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Abstract

Let R be an artinian ring. A family, Jt, of isomorphism types of /{-modules of finite length
is said to be canonical if every /{-module of finite length is a direct sum of modules whose
isomorphism types are in Jf . In this paper we show that Jt is canonical if the following
conditions are simultaneously satisfied: (a) Jt contains the isomorphism type of every simple
/{-module; (b) JK has a preorder with the property that every nonempty subfamily of J! with
a common bound on the lengths of its members has a smallest type; (c) if M is a nonsplit
extension of a module of isomorphism type II, by a module of isomorphism type II2 , with
I I , , II2 in Jf, then M contains a submodule whose type II3 is in Jt and II, does not
precede II3 . We use this result to give another proof of Kronecker's theorem on canonical pairs
of matrices under equivalence. If R is a tame hereditary finite-dimensional algebra we show
that there is a preorder on the family of isomorphism types of indecomposable /{-modules of
finite length that satisfies Conditions (b) and (c).

1991 Mathematics subject classification {Amer. Math. Soc): 16 D 70, 15 A 21.

1. Precedence relations

With a few exceptions, all modules in this paper are unital right modules
of finite length over an artinian ring R. Modules will often be used inter-
changeably with their (isomorphism) types, for example, the length of a type
II is the length of a module whose type is II. A family, S, of types is said
to be bounded (by m) if there is a positive integer m. such that the length of
every type in 5 is less than m. Proposition 1.1 generalizes [7, Proposition
4.7]. The proofs of both propositions are essentially the same.
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[2] Canonical families of modules 65

PROPOSITION 1.1. Suppose < is a preorder {a reflexive and transitive re-
lation) on a family, J£, of isomorphism types of R-modules of finite length,
with the following properties:

(a) JP contains the isomorphism type of every simple R-module,
(b) every bounded subfamily of J[ has a smallest type,
(c) / / M is a nonsplit extension of a module of type II , by a module of

type II2, with I I , , II2 in Jf, then M contains a submodule whose type II3

is in J? and II, does not precede II3.
Then every R-module, V, of finite length is a direct sum of submodules

whose isomorphism types are in Jt.

PROOF. Let l(V) denote the length of V. We shall prove, by induction
on /(F), that V satisfies the conclusion of the proposition. We may assume
that V ^ 0. So it has a nonzero simple submodule. Hence by (a) the
family S = {type(JF): W c V} V\J? is not empty. Since S is bounded
by 1{V), there exists II, e S such that II, < II for every II e S. Let
X be a submodule of V of type I I , . If X = V, we would be done. So
we may assume that X is a nonzero proper submodule of V. Therefore,
1{V/X) <l(V). By the induction hypothesis,

(1) V/X = Y,-j*JUj/x

with type(Uj/X) e J[. Suppose X is not a direct summand of [/.. Then
Uj is a nonsplit extension of X by UJX. So by (c), C/. contains a sub-
module Y (say) of type II3 e J[ and II, does not precede II3 . Since Y is
a submodule of V, II3 e S. This contradicts the choice of I I , . Therefore,
X is a direct summand of C/. for each j e J. This implies, from (1), that
X is a direct summand of V. Applying the induction hypothesis to a di-
rect complement of X in V gives us that V is a direct sum of submodules
whose types are in J[.

A preorder which satisfies Conditions (a), (b), and (c) of Proposition 1.1
will be called a precedence relation. We use Proposition 1.1 to give a new
exposition of Kronecker's theorem.

Let A = (Al,A2, ... ,An) and B = ( 5 , , B2, ... , Bn) be two M-tuples
of r x s matrices. The «-tuple A is equivalent to B if there are invertible
matrices P and Q such that

(2) PAiQ = Bi, i = l , . . . . n .

We are interested in the case n = 2. (For n > 3 , see [8], and for n = 1,
see [13].) We assume that the matrices have entries in an algebraically closed
field, K. Following [3], we replace the pairs of matrices by pairs of linear
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transformations from an ^-dimensional vector space V to an r-dimensional
vector space W. By taking linear combinations, we get from each such
pair of linear transformations a A"-bilinear map, o, from K2 x V to W.
By linearity, it is enough to specify the map on a basis (a, b) of K2 and
on a basis of V. The pair ( F , W) together with the bilinear map is a
Kronecker module. The space W is called the range or target space, while
V is the domain space of ( F , W) of ( F , W). Kronecker modules can be
considered as modules over a finite-dimensional AT-algebra, see, for example,
[7, Proposition 0.1]. (This algebra is called a Kronecker algebra.)

