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Abstract

Svalbard has experienced a dramatic increase in air temperature and glacier retreat since the end
of the Little Ice Age. In many cases, this retreat has resulted in glaciers transitioning from being
marine-terminating to land-terminating. Nordenskiöldbreen is an excellent contemporary
example of this transition. A set of historical observations of glacier front positions was used
to assess Nordenskiöldbreen’s retreat rate and we found that the southern portion of the glacier
front retreated by ∼3500 m, since records began in 1896. The general retreat rate corresponds well
with the air temperature trend during most of the 20th century. However, the average retreat rate
has slowed since the 1990s despite increasing air temperatures. We show that this discrepancy
between air temperature and retreat rate marks the transition from marine-terminating towards
a land-terminating glacier, as the glacier’s bedrock topography started to play an essential role in
the glacier margin geometry, ice flow and retreat dynamics.

Introduction

The Arctic has experienced rapid rates of warming that are above the global average, due to the
effect of polar amplification; a series of positive feedbacks related to the extent of glaciers, snow
cover, sea ice, permafrost and the biosphere (Callaghan and others, 2011; Comiso and Hall,
2014). Warming of the Arctic region started after the end of the Little Ice Age (LIA) in the
1900s (Bengtsson and others, 2004) and has been particularly marked in Svalbard (Nordli
and others, 2020). The meteorological station at Svalbard Airport (Longyearbyen) has
recorded an increase in annual mean air temperature of 3.7°C since 1898 (Bengtsson and
others, 2004), and a particularly rapid temperature increase from 1991 to present
(Hanssen-Bauer and others, 2019). During the last 30 years, the warming rate in the
Barents Sea region is estimated to be twice the Arctic average and seven times the global aver-
age; this is among the greatest rate of modern warming recorded on Earth (Isaksen and others,
2016; Nordli and others, 2020). The temperature increase, which is most apparent during the
coldest months (Bengtsson and others, 2004), impacts the form of precipitation in winter, and
an increasing number of rain on snow events affects snow and firn characteristics and snow
accumulation with further impact on the whole ecosystem (Peeters and others, 2019).

The final glacier advance of the Late Weichselian took place in Svalbard between 12.5 and
10 ky BP (Mangerud and others, 1992). Ice masses in Svalbard were in overall retreat during
the Holocene but advances have been detected across the entire archipelago during the
Neoglacial (onset c. 3.0 ky ago), in the latter half of the Holocene (Farnsworth and others,
2020; Osika and others, 2022). The most recent glacier advances took place during the LIA,
which ended in 1900 in Svalbard (Martín-Moreno and others, 2017). The position of the
LIA glacier extent is typically marked by prominent frontal and lateral moraines (e.g.
Werner and others, 1993; Lønne and Lyså, 2005 or specifically for the study area in
Rachlewicz and others, 2007). Marine-terminating glaciers have similar subaqueous counter-
parts (Bennett, 2001). These submarine landforms are studied widely in Svalbard (e.g. Baeten
and others, 2010; Flink and others, 2015; Farnsworth and others, 2017; Streuff and others,
2017; Noormets and others, 2021) and globally (Streuff and others, 2022). Apart from these
landforms, the positions of glacier fronts and glacier margins were repeatedly marked on topo-
graphic maps and sea charts throughout the 20th century. Such mapping has been conducted
at Nordenskiöldbreen (Allaart and others, 2018 and references therein), which offers a unique
chance to study the retreat dynamics in relatively high temporal resolution.

