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Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed tomultiple factors including
genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on
lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using
three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta= 0·10 mg/dl, 95 % CI 0·05–0·16;
P< 0·001), LDL-cholesterol (beta= 0·07 mg/dl, 95 % CI 0·04, 0·11; P< 0·0001), total cholesterol (beta= 0·05 mg/dl, 95 % CI: 0·03, 0·07;
P< 0·0001) and the ratio of TAG to HDL-cholesterol (beta= 0·09 mg/dl, 95 % CI: 0·03, 0·15; P= 0·002). Significant interactions were found
between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03) and between the high GRS and SFA intake on TAG:
HDL-cholesterol ratio (Pinteraction= 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher
TAG:HDL-cholesterol ratio in individuals with the high GRS (beta= 0·14, 95 % CI: 0·06, 0·23; P< 0·001 for total fat intake; beta= 0·13, 95 % CI:
0·05, 0·22; P= 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratiomight bemodulated by
dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
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CVD are a top cause of mortality globally, accounting for 32 % of
all deaths worldwide in 2019(1). Over three-quarters of mortality
fromCVDhas been reported to occur in low- andmiddle-income
countries(1), highlighting the enormous impact of CVD in these
countries. In Brazil, ischaemic heart disease and stroke
accounted for most deaths in 2019, with a percentage increase
of 18 and 14 %, respectively, from 2009(2). An analysis of the
factors contributing to death in Brazil using data from the Global
Burden ofDisease 2019 study(3) indicated that, more than 80 %of
deaths from CVD is attributable to cardiovascular risk factors.
Among the risk factors for CVD is an altered blood lipid profile
(dyslipidaemia), which is evidenced by a rise in the concen-
tration of triacylglycerol (TAG) or LDL-cholesterol and a
reduction in the concentration of HDL-cholesterol(4,5).

The occurrence of dyslipidaemia has been attributed to
multiple factors including genetic and environmental factors(6–11).
Dietary fatty acids are involved in modulating the metabolism of
lipids and lipoproteins(12,13), and dietary recommendations to
reduce CVD risk advocate for a reduction in SFA and total fat
intake(14). A high SFA intake has been associated with a rise in
TAG-rich lipoproteins, which is associated with increased risk of
myocardial infarction, ischaemic stroke, and other CVD(15–17).
Consumption of SFA has also been linked to a rise in circulating
levels of inflammatory biomarkers(18,19) which contributes to the
development of cardiometabolic diseases, including CVD(20–22). A
meta-analysis involving a total of forty-nine prospective studies(23)

identified that higher concentration of circulating SFA was
associated with a 50 % increased risk of CVD, 63% increased
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risk of CHD and 38% increased risk of stroke. In a cross-sectional
study of 282 Brazilian adults(24), consumption of SFAwas found to
be higher than the recommended intake in 79·7% of the
participants. The fat content of processed foods in Brazil was
also found to be composed of high amounts of SFA, ranging from
9·3 to 12 g per 100 g of food products(25).

Evidence from genome-wide association studies has impli-
cated several genetic loci for the development of dyslipidae-
mia(26–30), but these variants account for a small proportion of
variability in blood lipid concentrations, and there is growing
evidence that an interaction between genetic variants and
environmental factors is responsible for part of the missing
heritability(31–36). Single variants often have small effect sizes and
an effective approach to assessing the genetic contribution to
complex traits is the use of a genetic risk score (GRS), which
allows the combined effect of multiple variants to be
analysed(37,38). Single nucleotide polymorphisms (SNP) of
lipid-pathway genes have been reported to contribute to
variations in blood lipid concentrations(7,39–41), and the proteins
encoded by these genes include cholesteryl ester transfer protein
(CETP), which regulates HDL-cholesterol concentration and
particle size by promoting the transfer of cholesteryl esters and
TAG between lipoproteins(42); apolipoprotein A1 (APOA1),
which is themain component of HDL-cholesterol and is involved
in the maturation of HDL-cholesterol(43); glucokinase regulatory
protein, which regulates the activity of glucokinase(44,45); sortilin,
which regulates plasma LDL-cholesterol by facilitating hepatic
uptake of ApoB100-containing lipoproteins(46) and hepatic
lipase (LIPC) and endothelial lipase (LIPG) which hydrolyse
lipoproteins to release free fatty acids(47,48). Only a few studies
have utilised a GRS to assess the interactions between dietary
intake and genetic variants on CVD traits in Brazilians(37,49,50),
with even fewer studies focusing on young adults. Two of the
studies(37,49) used data from theObesity, Lifestyle andDiabetes in
Brazil (BOLD) cross-sectional study and involved 187 and 200
participants aged 19–24 years, respectively. Significant GRS–diet
interactions were found in relation to vitamin D and glycaemic
traits, respectively. The third study(50), which was also a cross-
sectional study, consisted of 228 adults (19–60 years) and
significant GRS–diet interactions on dyslipidaemia were
reported. Hence, the aim of this study was to assess the genetic
associations and the interaction of the GRS with dietary factors
on lipid-related traits in Brazilian young adults.

Methods

Study participants

The study consisted of 190 young adults aged 19–24 years from
the BOLD cross-sectional study(34,37). Participants were recruited
between March and June 2019 from the Federal University of
Goiás. The study was performed as part of the gene–nutrient
interactions (GeNuIne) collaboration, which is aimed at
investigating how genetic and lifestyle factors interact to
influence chronic diseases in diverse ethnic groups, with the
goal of preventing and managing chronic diseases through
personalised nutrition(6,51–53). Details of the study design are
published elsewhere(37,49). In brief, a total of 416 individuals

expressed interest in the study, but 207 individuals were found to
be eligible. Participants were excluded if they were using lipid-
lowering medication, vitamins or mineral supplements; had
undergone dietary interventions in the past 6 months or
undertaking vigorous physical activity or had a diagnosis of
any chronic disease such as type 2 diabetes, dyslipidaemia or
hypertension. Out of the 207 eligible participants, 200 completed
the study; however, 190 participants were included in the
present analysis after excluding participants with missing data
for genetic and phenotypic measurements. The selection of the
participants is shown in online Supplementary Fig. S1.