Let V — (V, W) be a Kronecker module. Each e € K2 gives rise to a
linear map

(3) Te: V -> W, Te(v) = eov for all v in V.

A module (X, Y) is a submodule of ( F , W) precisely when X is a sub-
space of F , Y is a subspace of W and Te{X) c Y for all e in K2. A
homomorphism from a module ( t / , Z) to ( F , W) is a pair of linear maps
(<p, y/) with p a linear map from U to V and ^ a linear map from Z to
fF such that for each e € K2, u e U, we have

(4) eo(p{u) = y/(eou).

In (4), o on the left hand side is in {V, W) while o on the right is in
(U,Z).

To say that (U, Z) is isomorphic to {V, W) means that there is a homo-
morphism (tp, y/) from (U, Z) to (V, W) with tp and iy isomorphisms.
This brings us back to (2), with n = 2, when cp and y/ are interpreted as
matrices.

If {X, Y) is a submodule of (V, W), then (F, W)/(X, Y) = (V/X,
WIY) is a module via

(5) eo(v + X) = e°v + Y

for all t; e V, all e € K2 , where eoy is from the bilinear map in ( F , W).
Let {V, W) be a module in which, for some c in K2 , the linear map Tc

(see (3)) is an isomorphism of V onto W. The map from K2 x V to V
that takes (e,v) to ^" ' (eow) is bilinear and so makes {V, V) a module.
Let id be the identity map on V. Then (id, T~l) is an isomorphism from
(V, W) to {V, V). Moreover, V is a A^[C]-module, C an indeterminate
over K; see, for example, [13]. Conversely, let V be a ^T[C]-module. We
make (V, V) a Kronecker module as follows. Let (a, b) be a fixed basis of
K2 . Given e = aa + 0b e K2, we F , set eo« = (a + flQv . We summarize
this discussion in Proposition 1.2.
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PROPOSITION 1.2. A Kronecker module ( F , W) is isomorphic to a module
that comes from a K[£\-module if and only if for some e in K2, Te is an
isomorphism of V onto W.

If (( / , Z) is an extension of (X, Y) by ( F , W) and Te is an isomor-
phism of X onto Y and V onto W then it is also an isomorphism of U
onto Z .

The modules in Proposition 1.2 are said to be nonsingular or regular. We
can call on the results in [9] when dealing with them.

Let 0 be an element of K. A nonsingular module ( F , V) is said to be a
0-module if for every v in V there exists a positive integer n—depending
on v—such that (£ - 0)"i> = 0. An extension of a 0-module by a 0-module
is again a 0-module.

Let F* be the vector space of linear functionals on a vector space, V.
Let (F , W) be a Kronecker module. Then the dual module of ( F , W) —
(W*, V*) is a Kronecker module with the bilinear map given by

(6) (e o w*)(v) = w*(e o v) for e e K2, w* e W*, and v e F.

If both F and IF are finite-dimensional, then the double dual of ( F , W)
is naturally isomorphic to ( F , W).

If 5 is a subset of a vector space V, then [S] will denote the subspace
of V spanned by S. The dimension of a vector space F will be denoted
by dim F . Let (P, P) denote the Kronecker module (K[£], K[£]) that
comes from the A^[C]-module, K[£]. For n — 1, 2,... , let Pn denote the
subspace of K[Q spanned by polynomials of degree strictly less than n ; Po

denotes the zero space. We have that (/*„_,, Pn) is a submodule of (P, P).
DEFINITIONS 1.3. (a) A module isomorphic to (Pn_l, Pn) is said to be of

type III" . Its dual is said to be of type I" .
(b) A module is said to be of type II" if it is isomorphic to (Pn , Pn+l)/

A module is said to be of type Ilg if it is isomorphic to (Pn, Pn+l)/
(0, [C - 0)"]) • Modules of type U"e, d e K U {oo} , are self-dual. If a

2nonzero element e e K2 is not a multiple of b - da then the map Te in (3)
is an isomorphism between the domain and target spaces of 11̂  . A change
of basis of K2 transforms H^ to Il£ , 0 ^ oo.