A substantial proportion of Svalbard glaciers are surge-type; with different frequencies of
activity (Hagen and others, 1993; Jiskoot and others, 2000; Farnsworth and others, 2016).
Glacier surges are dynamic instabilities which lead to rapid transfer of ice mass from higher
to lower elevations of glaciers during the active phase of a surge (Benn and others, 2019).
Therefore, actively surging glaciers commonly display frontal advances, up to kilometre-scale,
even despite climate warming trends, and anomalous surface elevation changes, i.e. thinning in
upper parts and thickening in lower parts (e.g. Murray and others, 2012; Sund and others,
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2014; Benn and others, 2023). Surge cycles can therefore compli-
cate the study of climatic drivers of glacier behaviour (Blaszczyk
and others, 2013). Thus, records from glaciers not affected by
surge cycles are of great value for studying the interconnections
of glacier retreat and climate. Surges were probably more common
during LIA than at present (Dowdeswell and others, 1995;
Sevestre and others, 2015; Farnsworth and others, 2016).
Nordenskiöldbreen has no documented surge activity, including
no clear evidence from its geomorphological assemblage
(Ewertowski and others, 2016), which provides a good opportun-
ity to study the interconnections between climate, fjord bathym-
etry and front retreat.

Marine-terminating glaciers are characterized by a steep ice cliff
ending in the fjord and they primarily lose mass by frontal abla-
tion (Cogley and others, 2011; Kochtitzky and others, 2022).
Frontal ablation represents a large proportion of the total glacier
mass loss in Svalbard, estimated to be up to 32% by Błaszczyk
and others (2009). Another specific feature of the marine-
terminating glaciers is the subglacial drainage of meltwater in
the calving front, which alters the circulation in the fjord and
enhances the upwelling of mineral-rich water (Kanna and others,
2018). Similarly, a high flux of minerals and nutrients enters the
fjord directly from the glacier (Fransson and others, 2015; Meire
and others, 2016, 2023). Margins of marine-terminating glaciers
in the high Arctic are biodiversity hotspots (Lydersen and others,
2014; Urbanski and others, 2017; Womble and others, 2021).

The presence of seawater at the glacier terminus typically
increases ice velocities when compared with land-terminating gla-
ciers (e.g. Sakakibara and Sugiyama, 2014; Baurley and others,
2020). At water depths of tens or hundreds of metres, the behav-
iour of the ice margin is influenced by large-scale topographic fea-
tures on the seafloor. For example, the spatial variability of the
fjord width, pinning points, prograde or retrograde slopes affect
the stability of glacier grounding lines (e.g. Katz and Grae
Worster, 2010; Carr and others, 2017; Catania and others, 2018;
Frank and others, 2022). In contrast, in very shallow water glacier
environments (depths of metres), even small-scale bed undula-
tions along the glacier front can significantly modify local frontal
ablation (Enderlin and others, 2013). A shallow bed and/or a
multitude of bedrock outcrops extending above the waterline
often helps to form an irregular line of the glacier margin with
spatially variable rates of margin fluctuations (Vieli and others,
2002; Błaszczyk and others, 2013).

The retreat dynamics of marine-terminating glaciers have been
studied at numerous sites around Svalbard (e.g. Blaszczyk and
others, 2009). However, these studies typically have a low tem-
poral resolution, with the LIA maximum extent identified by
the position of the terminal moraine and ratified with use of
the 1936/1938 aerial photography campaign (e.g. Rachlewicz
and others, 2007; Martín-Moreno and others, 2017; Kavan,
2020a). Often, few additional glacier front positions have been
available for comparison (Holmlund, 2021; Kavan and others,
2022). Such glacier retreat results in the development of a new
coastline, which is then exposed to active coastal processes.
These processes remodel the unconsolidated glacial sediments
and landforms left behind by retreating glaciers (e.g. Strzelecki
and others, 2020). More than 900 km of new coastline has
appeared in Svalbard as a result of marine-terminating glacier
retreat since 1936 (Kavan and Strzelecki, 2023). During the last
two decades, the retreating marine-terminating glaciers trend
has been common in Svalbard and across the Arctic as a whole
(Kochtitzky and Copland, 2022).

The aim of this paper is to describe the retreat dynamics
of Nordenskiöldbreen since the LIA. The retreat of the front
of this marine-terminating glacier has been observed using a
set of historic maps, aerial images and satellite images.

