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Abstract
This paper develops a novel full-state-constrained intelligent adaptive control (FIAC) scheme for a class of uncer-
tain nonlinear systems under full state constraints, unmodeled dynamics and external disturbances. The key point
of the proposed scheme is to appropriately suppress and compensate for unmodeled dynamics that are coupled with
other states of the system under the conditions of various disturbances and full state constraints. Firstly, to guarantee
that the time-varying asymmetric full state constraints are obeyed, a simple and valid nonlinear error transforma-
tion method has been proposed, which can simplify the constrained control problem of the system states into a
bounded control problem of the transformed states. Secondly, considering the coupling relationship between the
unmodeled dynamics and other states of the controlled system such as system states and control inputs, a decoupling
approach for coupling uncertainties is introduced. Thereafter, owing to the employed dynamic signal and bias radial
basis function neural network (BIAS-RBFNN) improved on traditional RBFNN, the adverse effects of unmodeled
dynamics on the controlled system can be suppressed appropriately. Furthermore, the matched and mismatched
disturbances are reasonably estimated and circumvented by a mathematical inequality and a disturbance observer,
respectively. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed FIAC
strategy.

1.0 Introduction
As is known to all, it is unavoidable to encounter various constraints in actual systems. When these con-
straints are not satisfied, the performance and stability of the system will be affected to various degrees.
In recent years, the research on state-constrained control, which mainly includes output-constrained con-
trol and full-state-constrained control, has become a hot issue studied by scholars in the field of control
[1–6]. Full state constraints not only require system outputs to satisfy constraints but also have con-
straints on other states of the system. Therefore, in most practical applications, the full state constraints
which can avoid excessive overshoot are more general than the output constraints [1]. Currently, the
barrier Lyapunov functions (BLFs) have become the main tool to ensure that the full state constraints
are obeyed [2, 7–9]. With the aid of BLF and the adaptive backstepping method, a novel adaptive track-
ing control algorithm for the strict-feedback nonlinear systems with full state constraints and dead zone
was studied in [7]. In Ref. [8], based on the tan-type time-varying asymmetric BLF, an adaptive asymp-
totic tracking control method for the nonlinear systems with parametric uncertainty and time-varying
asymmetric full state constraints was developed. Similarly, by introducing the time-varying asymmetric
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BLF in Ref. [9], all state variables were confined to predefined regions. However, considering practical
engineering applications, the full-state-constrained control schemes mentioned above do not take into
account the complex dynamic coupling uncertainties that may occur in the controlled nonlinear systems,
which may lead to the inability to guarantee stability.

It is widely known that disturbances and uncertainties are inevitable in many practical control sys-
tems, such as flight control systems, robotics, vehicle systems and mechanical systems and so on [10–14].
However, various disturbances and uncertainties are usually nonlinear, unknown, and coupled with other
variables, which makes their mathematical modeling and the design of effective suppression properties
difficult. Therefore, the problem of compensation and suppression of disturbances and uncertainties has
received extensive attention in the past few decades [14–21]. These come in a variety of forms, including
sliding mode control (SMC) [14, 15], active disturbance rejection control (ADRC) [16–18], disturbance
observer-based control (DOBC) [14, 19] and adaptive backstepping control (BC) [20, 21]. For a class
of robotic systems with matched and mismatched disturbances, a high-order disturbance observer based
sliding mode control method was designed in Ref. [14], which can successfully stabilise the robotic sys-
tems and suppress the matched and mismatched disturbances effectively. To realise the predictive state
and the total uncertainty which represents the effects of the unknown nonlinear dynamics and exter-
nal disturbances, an extended state observer was developed as a predictor in Ref. [16]. By using the
backstepping technique, the authors in Ref. [20] designed an adaptive neural network controller for the
uncertain nonlinear systems suffering from input delay and disturbances. In Ref. [21], an adaptive fuzzy
backstepping dynamic surface controller was constructed for a class of strict-feedback uncertain nonlin-
ear systems with unknown external disturbances. It is worth noting that the control methods mentioned
above are all aimed at handling a single source of disturbances and uncertainties. There are usually
multi-source disturbances and uncertainties acting on the actual physical systems, and the characteristic
of the complex dynamic coupling in the multi-source uncertainties makes the design of the controller
more challenging. Therefore, how to develop a controller to attenuate the effects of dynamic multi-
source coupling uncertainties of the controlled system is still an open issue, which motivates this study
again.

Motivated by the above discussions, a novel full-state-constrained intelligent adaptive control (FIAC)
scheme is proposed for a class of nonlinear systems with unmodeled dynamics and mismatched
disturbances in this study. The main contributions can be summarised as follows:

• Different from most of the existing results on the control of uncertain nonlinear systems, this
work takes into account the unmodeled dynamics that are coupled with the system states and
control inputs and designs a decoupling method based on dynamic signal and improved RBFNN,
namely BIAS-RBFNN, to estimate and circumvent the coupling uncertainties.

• To improve the approximation accuracy and anti-disturbance ability of traditional RBFNN, the
BIAS-RBFNN is introduced in this paper.

• Compared to the existing state-constrained control schemes with multiple parameters and com-
plex forms in Ref. [22], this work proposed a simple and effective nonlinear error transformation
method to transform the constrained control problem of the system states into a bounded control
problem of the transformed states, which greatly reduces the difficulty of controller design.

• This paper provides a BIAS-RBFNN-based FIAC canonical form for the nonlinear systems,
which can be applied to many other practical systems like robots, quadrotors, space unmanned
systems, underwater unmanned systems, and so on.

