for any n > 0,

∞∑
n=1
P

[��X^ ,n − X̃^

�� > n
]
< ∞. (22)

We show this analogously to the proof of Eq. (18). By the definition of X^ ,n, X̃^ , and pbond
j,k , for all n > 0,

there exists Ñ such that for all n > Ñ ,
��E [

X^ ,n
]
− X̃^

�� < n
2 . Combining this with the reverse triangle

inequality, we find for any n > 0,

P
[��X^ ,n − X̃^

�� > n
]
≤ P

[��X^ ,n − E
[
X^ ,n

] �� > n

2

]
.

Remark that
��X^ ,n − E

[
X^ ,n

] �� = 1
n
∑^

j=0
∑^

k=0 j
(
N c

j,k (n) − E
[
N c

j,k (n)
] )

. This implies that for n ′ =
n

2
∑

j≤^ j ,

P
[��X^ ,n − E

[
X^ ,n

] �� > n

2

]
≤

∑
j≤^ ,k≤^

P

[
1
n
|N c

j,k (n) − E
[
N c

j,k (n)
]
| > n ′

]
.

Using Eq. (19), we find P
[��X^ ,n − E

[
X^ ,n

] �� > n
2
]
≤ ∑

j≤^ ,k≤^ o
(

1
n3

)
≤ o

(
1

n
25
9

)
. Here we used the fact

that dmax = O
(
n1/9) and that N c

j,k (n) = E
[
N c

j,k (n)
]
= 0 when j > dmax or k > dmax or both. This proves

Eq. (22) and hence proves that Q′
n converges a- almost surely to Q. Similar derivations hold for the first

mixed moment and the second moments. That is, all the moments of interest and the distribution itself
converge simultaneously a- almost surely for an element of D. Thus, we have shown that

(
dn
c

)
n∈N is a-

almost surely feasible. �

Let E ⊂ D be the event over which the degree progression is feasible. Since any element of D is
a- almost surely feasible, we have a (E) = 1. For any

(
dn
c

)
n∈N ∈ E, we may apply Theorem 3.11 to a

sequence of random multigraphs
(
G̃c

dn

)
n∈N

arising from uniformly random configurations. Lemma 4.2
states that if we condition Dn

c = dn
c , Theorem 3.11 is applicable for all n. We will now fix

(
dn
c

)
n∈N ∈ E

and apply Theorem 3.11 to
(
G̃c

dn

)
n∈N

, distinguishing two cases for c: c < ĉbond and c > ĉbond, with
ĉbond =

`

`11
.

https://doi.org/10.1017/S0269964823000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000128


Probability in the Engineering and Informational Sciences 281

Let c < ĉbond and pick n ∈ (0, 1). Define An

(
dn
c

)
to be the set of all multigraphs obeying dn

c for
which the largest SCC contains no more than nn vertices. As `c

11
`c = c

`11
`

< 1, Theorem 3.11 states that
for all n :

lim
n→∞
P

[
G̃c

dn ∈ An

(
dn
c

)
| Dn

c = dn
c

]
= 1. (23)

Next consider c > ĉbond. Define B\

(
dn
c

)
to be the set of all graphs whose largest SCC has size in

((\ − Y)n, (\ + Y)n), with \ ∈ (0, 1) and any vanishing Y. Since `c
11

`c = c
`11
`

> 1, Theorem 3.11 states
that there exists a unique \ = cbond such that

lim
n→∞
P

[
G̃c

dn ∈ B\

(
dn
c

)
| Dn

c = dn
c

]
= 1. (24)

Moreover, the theorem determines that cbond := 1 − Ubond
c (x∗, 1) − Ubond

c (1, y∗) + Ubond
c (x∗, y∗), where

x∗, y∗ are the smallest positive solutions of

x∗ = U−
c (x∗),

y∗ = U+
c (y∗),

(25)

and functions U+
c , U−

c , and Ubond
c are as defined in Eq. (16).

