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Nonexistence of Idempotent Means on Free
Binary Systems

Justin Tatch Moore

Abstract. Free binary systems are shown not to admit idempotent means. _is refutes a conjecture
of the author. It is also shown that the extension of Hindman’s theorem to nonassociative binary
systems formulated and conjectured by the author is false.

1 Introduction

Recall that a binary system, or magma, is a nonempty set equipped with a binary op-
eration. If (S , ∗) is a binary system, then ∗ can be extended to the set M(S) ofmeans
on S by:

µ ∗ ν( f ) = ∫ ( ∫ f (s ∗ t) dν(t))dµ(s).

Here, a mean on a set S is an element of ℓ∞(S)∗ such that µ(χS) = 1 and µ( f ) ≥ 0
if f ≥ 0; i.e., µ is a ûnitely additive probability measure on S. If a mean µ takes only
values in {0, 1}, then we say that µ is an ultraûlter.
Answering a question of Galvin, Glazer noted that if ∗ is an associative operation

on S, then Ellis’s Lemma [1] implies that there is an idempotent ultraûlter µ on S.
Galvin had already noted that the existence of idempotent ultraûlters on (N,+) could
beused to give a shortproof ofHindman’s_eorem [3]. In fact, idempotent ultraûlters
on semigroups have found extensive applications inRamsey theory; see [4] for amore
detailed account of both the history and the applications.

Possible extensions of this theory to nonassociative binary systems were consid-
ered by the author in [5]. It was noted there that idempotent ultraûlters do not exist
on free binary systems. On the other hand, it was shown that the existence of an
idempotent mean on any free binary system implies Richard _omspon’s group F is
amenable. In fact it was demonstrated there that the existence of such idempotent
means implies a version ofHindman’s theorem for the free binary systemon one gen-
erator which in turn implies that F is amenable.

_e amenability problem for F is a long standing problem in group theory ûrst
considered by Richard_ompson [7] but rediscovered and ûrst popularized by Ross
Geoghegan; the problem ûrst appeared in the literature in [2, p. 549]. It is arguably the
most notorious problem concerning the amenability of a speciûc group. _e author
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previously (and incorrectly) claimed to have proved the existence of an idempotent
mean on the free binary system [6].

In this note Iwill prove that free binary systems do not support idempotentmeans,
refuting [5, Conjecture 1.4]. I will also refute [5, Conjecture 1.3], which was an ex-
tension of Hindman’s theorem to nonassociative binary systems. _e question of F’s
amenability remains open. While the refutation of Conjecture 1.3 is a stronger result,
the proof of the nonexistence of idempotent means on free binary systems is more
straightforward and thus will be proved ûrst as a warm up.

While this article is self-contained, the readerwill ûndmoremotivation in [5] (and
for thatmatter in [6]). _roughout this paper, countingwill startwith 0. _e variables
i , j, k,m, n, p will always implicitly be taken to range over the nonnegative integers.
For instance, the n-tuple (a0 , . . . , an−1) will be denoted (ak ∣ k < n).

2 Free Binary Systems do not Support Idempotent Measures

Let (S , ∗) be a free binary system generated by I, ûxed for the remainder of the sec-
tion. Notice that the binary operation ∗ is in fact an injection from S × S → S ∖ I;
this is equivalent to the freeness of (S , ∗). Deûne # ∶ (S , ∗)→ (N,+) to be the homo-
morphism which maps every element of I to 1. _us, #(s) is the size of the (unique)
nonassociative product of generators used to produce s. In particular, if s = a ∗ b,
then #(a), #(b) < #(s) = #(a) + #(b). Set Sn ∶= {s ∈ S ∣ #(s) = n}.
Deûnemembership to sets Z ⊆ S and Tp ⊆ S recursively on #( ⋅ ) as follows:
● T0 = S and Tp+1 = (S ∖ Z) ∗ Tp ;
● s ∈ Z if and only if s = a ∗ b where b ∈ T#(a).