Nordenskiöldbreen was chosen because there is a high quantity
of ice margin position data (since the LIA) as well as an
absence of documented surge-activity (e.g. Hagen and others,
1993; Rachlewicz and others, 2007). The retreat pattern of
Nordenskiöldbreen can thus be used to illustrate the relationship
between retreat rate and climate drivers. We also explain its inter-
connection with the increasing regional air temperature trend
observed since the 1900s. We take advantage of the recent shift
from a marine-terminating to a land-based glacier system to illus-
trate the impact of this shift on the retreat rate and how monitor-
ing of a retreat rate provide us with information on shift in the
glacier regime.

Study site

Glaciers in central Svalbard are affected by a relatively dry quasi-
continental climate with high summer temperatures and lower
snow accumulation compared to coastal locations (Przybylak
and others, 2014; Gjelten and others, 2016) resulting in quick gla-
cier mass loss and retreat (Małecki, 2016, 2022). Most of the gla-
ciers are valley type, with the exception of the large Lomonosov
ice cap extending from the eastern high elevation region.
Nordenskiöldbreen (78°40′N 17°E) is a westward-flowing outlet
glacier descending from the high-elevated Lomonosovfonna
summit (∼1200 m a.s.l.) down to Adolfbukta (Fig. 1).
Nordenskiöldbreen is the largest and only calving glacier in
Billefjorden in central Spitsbergen (Rachlewicz and others,
2007). The glacier area is ∼206 km2 and it has a length of ∼22
km (GLIMS ID G017371E78745N; Raup and others, 2007). The
surface mass balance of the glacier has been negative since at
least the late 1980s (van Pelt and others, 2012), but was very likely
negative for the whole of the 20th century (Plassen and others,
2004). A modelling study by van Pelt and others (2012) indicated
a glacier-wide surface mass balance of −0.4 m w.e. for the period
1989–2010, whereas direct glaciological measurements over 2005–
2018 yielded a mass balance of ∼−0.1 m w.e. (Schuler and others,
2020). The equilibrium line altitude of Nordenskiöldbreen is
∼600–700 m a.s.l. (van Pelt and others, 2012). The ice flow vel-
ocity (40–55 m a−1, den Ouden and others, 2010) is relatively
low for a Svalbard glacier of this size and type (compare with
Milczarek and others, 2022). The highest ice velocities of up to
60 m a−1 were found along the northern flowline between De
Geerfjellet and Terrierfjellet (Fig. 1a) (den Ouden and others,
2010). This corresponds well with the area where the bedrock top-
ography was identified by GPR surveying as being below sea level
(areas highlighted in red in Fig. 1a) (van Pelt and others, 2013).
The below sea level bedrock topography suggests that calving
(presently almost non-existent) could recommence in the next
decades at least in the northern ice flow area if/when the glacier
retreats to a position behind a bedrock rise/knob and enters a
new basin. The exact ice volume lost to the fjord via frontal abla-
tion, i.e. a major component to the total mass balance covering
calving and submarine melting, is, however, unknown but van
Pelt and others (2012) argued it might play a considerable role
in the overall mass balance of the glacier. The terrestrial forefield
of the glacier was recently studied for its geomorphologic evidence
of retreat-related processes (Allaart, 2016; Ewertowski and others,
2016; Nehyba and others, 2017; Allaart and others, 2018).

The glacier itself was frequently visited by different scientific
expeditions at the end of the 19th and the beginning of the 20th
century (e.g. de Geer, 1908; Wordie, 1921; Frazer, 1922; Walton,
1922; Slater, 1925; or other references in Liljequist, 1993) and
detailed information on its frontal positions is documented in his-
torical archives. The scientific interests in Nordenskiöldbreen were
later complemented by economic activities connected to mining
activities in adjacent Brucebyen and especially Pyramiden – a
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settlement on the opposite side of the fjord. The early 20th century
exploration included detailed photo documentation of the area and
the glacier front which enables us to compare changes in the land-
scape on a centennial scale (Figs 1c, d).