This paper is organised as follows. In the next section, the full-state-constrained control problem
with unmodeled dynamics and disturbances is formulated and some related assumptions and lemmas
are introduced. Moreover, we give a detailed description of the novel BIAS-RBFNN. Then, the structure
of the proposed full-state-constrained intelligent adaptive control scheme is built, followed by stability
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Table 1. The main variables in this paper

Item Nomenclature
x1 (t), x2 (t) System states
d1 (t), d2 (t) Mismatched disturbance and matched disturbance
f (x1 (t), x2 (t)) Smooth nonlinear function
�f (x1 (t), x2 (t)) Unknown model uncertain item
ζ (t) Unmodeled dynamics
� (x1 (t), x2 (t), u (t), ζ (t)) Coupling uncertain term
B System inertia matrix
u (t) Actual loop controller
uc (t) Nominal outer loop controller
xd (t) Desired signal
ϕ1 (·), ϕ2 (·) Unknown non-negative smooth functions
e1 (t), e2 (t) Tracking errors
s0 (t), s1 (t), s2 (t) Transformed states of tracking errors
x2c (t) Virtual control signal
D (t) Total disturbance
� Optimal weight of RBFNN
� (Z) Activation function of RBFNN
�b (Z) Activation function with local errors
μs

e, Ls
e Variables related to the derivative of transformed states s1 (t), s2 (t)

εv, ϑ Adaptive parameters to be designed
â Estimate of a
â Estimation error of a, and ã = â − a

analysis. Finally, simulations are performed to verify the effectiveness of the proposed control method
and a conclusion is presented.

2.0 Problem formulation and preliminaries
2.1 Problem statement
Consider the following nonlinear system subject to unmodeled dynamics, coupling uncertainties and
disturbances:

ẋ1 (t) = x2 (t) + d1 (t)

ẋ2 (t) = f (x1 (t), x2 (t)) + �f (x1 (t), x2 (t)) + � (x1 (t), x2 (t), u (t), ζ (t)) + B (u (t) + d2 (t))

ζ̇ (t) = fζ (ζ (t), x1 (t), x2 (t), u (t)),

(1)

where x1 (t), x2 (t) denote the states, u (t) is the input signal of the controlled system. f (x1 (t), x2 (t)) is
the smooth nonlinear function and �f (x1 (t), x2 (t)) denotes the model uncertain item. B is a known
matrix with proper dimensions and its smallest eigenvalue satisfies λB,min � 1. d1 (t) and d2 (t) denote
the mismatched and matched disturbances, respectively. With a reasonable analysis, it is assumed that
the coupling uncertain term � (x1 (t), x2 (t), u (t), ζ (t)) is simultaneously affected by the system states
x1 (t), x2 (t), the input signal u (t), and the unmodeled dynamics ζ (t). What’s more, the dynamic char-
acteristics of ζ (t) can be expressed as ζ̇ (t) = fζ (ζ (t), x1 (t), x2 (t), u (t)). In this paper, the time-varying
asymmetric full state constraints are considered, that is, b1 (t) < x1 (t) < b̄1 (t) and b2 (t) < x2 (t) < b̄2 (t),
where all the predefined constraints are bounded. Table 1 shows the main variables used in this work,
and more details in this table will be introduced in the following sections.
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Our control objective is summarised as follows. Given the nonlinear system Equation (1) with unmod-
eled dynamics, matched disturbance and mismatched disturbances, the control objective is to propose a
full-state-constrained intelligent adaptive controller that can force the system output to track the desired
trajectory xd (t) as far as possible, and all the states satisfy the full state constraints.

2.2 Assumptions and lemmas
To achieve the control objective, the following related assumptions and lemmas are required.

Assumption 1. The system states x1 (t) and x2 (t) are both accessible. The desired signal xd (t) is
bounded, smooth and twice differentiable.

Assumption 2. The coupling uncertainty satisfies the following inequality

� (x1 (t), x2 (t), u (t), ζ (t)) ≤ ϕ1 (x1 (t), x2 (t)) + ϕ2 (ζ (t)) + puu (t) (2)

where ϕ1 (·) and ϕ2 (·) are both unknown non-negative smooth functions, pu ∈ (−1, 1) is a constant.

Assumption 3. The unmodeled dynamics are exponentially input-to-state practically stable(exp-ISpS),
specifically, there has a Lyapunov function Vζ (ζ (t)) so that

α1 (ζ (t)) ≤ Vζ (ζ (t)) ≤ α2 (ζ (t))

∂Vζ (ζ (t))

∂ζ (t)
κ (ζ (t), x1 (t), x2 (t), u (t)) ≤ −γ1Vζ (ζ (t)) + ρ (x1 (t), x2 (t)) + γ2,

(3)

where α1 (·), α2 (·) belong to class K∞ functions, ρ (x1 (t), x2 (t)) = x1
T (t) x1 (t) + x2

T (t) x2 (t), and
γ1, γ2 are positive constants.

Assumption 4. For the unknown total disturbance D (t), there exists an unknown positive constant εv

such that |D (t)| ≤ εv. What’s more, the rate of mismatched disturbance d1 (t) is assumed to be bounded,
that is

∥∥ḋ1 (t)
∥∥≤ d̄1.

Assumption 5. The initial values of the system states are all within the predefined constraints, i.e.
b1 (0) < x1 (0) < b̄1 (0), b2 (0) < x2 (0) < b̄2 (0).

Remark 1. Considering the possible coupling relationship between the unmodeled dynamics ζ (t) and
other states in the nonlinear system, Assumption 2 briefly gives the common constraints for the cou-
pling uncertainties � (x1 (t), x2 (t), u (t), ζ (t)). Assumption 3 provides some standard requirements of
the unmodeled dynamics.