Observe that Z = ⋃p Sp ∗ Tp .
Recall that if µ and ν aremeans on S, then

µ ∗ ν( f ) = ∫ ( ∫ f (s ∗ t) dν(t))dµ(s)

deûnes amean on S. _e following two facts are immediate from this deûnition and
the fact that ∗ is injective.

Fact 1 If µ and ν aremeans on S and A, B ⊆ S, then µ ∗ ν(A ∗ B) = µ(A)ν(B).

Fact 2 If X ⊆ S and for some c and µ-a.e. s ∈ S, ν({t ∈ S ∣ s ∗ t ∈ X}) = c, then
µ ∗ ν(X) = c.

Suppose now for contradiction that µ is an idempotent mean on S and set r ∶=
µ(Z). Fact 1 inductively implies that µ(Tn) = (1 − r)n (if n = 0, then T0 = S and
µ(T0) = 1). On the other hand, Facts 1 and 2 inductively imply that

µ(Sn) = µ( ⋃
i+ j=n

S i ∗ S j) = ∑
i+ j=n

µ(S i)µ(S j) = 0

for all n. Moreover, by Fact 1, µ(Sn ∗ S) = 0.
If r > 0, then let n be suõciently large that (1 − r)n < r. Observe that

Z = ⋃
k<n

Sk ∗ Tk ∪
∞

⋃
k=n

Sk ∗ Tk ⊆ ⋃
k<n

Sk ∗ Tk ∪
∞

⋃
k=n

Sk ∗ Tn .
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Since µ(⋃k<n Sk ∗ Tk) = 0 and since µ(⋃∞k=n Sk ∗ Tn) = µ(Tn) = (1 − r)n , we have
r = µ(Z) ≤ (1 − r)n < r, contrary to our choice of n.

If r = 0, then for every s ∈ S,

µ({t ∈ S ∣ s ∗ t ∈ Z}) = µ(T#(s)) = (1 − 0)#(s)
= 1.

However by Fact 2, µ(Z) = µ ∗ µ(Z) = 1, which is also a contradiction.

3 The Nonassociative Analog of Hindman’s Theorem is False

In this section we will refute [5, Conjecture 1.2]. For the duration of the section, we
will let (S , ∗) denote the free binary system on one generator 1. _e sets Sn , Tn , and
Z are deûned as in the previous section. Note that in the present context, Sn is ûnite
for each n. If µ ∈ ⋃p M(Sp), we will write #(µ) to denote the unique p such that
µ ∈ M(Sp).
Conjecture 1.2 of [5] can now be stated as follows:
If c ∶ S → [0, 1] and є > 0, then there is an r ∈ [0, 1] and an increasing se-
quence (µ i ∣ i < ∞) of elements of ⋃p M(Sp) such that whenever s is in Sn
and (ik ∣ k < n − 1) is admissible for s:

∣ c( s(µ ik ∣ k < n)) − r∣ < є

Here, s(µ ik ∣ k < n) is the result of taking the unique term used to generate s from
1 and ∗ and replacing the kth occurrence of 1 with µ ik and evaluating the resulting
expression in M(S). If #(µ ik) = pk , then #(s(µ ik ∣ k < n)) = ∑k<n pk .

We will work the following equivalent recursive deûnition of admissible:
● 1 is admissible for any sequence of positive integers of length 1;
● if s ∈ Sm and t ∈ Sn , then (ik ∣ k < m + n) is admissible for s ∗ t if and only if
(ik ∣ k < m) is admissible for s and (ik −m ∣ m ≤ k < n) is admissible for t.

In particular, a strictly increasing sequence (ik ∣ k < m) is admissible for any element
of Sm provided that m ≤ i0.

Returning to [5, Conjecture 1.2],wewill show that the conclusion of the conjecture
fails when c is the characteristic function of Z deûned in the previous section with
є any positive number less than 1/2; note that c(µ) = µ(Z). Toward this end, let
(µ i ∣ i <∞) be given and let r be any accumulation point of the set {µ i(Z) ∣ i <∞}.
We will be ûnished once we prove the following three claims.