Methodology

Glacier front positions

We used 23 records of glacier front positions extending from 1896
to 2022. Most of the historic glacier front positions were derived

from Allaart (2016) and Allaart and others (2018) and references
therein. This was complemented by the recent Sentinel-2 satellite
images obtained from the Sentinel Hub EO Browser (https://www.
sentinel-hub.com/). These positions (Fig. 2a) were then used to
quantify the retreat rate along the five profiles representing differ-
ent conditions of the glacier. Profiles ‘South A’ and ‘North A’
represent the near fjord shore profile where the glacier has already
completely switched from marine-terminating to a land-based
glacier. Profiles ‘South B’ and ‘North B’ represent the glacier
front which is currently in the transition. The ‘Central’ profile
goes across ‘Retreat Isle’, a small rocky island which first became

Figure 1. (a) Adolfbukta with the lower region of Nordenskiöldbreen on a 2009 aerial image from NPI (Basisdata_NP_Ortofoto_Svalbard_WMTS_25833). The posi-
tions from which photographs in panels c and d are indicated with red stars and the potential bedrock below sea level with red transparent ellipses; (b) map of
Svalbard with study site in red; (c) and (d) the northern portions of the glacier margin as photographed by the de Geer expedition in 1908 and, from the same
location, in 2018.
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visible in the 1960s. The average retreat rate was calculated as an
area difference between the glacier positions divided by the width
of the fjord.

To illustrate the retreat of the glacier front and its surface low-
ering, we used historic photographs from the 1908 de Geer exped-
ition (de Geer, 1910) taken by Oscar Halldin (Figs 1c, d). The
photographs are available from the Alvin database of the Centre
for History of Science, Royal Academy of Sciences, Sweden
(https://info.alvin-portal.org). The photographs were taken during
an expedition in July 1908. We identified the locations where
the original photographs were taken, and we repeated the photo-
graphs during July 2018 fieldwork. The coordinates are 78.67475°
N 16.76994°E and 78.67380°N 16.84034°E, respectively.

Glacier geometry

The ArcticDEM individual strip (Porter and others, 2022) from
3 May 2021 was used to determine the vertical profile of the
frontal part of the glacier. This was complemented by digital
elevation models (DEMs) from 1990 and 2009 provided by the
Norwegian Polar Institute (NPI, 2022). The ArcticDEM is pro-
jected to the National Snow and Ice Data Center (NSIDC) Sea
Ice Polar Stereographic North and referenced to the ellipsoidal
WGS84 horizontal datum (EPSG:3413). The NPI DEMs are pro-
jected using the European Terrestrial Reference System 1989 using
the GRS 1980 ellipsoid (local reference system UTM-zone 33).

This results in a shift in altitude of 31.5 m for the ArcticDEM
compared to the local reference system. This was checked on a
set of virtual ground control points, i.e. points with known stable
and identic altitude in both DEMs. We applied a simple correc-
tion for the DEMs mean sea level elevation difference and sub-
tracted 31.5 m of difference from the ArcticDEM. We did not
apply more complex corrections using the geoid difference
model as the shift in altitude is within ±0.2 m on the small
study site and our intention was not to provide any high precision
analysis, but rather to visualize the geometric changes in the gla-
cier frontal zone. The glacier surface elevation change was
obtained by simple overlap of the two DEMs after co-registration
of the 1990 and 2009 DEMs to fit on the 2021 DEM. The changes
that are described later refer to the frontal area plotted in
Figure 3b. All spatial analyses were conducted in QGIS 3.22.

Air temperature data and statistical analyses

To assess the effect of air temperature on retreat dynamics,
we used the reconstructed monthly air temperatures from
Longyearbyen airport (Svalbard Lufthavn station) starting in
1898 (Nordli and others, 2020) and complemented by the most
recent data available from the Norwegian Meteorological
Institute (https://seklima.met.no/observations/). A more detailed
description of this dataset can be found in Nordli and others
(2020).