The study was approved by the Ethics Committee of the
Federal University of Goiás (protocol number 3·007·456, 08/11/
2018), and written informed consent was obtained from all the
study participants. The study was performed in accordance with
the ethical principles in the Declaration of Helsinki.

Anthropometric and biochemical measurements

Measurement of anthropometric parameters was done by trained
staff from the Nutritional Genomics research group of The Federal
University of Goiás, Brazil. A Tanita® (Tanita Corporation)
portable electronic scale, which has a maximum capacity of
150 kg, was used to weigh participants. For height, a stadiometer
with a movable rod was used, and the volunteers were asked to
keep upright with heels, calves, shoulder blades and shoulders
pressed against the wall, knees straight, feet together and arms
extended along the body; the head raised (making a 90º angle
with the ground), with the eyes looking at a horizontal plane
ahead, in accordancewith the Frankfurt plane.Weight and height
were used to calculate the BMI using the formula: weight (kg)/the
square of the height (m2). Waist circumference was measured
using an inelastic measuring tape at the midpoint between the
lowest rib margin and the iliac crest(54).

Blood pressure was measured when the patient was seated,
positioning the arm at heart level. Three measurements were
taken, with 5-min intervals between them. At the end, the
average of the threemeasurements was considered, as proposed
by the American Heart Association(55) and approved by the VI
Brazilian Guideline on Hypertension(54).

Approximately 10 ml of venous blood was collected from the
medial cubital vein following a 12-h fasting period. The blood
collection procedure was performed by a trained healthcare
professional using single-use materials. Participants were
instructed to abstain from consuming alcohol for 72 h and
avoid engaging in strenuous physical activity for 24 h prior to the
blood collection. The samples were processed immediately after
collection at the Romulo Rocha Laboratory (Goiânia, Brazil). The
levels of TAG, total cholesterol (TC) and HDL-cholesterol were
assessed using direct enzymatic colorimetry. LDL-cholesterol
levels were calculated using the Friedewald, Levy, and
Fredrickson equation (1972)(56).

Dietary assessment

Dietary intake was assessed by a trained nutritionist using three
24-h dietary recalls consisting of non-consecutive days, includ-
ing one weekend(57). The nutritionist conducted the first
interview in person according to multiple-pass method(58), and
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the following two interviews were conducted via phone calls. To
assist in estimating portion sizes of various foods, participants
were provided with measuring equipment such as measuring
cups and spoons. Intake of nutrients and energywas determined
from the dietary recalls using the Avanutri Online® diet
calculation software (Avanutri Informática Ltda) with three
Brazilian food composition databases, Brazilian Institute of
Geography and Statistics, 2011(59), food composition table-
support for nutritional decision making (2016)(60) and food
studies and research centre-Brazilian food composition table
(2011)(61). For processed or ultra-processed foods that were not
in the databases, the information in the label was man-
ually added.

Single nucleotide polymorphism selection and genotyping

A total of seven SNP representing seven loci were selected for
this study based on their association with lipid-related traits at a
genome-wide significance level (P< 5 × 10–8): CETP SNP
rs3764261(26,62–66), glucokinase regulator (GCKR) SNP
rs1260326(26,41,65,67–70), endothelial lipase (LIPG) SNP
rs7241918(26,71–73), sortilin 1 (SORT1) SNP rs629301(26,71,72),
hepatic lipase (LIPC) SNP rs1532085(26,65,70,74), apolipoprotein
A1 (APOA1) SNP rs964184(26,27,68,75–79) and ATPase plasma
membrane Ca2þ transporting 1 (ATP2B1) SNP rs2681472(80–83).
Table 1 shows the SNP, effect sizes, P-values and the genome-
wide association studies. A review by our team(7) indicated that
the CETP gene had the highest number of reported associations
with lipid traits, and it was concluded that SNP of the CETP gene
could potentially alter blood lipid profiles by interacting with
diet. The GCKR gene was chosen as it has been reported to
influence alterations in blood lipid profiles(90–95). The LIPG gene,
another key lipid metabolism gene has been reported to play a
role in inflammation and could influence the risk of CVD(48,96,97).
Furthermore, the SORT1 gene is considered the strongest
genome-wide LDL-cholesterol associated locus(27,62,98–101) and
the LIPC gene is also a main lipid-pathway gene which has been
associated with abnormal lipid profiles(26,65,72,74,88). Additionally,
the APOA1 gene has been widely studied and has been linked
with variations in blood lipid levels(26,28,76,78,85) and the risk of
CVD(102–105). Similarly, the ATP2B1 gene has been reported to
influence the risk of developing CVD(80,81,83,89,104). Six of the SNP
included in our GRS (rs3764261, rs1260326, rs7241918,
rs629301, rs1532085, rs964184) had previously been included
in a GRS by a genetic association study involving 6358
participants from the Multi-Ethnic Study of Atherosclerosis
Classic cohort(106) which observed significant associations
between the GRS and lipid traits. The genotyping procedure
has been previously published(49). Briefly, blood samples (3 ml
each) for genotyping were collected in BD Vacutainer®
ethylenediamine tetraacetic acid (EDTA) tubes and kept at a
controlled temperature of –80ºC during transportation by the
World Courier Company. Genotyping was performed by LGC
Genomics, London, UK (http://www.lgcgroup.com/services/ge
notyping), using the competitive allele-specific PCR-
KASP® assay.