REMARK 1.4. From the definitions of the types, we get the following.
(a) If n > m, there are monomorphisms from IIIm to III" with II^~m

and IIg~m as respective quotients. (The monomorphisms are respectively,
the canonical injection and the pair of multiplications by C"~m.)
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(b) There is an epimorphism {<p, v):\ln
0 -» /" with q> monic and kery

one-dimensional.
(c) If n > m, there is an isomorphism from /" to Im .
(d) If n > m, then II™ is a submodule of Il"e .
EXAMPLE 1.5. We now define the following preorder on Jt — I u II u III,

where

1 = {Im:m= 1 , 2 , . . . } ,

m = 1 , 2 , . . . } .
(a) Every type in I precedes every type in II u III, while Im < I" if and

only if m < n.
(b) Every type in II precedes every type in III. For a fixed n, every type

in {Ilg:6 eKu {oo}} precedes every type in {II™: 0 e KU {oo}, m < n) .
(c) III" < IIIm if and only if n > m .
Types III1 and I1 are the only isomorphism types of simple Kronecker

modules. It is easy to verify that the above preorder on Jf satisfies Condition
(b) of Proposition 1.1. In order to show that it is a precedence relation, we
need only check Condition (c) of Proposition 1.1. We need to know for
which types I I , , II2 in J[ is Ext(II2, II,) ^ 0. The next proposition is a
special case of a formula in [16] whose easy proof belies its importance; see
"Note added in proof" of [16]. One can also prove the formula for Kronecker
modules using the fact that the indecomposable projective types are III1 and
III2.

PROPOSITION 1.6. Let (V, W) and (X, Y) be finite-dimensional Kro-
necker modules. Then

(7) dimExt((F, W), (X, Y)) = dimHom((K, W), (X, Y))

- dim Fd imX - dim Wdim Y + 2dim Fdim Y.

From Proposition 1.2 and [9, Section 52D], we get that dimExt((H™, IlJJ)
is the minimum of m and n, if n = 6; otherwise it is 0. By Proposition
1.6, we know dimExt((F, W), (X, Y)) once we know dimHom((F, W),
(X, Y)). In computing the latter for J[ we use, without further comment,
previously verified values of the former. The next lemma is easily deduced
from the definitions of the types in 1.3.

LEMMA 1.7. Hom(II2,II,) is 0 in the following cases:
(a) I I 2 e 7 while II, € IIU III;
(b) II2 G II while II, e l l l ;
(c) II2 and II , are respectively of types II™ and II" , n ^ 6 .
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By duality, dimHom(l", Im) and dimHom(IIo, I™) are respectively
equal to dimHom(IH™ , III") and dimHom(IIIm, Un

e).

PROPOSITION 1.8. (a) dimHom(IH" , IIIm) = max(0, m-n+l).
(b) d imHom(I l f , II™) = m.
(c) dimExt(Il" , I™) = 0 for every n e K U {oo} and every positive integer

n.
(d) dimHom(IIl" ,lm) = n + m-2.

PROOF. We shall use the modules described in 1.3.
(a) It follows from (4) that a homomorphism (<p, y/) from III" to III™ is

given by multiplications by the polynomial / = w(l) • Therefore, the degree
of / must be less than m-n + l. So, / = 0 , i f A n - « + l < 0 . Conversely,
the pair of multiplications given by such an / form a homomorphism from
III" to III™.

(b) We do an induction on n . If n = 1, (b) holds because the dimension
is that of the target space of II™ . For n > 1, we have, by 1.4(a), a short
exact sequence

(8) 0 -> III""1 -+ III" -> IlJ -* 0.

This leads to the exact sequence

Hom(Il' II™) -» Hom(IIl", II™) -» Hom(IIl""1, II™) - Ext(Ili, II™).

If n ^ 0, the first and last terms are zero. So the two middle terms have the
same dimension. If n — 0, we replace (8) by a similar short exact sequence
involving 11^ instead of 11^.