To finalize the proof for Theorems 2.2 and 2.3, we need to supplement Eqs. (23) and (24) with
two minor observations. First, the theorem is stated for a percolated multigraph progression

(
G̃c

dn

)
n∈N

without conditioning on the degree progression of the percolated graphs. As a (E) = 1, an analogous
argument to that of Fountoulakis [16, p. 348] is applied to show that

• If c < ĉbond, lim
n→∞
P

[
G̃c

dn ∈ An

(
dn
c

) ]
= 1 for all n ∈ (0, 1).

• If c > ĉbond, lim
n→∞
P

[
G̃c

dn ∈ Bcbond
(
dn
c

) ]
= 1

and lim
n→∞
P

[
G̃c

dn ∈ Bn

(
dn
c

) ]
= 0 for all n ∈ (0, 1), n ≠ cbond .

Second, Theorems 2.2 and 2.3 make assertions about uniformly random simple graphs instead of
random multigraphs. Lemma 3.8 can also be stated for the graph G̃c

dn conditioning on Gdn (the graph to
which percolation is applied) being simple. Applying this variant of Lemma 3.8 to the above limits, we
deduce an equivalent statement as above for Gc

n :

• If c < ĉbond, lim
n→∞
P

[
Gc

n ∈ An

(
dn
c

) ]
= 1 for all n ∈ (0, 1).

• If c > ĉbond, lim
n→∞
P

[
Gc

n ∈ Bcbond
(
dn
c

) ]
= 1

and lim
n→∞
P

[
Gc

n ∈ Bn

(
dn
c

) ]
= 0 for all n ∈ (0, 1), n ≠ cbond.

This completes the proofs of Theorems 2.2 and 2.3 for the case of bond percolation.

4.2. Site percolation

The proof of Theorems 2.2 and 2.3 for site percolation has a similar structure as for bond percola-
tion, and we will refer to Section 4.1 where applicable. The proof again is split into three steps. First,
in Section 4.2.1, we show that applying site percolation to a uniformly random configuration results
in another uniformly random configuration if we condition on the degree sequence after percolation.
Second, we determine the limit of the expected number of vertices with degree (j, k) after site percola-
tion, see Section 4.2.2. The proof is completed in Section 4.2.3 by combining the first two steps with
the results of Section 4.1.
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As mentioned in Section 2, deleting a vertex means that we remove all edges adjacent to this vertex.
In the setting of the configuration model, this translates into removing all stubs attached to a deleted
vertex. Let us call these stubs (W−,r , W+,r). Additionally, the matches of (W−,r , W+,r) are also removed.
The situation is further complicated by the fact that a match of a removed stub itself may or may not be
attached to a deleted vertex. That is to say, for a deleted edge, both endpoints may be deleted or only
one of them. To avoid double counting, we introduce (W−,m, W+,m) containing all the genuine matches
of stubs in (W−,r , W+,r) that are not connected to a deleted vertex. Thus, W−,r ∪ W−,m (respectively,
W+,r ∪W+,m) are all in-stubs (out-stubs) removed by site percolation. The stubs that survive percolation
are denoted by (W−,c , W+,c) as before, allowing us to write the full partition of stubs as

W− = W−,c ∪ W−,r ∪ W−,m and W+ = W+,c ∪ W+,r ∪ W+,m. (26)

Hence, the abbreviation is as follows: c – surviving stubs, r – stubs on removed vertices, and m – matches
of stubs on removed vertices. These abbreviations will be used throughout the rest of the section.

4.2.1. A site-percolated configuration is a uniformly random configuration

We show in Lemma 4.6 that conditional on the stubs that are removed by the site percolation, the match-
ing on the surviving stubs is uniformly random. This lemma, in turn, allows us to formulate Lemma 4.7
stating that the configuration after percolation is a uniformly random configuration conditional on its
degree sequence.