Lemma 1. [23] Given any constant satisfying ε > 0 and any variable z ∈R, the following inequality
holds

0 ≤ |z| − ztanh
( z

ε

)
≤ κε (4)

where κ is a constant satisfying κ = e−(κ+1), i.e., κ = 0.2785.

Lemma 2. [24] For any constant ε > 0 and vector ξ ∈R
n, we have

‖ξ‖ <
ξ Tξ√

ξ Tξ + ε2
+ ε (5)

Lemma 3. [24] For any positive constant ε > 0 take into account the set �ε defined by �ε :=
{x| ‖x‖ ≤ 0.2554ε}. Next, for any x /∈ �ε, the following inequality is satisfied

1 − 16tanh2
( x

ε

)
≤ 0 (6)
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Lemma 4. [25] Let f : R→R represents any continuous differentiable function defined on [0, ∞),
and lim

t→∞
f (t) exists and possesses upper bound. If its derived function ḟ (t) is uniformly continuous, then

lim
t→∞

ḟ (t) = 0.

2.3 BIAS-RBFNN
Owing to the capacity of online learning and universal approximation of smooth nonlinear functions,
adaptive neural network (ANN) control algorithms have been widely utilised to compensate for the
effects caused by unmodeled dynamics or disturbances [26–29]. Among these neural network control
algorithms, RBFNN has become the most commonly used one because of its outstanding capacity for
function approximation and fast calculation speed. However, to improve the approximation accuracy,
the normal RBFNN-based control methods require more hidden nodes, which will increase the com-
putational cost exponentially. In addition, the failure of the approximation may occur when the input
of normal RBFNN deviates from the ‘approximation domain’. In order to solve the problems men-
tioned above, we will introduce an adaptive BIAS-RBFNN based control scheme, the conclusion that
the anti-disturbance ability of the BIAS-RBFNN based scheme is stronger than the normal RBFNN
based scheme has been proved by [30].

According to Ref. [31], for any bounded continuous function F (Z) which is defined on a closed set
�Z , the structure of RBFNN can be represented as follows

F (Z) = �T� (Z) + ε� (Z), ∀Z ∈ �Z (7)

where Z ∈R
n is the input vector, � denotes the optimal weight. ε� is the optimal approximate error which

can be reduced to any tiny value by increasing the number of nodes of the neural network. According to
relevant references, the Gaussian functions are often used as the activation functions of RBFNN, which
can be described as

Sj (Z) = exp

[
−
(
Z − μj

)T (
Z − μj

)
σ 2

]
, j = 1, 2, . . . , m (8)

where μj =
[
μj1, μj2, . . . , μjn

]T represents the position of the hidden node, σ denotes the width of
Gaussian functions, m is the number of hidden nodes in each channel.

The activation functions for the adaptive BIAS-RBFNN based control scheme taken in this paper are
shown below

�lj (Z) = Sj (Z) + bl (9)

where bl represents the bias of each activation function, which is added to each activation function.
According to Ref. [32], �lj (Z) defined in Equation (9) meets the condition of the Tauber-Wiener func-
tion, which also has the capability to represent any continuous functions. Considering the length of this
paper, we directly give the following lemma:

Lemma 5. [30] For the target functions with external disturbances, the RBFNNs with bias are more
likely to achieve a higher approximation accuracy than the scheme of RBFNNs without bias.

Based on Lemma 2.3, we can conclude that the BIAS-RBFNN-based control scheme discussed in
this section can obtain more accurate function approximation results, and its anti-disturbance ability is
stronger.
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3.0 Controller design and stability analysis
3.1 Nonlinear error transformation
To satisfy the time-varying full state constraints, a practical approach is to constrain the tracking errors of
the system states. In general, most existing works can only ensure that the tracking errors ultimately con-
verge, while ignoring the dynamic performance of the system, which may lead to inevitable oscillations
and overshoots. Therefore, this work will propose a simple and effective nonlinear error transforma-
tion technique to enable the system states to smoothly track the desired signals without exceeding their
constraint range.

By defining the desired output signal xd (t), the tracking error of x1 (t) and x2 (t) can be
expressed as

e1 (t) = x1 (t) − xd (t)

e2 (t) = x2 (t) − x2c (t)
(10)

where x2c (t) is the virtual control signal of e1 (t) subsystem.
From the previous analysis, the constraints of the tracking errors can be expressed as

e1 (t) = b1 (t) − xd (t)

ē1 (t) = b̄1 (t) − xd (t)

e2 (t) = b2 (t) − x2c (t)

ē2 (t) = b̄2 (t) − x2c (t)

(11)

It is clear that if the error constraints e1 (t) < e1 (t) < ē1 (t) and e2 (t) < e2 (t) < ē2 (t) can be well
ensured, the system states x1 (t) and x2 (t) can also be guaranteed to never violate the predefined con-
straints

(
b1 (t), b̄1 (t)

)
and

(
b2 (t), b̄2 (t)

)
, respectively. To guarantee the constraints of the tracking errors,

the nonlinear error transformation technique based on a one-one mapping is utilised. Specifically, we
define

s1 (t) = tan

(
π

2
× 2e1 (t) − ē1 (t) − e1 (t)

ē1 (t) − e1 (t)

)

s2 (t) = tan

(
π

2
× 2e2 (t) − ē2 (t) − e2 (t)

ē2 (t) − e2 (t)

) (12)

Remark 2. The main idea of nonlinear error transformation is that when the original constraint states
contact the constraint boundary, the transformed states will tend toward infinity. Generally, some basic
functions will approach infinity at their own singular points, which can help us achieve the above
results, such as the independent variable of the tangent function approaching π

2
, the antilogarithm of

the logarithmic function approaching 0, and so on.