(c) By duality and (b), dimHom(II^ , I™) = n . So, (c) follows from the
formula in Proposition 1.6.

(d) From (8) we get the exact sequence

0 -» Hom(IlJ, I™) - Hom(IIl" , T ) -> Hom^Il""1,1™) -• Ext(IlJ, I™).

By (c) the last term is 0; while duality and (b) give us that dim Hom(IlQ, I™) =
1. It follows that for n > 1, dimHom(Iir , I™) = HomCIIl""1,1™) + 1.
Since dimHom(III , I™) = the dimension of the target space of I™ = m— 1,
the formula follows by induction on n .

Using 1.7, 1.8, the intervening remarks, and 1.6, we obtain the following
proposition. {X, Y) has the horizontal types.
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PROPOSITION 1.9.
dim(Ext((K, W0,(*

(V, W),{*

r
IT"

III"

.Y)

max(O,

Im

m — n —

0

0

1)
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K
m

nm{n,m)Se

0

nr
m + n

n

max(O, n — m —1)

2. Canonical families have precedence relations

The first task in this section is the completion of the verification that the
preorder defined on J[ in Section 1.5 is a precedence relation. We shall need
a polynomial-free description of the types. Let (a, b) be a basis of K2. An
element 0 6 K is said to be an eigenvalue of a Kronecker module (V, W)
if (b — da) o v = 0 for some nonzero vector ^ 6 F . I f a o u = 0 for some
nonzero vector v e V ,-we say oo is an eigenvalue of (V, W). A change of
basis of K2 results in a Mobius transform of the eigenvalues of a module.

PROPOSITION 2.1. Let {V,W) be a finite-dimensional Kronecker module.
Suppose V and W have the same dimension. Then (V, W) has an eigen-
value.

PROOF. Let (a, b) be any basis of K . If a o v = 0 for some nonzero
vector v in V, then oo is an eigenvalue of (V, W). So we may assume
that the linear map

(9) Ta:V->W, Ta(v) = aov,

is an isomorphism of V onto W. By Proposition 1.2, (V, W) isisomorphic
to (V, V). Let the bilinear map in (V, V) be denoted by °l. It is given
by

(10) eoxv = T^x{eov) foreeK2,veV.

Let Tb: V -* V be the linear map given by (3) with e - b, that is, Tb(v) =
bov. Since K is algebraically closed, the endomorphism T~lTb of V has
an eigenvector v belonging to an eigenvalue 6 e K. From (10) we get that
(b - da) o, v = 0 . So 0 is an eigenvalue of (V, V). So (V, W) has an
eigenvalue.
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We note, from the definitions in 1.3, that modules of respective types 11̂  ,
In have eigenvalues. Conversely, if a Kronecker module has an eigenvalue,
then it has a submodule of type 11̂  or I 1 . Modules of type III"1 have no
eigenvalues.

Let (<p, y/):{Pn_x, Pn) -»(V, W) be a homomorphism. Let (p{C) = vi+l,

i = 0 , ... , n - 2; y/(C) — wi+l, / = 0 , . . . , « - 1. Then, by the definition
of a homomorphism

(11)
aovl = w{; bovt = wi+i = aovi+l, i=l, ... , n-2; bovn_x = wn.

DEFINITION 2.2. A pair of sequences ((«,•)"!"/ , (*°,-)"=i) t n a t satisfies (11)
is said to be a chain of type III" with respect to the basis (a, b). The module
(F, , Wx) = (<p, y/)Pn_x is said to be spanned by the chain. It is, therefore,
of type III" as defined in 1.3 if, in addition, dim Vl = n - 1 = dim W{ - 1.

Chains of types IlJJ and I" are defined in a similar manner; we use the
quotient modules in 1.3. More precisely, a pair of sequences ((v,)"=1, (w(.)"=1)
is said to be a chain of type Il£ if

(12) V u i = ° ; beovM=aoVi = wt, i=\,...,n-\,
aovn = wn; be-b-8a.

The submodule, (F,, W{), of (V, W) spanned by the chain (12) is of type

Ilg if dim Vl = dim Wx — n . In that case, the homomorphism {q>, y/): (Pn ,

0, . . . , « - l , v(C-<9)n = 0, induces an isomorphism from PJ(0, [(C-d)"])
onto (F,, Wx).