Figure 2. (a) Glacier front positions derived from his-
toric maps, aerial photographs and satellite images,
overlaying a Sentinel-2 image from 31/08 2022. (b)
Cumulative retreat distance since 1895 along the five
colour-coded profiles indicated in panel (a).
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The air temperature and retreat rate datasets were tested for
detection of a change point with Wild Binary Segmentation
(wbs; Fryzlewicz, 2014). Sharma and others (2016) recommended
this method as the most effective from a set of change point detec-
tion methods. The ‘wbs’ package in R was used to perform the
analysis (Baranowski and Fryzlewicz, 2014). Trend detection ana-
lysis was further performed using Mann–Kendall non-parametric
test. The analysis was performed in R using the trend package
(Pohlert, 2020). The relationship between air temperature and
retreat rate was tested with Pearson’s correlation coefficients
for the whole dataset and later separately for datasets split in
the detected change point in 1990. The significance level of the
tests was set up to 95% if not stated otherwise.

Results and discussion

Retreat of the glacier front

Nordenskiöldbreen has retreated continuously since 1896
(Fig. 2a). The shape of the glacier front used to be perpendicular

to the flow direction in the first half of the 20th century. Retreat
became spatially variable from 1960, probably because of the
complex bedrock topography at the glacier front caused by
Retreat Isle. Since 1960, the retreat rate of the northern part of
the glacier snout has slowed down: from 28 m a−1 (1921–1960)
to 10 m a−1 (1960–2002) (Fig. 2b). This slowdown was likely
caused by the retreat of the glacier margin to shallower water,
exposing a number of small islands and bedrock in the very nor-
thern forefield, which previously acted as pinning points (Todd
and others, 2018; Frank and others, 2022). Calving glaciers have
a tendency to stabilize at pinning points and to retreat rapidly
between them (Benn and others, 2007), and this mechanism
would account for the spatial heterogeneity of retreat observed.
A similar process has been observed at other glaciers in the
region. For example, pinning points stabilized glacier fronts in
Bloomstrandbreen (Burton and others, 2016) and several other
glaciers in southern Spitsbergen (Shackleton and others, 2020).
In contrast, accelerated retreat was observed in Hansbreen around
1990, which was attributed to a depression in the glacier bed
(Vieli and others, 2002), where deeper water led to a higher

Figure 3. Spatial variability of glacier surface elevation
changes between 2009 and 2021 derived from the NPI
2009 DEM and the ArcticDEM (3 April 2021); (a) black
box indicating extent of panels b and c on a 2009 NPI
aerial image of; (b) difference model between the 2021
and 2009 DEMs; (c) the 2009 DEM with location of the
along-flow profiles in the subsequent panels; (d–h)
retreat and thinning illustrated by distance and eleva-
tion profiles across the DEMs of 1990, 2009 and 2021.
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rate of retreat. The gradual slowdown of a retreat rate detected
since 1960s implies a similar bedrock control mechanism as the
glacier retreated to shallow waters near the present glacier front.

The southern part of Adolfbukta is more open to the fjord
compared to the northern part, has a maximum depth of 100 m
(see Fig. 18a in Allaart, 2016) and the retreat was therefore
much faster and pronounced there. In contrast, the retreat rate
was slower in the northern part of the fjord, where water is shal-
lower (∼10–20 m depth). The general circulation pattern of ocean
water in Adolfbukta is clockwise as indicated by the orientation
of beach accumulations (Kavan, 2020b). The clockwise circulation
is supported by the subglacial meltwater outflow located in the
central part of the southern basin indicated by occurrence of sedi-
ment laden meltwater plumes (visible on aerial and satellite
imagery – see Figs 1a, 5a). More frequent influx of Atlantic
water to Billefjorden and accompanied increasing trend in water
temperatures (0.78°C per decade in the 21st century) was detected
(Bloshkina and others, 2021). However, this warming did not
affect the retreat rate and in fact corresponded with a period of
reduced retreat rates (Fig. 2a). Frequent easterly katabatic winds
force the surface layer to move from the glacier front towards
west, thus greatly limiting the rate at which waves undercut the
ice cliff (see Fig. 1a). The calving front with a cliff in the central
part of the two basins (profile E, G) is clearly visible also on the
DEM (Figs 3a, c) and the resulting profiles (Figs 3e, g). The cen-
tral part of the glacier front rests on the bedrock of the Retreat Isle
in 1960 (Fig. 3f) which has been restraining glacier flow and slow-
ing down the retreat rate in this section, likely due to limiting of
front ablation, until at least 2022 where the most recent observa-
tions were made (Fig. 2).