Construction of genetic risk score

To construct the GRS, each SNP was first tested for independent
association with the lipid-related traits using linear regression
analysis, adjusted for age, sex and BMI. An unweighted GRS was
then constructed by summing the number of risk alleles across all
the seven SNP (CETP rs3764261, GCKR rs1260326, LIPG
rs7241918, SORT1 rs629301, LIPC rs1532085, APOA1 rs964184
and ATP2B1 rs2681472) for each participant. For each SNP, a
score of 0, 1 or 2 was assigned depending on whether the
participant carried no risk alleles (homozygous for the non-risk
allele), one risk allele (heterozygote) or two risk alleles
(homozygous for the risk allele). The scores for the seven SNP
were then added up to create theGRS. The effect sizes of the SNP
were not considered and the GRS for each participant
represented the total number of risk alleles they carried from
the seven SNP. An unweighted GRS was used because although
we selected SNP which have shown associations with lipid-
related traits, the studies were not conducted in the Brazilian
population, and it has been reported that effect sizes may vary
across populations and data from a genome-wide association
study conducted in one population may not apply to another
population(31,107). Moreover, assigning weights to risk alleles has
been shown to have minimal effect(108). The risk alleles were
defined as alleles previously reported to be associated with
increased concentration of TAG, LDL-cholesterol or TC; or
reduced concentration of HDL-cholesterol; or increased risk of
coronary artery disease or myocardial infarction. The GRS
ranged from 1 to 10, and themedianGRS (6 risk alleles) was used
as a cut-off point for grouping participants as low risk (GRS< 6
risk alleles) or high risk (GRS≥ 6 risk alleles).

Statistical analysis

An independent sample t test was used to compare the means of
continuous variables between men and women. The results for
descriptive statistics are presented as means and SD. To test for
normality, the Shapiro–Wilk test was used and all the
biochemical, anthropometric and dietary variables, except total
fat, carbohydrate, and MUFA intake (percentages of total energy
intake (TEI)), were log-transformed prior to the analysis. Allele
frequencies were determined by gene counting and Hardy–
Weinberg equilibrium was calculated using the Chi-square test.
All the seven SNP were in Hardy–Weinberg equilibrium
(P> 0·05) (online Supplementary Table S1), and the alleles
had a frequency >5 %.

Linear regression was used to test the association of the GRS
with lipid levels and blood pressure, with adjustment for age, sex
andBMI. To determine interactions between theGRS and dietary
factors on the outcome variables (TAG, TAG:HDL-cholesterol
ratio, HDL-cholesterol, LDL-cholesterol, TC, systolic blood
pressure (SBP), and diastolic blood pressure (DBP)), the
interaction term was included in the regression model. The
dietary factors examined were the intakes of fat, carbohydrate,
and protein. Statistically significant GRS–diet interactions
(P< 0·05) were investigated further by stratifying participants
according to the quantity of dietary intake. A significant
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Table 1. SNP used to construct the GRS and the reported traits by genome-wide association studies

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

CETP rs3764261 A þ0·24 1 × 10–769 –0·05 2 × 10–34 –0·04 2 × 10–25 þ0·05 4 × 10–31 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

A þ3·39 7 × 10–380 –2·88 1 × 10–12 þ1·67 7 × 10–14 European ancestry (Finland, Sweden, USA, Australia, Iceland,
Italy, Netherlands, Germany, UK, Croatia, Switzerland,
Austria, France, Denmark)

n 99 900 for HDL
n 96 598 for TAG
n 100 184 for TC

Teslovich et al.
(2010)(26)

A þ3·48 7 × 10–29 Northern Finnish Founder
n 4763

Sabatti et al.
(2009)(65)

A þ0·20* 9 × 10–18 African American
n 7813

Lettre et al.
2011(63)

A þ3·18* 7 × 10–43 Indian
n 1036

Khushdeep et al.
2019(66)

CETP rs3764261 A þ6·20 3 × 10–12 Japanese
n 900

Hiura et al.
2009(64)

LIPG rs7241918 G –1·31 3 × 10–49 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 99 900

Teslovich et al.
(2010)(26)

A –1·94 2 × 10–19 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 100 184

Teslovich et al.
(2010)(26)

G –0·09* 1 × 10–44 –0·06* 4 × 10–18 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

LIPG rs7241918 G –0·08* 4 × 10–55 –0·02* 1 × 10–8 European ancestry
n 115 082

Richardson et al.
(2022)(84)

A þ0·02* 3 × 10–27 Multi-ancestry
(African: n 23 761; Asian: n 13 171;
European: n 90 272; Hispanic or Latin American: n 6620)

Bentley et al.
2019(71)

GCKR
rs1260326

T þ8·76 6 × 10–133 þ1·91 7 × 10–27 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 96 598 for TAG
n 100 184 for TC

Teslovich et al.
(2010)(26)

T þ0·12 2 × 10–239 þ0·05* 3 × 10–42 European ancestry
(UK, Finland, Sweden, USA, Italy, Greece, Germany, Estonia,

Norway)
n 94 595

Willer et al.
(2013)(72)

GCKR
rs1260326

T þ0·12* 2 × 10–31 European (UK, Finland, Sweden, USA, Italy, France)
n 19 840

Kathiresan et al.
(2009)(28)
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Table 1. (Continued )