If u;n in (12) is replaced by 0, the resulting chain is of type I" . If (V, W)
is of type I" then dim V = n = dim W + 1. A change of basis of K2 takes
\\n

g to II" , where n is some Mobius transform of 6. On the other hand, we
show in Lemma 2.3 that if (V, W) is of type III"1 with respect to a basis
(a, b) it remains of that type with respect to any other basis of K2 . Since
lm is the dual of III"2, the same remark applies to it.

LEMMA 2.3 [3, Lemma 2.5]. Suppose that {V ,W) is a module of type III"
with respect to a basis (a, b). Then it is of type III" with respect to any other
basis (c,d) of K2.

PROOF. When n = 1, ( F , W) = (0, [to,]) and the basis of K2 plays no
role. Since ( F , W) is isomorphic to {Pn_x, Pn), it is enough to prove the
lemma for the latter. Recall that a and b act respectively as inclusion and
multiplication by £ from Pn_x to Pn . Let c — aa + fib, d = ya + db for
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some a,P,y,deK. Put w,-= (a + 0C)"~l'"1O' + <JC)'~\ / = 1, . . . , n - 1 ;
Wj = (a + PC)"~'(? + #Q'~l, / = 1 , . . . , « . The relations (11) are imme-
diately verified with (c, d) in place of {a, b). The sets {vx, ... , vn_{},
{w{, ... , wn} are linearly independent over K. For let

,-«\- = (7 + SQ"'1 £ a.(a

Since (c, d) is linearly independent, ad — fly ^ 0, and therefore the map
Ci-»(a + PO/(y + SQ is a field automorphism of K(Q . So if w = 0, the
scalars a,-, . . . , an are 0. Similarly, {v{, ... , vn_x) is linearly independent.

If a module is spanned by a chain of type T, the module need not be of
type T because the vectors defining the chain may not be linearly indepen-
dent. However when T is I" we have the following lemma.

LEMMA 2.4. Suppose a Kronecker module (U, Z) contains a nonzero sub-
module spanned by a chain of type I" . Then {U, Z) contains a submodule
of type \m for some positive integer m<n.

PROOF. Let m be the least positive integer such that (U, Z) contains a
nonzero submodule (U', Z1) spanned by a chain of type lm . So m < n.
Say U' = [M, , u2, ... , um], Z' = [z2,..., zm] and for some basis (c, d)

2of K2

(13)
coux=0

We claim

>

that

Co

the sets

= do - /+ i ' '

• ' " m i '

= 1 , . . .

>Zmm} are linearly inde-
pendent. Linear dependence of the former set implies, from (13), linear de-
pendence of the latter set. Suppose {z2,... , zm} is linearly dependent. Let
£ be some positive integer such that, for some scalars a2,..., at_x, zt =
Yjljl], ajzj • We now construct a chain of type I / - 1 . Since I - 1 < m, this
would contradict the minimality of m. Let u\ = ux. For i = 2, ...,£- I,
let

L e t z'2 = z 2 . F o r z = 3 , . . . , £ — 1 l e t

i-i

j=2
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From (13), we get that c ° u\ = 0, c o u[ = z\ and d o u\ = z'j
j+l,

i =
+

2,... , £ — 2, and d o u'(_i — zt — X),~2 ajzj = ^> ^ a t is> w e have a chain
of type I ~ . This chain spans a nonzero submodule. Indeed, if we had
u[ — M, — 0, then z2 — 0, and ((M,)£L2 > (zi)T=3^ would be a chain of type
\m~ spanning a nonzero submodule.

COROLLARY 2.5. Let (tp, y/) be a nonzero homomorphism to any module,
(V, W), from a Q-module (X, X). If y/ is not monic, but q> is monic,
then the image of {(p, y/) contains a submodule of type lm for some positive
integer m.

PROOF. By Lemma 2.4, it is enough to show that the image of {q>, if/) has
a submodule spanned by a chain of type I for some positive integer I.

For every x e X, there is a positive integer £ with (£-0)*x = 0 , because
{X, X) is a 0-module. With vx = (C - 8)e~lx, we get as in (12), a chain
of type Ilg . If x ̂  0 and y/(x) — 0, the image in (V, W) of such a chain
spans a nonzero submodule spanned by a chain of type i ' .