Surface lowering

The DEM and selected profiles across the glacier front (Fig. 3c)
as well as the aerial image (Fig. 3a) indicate the variable ice
characteristics near the glacier front. The central part of the gla-
cier margin has a highly crevassed surface suggesting ice flow
over heterogeneous bedrock or faster ice flow in general, unlike
the northern and southern lateral zones where the surface is
smoother. This is especially apparent in the southern zone
where the bedrock has been exposed for almost a decade.
Nordenskiöldbreen is a polythermal glacier with temperate condi-
tions in the interior and with a frozen snout, which is visible as
the southern marginal zone at present appears stagnant and,
therefore, likely cold-based (e.g. Hagen and others, 1993;
Rachlewicz and others, 2007; Ewertowski and others, 2016).
This configuration of the glacier front suggests that the remaining
marine terminating front is likely grounded in the shallow water
thus providing resistive stress, slowing down the ice flow and
reducing thinning.

On the other hand, the central part of the glacier margin still
shows clear signs of ice flow which was also reported by den
Ouden and others (2010). The crevassed zone is visible on the
aerial image in Figure 3a and profiles e, f, g. This is expressed
in frequent minor calving events without significant retreat of
the glacier front between 2009 and 2021 in the southern marine-
terminating frontal zone (3 g). There is even a minor advance
recorded near Retreat Isle over this period (shown in green in
Fig. 3b). Despite the continuous flux of ice mass from the
upper accumulation areas and relative stability of the glacier
front, the glacier surface has lowered by ∼14 m in total between
2009 and 2021, or ∼1.2 m a−1. The stability of the glacier front
suggests existence of an important pinning point which is likely
to stabilize the front until it thins off this point. The maximum
recorded surface lowering (except where the glacier front has
retreated completely) was ∼30 m, or ∼2.5 m a−1 (Fig 3b), similar

to frontal thinning rates of neighbouring smaller land-based ice
masses (Małecki, 2013, 2016, 2022).

Impact of air temperatures and bedrock geometry on retreat
rates

Air temperature has risen in Svalbard throughout the whole 20th
century, with the exception of a short hiatus in the 1960s and
1970s (Nordli and others, 2020). The period from 1990 to present
is the warmest period of the entire observational record. Between
1898 and 1990, glacier retreat rate was coincident with rising air
temperatures (Fig. 4). From 1990 to present, the retreat rate of
Nordenskiöldbreen slowed down and decoupled from this warm-
ing trend, and retreat rate has declined despite elevated rates of
warming between 1991 and 2022 (Nordli and others, 2020)
(Fig. 4a). This observation is supported by correlation tests. The
23-point time series of glacier retreat rates have a weak positive
correlation (r = 0.06). However, over the period 1898–1990,
there is a positive correlation of r = 0.43, and a negative correl-
ation of r =−0.32 between 1991 and 2022 (Fig. 4b). The entire
air temperature timeseries has a significant positive trend ( p <
0.01) according to Mann–Kendall trend test whereas an insignifi-
cant ( p = 0.27) negative trend in the retreat rate was found. A
similar trend was found when the timeseries were split into the
two time periods. A significant positive trend was found for air
temperature (after 1990), whereas only insignificant negative
trends were found in the retreat rate. The detected change point
in 1990 suggests an important switch in the controlling mechan-
ism of the glacier retreat dynamics.