Lemma 4.6. Apply site percolation to a uniformly random configurationM on (W− , W+). Conditional
on the elements of (W−,r , W+,r) and (W−,m, W+,m), each configuration on (W−,c , W+,c) is equally likely.

Proof. According to Eq. (26), fixing the elements of (W−,r , W+,r) and (W−,m, W+,m) uniquely deter-
mines the elements of (W−,c , W+,c). Choosing the elements of (W−,r , W+,r) and (W−,m, W+,m) further-
more implies that the configuration M is the union of a configuration on (W−,r ∪ W−,m, W+,r ∪ W−,m)
with the one on (W−,c , W+,c). As M is a uniformly random configuration obeying this split and the
elements of (W−,c , W+,c) are fixed, the configuration on (W−,c , W+,c) will be a uniformly random
one. �

Lemma 4.7. Apply site percolation to a uniformly random configuration on (W− , W+). Conditional on
Dn

c = dn
c , any configuration on

(
W−

dn
c
, W+

dn
c

)
is equally likely.

Proof. The proof of this lemma is identical to the proof of Lemma 4.2, replacing Lemma 4.1 with
Lemma 4.6. �

4.2.2. The expected number of vertices with degree (j, k) after site percolation

The next step in the proof of Theorem 2.2 for the case of site percolation is proving the existence of the
limit for

N c
j,k (n)
n , the fraction of vertices in the site-percolated graph with in-degree j and out-degree k. We

then show that the value of this limit, distribution psite
j,k , is closely related to the corresponding quantity

for bond percolation. After this, we determine ĉsite and show in Section 4.2.3 that this is indeed the
threshold for site percolation.

We introduce the following notation for the sizes of the subsets

s− :=|W−,c ∪ W−,m |,
s+ :=|W+,c ∪ W+,m |,
r− :=|W−,m |,
r+ :=|W+,m |.
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Note that |W−,c | = s− − r− = s+ − r+ = |W+,c | and the remaining configuration on (W−,c , W+,c)
forms a directed multigraph. As before, Nd− ,d+ (n) is the number of vertices with degree (d− , d+) before
percolation. Let N c,r

d− ,d+ (n) be the number of vertices of original degree (d− , d+) that survive site per-
colation. Then, Nd− ,d+ (n) − N c,r

d− ,d+ (n) is the number of removed vertices of original degree (d− , d+).
Since each vertex is independently removed with probability 1 − c,

E
[
N c,r

d− ,d+ (n)
]
= cNd− ,d+ (n) , (27)

E
[
Nd− ,d+ (n) − N c,r

d− ,d+ (n)
]
= (1 − c) Nd− ,d+ (n) . (28)

We proceed by formulating two lemmas showing that, with high probability, s− , s+ remain in some
bounded shrinking interval I′n and r− , r+ in In.

Lemma 4.8. Let I′n :=
[
mc − n2/3 ln n, mc + n2/3 ln n

]
, then

P
[
s− , s+ ∈ I′n

]
= 1 − e−Ω

(
ln2 n

)
holds separately for, respectively, s− and s+.

Proof. By using Eq. (27), we obtain

E [s−] =
dmax∑
d−=0

dmax∑
d+=0

cd−Nd− ,d+ (n) = mc

and

E
[
s+

]
=

dmax∑
d−=0

dmax∑
d+=0

cd+Nd− ,d+ (n) = mc.

Using Hoeffding’s inequality and the bound on the maximum degree, dmax ≤ n1/9 and, we obtain

P
[
|s− − E [s−] | > n2/3 ln n

]
≤ e−Ω

(
ln2 n

)
and P

[��s+ − E [
s+

] �� > n2/3 ln n
]
≤ e−Ω

(
ln2 n

)
, (29)

which proves the claim. �

Lemma 4.9. Let In :=
[
mc(1 − c) − n2/3 ln2 n, mc(1 − c) + n2/3 ln2 n

]
, then

P
[
r+, r− ∈ In | s− , s+ ∈ I′n

]
= 1 − e−Ω

(
ln2 n

)
holds separately for, respectively, r− and r+.