THEOREM 2.6. The preorder in Example 1.5 is a precedence relation.

PROOF. Condition (c) of Proposition 1.1 is all there is left to check, let

(14) 0-+(X,Y){^(U,Z){^ (V,W)^0

be a nonsplit extension with type (X, Y) — I I , , type(F, W) = II2 and
II , , II2 6 JIT.

Case (i), II, = I m . By Proposition 1.9, m > 3 and II2 = I", n <
m - 1. Let (F,, Wx) be a module of type I"1"1. By Remark 1.4(c), there is
a map {(p, y/) from (V{, W,) onto ( F , FT). Combining this map with the
sequence (14), we get from pullback the exact sequence

(15) 0 - (X, Y) ^ ([ / , , Z,) ^ (F,, Wx) -> 0

with a map (p , , ^ , ) : ( [ / , , Z,) —• ( [ / , Z) whose kernel is isomorphic to
ker(?>, v0- By Proposition 1.9, (£/,, Z,) is of type Im © I"1"1 . Now,
(<pl, y/l)l

m~l is a nonzero module spanned by a chain of type I"1"1. By
Lemma 2.4, (U, Z) has a submodule of type I1, £ < m - 1. From 1.5, we
see that Im does not precede I*.

Case (ii), II, = II^1. By Proposition 1.9, II2 is either I" or II^1. In the
latter case, ( f / ,Z ) must have a submodule of type IIg+ , by Proposition 1.2,
and Section 15 of [9]. From 1.5, we see that II^1 does not precede
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So let (V, W) in (14) be of type I" . Let (K,, Wx) be a module of type
Ilg. By 1.4(b), there is an epimorphism {f, y): (Vx, Wx)-+{V, W) with
q> monic and y/ has a one-dimensional kernel. Using this epimorphism, we
proceed as in Case (i) to obtain (15). This time, (Ul, Z,) is a 0-module. By
Corollary 2.5, (U, Z) hasasubmoduleoftype I1 for some positive integer^.

Case (iii), II, = III"1. If (U, Z) has an eigenvalue, then, as remarked
after 2.1, (U, Z) has a submodule of type 11̂  or I1 . Since these types are
not preceded by III"1 we may assume that (U, Z) has no eigenvalues. This
precludes the possibility that II2 = I" because in that case dim U - dimAr +
dim V — m- l + n = dimY + dimZ , which implies by Proposition 2.1 that
(U, Z) has an eigenvalue. If II2 = III" , then by Proposition 1.9, n > m +1.
By 1.4(a), ( F , W) has a submodule (t/, , Z,) / (X, Y) of type IHm + 1. By
Proposition 1.9, we have a decomposition (Ux, Z{) = (X, Y) e (U2, Z2)
with (U2, Z2) c (£/,, Z,) C ( [ / , Z) and type(C/2, Z2) = IIIm + 1. This is not
preceded by IIIm. There remains the case II2 = Il£ . By 1.4(d), (V, W)
contains a submodule (Ul, ZX)I(X, Y) of type 11̂  • The extension

(16) 0 -» (X, Y) - (£/,, Z,) - (£/,, Z,) /(X, 7) -> 0

does not split because otherwise (Ul, Z{) would contain a submodule of
type 11̂  . And so ([ / , , Z , ) , hence (( / , Z ) , would have an eigenvalue. By
Lemma 2.3, we can describe the modules of the III ' , £ an arbitrary positive
integer, using the basis (b-da, a) of K2 . (If 6 — <x> we replace (b-da, a)
by (a, b).) From this and 1.4(a), we get an extension

(17) 0 -f III"1 -»IIIm + 1 -»IlJ -» 0.

By Proposition 1.8(a), dimEndIIIm+1 = 1. So IIIm+1 is indecomposable.
Therefore, (17) does not split. By Proposition 1.9, dimExt(l4, III"1) = 1.
Hence the sequence (16) is a multiple of the sequence (17). Hence, the
submodule (C/,, Z,) of (U, Z) is of type IIIm + 1, which is not preceded by
III"1. This completes the proof of the theorem. So every finite-dimensional
Kronecker module is a direct sum of modules whose types are in J? —
IUIIU III.