We argue that the year 1990 marks the start of a full-scale tran-
sition from a marine-terminating to a land-terminating glacier
(Fig. 1). This transition was at an advanced stage by the summer
of 2022, where only ∼1 km of the southern ice margin still termi-
nated in shallow water. A reduced marine terminus limits frontal
ablation and leads to stabilization of the front position (e.g. Frank
and others, 2022). This is in line with our observations of the
declining retreat rates and their mismatch with the post-1990
air temperature (Fig 4b). The exact bedrock geometry of the
frontal section of the glacier is not known, but judging from the
irregular geometry of the glacier surface and its relatively steep
slope we do not expect there to be any larger depressions imme-
diately behind the present ice margin. The expected relief of the
bedrock is hummocky, and generally above sea level. Further
retreat of the glacier front over the coming years is, therefore,
very likely to complete the transition of Nordenskiöldbreen to a
land-terminating glacier and, thus, greatly reduce its frontal abla-
tion. This might be different in the far future along the northern
margin between De Geerfjellet and Terrierfjellet (∼5 km from the
present glacier front) where below sea level bedrock topography
was recorded by van Pelt and others (2013) (see the areas high-
lighted in red in Fig. 1a). Given that stake observations of the gla-
cier surface mass balance yield conditions close to steady-state
due to the large high-elevation accumulation area (Schuler and
others, 2020), the retreat of the glacier front from fjord to land
would hypothetically help the glacier to find a new balance within
the present climatic conditions.

The magnitude of retreat rate and frontal ablation is usually
attributed to ocean temperatures (Luckman and others, 2015)
or the intrusion of warmer water (de Rovere and others, 2022;
Chudley and others, 2023) which is probably responsible for
most of the retreating Arctic marine-terminating glaciers (e.g.
Straneo and Heimbach, 2013; Holmes and others, 2019). Some
regional differences are also attributed to topographic controls
(Carr and others, 2014). However, recent accelerated retreat of
marine-terminating glaciers in the Canadian Arctic Archipelago
correlates well with the enhanced atmospheric warming (Cook
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and others, 2019). Similarly, Slater and Straneo (2022) observed
amplification of submarine melting of marine-terminating gla-
ciers in northwest Greenland by atmospheric warming which
enhanced surface meltwater production and release of water
into the ocean. This further exacerbates near-glacier ocean circu-
lation and in turn the transfer of heat from ocean to ice. Increased
melt in this area was also attributed to higher frequency of föhn
winds (Mattingly and others, 2023). Our results show that
Nordenskiöldbreen, with a large accumulation area in the high
elevated ice cap (Lomonosovfonna), was probably similarly con-
trolled by atmospheric forcing (and meltwater production which
exacerbated the transfer of heat from the ocean), rather than by
ocean temperatures, until the 1990s when the transition from
marine to land-terminating glacier started. This is supported by
the strong correlation of retreat rate and air temperature in the
period prior to 1990s (Fig. 4). This interpretation cannot be dir-
ectly proven due to the lack of site-specific ocean temperature
data. However, warming has been observed in Billefjorden since
1912, intensifying in the last two decades (Bloshkina and others,
2021), which also does not match to the retreat rate record.

Implications for future work

Thus far medium-resolution satellite imagery has failed to clearly
portray the hummocky subglacial topography beneath large sec-
tions of the present ice margin of Nordenskiöldbreen, which are
evident only when observed in the field (Figs 5a, b). Our study