Proof. We present the proof for r− . The proof for r+ is then identical up to switching the roles of in-stubs
and out-stubs. Since we consider a uniformly random configuration on (W− , W+), the probability that
a given in-stub is matched to an out-stub in W+,r is m−s+

m = (1 − c)
(
1 +O

(
n−1/3 ln n

) )
as s− , s+ ∈ I′n.

Since r− equals the number of in-stubs in W− \ W−,r with a match in W+,r , this implies that

E [r−] = s−
m − s+

m
= mc (1 − c)

(
1 +O

(
n2/3 ln n

))
.
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To complete the proof, we will now show that

P
[
|r− − E [r−] | > n2/3 ln2 n

]
≤ e−Ω

(
ln2 n

)
.

This is realized by applying Theorem 3.12 to the space of configurations on (W− , W+) with the sym-
metric difference as the metric. The value of r− plays the role of the function f. To partition this space,
we order the in-stubs of W− . Define an i-prefix to be the first i in-stubs together with their match. An
element of the partition Pk consists of all configurations with the same k-prefix for all k ∈ {0, 1, . . . , m}.
For any A, B ∈ Pk such that A, B ⊂ C ∈ Pk−1, a bijection q : A → B can be defined. Denote the kth
pair of a configuration in A by (x, yA) and the kth pair of a configuration in B by (x, yB). Then q maps
M ∈ A to the configuration in B with (x, yA) replaced by (x, yB) and with yA the match of the in-stub in
M matched to yB. By definition of q, it follows that ck := |M − q(M) | = 4 for all k ∈ {1, 2, . . . , m}.
As the value of r− changes by at most the symmetric difference of the two matchings, Theorem 3.12
states that

P
[
|r− − E [r−] | > n2/3 ln2 n

]
≤ 2 exp

(
n4/3 ln2 n

2m

)
= e−Ω

(
ln2 n

)
,

as m ≤ ndmax ≤ n10/9. �

Lemma 4.10. Let N c
j,k (n) be the number of vertices in the site-percolated graph (or configuration) with

in-degree j and out-degree k. The following limit exists

psite
j,k := lim

n→∞

E
[
N c

j,k (n)
]

n
, for j, k ∈ N0 (30)

and

psite
j,k =


cpbond

j,k , (j, k) ≠ (0, 0),
cpbond

0,0 + 1 − c, (j, k) = (0, 0),
(31)

where pbond
j,k is defined in Lemma 4.4.

Proof. If j, k > dmax, then psite
j,k = N c

j,k (n) = Nj,k (n) = 0.
Consider 0 ≤ j, k ≤ dmax. A removed vertex will have degree (0, 0) after percolation with probability

1. Let Pj,k (d− , d+) be the probability that a non-removed vertex of degree (d− , d+) has degree (j, k) after
percolation. For (j, k) = (0, 0), we have

E
[
N c

0,0 (n)
]
=

dmax∑
d−=0

dmax∑
d+=0

(
(1 − c) Nd− ,d+ (n) + cP0,0

(
d− , d+) Nd− ,d+ (n)

)
, (32)

and otherwise,

E
[
N c

j,k (n)
]
=

dmax∑
d−=j

dmax∑
d+=k

cPj,k
(
d− , d+) Nd− ,d+ (n) . (33)

Hence, we need to derive the expression for Pj,k (d− , d+). Let us determine Pj,k (d− , d+, s− , s+, r− , r+),
the probability Pj,k (d− , d+) conditional on the values s− , s+, r− , r+. Site percolation combines the inde-
pendent random processes of removing vertices and creating a uniformly random configuration on
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(W− , W+). As these processes are independent, we may first determine the elements of (W−,r , W+,r)
and then randomly create a configuration on (W− , W+). Thus, conditional on the value of r− (respec-
tively, r+), each subset of W− \ W−,r (respectively, W+ \ W+,r) of this size is equally likely to be W−,m