Then, we can get that

e1 (t) = ē1 (t) − e1 (t)

π
arctan (s1 (t)) + ē1 (t) + e1 (t)

2

e2 (t) = ē2 (t) − e2 (t)

π
arctan (s2 (t)) + ē2 (t) + e2 (t)

2

(13)

By further analysis, we can conclude that{
lims1→−∞e1 (t) = e1 (t)

lims1→+∞e1 (t) = ē1 (t)
,

{
lims2→−∞e2 (t) = e2 (t)

lims2→+∞e2 (t) = ē2 (t)
(14)

Therefore, we can draw a conclusion that if the transformed states s1 (t) and s2 (t) are bounded, the
tracking errors e1 (t) and e2 (t) will consequently be forced to stay within their constraint regions. To
achieve this goal, the control problem can be converted to designing a proper adaptive control law to
force the transformed states to be bounded.

https://doi.org/10.1017/aer.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.120


The Aeronautical Journal 7

Figure 1. The structure of the proposed full-state-constrained intelligent adaptive control algorithm.

3.2 Full-state-constrained intelligent adaptive controller design
In this section, a full-state-constrained BIAS-RBFNN-based intelligent adaptive controller will be
constructed and the structure of the proposed control algorithm is demonstrated in Fig. 1.

Taking the derivative of s1 (t) yields

ṡ1 (t) = μs1
e1

(x2 (t) + d1 (t) − ẋd (t)) + Ls1
e1

, (15)

where μs1
e1

= ∂s1(t)
∂e1(t)

, Ls1
e1

= ∂s1(t)
∂ ē1(t)

˙̄e1 (t) + ∂s1(t)
∂e1(t)

ė1 (t).
By defining s0 (t) = ∫t

0 s1 (u) du, the inner loop virtual signal x2c (t) can be designed as

x2c (t) = (
μs1

e1

)−1 (−k0s0 (t) − k1s1 (t) − Ls1
e1

)+ ẋd (t) − d̂1 (t) (16)

where k0 and k1 are positive constant feedback gains, d̂1 (t) denotes the estimated value of mismatched
disturbance d1 (t). In this paper, a disturbance observer is used to compensate for the unmatched
disturbance d1 (t) and the design process is shown below.

d̂1 (t) = αd1 (t) + Lx1 (t)

α̇d1 (t) = −Ld̂1 (t) − Lx2 (t)

˙̂d1 (t) = −Ld̂1 (t) + L (ẋ1 (t) − x2 (t)) = −Ld̃1 (t)

(17)

where d̃1 (t) = d̂1 (t) − d1 (t), the gain of the disturbance observer is represented by L, and αd1 (t) is the
internal state.

Substituting the virtual signal x2c (t) designed in (16) into ṡ1 (t) yields that

ṡ1 (t) = −k0s0 (t) − k1s1 (t) − μs1
e1

d̃1 (t) + μs1
e1

e2 (t) (18)

Taking the time derivative of s2 (t) yields

ṡ2 (t) = μs2
e2

(ẋ2 (t) − ẋ2c (t)) + Ls2
e2

= μs2
e2

(
f (x1 (t), x2 (t)) + �f (x1 (t), x2 (t)) + � (x1 (t), x2 (t), u (t), ζ (t))

+B (u (t) + d2 (t)) − ẋ2c (t)

)
+ Ls2

e2

, (19)

where μs2
e2

= ∂s2(t)
∂e2(t)

, Ls2
e2

= ∂s2(t)
∂ ē2(t)

˙̄e2 (t) + ∂s2(t)
∂e2(t)

ė2 (t).
Then, introduce the dynamic signal r (t) as shown below

ṙ (t) = −γ0r (t) + ρ (x1 (t), x2 (t)), r (0) = r0 (20)

where γ0 ∈ (0, γ1).
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According to Assumption 2.2, we can get that

sT
2 � (x1 (t), x2 (t), u (t), ζ (t)) ≤ ∥∥sT

2 (t)
∥∥ (ϕ1 (x1 (t), x2 (t)) + ϕ2 (ζ (t)) + puu (t)) (21)

Thanks to Lemma 2.2 and Assumption 3, Equation (21) AUcan be rewritten as∥∥sT
2 (t)

∥∥ ϕ1 (x1 (t) , x2 (t)) ≤ sT
2 (t) ϕ̄1 (s2 (t) , x1 (t) , x2 (t)) + ε1∥∥sT

2 (t)
∥∥ ϕ2 (ζ (t)) ≤ ∥∥sT

2 (t)
∥∥ ϕ2

◦α−1
1 (2r (t)) + ∥∥sT

2 (t)
∥∥ ϕ2

◦α−1
1 (2εr)

(22)

where ε1 > 0 is an arbitrary constant,

ϕ̄1 (s2 (t), x1 (t), x2 (t)) = ϕ1 (x1 (t), x2 (t)) sT
2 ϕ1 (x1 (t), x2 (t))√

[sT
2 ϕ1 (x1 (t), x2 (t)) ]2 + ε2

1

(23)

Further, using Young’s inequality, we can get that∥∥sT
2 (t)

∥∥ ϕ2 (ζ (t)) ≤ sT
2 ϕ̄2 (s2 (t), x1 (t), x2 (t), r (t)) + ε2 + 1

4
sT

2 (t) s2 (t) + ε3 (24)

where ε2 > 0 is an arbitrary constant,

ϕ̄2 (s2 (t), x1 (t), x2 (t), r (t)) = ϕ2
◦α−1

1 (2r (t)) sT
2 (t) ϕ2

◦α−1
1 (2r (t))√[

sT
2 (t) ϕ2

◦α−1
1 (2r (t))

]2 + ε2
2

ε3 = [
ϕ2

◦α−1
1 (2εr)

]2

(25)

For the set-valued mapping of the outer-loop tracking error, BIAS-RBFNN is introduced to approx-
imate the unknown nonlinear term

�T�b (s2 (t), x1 (t), x2 (t), r (t)) + ε� = ϕ̄1 (s2 (t), x1 (t), x2 (t)) + ϕ̄2 (s2 (t), x1 (t), x2 (t), r (t))

+�f (x1 (t), x2 (t)) x2 (t) + s2(t)
−1s1 (t) (e2 (t) − s2 (t))

(26)

where ε� is the RBFNN estimation error and �b (s2 (t), x1 (t), x2 (t), r (t)) is the activation function with
local errors.