Claim 1 For every m and є > 0, there is an s ∈ S and (ik ∣ k < n) such that
(i) (ik −m ∣ k < n) is admissible for s;
(ii) s(µ ik ∣ l < n)(Z) < є.

Proof Let m and є > 0 be given. If r = 0, then we can take s = 1 and choose i0 > m
so that µ i0(Z) < є. _erefore, suppose that r > 0 and let l be suõciently large that
(1 − r)l < є. If k < l , deûne ik = m + k + 1 and let u ∶= 1 ∗ (⋅ ⋅ ⋅ 1 ∗ (1 ∗ 1)) be the right
associated product of l many 1’s. We have that (ik −m ∣ k < l) is admissible for u. Set
p ∶= #(u(µ ik ∣ k < l)), n ∶= l + p + 1, and let v be the right associated product of p + 1
many 1’s. Since p ≥ l , it is possible to pick an increasing sequence (ik ∣ l ≤ k < n) of
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indices such that i l > m + l and

l+p+1
∏
k=l

µ ik(S ∖ Z) < є.

_is implies, in particular, that v(µ ik ∣ l ≤ k < n)(Tp) < є. Set s ∶= u ∗ v and observe
that (ik −m − l ∣ l ≤ k < n) is admissible for v and thus (ik −m ∣ i < n) is admissible
for s. Since u(µ ik ∣ k < l)(Sp) = 1 and since Z ∩ (Sp ∗ S) = Sp ∗ Tp , we have that
s(µ ik ∣ k < n)(Z) < є, as desired.

Claim 2 For every m and p and every є > 0, there is an s ∈ S and a (ik ∣ k < n) such
that:

(i) (ik −m ∣ k < n) is admissible for s;
(ii) s(µ ik ∣ k < n)(Tp) > 1 − є.

Proof _e proof is by induction on p. _e base case is trivial, since T0 = S. Suppose
the claim holds for a given p and let m and є > 0 be given. Fix a δ > 0 such that
(1 − δ)2 > 1 − є. By Claim 1, there are u ∈ S and (ik ∣ k < l) such that:

● u(µ ik ∣ k < l)(Z) < δ;
● (ik −m ∣ k < l) is admissible for u.

Set p ∶= #(u(µ ik ∣ k < l)). By our inductive hypothesis, there exist v and
(ik ∣ l ≤ k < n) such that:

● v(µ ik ∣ l ≤ k < n)(Tp) > 1 − δ;
● (ik −m − l ∣ l ≤ k < n) is admissible for v.

It follows that s ∶= u ∗ v and (ik ∣ k < n) now satisfy the conclusion of the claim.

Claim 3 For every є > 0, there is an s ∈ S and a (ik ∣ k < n) that is admissible for s,
such that s(µ ik ∣ k < n)(Z) > 1 − є.

Proof Setting p ∶= #(µ0), by Claim 2 there is a sequence (ik ∣ 0 < k < n) and a t ∈ S
such that:

● (ik − 1 ∣ 0 < k < n) is admissible for t;
● t(µ ik ∣ 1 ≤ k < n)(Tp) > 1 − є.

Now s ∶= 1 ∗ t and (ik ∣ k < n) satisûes the conclusion of the claim.

_e desired contradiction to [5, Conjecture 1.2] now follows from Claims 1 and 3
with m = 0 by noting that for any 0 ≤ r ≤ 1 and 0 < є < 1/2, either 0 or 1 is not in the
interval [r − є, r + є].

Added in proof _e author conjectures that for every nonnegative r < 1 there is a
µ ∈ M(S) such that µ = rµ ∗ µ+ (1− r)1 (here 1 is identiûed with the point mass at 1).
_is would be suõcient to prove that _ompson’s group is amenable.
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