(respectively, W+,m). Hence,

Pj,k
(
d− , d+, r− , r+, s− , s+

)
=

(
d−

d− − j

) (
d+

d+ − k

) ( s−−d−

r−−d−+j
)(s−

r−
) ( s+−d+

r+−d++k
)(s+

r+
) . (34)

Let intervals In, I′n are as defined in Lemmas 4.8 and 4.9. We have that, uniformly in r− , r+ ∈ In and
s− , s+ ∈ I′n, (

d
d − i

) ( s−d
r−d+i

)(s
r
) =

(
d

d − i

)
(1 − c)d−i ci

(
1 +O

(
ln2 n
n1/3

))
.

Plugging this equation into Eq. (34) gives

Pj,k
(
d− , d+, r− , r+, s− , s+

)
=

(
d−

d− − j

) (
d+

d+ − k

)
cj+k (1 − c)d−+d+−j−k

(
1 +O

(
ln2 n
n1/3

))
,

uniformly for all s− , s+ ∈ I′n and r− , r+ ∈ In. It turns out that a violation of the latter condition is
unlikely, as P

[
s− ∉ I′n ∨ s+ ∉ I′n ∨ r− ∉ In ∨ r+ ∉ In

]
is small, which in turn helps to bound the value of

E
[
N c

j,k (n)
]
. By applying Hoeffding’s inequality, we have

P
[
|N c,r

d− ,d+ (n) − E
[
N c,r

d+,d− (n)
]
| >

√
n ln n

]
< e−Ω

(
ln2 n

)
, (35)

and in combination with Eq. (27), this gives

N c,r
d− ,d+ (n) ∈ I′′n (d− , d+) :=

[
cNd− ,d+ (n) −

√
n ln n, cNd− ,d+ (n) +

√
n ln n

]
,

with probability 1 − e−Ω
(
ln2 n

)
. Combining this with Lemmas 4.8 and 4.9 gives

P
[
s− ∉ I′n ∨ s+ ∉ I′n ∨ r− ∉ In ∨ r+ ∉ In ∨ N c,r

d− ,d+ (n) ∉ I′′n
(
d− , d+) ]

≤P
[
s− ∉ I′n

]
+ P

[
s+ ∉ I′n

]
+ P [r− ∉ In] + P

[
r+ ∉ In

]
+ P

[
N c,r

d− ,d+ (n) ∉ I′′n
(
d− , d+) ]

=o
(

1
n3

)
+ P [r− ∉ In] + P

[
r+ ∉ In

]
,

where P [r− ∉ In] = o
(
n−3) and P [r+ ∉ In] = o

(
n−3) . Therefore,

P
[
s− ∉ I′n ∨ s+ ∉ I′n ∨ r− ∉ In ∨ r+ ∉ In ∨ N c,r

d− ,d+ (n) ∉ I′′n
(
d− , d+) ] = o

(
n−3

)
. (36)

This allows us to determine a lower and upper bound for the value E
[
N c

j,k (n)
]
. Since N c,r

d− ,d+ (n) ≤
Nd− ,d+ (n) and (dn)n∈N is proper, for all n > 0, there exist ^ (n) and N (n) such that for all n>N

(dmax,dmax )∑
(d− ,d+ )=(0,0)

d−≥^+1 or d+≥^+1

Pj,k
(
d− , d+) N c,r

d− ,d+ (n) ≤
(dmax,dmax )∑

(d− ,d+ )=(0,0)
d−≥^+1 or d+≥^+1

Nd− ,d+ (n) ≤ nn. (37)
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In combination with Eq. (33), this implies for (j, k) ≠ (0, 0)