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

T þ0·12* 5 × 10–88 þ0·05* 3 × 10–13 European (UK, Finland, Sweden, Iceland, Netherlands,
Germany, Estonia)

n 62 166

Surakka et al.
(2015)(85)

T þ0·03* 6 × 10–60 European ancestry
n 440 546

Richardson et al.
(2020)(73)

T 1·41† 2 × 10–13 Mexican
n 2240

Weissglas-Volkov
et al. (2013)(41)

T þ0·03* 7 × 10–10 Multi-ancestry
(European: n 76 627; Hispanic: n 7795; East Asian: n 6855;

African American: n 2958; South Asian: n 439)

Hoffman et al.
2018(86)

SORT1
rs629301

G –5·65 1 × 10–170 –5·41 6 × 10–131 European ancestry (UK, Finland, Sweden, USA, Australia,
Iceland, Italy, Netherlands, Germany, Croatia, Switzerland,
Austria, France, Denmark)

n 100 184 for TC
N 95 454 for LDL-C

Teslovich et al.
(2010)(26)

G –0·17* 5 × 10–241 –0·13* 2 × 10–170 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

G þ0·04* 4 × 10–15 –0·14* 7 × 10–135 Multi-ancestry
(European: n 76 627; Hispanic: n 7795; East Asian: n 6855;

African American: n 2958; South Asian: n 439)

Hoffman et al.
2018(86)

T þ4·46* 1 × 10–128 Multi-ancestry
(African: n 23 761; Asian: n 13 171;
European: n 90 272; Hispanic or Latin American: n 6620)

Bentley et al.
2019(71)

SORT1
rs629301

G –6·03* 2 × 10–72 –5·80* 2 × 10–57 European
n 29 902

Kulminski et al.
(2020)(87)

T þ0·11* 2 × 10–31 Japanese
n 72 866

Sakaue et al.
(2021)

(83)

LIPC
rs1532085

A þ0·11* 1 × 10–188 þ0·05* 7 × 10–47 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

A þ0·11* 1 × 10–213 Multi-ancestry
European: n 187 167;
East Asian (China, Japan, Republic of Korea, Philippines,

Singapore, Taiwan): n 34 930

Spracklen et al.
(2017)(88)

LIPC
rs1532085

G –0·13* 1 × 10–35 European ancestry (UK, Finland, Sweden, Australia, Italy,
Netherlands, Germany, Croatia, Norway, Denmark)

n 21 412

Aulchenko et al.
2009

(74)

G þ2·99 2 × 10–13 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 96 598

Teslovich et al.
(2010)(26)

A þ1·90 2 × 10–10 Northern Finnish Founder
n 4763

Sabatti et al.
2009(65)

APOA1 rs964184 G þ2·85 1 × 10–26 þ16·95 7 × 10–240 European ancestry (UK, Finland, Sweden, USA, Australia,
Iceland, Italy, Netherlands, Germany, Croatia, Switzerland,
Austria, France, Denmark)

Teslovich et al.
(2010)(26)
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Table 1. (Continued )

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

n 96 598 for TAG;
n 95 454 for LDL-cholesterol

APOA1 rs964184 G þ0·24* 2 × 10–157 European (UK, Finland, Sweden, Iceland, Netherlands,
Germany, Estonia)

n 62 166

Surakka et al.
(2015)(85)

G –0·03* 2 × 10–11 European (UK, Finland, Italy, Switzerland)
n 17 723

Waterworth et al.
2010(76)

G –0·05* 3 × 10–12 þ0·16* 4 × 10–33 African American: n 7601, Hispanic: n 3335 for TAG;
African American: n 7917, Hispanic: n 3506 for HDL-cholesterol

Coram et al.
2013(78)

G –0·17 1 × 10–12 þ0·30* 4 × 10–62 European ancestry (UK, Finland, Sweden, USA, Italy, France)
n 19 840

Kathiresan et al.
(2009)(28)

CAD MI

ATP2B1
rs2681472

G 1·07† 8 × 10–11 European
n 63 731

Nelson
et al.
2017(81)

ATP2B1
rs2681472

G þ0·07* 1 × 10–11 European (UK, Finland): n 461 823; Japanese: n 161 206 Sakaue
et al.
(2021)(83)

G 1·08† 6 × 10–9 European: n 126630, Hispanic or Latin American (USA):
n 3615, Middle Eastern, North African or Persian: n 754, African American or Afro-Caribbean (USA):
n 2908, South Asian (India, UK, Pakistan): n 23 156; East Asian (Republic of Korea, China): n 9396

Nikpay
et al.
(2015)(80)

G 1·07† 1 × 10–12 European
n ∼472 000

Hartiala
et al.
(2021)(89)

SNP, single nucleotide polymorphism; GRS, genetic risk score; TC, total cholesterol; GWA, genome-wide association.
* Effect sizes are in units of SD.
† OR.
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interaction between the GRS and total fat intake was explored
further by analysing the effects of subtypes of fat (SFA, MUFA
and PUFA). The median intake of total fat, SFA, MUFA and PUFA
was used as a cut-off point to place participants into groups: ‘low’

(for participants with an intake lower than or equal to the
median) and ‘high’ (for those with an intake higher than the
median); and the effect of the GRS on the outcome was
examined for participants in each group. The Bonferroni
adjusted P-value for association was 0·007 (1GRS * 7 outcome
variables= 7 tests; 0·05/7= 0·007), and for interaction, it was
0·002 (1GRS * 7 outcome variables*3 dietary factors= 21 tests;
0·05/21= 0·002). The statistical analyses were performed using
the Statistical Package for the Social Sciences (SPSS) software
(version 28; SPSS Inc., Chicago, IL, USA). Additionally, the GRS
was scaled by converting the scores to units of standard
deviation from the mean(109) and the association of the GRS as a
continuous variable with the lipid-related traits was tested by
linear regression using the R software version 4·3·1(110).