In order to compensate and suppress the influence of the matched disturbance d2 (t) and neural net-
work estimation error ε� on the controlled system. Firstly, the total disturbance D (t) can be constructed
in the following form:

D (t) = Bd2 (t) + ε� (27)

Based on Assumption 4, the following inequality holds
|D (t)| = |Bd2 (t) + ε�| ≤ εv (28)

According to Lemma 1, it’s easy to get that

sT
2 (t) D (t) ≤ |s2 (t)| εv ≤ εvs

T
2 (t) tanh

(
s2 (t)

α

)
+ καεv (29)

In addition, the following inequality can be established by designing the control signal u (t) to satisfy
sT

2 (t) u (t) ≤ 0, hence we have

sT
2 (t) u (t) + ∥∥pusT

2 (t) u (t)
∥∥

≤ sT
2 (t) u (t) − ‖pu‖ sT

2 (t) u (t)

≤ (1 − ‖pu‖) sT
2 (t) u (t)

(30)

Based on the above analysis, the nominal outer loop controller can be designed as

uc (t) = B−1

⎛
⎜⎜⎝

−k2s2 (t) − f (x1 (t), x2 (t)) − �̂T�b (s2 (t), x1 (t), x2 (t), r (t)) − 1

4
s2 (t)

−ϕρ (x1 (t), x2 (t), s2 (t)) − ε̂vtanh

(
s2 (t)

α

)
+ ẋ2c (t) − (

μs2
e2

)−1
Ls2

e2
− μs1

e1
s1 (t)

⎞
⎟⎟⎠ (31)
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The meaning of ϕρ (x1 (t), x2 (t), s2 (t)) will be explained in the following section. Further, by defining
ϑ = 1/inft�0

[
B − I · ‖pu‖

]
, the actual loop controller can be designed as

u (t) = −
ϑ̂Buc (t)

[
sT

2 (t) ϑ̂Buc (t)
]

√[
sT

2 (t) ϑ̂Buc (t)
]2 + ε2

u

(32)

where ε̂v, �̂, ϑ̂ are the estimated values of εv, �, ϑ , respectively.
Then the adaptive law of ε̂v, �̂, ϑ̂ are proposed as

˙̂εv = sT
2 (t) tanh

(
s2 (t)

α

)
− λεε̂v

˙̂
� = ��� (s2 (t), x1 (t), x2 (t), r (t)) sT

2 (t) − ��λ��̂

˙̂
ϑ = −�ϑsT

2 (t) Buc (t) − �ϑλϑϑ̂

(33)

where ��, �ϑ , λε, λ�, λϑ are all positive design parameters.
To illustrate the effectiveness and stability of the proposed controller designed by the FIAC scheme

for a class of uncertain nonlinear systems with unmodeled dynamics, coupling uncertainties, and
mismatched disturbances, the stability analysis is given in the following subsection.

3.3 Stability analysis
Based on the above analysis, the differential equations of the controlled nonlinear system can be
rewritten as

ṡ0 (t) = s1 (t)

ṡ1 (t) = −k0s0 (t) − k1s1 (t) − μs1
e1

d̃1 (t) + μs1
e1

e2 (t)

ṡ2 (t) = μs2
e2

(
f (x1 (t), x2 (t)) + �f (x1 (t), x2 (t)) + � (x1 (t), x2 (t), u (t), ζ (t))

+B (u (t) + d2 (t)) − ẋ2c (t)

)
+ Ls2

e2

ζ̇ (t) = fζ (ζ (t), x1 (t), x2 (t), u (t))

. (34)

The purpose of this paper is to design a suitable controller to ensure the stability of the differential
equations in Equation (34). The stability of the closed-loop nonlinear system with the proposed control
method can be revealed by the following theorem.

Theorem 1. Consider the nonlinear system shown in Equation (1), which is affected by unmodeled
dynamics, coupled uncertainties, and various external disturbances. Assume that Assumption 1 ∼ 5 are
satisfied. By using the nonlinear error transformation method Equation (12), the control laws Equations
(31), (32), and the adaptive laws Equation (33), all signals have upper bounds and the tracking errors
will converge to the compact sets. And all states will not violate their constraint boundaries.