∑̂
d−=j,
d+=k

Pj,k
(
d− , d+) N c,r

d− ,d+ (n) ≤ E
[
N c

j,k (n)
]
≤

∑̂
d−=j,
d+=k

Pj,k
(
d− , d+) N c,r

d− ,d+ (n) + nn. (38)

Using Eq. (36) on the LHS of the above equation, we find

E
[
N c

j,k (n)
]
≥

∑̂
d−=j,
d+=k

∑
r̃−∈I′n,
r̃+∈I′n

∑
s̃−∈In,
s̃+∈In

∑
d̃d− ,d+ ∈I′′n (d− ,d+ )

d̃d− ,d+Pj,k
(
d− , d+, r̃− , r̃+, s̃− , s̃+

)
× P

[
r− = r̃− , r+ = r̃+, s− = s̃− , s+ = s̃+, N c,r

d− ,d+ (n) = d̃d− ,d+

]
+ o

(
1
n2

)
=

∑̂
d−=j,
d+=k

∑
d̃d− ,d+ ∈I′′n (d− ,d+ )

d̃d− ,d+

(
d−

d− − j

) (
d+

d+ − k

)
cj+k (1 − c)d−+d+−j−k

× P
[
N c,r

d− ,d+ (n) = d̃d− ,d+

] (
1 +O

(
ln2 n
n1/3

))
+ o

(
1
n2

)
Since Eq. (35) and N c,r

d− ,d+ (n) ≤ n gives

∑
d̃d− ,d+ ∈I′′n (d− ,d+ )

d̃d− ,d+P
[
N c,r

d− ,d+ (n) = d̃d− ,d+

]
= E

[
N c,r

d− ,d+ (n)
]
+ o

(
1
n2

)
,

we obtain the lower bound

E
[
N c

j,k (n)
]
≥ o

(
1
n2

)
+ c

∑̂
d−=j

∑̂
d+=k

Nd− ,d+ (n)
(

d−

d− − j

) (
d+

d+ − k

)
×

cj+k (1 − c)d−+d+−j−k
(
1 +O

(
ln2 n
n1/3

))
.

In a similar fashion, using the RHS of Eq. (38) gives the upper bound

E
[
N c

j,k (n)
]
≤ nn + o

(
1
n2

)
+ c

∑̂
d−=j

∑̂
d+=k

Nd− ,d+ (n)
(

d−

d− − j

) (
d+

d+ − k

)
×

cj+k (1 − c)d−+d+−j−k
(
1 +O

(
ln2 n
n1/3

))
.

Combining the upper and lower bounds together proves convergence of the limit for j, k > 0:

psite
j,k := lim

n→∞

E
[
N c

j,k (n)
]

n
= c

∞∑
d−=j

∞∑
d+=k

pd− ,d+

(
d−

j

) (
d+

k

)
cj+k (1 − c)d−−j+d+−k . (39)
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For (j, k) = (0, 0), we need to use Eq. (32) instead of Eq. (33). Since N c,r
d− ,d+ (n) ≤ Nd− ,d+ (n) and

(dn)n∈N is proper, for all n > 0, there exist ^ (n) and N (n) such that for all n>N:

(dmax,dmax )∑
(d− ,d+ )=(0,0)

d−≥^+1 or d+≥^+1

(
Nd− ,d+ (n) − N c,r

d− ,d+ (n)
)
≤

(dmax,dmax )∑
(d− ,d+ )=(0,0)

d−≥^+1 or d+≥^+1

Nd− ,d+ (n) ≤ nn.