Power and sample size calculation. Power calculation was
performed using the QUANTO software, version 1·2·4 (May
2009)(111) in the form of minimum detectable effect at 80 %
power and a significance level of 5 %. For an SNP with a minor
allele frequency of 5 %, the minimum detectable effect at 80 %
power was 6·6 mg/dl for TC, LDL-cholesterol and TAG. For an
SNP with a minor allele frequency of 50 %, the minimum
detectable effect at 80 % power was 2·9 mg/dl for TC, LDL-
cholesterol and TAG.

Results

Characteristics of the study participants

The demographic and clinical characteristics of the participants
in this study are summarised in Table 2. The mean age of the
sample was 21 ± 2 years, and men had higher BMI and waist

circumference than women (P= 0·01 and P< 0·001, respec-
tively). Women, however, had higher concentrations of
HDL-cholesterol (P< 0·0001) and TC (P= 0·01) but lower
TAG:HDL-cholesterol ratio (P= 0·006), SBP (P< 0·0001), and
DBP (P< 0·001) than men. Intakes of total energy and protein
were higher in men than in women (P= 0·003 and P= 0·04,
respectively), but consumption of total fat, SFA, MUFA, PUFA
and carbohydrate did not differ significantly between men and
women. Table 3 shows the characteristics of the study
participants according to GRS. Participants with a high GRS
had a significantly lower intake of energy (P= 0·02) than those
with a low GRS. No other significant differences were observed
between participants in the two groups. The distribution of the
GRS across deciles of TC, LDL-cholesterol, TAG and TAG:HDL
ratio is presented in online Supplementary Fig. S2.

Association of the genetic risk score with blood lipids

Four significant associations were identified between the GRS
and lipid traits where individuals carrying six or more risk alleles
had significantly higher TAG, LDL-cholesterol and TC concen-
trations, as well as higher TAG:HDL-cholesterol ratio compared
with participants with less than six risk alleles (Table 3). When
the GRS was tested as a continuous variable, each standard
deviation increase in the GRS was associated with a 1·05 mg/dl
increase (95 % CI 1·02, 1·07) in the concentration of TC
(P= 0·002); 1·07 mg/dl increase (95 % CI 1·03, 1·12) in the
concentration of LDL-cholesterol (P< 0·001); 1·14 mg/dl
increase (95 % CI 1·07, 1·21) in the concentration of TAG
(P< 0·0001) and a 1·16 mg/dl increase (95 % CI 1·09, 1·24) in
TAG:HDL-cholesterol ratio (P< 0·0001). All the associations
remained significant after Bonferroni correction for multiple
testing. The distribution of the lipid-related traits across deciles of
the GRS is presented in Fig. 1. As the decile of the GRS increased,
the concentration of TC, TAG, LDL-cholesterol and TAG:HDL
also increased.

Table 2. Characteristics of study participants by sex

All (n 190) Women (n 141) Men (n 49)

P ValueMean SD Mean SD Mean SD

Age (years) 21 2 21 2 22 2 0·17
BMI (kg/m2) 23 1 23 1 24 1 0·01
WC (cm) 72 1 69 1 83 1 <0·001
TAG (mg/dl) 76 2 76 2 75 2 0·81
TAG:HDL ratio 2 2 1 2 2 2 0·01
HDL-cholesterol (mg/dl) 55 1 59 1 46 1 <0·0001
LDL-cholesterol (mg/dl) 99 1 100 1 99 1 0·80
TC (mg/dl) 174 1 178 1 163 1 0·01
SBP (mmHg) 107 1 105 1 114 1 <0·0001
DBP (mmHg) 64 1 63 1 67 1 <0·001
Energy (kcal/day) 1735 1 1668 1 1944 1 0·003
Total fat (% of energy) 32 6 32 6 31 6 0·14
SFA (% of energy) 9 1 9 1 9 1 0·84
MUFA (% of energy) 8 3 8 3 8 3 0·07
PUFA (% of energy) 5 2 5 2 5 2 0·08
Carbohydrate (% of energy) 51 7 51 7 51 8 0·88
Protein (% of energy) 17 1 16 1 18 1 0·04

WC, waist circumference; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
P values for the differences in means between men and women were calculated using independent sample t test.
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Interaction between genetic risk score and dietary factors
on blood lipids

There was a significant interaction between GRS and total fat
intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03) as
shown in Table 4. In the high total fat intake group (>31·5 %
of TEI), participants carrying six or more risk alleles had a higher
TAG:HDL-cholesterol ratio compared with those carrying less
than six risk alleles (beta= 0·14, 95 % CI: 0·06, 0·23; P< 0·001)

(Fig. 2(a)). No significant difference in TAG:HDL-cholesterol
ratio was found between participants with a high GRS (≥6 risk
alleles) and those with a lowGRS (<6 risk alleles) in the low total
fat intake group (≤31·5 % of TEI). When subtypes of fat were
investigated, a significant interaction was found between GRS
and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03)
(Fig. 2(b)), where a high SFA intake (>8·6 % of TEI) was
associated with a higher TAG:HDL-cholesterol ratio in

Table 3. Association of GRS with blood lipids and blood pressure and the characteristics of the participants stratified by GRS

Trait

GRS< 6 (n 92) GRS ≥ 6 (n 98)