Proof. According to Ref. [33], the dynamic signal r (t) has the following properties

r (t)� 0, ∀t � 0

Vζ (ζ (t)) ≤ r (t) + εr

(35)

where εr = Vζ (ζ (0)) + γ2
γ1

. �
By defining �̃ = �̂ − �, ϑ̃ = ϑ̂ − ϑ , ε̃v = ε̂v − εv, the Lyapunov function can be selected as

V = V1 + V2, V1 = 1

2
sT

0 (t) s0 (t) + 1

2
sT

1 (t) s1 (t) + 1

2
d̃T

1 (t) d̃1 (t)

V2 = 1

2

(
μs2

e2

)−1
sT

2 (t) s2 (t) + 1

2
Tr
(
�̃T�−1

�
�̃
)

+ 1

2ϑ�ϑ

ϑ̃ 2 + 1

2
ε̃T

v ε̃v + r

�r

(36)

where �r > 0 is a positive constant.
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Combining the differential equations in Equation (34), the derivative of V1 can be expressed as

V̇1 = sT
0 (t) s1 (t) + sT

1 (t)
(
−k0s0 (t) − k1s1 (t) − μs1

e1
d̃1 (t) + μs1

e1
e2 (t)

)
+ d̃T

1 (t) ˙̃d1 (t) (37)

From the designed disturbance observer Equation (17), it’s easy to conclude that

˙̃d1 (t) = −Ld̃1 (t) − ḋ1 (t) (38)

Then, by defining s1 = [
sT

0 (t) , sT
1 (t)

]T and using the following inequalities

−μs1
e1

sT
1 (t) d̃1 (t) ≤ μs1

e1

2
sT

1 (t) s1 (t) + μs1
e1

2
d̃T

1 (t) d̃1 (t)

−d̃T
1 (t) ḋ1 (t) ≤ 1

2
d̃T

1 (t) d̃1 (t) + 1

2
ḋT

1 (t) ḋ1 (t)

(39)

the derivative of V1 in Equation (37) can be developed as

V̇1 ≤ −s̄T
1 (t) Qs̄1 (t) − μs1

e1
sT

1 (t) e2 (t) − d̃T
1 (t)

(
Ld̃1 (t) + ḋ1 (t)

)
+ μs1

e1

2
d̃T

1 (t) d̃1 (t)

≤ −s̄T
1 (t) Qs̄1 (t) − μs1

e1
sT

1 (t) e2 (t) +
(

μs1
e1

+ 1

2
− L

)
d̃T

1 (t) d̃1 (t) + 1

2
ḋT

1 (t) + ḋ1 (t)

(40)

Where,

Q =
[

0 −In

k0In ( − μ
s1
e1
2

+ k1)In

]
(41)

Similarly, combining the dynamic characteristics of the dynamic signal r (t) defined by (20), the
derivative of V2 is

V̇2 = (
μs2

e2

)−1
sT

2 (t) ṡ2 (t) + Tr
(
�̃T�−1

�

˙̂
�
)

+ 1

ϑ�ϑ

ϑ̃
˙̂
ϑ + ε̃T

v
˙̂εv − γ0

�r

r (t) + ρ (x1 (t) , x2 (t))

�r

(42)

Thanks to the differential Equation (34), we can easily obtain that

(
μs2

e2

)−1
sT

2 (t) ṡ2 (t) = sT
2 (t)

(
f (x1 (t), x2 (t)) + �f (x1 (t), x2 (t)) + � (x1 (t), x2 (t), u (t), ζ (t))

+B (u (t) + d2 (t)) − ẋ2c (t) + (
μs2

e2

)−1
Ls2

e2

)
(43)

Combined with Equations (21)–(25) and (30), one has

sT
2 (t) � (x1 (t), x2 (t), u (t), ζ (t)) ≤ eT

2 (t) ϕ̄1 (s2 (t), x1 (t), x2 (t)) + sT
2 (t) ϕ̄2 (s2 (t), x1 (t), x2 (t), r (t))

+ 1

4
sT

2 (t) s2 (t) − ‖pu‖ sT
2 (t) u (t) +

3∑
i=1

εi. (44)

With the aid of Equation (26), it’s clear that

sT
2 (t) � (x1 (t), x2 (t), u (t), ζ (t)) + sT

2 (t) �f (x1 (t), x2 (t))

≤ sT
2 (t) �T�b (s2 (t), x1 (t), x2 (t), r (t)) + sT

2 (t) ε� + 1

4
sT

2 (t) s2 (t) − ‖pu‖ sT
2 (t) u (t) +

3∑
i=1

εi. (45)
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Then, combined with Equation (29), the following inequality can be constructed

(
μs2

e2

)−1
sT

2 (t) ṡ2 (t) ≤ sT
2 (t)

(
f (x1 (t), x2 (t)) + �T�b (s2 (t), x1 (t), x2 (t), r (t)) + 1

4
s2 (t)

− ‖pu‖ u (t) + Bu (t) + εv tanh
(

s2(t)
α

)− ẋ2c (t) + (
μs2

e2

)−1
Ls2

e2

)

+
3∑

i=1

εi + καεv (46)

Substituting uc (t) into Equation (46) yields that

(
μs2

e2

)−1
sT

2 (t) ṡ2 (t) ≤ sT
2 (t)

⎛
⎜⎝

−k2s2 (t) − ϕρ (x1 (t), x2 (t), s2 (t)) + (B − I ‖pu‖) u (t) − Buc (t)

−�̃T�b (s2 (t), x1 (t), x2 (t), r (t)) − ε̃vtanh

(
s2 (t)

α

)
− μs1

e1
s1 (t)

⎞
⎟⎠

+
3∑

i=1

εi + καεv (47)

Then, referring to Lemma 2.2, we can get that

sT
2 (t) (B − I ‖pu‖) u (t) − sT

2 (t) Buc (t)

= −
(B − I ‖pu‖)

[
sT

2 (t) ϑ̂Buc (t)
]2

√[
sT

2 (t) ϑ̂Buc (t)
]2 + ε2

u

− sT
2 (t) Buc (t)

≤ − 1

ϑ

[
sT

2 (t) ϑ̂Buc (t)
]2

√[
sT

2 (t) ϑ̂Buc (t)
]2 + ε2

u

− sT
2 (t) Buc (t)

≤ 1
ϑ

(
−
∥∥∥sT

2 (t) ϑ̂Buc (t)
∥∥∥+ εu

)
− sT

2 (t) Buc (t)