Remark on Case (ii). When (X, Y) and {V, W) are of type II^1 and
Ilg we referred to section 15 of [9] thereby implicitly relying on the struc-
ture of finitely generated torsion .K[£]-modules. Since the latter is part of
Kronecker's theorem, it is interesting that the following argument avoids a
reference to [9].
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A nonsplit extension of II™ by 11̂  contains a submodule of type IIg+1 .
To prove this, we may by Proposition 1.2 assume that we have the following
nonsplit extension of #[£]-modules

(18) O^X ->U - F - 0

where X * #[£] / (£ - 6)m , V* K[Q/(C - 6)n with respective generators x
and v.

Let u + X = v. If (C — d)"u = 0 , then the map p(Qv *-» p{Qu is

well-defined and gives a splitting of (18). Since (18) does not split, we have

(C -d)Hu = am_fc(C - 0)m~kx + • • • + am_, (C - 0 ) m " 1 x , where m-k>0

and am_fc # 0 , k > 1. Therefore, (u) s #[£] / (£ - 0)n+h .

lfn + k>m+l, then we are done. Otherwise, the element u — u -
{am_k(C - 6)m-(n+k)x + ••• + a^iC - d)"-(n+l)x} gives <«') S F and the
map « H « ' gives a splitting of (18). Hence n + fc>m+l as required.

REMARK 2.7. There are many other proofs of Kronecker's theorem on
canonical pairs of matrices under equivalence, for example [3], [5], [6], [10],
[11], [14], [16], [17], and [18]. Some applications of the theorem can be
found in [1], [2], [10], and [12].

A Kronecker algebra is an example of a tame finite-dimensional hereditary
algebra as defined in [15]. For the rest of the paper, R is a tame finite-
dimensional hereditary algebra over an algebraically closed field K. In [15]
it is shown that there are precisely three families of finite-dimensional inde-
composable .R-modules: 3° = (/»„)~ {, (S£)~ , , for each 6 e K U {oo} , and
*f = (^n)^li • In [15, p. 350], it is shown that the indexing on £P can be
done to ensure that

(19) Hom(P., Pj) / 0 =• i < j .

Similarly the indexing on S is chosen to have the property

(20)

The families & and J2" are closed under indecomposable submodules and
indecomposable quotients respectively [15, Propositions 2.7 and 3.4]. So,
from (19) and (20), EndAf = K for each M with type M e ^ U / .

Each Sg may be considered as a module over a discrete valuation ring [15,
Section 4] and hence amenable to the same treatment as Ilg . Corresponding
to III" and I" are Pn and ln respectively. With these correspondences in
mind, we define a preorder, < , on &~, the family of isomorphism classes of
finite-dimensional indecomposable /?-modules, exactly as 1.5. To show that
< is a precedence relation we shall proceed as in the proof of Theorem 2.6
with the simplification that we know that &~ is canonical.
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THEOREM 2.8. The family !? of finite-dimensional indecomposable iso-
morphism types over a tame finite-dimensional hereditary algebra has a prece-
dence relation.

PROOF. We shall show that the preorder, defined above, o n / is a prece-
dence relation. Condition (b) is readily checked. To check Condition (c), we
let

(21) 0-L^M-iV -*0

be a nonsplit sequence of /?-modules.
Case (i), L — lm . By [15, Corollary 3.5], N = ln for some positive integer

n. Moreover, by [15, Proposition 3.4], M = ® In , a finite direct sum of
modules in J*". It follows from (20) and the nonsplitting of (21) that each
rij < m.

Case (ii), L = S%. By [15, Section 4], N = In or S£. The latter case
is handled in the same way as the corresponding case in Theorem 2.6. If
N = ln, then by [15, Proposition 4.2], M must have a direct summand in

Case (iii), L = Pm. If M has a submodule isomorphic to In or Sg we
would be done because Pm does not precede those types. So, by [15, Section
4.1], we may assume that M = © Pn , a finite direct sum of modules in & .
It follows from (19) and the nonsplitting of (21) that each n > m.

We do not know if there are other artinian rings of infinite type for which
Theorem 2.8 holds.
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