Mean SE Mean SE P value

TAG (mg/dl) 67·3 1·0 84·9 1·0 <0·001
TAG:HDL-cholesterol ratio 1·2 1·0 1·5 1·0 0·002
HDL-cholesterol (mg/dl) 54·5 1·0 55·5 1·0 0·56
LDL-cholesterol (mg/dl) 91·4 1·0 107·6 1·0 <0·0001
TC (mg/dl) 164·1 1·0 183·7 1·0 <0·0001
SBP (mmHg) 106·9 1·0 107·2 1·0 0·69
DBP (mmHg) 63·2 1·0 64·1 1·0 0·48

Characteristic

GRS < 6 (n 92) GRS ≥ 6 (n 98)

P value*Mean SD Mean SD

Age (years) 21 2 21 2 0·28
Sex (W/M) 67/27 – 78/26 – 0·56
BMI (kg/m2) 23 1 23 1 0·97
WC (cm) 73 1 72 1 0·59
Energy (kcal/day) 1827 1 1648 1 0·02
Total fat (% of energy) 32 6 32 6 0·99
SFA (% of energy) 9 1 9 1 0·45
MUFA (% of energy) 8 2 8 3 0·27
PUFA (% of energy) 5 1 4 2 0·12
Carbohydrate (% of energy) 51 7 50 7 0·68
Protein (% of energy) 17 1 17 1 0·84

GRS, genetic risk score; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; W, women; M, men.
P values were obtained from linear regression analysis with adjustment for age, sex and BMI. Log-transformed variables were used for the analysis and values in bold represent
significant associations.
* P values for the differences in means between participants with low GRS and those with high GRS were obtained using independent sample t test. The distribution of sex in the two
groups was compared using the χ2 test.
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Fig. 1. Distribution of lipid-related traits across deciles of GRS (genetic risk score). TC (total cholesterol), LDL-cholesterol (low-density lipoprotein cholesterol), TAG
(triacylglycerol), TAG:HDL-cholesterol (TAG to high-density lipoprotein cholesterol ratio). GRS, genetic risk score; TC, total cholesterol.
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Table 4. Interaction between GRS and dietary factors on blood lipids and blood pressure

Trait

GRS * Protein (% of energy) GRS * Fat (% of energy) GRS * Carbohydrate (% of energy)

Beta coefficient SE Pinteraction Beta coefficient SE Pinteraction Beta coefficient SE Pinteraction

TAG (mg/dl) 0·33 0·30 0·27 0·01 0·01 0·26 –0·004 0·004 0·30
TAG:HDL-cholesterol ratio 0·28 0·32 0·39 0·01 0·01 0·03 –0·01 0·004 0·06
HDL-cholesterol (mg/dl) 0·06 0·14 0·70 –0·01 0·002 0·007 0·004 0·002 0·05
LDL-cholesterol (mg/dl) 0·29 0·18 0·12 –0·001 0·003 0·75 0·001 0·002 0·69
TC (mg/dl) 0·22 0·13 0·10 –0·002 0·002 0·35 0·001 0·002 0·46
SBP (mmHg) 0·002 0·05 0·96 –0·0002 0·001 0·83 –0·001 0·001 0·17
DBP (mmHg) –0·03 0·08 0·71 0·00004 0·001 0·98 –0·001 0·001 0·31

GRS, genetic risk score; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
P values were obtained from linear regression analysis with adjustment for age, sex and BMI. Log-transformed variables were used for the analysis and values in bold represent
significant interactions.

Quantity of total fat intake (% of energy)

Quantity of saturated fatty acid intake (% of energy)

Overall Pinteraction=0·03

Low (≤31·5% of energy)
GRS<6: n 44
GRS≥6: n 52

0

0·05

0·1

0·15

0·2

0·25

0·3
Beta=0·05
P=0·23

Beta=0·05
P=0·21

Beta=0·14
P<0·001

Beta=0·13
P=0·003

GRS<6: n 48

GRS<6 risk alleles

GRS≥6 risk alleles

GRS<6 risk alleles
GRS≥6 risk alleles

GRS≥6: n 46

High (>31·5% of energy)

Low (≤8·6% of energy)
GRS<6: n 47

0

0·05

0·1

0·15

0·2

0·25

GRS≥6: n 58
GRS<6: n 45
GRS≥6: n 50

High (>8·6% of energy)

Lo
g 

tra
ns

fo
rm

ed
 T

AG
:H

D
L-

ch
ol

es
te

ro
l

Lo
g 

tra
ns

fo
rm

ed
 T

AG
:H

D
L-

ch
ol

es
te

ro
l Overall Pinteraction=0·03

(a)

(b)

Fig. 2. (a) Interaction betweenGRS (genetic risk score) and total fat intake on TAG:HDL-cholesterol (TAG to high-density lipoprotein cholesterol) ratio. Low refers to total
fat intake lower or equal to the median and high refers to total fat intake above the median. In the high total fat intake group, participants with a high GRS (≥6 risk alleles)
had higher TAG:HDL-cholesterol ratio than those with a low GRS (<6 risk alleles). There was no significant difference in TAG:HDL-cholesterol ratio in the low total fat
intake group. (b) Interaction betweenGRS (genetic risk score) and SFA intake on TAG:HDL-cholesterol (TAG toHDL-cholesterol ratio). Low refers to SFA intake lower or
equal to the median and high refers to SFA intake above the median. A high intake of SFA was associated with higher TAG:HDL-cholesterol in participants with a high
GRS compared with those with a low GRS, but no significant difference in TAG:HDL-cholesterol was observed when SFA intake was low. GRS, genetic risk score.
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participants with a high GRS compared with those with a low
GRS (beta= 0·13, 95 %CI: 0·05, 0·22;P= 0·003), but therewas no
significant difference in TAG:HDL-cholesterol ratio when SFA
intake was low (≤8·6 % of TEI). A significant interaction was also
observed between GRS and total fat intake on HDL-cholesterol
concentration (Pinteraction = 0·007). However, when individuals
were stratified according to quantity of total fat intake, there was
no significant association between the GRS and HDL-cholesterol
concentration. The interactions did not pass the Bonferroni
threshold.