≤ 1

ϑ

(
ϑ̃sT

2 (t) Buc (t) + εu

)

(48)

For any vector ξ ∈R
n, we define

Tanh (ξ (t)) = [tanhξ1 (t), tanhξ2 (t), · · · , tanhξn (t)]T . (49)

Hence, the following formula is established

ρ (x1 (t), x2 (t))

�r

= ρ (x1 (t), x2 (t))

�r

(
1 − 16TanhT

(
sT

2 (t)

ερ

)
Tanh

(
sT

2 (t)

ερ

))
+ sT

2 (t) ϕρ (x1 (t), x2 (t), s2 (t))
(50)

where

ϕρ (x1 (t), x2 (t) , s2 (t)) = 16s2 (t) ρ (x1 (t), x2 (t))

�rsT
2 (t) s2 (t)

TanhT

(
sT

2 (t)

ερ

)
Tanh

(
sT

2 (t)

ερ

)
(51)

noting that ϕρ (x1 (t), x2 (t), s2 (t)) is a non-singular function vector for s2 (t).
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Substituting formulas (47), (48), (50) and (51) into formula (42), and combining Equation (40) and
Assumption 4, we can derive the result of the differentiation of V as follows

V̇ = V̇1 + V̇2

≤ −s̄T
1 (t) Qs̄1 (t) −

(
L − μs1

e1
+ 1

2

)
d̃T

1 (t) d̃1 (t) + 1

2
d̄2

1 − k2sT
2 (t) s2 (t)

+ρ (x1 (t), x2 (t))

�r

(
1 − 16TanhT

(
sT

2 (t)

ερ

)
Tanh

(
sT

2 (t)

ερ

))
+ ϑ̃

ϑ
sT

2 (t) Buc (t)

+εu

ϑ
− sT

2 (t) �̃T�b (s2 (t), x1 (t), x2 (t), r (t)) − sT
2 (t) ε̃vtanh

(
s2 (t)

α

)

+Tr
(
�̃T�−1

�

˙̂
�
)

+ 1

ϑ�ϑ

ϑ̃
˙̂
ϑ + ε̃T

v
˙̂εv − γ0

�r

r (t) +
3∑

i=1

εi + καεv

. (52)

By using the adaptive laws Equation (33) and considering the following inequalities

−Tr
(
�̃T�̂

)
≤ −1

2
Tr
(
�̃T�̃

)
+ 1

2
Tr
(
�T�

)
−ε̃T

v ε̂v ≤ −1

2
ε̃2

v + 1

2
ε2

v

−ϑ̃T ϑ̂≤ −1

2
ϑ̃ 2 + 1

2
ϑ 2

(53)

Therefore, we can further obtain the following result

V̇ ≤ −s̄T
1 (t) Qs̄1 (t) −

(
L − μs1

e1
+ 1

2

)
d̃T

1 (t) d̃1 (t) − k2sT
2 (t) s2 (t) − λϑ

2ϑ
ϑ̃ 2

−λ�

2
Tr
(
�̃T�̃

)
− λε

2
ε̃2

v + 1

2
d̄2

1 + ρ (x1 (t), x2 (t))

�r

(
1 − 16TanhT

(
sT

2 (t)

ερ

)
Tanh

(
sT

2 (t)

ερ

))

+λϑ

2
ϑ + λ�

2
Tr
(
�T�

)+ λε

2
ε2

v + εu

ϑ
− γ0

�r

r (t) +
3∑

i=1

εi + καεv

(54)

Ultimately, we can get the following conclusions

V̇ ≤ −γ V + kf + ρ (x1 (t) ,2 (t))

�r

(
1 − 16TanhT

(
sT

2 (t)

ερ

)
Tanh

(
sT

2 (t)

ερ

))
(55)

where

γ = min
{
2λmin (Q), 2L − (

μs1
e1

+ 1
)
, 2μs2

e2
k2, λε, λmin (��) λ�, �ϑλϑ

}
kf = λ�

2
Tr
(
�T�

)+ λε

2
ε2

v + λϑ

2
ϑ + d̄2

1

2
+ εu

ϑ
+

3∑
i=1

εi + καεv

(56)

Define the following compact set

�f = {x ∈R
n |V (x) ≤ γ2/γ1 }

�ρ = {x |‖x‖ ≤ 0.2554ε } (57)

Based on Lemma 3, it is easy to know that if s2 (t) ∈ �f ∩ �ρ , the solution of the closed-loop con-
trol system

[
s0 (t), s1 (t), s2 (t), ε̃v (t), �̃ (t), ϑ̃ (t)

]
are naturally bounded. If s2 (t) /∈ �f ∩ �ρ , V̇ < 0 can

be proved and V (t) gradually decreases, and the solution will eventually converge to the set �f ∩ �ρ .
Furthermore, according to Lemma 4, we know that when t → ∞, e1 (t) → 0, that is, the system tracking
error gradually converges to zero. The proof is completed.
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Figure 2. The tracking performance of x1 (t) under different control schemes.
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Figure 3. The tracking performance of x2 (t) under different control schemes.

4.0 Simulation study
In this section, numerical simulations are conducted to demonstrate the validity of the proposed FIAC
method. The simulations will be carried out in the following two aspects: a comparison of the proposed
method with other methods and a comparison of the proposed method under different cases.