Thus, the equivalent of Eq. (38) for (j, k) = (0, 0) becomes∑̂
d−=0

∑̂
d+=0

[(
Nd− ,d+ (n) − N c,r

d− ,d+ (n)
)
+ P0,0

(
d− , d+) N c,r

d− ,d+ (n)
]
≤ E

[
N c

0,0 (n)
]
≤

∑̂
d−=0

∑̂
d+=0

[(
Nd− ,d+ (n) − N c,r

d− ,d+ (n)
)
+ P0,0

(
d− , d+) N c,r

d− ,d+ (n)
]
+ 2nn,

and the analogous argument as for (j, k) ≠ (0, 0) is applied to obtain

lim
n→∞

E
[
N c

0,0 (n)
]

n
= (1 − c) + c

∞∑
d−=j,
d+=k

pd− ,d+

(
d−

j

) (
d+

k

)
cj+k (1 − c)d−−j+d+−k = psite

0,0 . (40)

Comparing Eqs. (39) and (40) with Eq. (9), we obtain Eq. (31). �

From Eq. (31), we can see that psite
j,k is a probability distribution and has moments

`c,site := `
c,site
10 = `

c,site
01 = c`c,bond = c2` and `

c,site
11 = c`

c,bond
11 = c3`11. (41)

Additionally, the generating function Usite
c (x, y) for psite

j,k is given by

Usite
c (x, y) := 1 − c + cU (1 − c + cx, 1 − c + cy), (42)

and auxiliary functions U+
c , U−

c are the same as in Eq. (16). It is left to determine ĉsite. Theorem 3.11
states that the percolation threshold is c = ĉsite such that

∑∞
j,k=0 jkpsite

j,k =
∑∞

j,k=0 jpsite
j,k . Combining this

with Eq. (41), we find that the percolation thresholds for site and bond percolation are equal:

ĉsite =
`

`11
= ĉbond.

This can be explained by noting that the expected degree distribution after site percolation is a rescaled
version of the degree distribution after bond percolation, exept for (0, 0). Hence, one expects the GSCC
to appear under the same conditions. However, the GSCC after site percolation is expected to contain
fewer vertices because the probability to find an isolated vertex is larger.

4.2.3. Determining csite
c and csite

To finalize the proof of Theorems 2.2 and 2.3 for the case of site percolation, it remains to show that
csite

c = ĉsite as well as to determine csite, the fraction of vertices in GSCC. This is done by following a
similar exposition as in Section 4.1.3, which covers bond percolation. We therefore focus on explaining
the necessary adjustments to be made to apply the derivations in Section 4.1.3 to site percolation.

First, we need to replace the distribution pbond
j,k with psite

j,k . Lemma 4.7 proves the equivalent statement
for site percolation to that of Lemma 4.2 for bond percolation. However, the counterpart of Eq. (22)
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requires a different proof. Conditional on a certain realization of (W−,r , W+,r) and the values s− , s+ ∈ I′n,
r− , r+ ∈ In, the value of N c

j,k (n) is determined by the random choice of (W−,m, W+,m). By changing one
element of (W−,m, W+,m), the value of N c

j,k (n) changes by at most 2. Thus, Theorem 3.13 can be applied
to obtain

P
[���N c

j,k (n) − E
[
N c

j,k (n)
] ��� > √

n ln2 n | s− , s+, r− , r+,
(
W−,r , W+,r ) ]

≤ 2 exp
©«

n ln2 n(
m(1 − c)c + n2/3 ln2 n

) ª®®¬ = e−Ω
(
ln2 n

)
.

Using Lemmas 4.8 and 4.9, it follows that

P
[���N c

j,k (n) − E
[
N c

j,k (n)
] ��� > √

n ln2 n
]
= o

(
1
n3

)
,

and, since ^ is bounded, this completes the proof of the counterpart of Eq. (22).
The last change is related to the fact that Theorem 3.11 is now applied to a feasible degree progression

with psite
j,k as degree distribution instead of pbond

j,k . In Section 4.2.2, we found that ĉsite =
`

`11
. Furthermore,

in analogy to calculations in Section 4.1.3, we choose x∗, y∗ to be the solution of Eq. (25) to find that

csite := 1 − Usite
c (x∗, 1) − Usite

c (1, y∗) + Usite
c (x∗, y∗) = ccbond.

which completes the proof of Theorems 2.2 and 2.3 for site percolation.
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