underlines this shortcoming of remote-sensing methods (e.g.
Gourmelon and others, 2022) in glaciological mapping which
potentially might lead to overestimation of marine-terminating
ice cliff lengths, and thus, to region-wide overestimates of frontal
ablation (e.g. Kochtitzky and others, 2022). Distinguishing calving
glacier fronts from already land-based glaciers might be done
using information on subglacial topography where above-sea
level topography would be identifiable. However, the predicted
subglacial topography is also highly uncertain (compare e.g.
Millan and others (2022) with Fürst and others (2018)) and can-
not be reliably used to eliminate the shortcomings of the remotely
sensed ice cliffs. The uncertainty of glacier thickness (and conse-
quently subglacial topography) is high especially in unsurveyed
glaciers (up to 100 m according to Fürst and others (2018)) but
also in the case of well and frequently directly surveyed tidewater
glaciers such as Hansbreen (Möller and others, 2023). Moreover,
the uncertainties in glacier thickness estimates are generally
higher in the terminus area (Recinos and others, 2019).
Sixty-one out of 214 Svalbard marine-terminating glaciers have
developed into land-based glaciers from 1930s to 2019 (Kavan
and Strzelecki, 2023). To select glaciers which are currently
undergoing a transition similar to Nordenskiöldbreen, we suggest
seeking signs of front position stabilization over intervals of ∼10
years to exclude short-term variability. Similar slow-down and
potential switching from marine to land terminating in the near-
future can be found in several glaciers around Svalbard (e.g.
Vestre Torellbreen, Skimebreen, Bereznikovbreen, Havhestbreen

Figure 4. (a) Annual average retreat rate and annual
average air temperature at Svalbard Lufthavn station
(data from the Norwegian Meteorological Institute)
over the study period with linear trendlines for the per-
iods 1896–1990 and 1990–2022; (b) average air tempera-
ture and retreat rate timeseries divided into pre- and
post-1990, showing that the clusters of 1896–1990 and
1990–2012 have minimal overlap.
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or Andrebreen). The glacier termini show similar visual signs of
slowdown as reported from Nordenskiöldbreen when inspecting
the aerial images (e.g. https://toposvalbard.npolar.no/). Such a
separation of glacier margins from the ocean might bring import-
ant consequences for glacier thermal regimes and, hence, their
dynamics. It also removes the ocean-induced melting as an
important source of ice loss. Without contact with water and
especially due to thinning of the frontal part, glacier marginal
zones might switch from warm-based conditions to freezing of
their basal sections to the bed, as documented for several smaller
glaciers in Svalbard (Hodgkins and others, 1999; Hambrey and
others, 2005; Bælum and Benn, 2011) or in Greenland
(Carrivick and others, 2023). This might lead to a general decel-
eration of ice flow (Sevestre and others, 2015), and, therefore, a
reduction of their ice flux to the ocean, an effect which should
be accounted for in projections of future sea-level rise contribu-
tion from Arctic glaciers.

Conclusions

We have presented a comprehensive overview of the post LIA
retreat of Nordenskiöldbreen and have shown its transition
from a marine-terminating to a land-based glacier. We have

used a set of historic glacier front positions in a high temporal
resolution complemented by long-term air temperature observa-
tion. Our data indicate that a major shift in the glacier regime
occurred around the year 1990 when the retreat rate slowed
down despite the clear increasing trend in air temperature. It is
apparent that the climatic control has not been the main driving
force of the retreat since this point, likely because the glacier
retreated into shallow water or in some parts subaerial environ-
ment which has restricted further calving in most of the frontal
zone. The transition towards a land-terminating glacier was docu-
mented by analysis of the available historic DEMs. Despite the
extreme warming in the last decade, the retreat was negligible in
the southern part of the marine-based glacier front. However, a
significant surface lowering (with the average lowering of 14 m
and up to 30 m maximum) was recorded between 2009 and
2021. The shift towards a land-based glacier may have important
implications for fjord circulation in front of the glacier with con-
sequences for the local ecosystem. Identification of glacier fronts
in transition from marine terminating towards land based (or per-
haps already land based) may be crucial for precision of regional
scale frontal ablation estimates based purely on remote-sensing
data analysis, which may be overestimating this component in
its present form.

Figure 5. (a) Sentinel-2 false colour scene of 23/08/2022
of the northern section of the Nordenskiöldbreen mar-
gin. Red rectangles show the areas photographed in
panels b and c, the star marks the location of the
delta in panel d; (b) bedrock outcrops beneath the pre-
sent ice margin of Nordenskiöldbreen in August 2022; (c)
the southern glacier margin with remaining calving
front; (d) delta that was formed after a sudden drainage
of an ice-marginal lake, and subglacial bedrock out-
crops (July 2018 photograph by Martin Lulák).
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