Based on the nonlinear system given by Equation (1), the specific parameters are given as

f (x1 (t) , x2 (t)) = 0.2 sin (x1 (t) + x2 (t)) , B = 2

�f (x1 (t) , x2 (t)) = 0.1 sin (0.2x1 (t) + 0.1x2 (t))
(58)

The mismatched disturbance and matched disturbance are set as

d1 (t) = 0.1 sin (0.1 t), d2 (t) = 0.2 sin (0.2 t) (59)

We choose the unmodeled dynamics as

ζ̇ (t) = −12ζ (t) + x1(t)
Tx1 (t) + x2(t)

Tx2 (t), ζ (0) = 1 (60)
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Figure 4. The tracking performance of x1 (t) of the proposed FIAC scheme under different cases.
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Figure 5. The tracking performance of x2 (t) of the proposed FIAC scheme under different cases.

The coupling uncertainty is affected by the system states, the input signal, and the unmodeled
dynamics, which is supposed to be

� (x1 (t), x2 (t), u (t), ζ (t)) = −2sin (t) x1 (t) + ζ (x1 (t) + x2 (t)) − sin (ζ (t)) u (t) (61)

What’s more, the dynamic auxiliary signal r (t) is designed as

ṙ (t) = −3r (t) + x1(t)
Tx1 (t) + x2(t)

Tx2 (t), r (0) = 0.5 (62)

The time-varying asymmetric constraints of the states are set as

b1 (t) = −e−t − 1, b̄1 (t) = 5e−t + 1

b2 (t) = −6e−t − 1, b̄2 (t) = 2e−t + 1
(63)

The input of the BIAS-RBFNN is selected as Z (t) = [x1 (t), x2 (t), s2 (t), r (t)]T and the position of
the hidden nodes of each input channel is [−1, 0, 1], thus the total number of hidden nodes is 34 = 81.

In this simulation, the initial conditions are set as follows: x1 (0) = 2, x2 (0) = 0.1, ε̂v (0) =
0, �̂ (0) = [0, 0, . . . , 0]T

1×81 , ϑ̂ (0) = 3. The control gains are designed as k0 = 10, k1 = 4, k2 = 10.
The adaptive parameters are given as λε = 0.3, λ� = 0.1, λϑ = 0.2 and the gains of the adaptive laws
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Figure 6. The trajectories of the adaptive parameters of the proposed FIAC scheme.
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Figure 7. The trajectories of the auxiliary signal r (t) and the unmodeled dynamics ζ (t).

are set as �� = 10, �ϑ = 1.2. The constants in the simulation are selected as εu = 2, ερ = 0.1, α =
0.1, �r = 100. The gain of the disturbance observer is set as L = 10. The time-varying desired signal is
generated by xd (t) = 2e−t.

The simulation results are provided in Figs. 2–7. To verify the advantages of the proposed FIAC
method, the full-state-constrained adaptive control (FAC) method without BIAS-RBFNN (BNN) and the
FIAC method without fault-tolerant processing (FTP) are also taken into account for comparison, which
is shown in Figs. 2 and 3. It can be seen from Figs. 2 and 3 that the proposed FIAC method can achieve
excellent tracking performance and guarantee to never violate the predefined time-varying asymmetric
full state constraints in simultaneous presence of the unmodeled dynamics and disturbances, which
indicates the control objective has been realised successfully. It is obvious that although the tracking
trajectories of the FAC method without BNN and the FIAC method without FTP converge gradually,
the dynamic performance of the system is ignored, resulting in nonnegligible oscillation and overshoot,
as well as the system states exceeding the constraint boundary. The varying trajectories of the adaptive
parameters of the proposed FIAC method are shown in Fig. 6, which demonstrates the boundness of
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Table 2. Three different cases of the simulation experiment

Uncertainties Case1 Case2 Case3
d1 (t) 0.1 sin (0.1 t) 0.5 sin (0.1 t) sin (0.1 t)
d2 (t) 0.2 sin (0.2 t) sin (0.2 t) 2 sin (0.2 t)
�f (x1, x2) 0.1 sin (0.2x1 + 0.1x2) 0.5 sin (0.2x1 + 0.1x2) sin (0.2x1 + 0.1x2)

all the adaptive parameters. More specifically, it is shown in Fig. 7 that the purpose of suppressing
unmodeled dynamics is achieved well by the dynamic auxiliary signal r (t).

To show the robustness of the proposed FIAC method, a numerical simulation is carried out under
three different cases, which is shown in Figs. 4 and 5. Three different cases correspond to three groups
of different disturbances and model uncertain items, the specific values to be set are shown in the
Table 2.

In order to present a fair comparison, here we take the same initial conditions and the controller
parameters which are mentioned above. As illustrated in Figs. 4 and 5, although the tracking trajectories
will fluctuate with the increase of disturbances and uncertainty, the overall tracking effects still meet
the requirements, which shows that the proposed FIAC method has strong anti-disturbance ability and
robustness.

5.0 Conclusions
In this paper, we have proposed a novel FIAC scheme for a class of uncertain nonlinear systems sub-
ject to full state constraints, unmodeled dynamics and disturbances. Different from most of the existing
control shemes that consider unmodeled dynamics of system, this paper also solves the problem of
coupling relationship between unmodeled dynamics and system states, and proposes a decoupling algo-
rithm for coupling uncertainties using an auxiliary dynamic signal and BIAS-RBFNN. Among them,
BIAS-RBFNN is an improved version of traditional RBFNN, which has stronger robustness and higher
estimation accuracy. Moreover, the nonlinear error transformation technology adopted in this paper is
simple and effective, which ensures the states of the system do not exceed the predefined time-varying
asymmetric constraints and reduces the difficulty of controller design to a certain extent. By utilising
mathematical inequality and a disturbance observer, both matched and mismatched disturbances are
reasonably estimated and circumvented. Last but not least, through two groups of comparative simula-
tions, it can be clearly seen that the proposed FIAC scheme in this work achieves satisfactory tracking
performance without violating predefined full state constraints, and all closed-loop signals are bounded.
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