Discussion

Our findings provide evidence that the genetic risk for
disturbances in blood lipids concentration might be modulated
by dietary fat intake. Significant interactionswere found between
the GRS and total fat intake on TAG:HDL-cholesterol ratio and
between the GRS and SFA intake on TAG:HDL-cholesterol ratio.
Increased consumption of total fat (>31·5 % of energy) and SFA
(>8·6 % of energy) was associated with higher TAG:HDL-
cholesterol ratio in participants carrying≥6 risk alleles compared
with those with <6 risk alleles. The results suggest that the TAG:
HDL ratio in Brazilian young adults with a high genetic risk for
disturbances in lipid-related traits maybe responsive to dietary
fat intake; hence, interventions targeting a reduction in total fat
and SFA intake could potentially benefit these individuals.
Although the interactions did not pass the Bonferroni threshold,
three of the SNP included in our GRS (CETP rs3764261, APOA1
rs964184 and GCKR rs1260326) have previously been reported
to interact with dietary fat intake and influence lipid-related
traits. In a study involving two trials (a 2-year randomised weight
loss trial (POUNDS LOST) consisting of 732 overweight/obese
adults and a replication in 171 overweight/obese adults from an
independent 2-year randomised weight loss trial (DIRECT))(112),
significant interactions were observed between the CETP SNP
rs3764261 and dietary fat intake on changes in the concentration
of HDL-cholesterol and TAG (pooled Pinteraction < 0·01).
Similarly, a prospective, randomised, single-blind controlled
dietary intervention trial (Coronary Diet Intervention With Olive
Oil and Cardiovascular Prevention) involving 424 Spanish
individuals with metabolic syndrome(113) found significant
interactions between the CETP SNP rs3764261 and
Mediterranean diet on the concentration of HDL-cholesterol
(Pinteraction= 0·006) and TAG (Pinteraction = 0·04). In another study
consisting of 734 overweight/obese adults from the POUNDS
LOST trial(114), the APOA1 SNP rs964184 was also found to
interact with dietary fat intake in relation to changes in the
concentration of HDL-cholesterol, LDL-cholesterol and total
cholesterol (Pinteraction= 0·006, 0·02 and 0·007, respectively).
Additionally, a cross-sectional study of 3342 individuals (1671 sib
pairs) in India(115) found a significant interaction between the
APOA1 SNP rs964184 and dietary fat intake on the concentration
of TAG (P= 0·04). This study(115) also observed significant
interactions between the CETP SNP rs3764261 and dietary fat
intake on the concentrations of total cholesterol (P= 0·02) and
LDL-cholesterol (P= 0·04). Furthermore, an interaction between
the GCKR SNP rs1260326 and MUFA intake on HDL-cholesterol

concentration was reported in a cross-sectional study of 101
participants of different ethnicities in the USA population
(Pinteraction= 0·02)(116). Therefore, the interactions in our study
cannot be ruled out completely; hence, a replication is
warranted.

The ratio of TAG:HDL-cholesterol has been identified as an
independent predictor of CHD, mortality from CVD and insulin
resistance(16,17,117,118). Hence, our findings have significant public
health implications in terms of prevention and management of
dyslipidaemia in individuals with a high genetic risk. Our data
support the recommendations of the WHO(14) to reduce the
intake of total fat and SFA to less than 30 % and 10 % of energy
intake, respectively, to help prevent cardiometabolic diseases.
Our findings are also in agreement with the dietary guidelines for
Brazilians which recommend decreasing the intake of food rich
in solid fat and added sugar and limiting the daily energy intake
from total fat to less than 30 %(119,120).

In the current study, the GRS was positively associated with
the concentration of TAG, LDL-cholesterol and TC and the ratio
of TAG:HDL-cholesterol. Our findings are consistent with those
of a study involving 8526 participants from two Danish
cohorts(121) (a randomised nonpharmacological intervention
study (Inter99), n 5961; and a population-based epidemiological
study (Health2006), n 2565), in which a positive association was
identified between lipid-GRS and the concentration of TAG
(beta= 1·4 %mmol/l, P< 0·0001); LDL-cholesterol (beta= 0·024
mmol/l, P< 0·0001) and TC (beta= 0·027 mmol/l, P< 0·0001).
Similarly, a prospective study of 3495 Swedish participants(122)

reported significant associations between lipid-GRS and changes
in the concentration of TC and TAG after a 10-year follow up
(beta= 0·02 mmol/l per effect allele, P< 0·0001 for TC;
beta= 0·02 mmol/l per effect allele, P< 0·0001 for TAG). The
European Prospective Investigation of Cancer-Norfolk cohort
study, consisting of 20 074 participants(123), also found a positive
association between a lipid-GRS and the concentration of TAG
(beta= 0·25 mmol/l, 95 % CI 0·22, 0·27 per allele change;
P< 0·001), indicating the role of genetic polymorphisms in
predicting variability in blood lipid concentration.

A systematic review and meta-analysis of six prospective
studies including 10 222 participants(16) reported that, in patients
with CHD, those with elevated TAG:HDL-cholesterol ratio had
increased risk of all-cause mortality (hazard ratio= 2·92, 95 % CI
1·75, 4·86; P< 0·05) and major adverse cardiovascular events
(hazard ratio = 1·56, 95 % CI 1·11, 2·18; P< 0·05) comparedwith
those with lower TAG:HDL-cholesterol ratio. In line with our
findings, a study conducted in 228 Brazilian adults(50) reported a
significant interaction between a GRS based on lipid metabolism
genes and intake of solid fat, alcoholic beverages and added
sugar on the risk of dyslipidaemia (Pinteraction< 0·001), where
participants with a high GRS had a lower risk of dyslipidaemia
when their intake of solid fat, alcoholic beverages and added
sugar was below the median. Similarly, a prospective rando-
mised controlled trial involving 523 Spanish patients with
coronary artery disease from the Coronary Diet Intervention
With Olive Oil and Cardiovascular Prevention study(124) reported
that, carriers of the risk allele (‘G’ allele) of APOA1 SNP rs964184
who consumed a low-fat diet (containing <30 % of total fat) had
reduced post-prandial TAG concentrations after 3 years, while

10 R. Wuni et al.

https://doi.org/10.1017/S0007114524001594  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114524001594


‘G’ allele carriers on aMediterranean diet (containing aminimum
of 35 % of total fat) continued to have higher post-prandial TAG
concentrations. Along these lines, a fat response genetic score
based on SNP showing a positive interaction with dietary fat in
relation to LDL-cholesterol was found to predict a 1-year change
in LDL-cholesterol in a sample of 422 Black and Hispanic
participants from the Women’s Health Initiative cohort(125). A
significant interaction was identified between the dietary
modification trial arm and fat response genetic score for LDL-
cholesterol concentration (P= 0·002), where participants in the
control arm showed a trend towards minimal reductions in LDL-
cholesterol concentrations at higher fat response genetic scores,
while the opposite trend was observed in participants following
a low-fat diet(125). Taking together, these findings suggest that the
genetic susceptibility to dyslipidaemia could be modulated by
dietary fat intake in different populations.

A nationwide dietary survey involving 32 749 Brazilian
individuals (≥10 years old)(126) highlighted a change in dietary
pattern in Brazil which is characterised by increased consump-
tion of processed foods rich in fat and simple sugars. An increase
in the consumption of ultra-processed food among Brazilians
aged ≥10 years was also reported in a study using food
consumption data from 2008–2009 (n 34 003) to 2017–2018
(n 46 164) Household Budget Surveys(127). Similarly, an assess-
ment of the diet quality of Brazilians using data from the national
survey(119) showed that, in 60 % of the population, the mean SFA
intake was 10·7 % of TEI, which exceeds the WHO’s recom-
mendation of <10 % of TEI(14). The study(119) also reported that
solid fat and added sugar contributed more than 45 % of TEI. In
the present study, themedian intake of total fat was 31·5 % of TEI
which is more than the recommended intake of <30 %(14);
however, the median intake of SFA (8·6 % TEI) was within the
recommended level(14). This suggests that individuals who have
a genetic predisposition to dyslipidaemia may find greater
benefit from adhering to dietary recommendations.

The mechanisms through which dietary fat intake affects
blood lipid concentration have been examined by several
studies(12,128–131). Dietary fatty acids affect lipid metabolism
through the activation of several transcription factors and
nuclear receptors including PPAR and liver X receptors(128,131).
PPAR regulate the expression of different genes involved in
lipid and lipoprotein metabolism, and the activation of PPAR is
positively correlated with the chain length and degree of
unsaturation of fatty acids(12,128,131). SFA are also believed to
decrease LDL-cholesterol receptor activity which slows the
clearance of TAG-rich lipoproteins(128), and this could explain
the increased TAG:HDL-cholesterol ratio observed among
participants in the high SFA intake group. Consumption of SFA
has also been shown to suppress the expression of genes
involved in fatty acid oxidation and synthesis of TAG(12) and
promote the expression of inflammatory genes(132). However,
SFA of different chain lengths and from different food sources
have been reported to exert different effects on cardiometa-
bolic traits(133,134).

The main strength of our study is the use of a GRS based on
established lipid metabolism genes. Our study is one of few
studies which have utilised this approach to explore CVD traits in

Brazilian young adults, considering the increased prevalence of
CVD in young people aged 15–49 years in Brazil in 2019(135). The
GRS approach is more effective in assessing the genetic
contribution to complex traits such as blood lipid concentration
since single variants often have moderate effect sizes and hence
less likely to accurately predict the genetic risk of multifactorial
traits(11,35,136). Another strength is the use of validated techniques
and trained personnel to assess biochemical, anthropometric
and dietary variables, which enhances the accuracy of the
assessments. However, our study has some limitations. The
small sample size could have influenced our findings since large
sample sizes improve the power to detect interactions with small
effects(137,138). Given that we did not have access to another
Brazilian young adult cohort, we were not able to replicate our
study findings. However, we were able to replicate previously
reported associations and interactions. Another limitation is the
use of self-reported dietary recalls that can introduce bias
through overestimation and underestimation of dietary
intake(139,140). Moreover, we did not investigate types or food
sources of SFA, which have been reported to have different
effects on CVD traits(133,141). Additionally, the cross-sectional
design means that causality between dietary fat intake and TAG:
HDL-cholesterol ratio cannot be established(31).

In conclusion, our study provides evidence that the genetic
risk of increased TAG:HDL-cholesterol ratio might bemodulated
by dietary fat intake. The findings indicate that Brazilian young
adults with a high genetic risk for dyslipidaemia might benefit
from limiting their intake of total fat and SFA. Our results support
the dietary guidelines of the WHO which recommend reducing
total fat and SFA to help prevent cardiometabolic diseases. The
findings suggest that personalised nutrition strategies based on
GRS might be effective for the prevention and management of
dyslipidaemia but confirmation in dietary intervention studies
with large sample sizes is required.
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