BIJECTIVE PROOFS OF SOME *n*-COLOR PARTITION IDENTITIES

ву A. K. AGARWAL

ABSTRACT. Using a technique of Agarwal and Andrews (1987), bijective proofs of some n-color partition identities discovered recently by the author, are given.

1. Introduction, Definitions and the Main Result.

Recently in [3] the following q-identitites of Rogers [5]

(1.1)
$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_{2n}} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{2n+1})(1-q^{20n+4})(1-q^{20n+16})}$$

(1.2)
$$\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q;q)_{2n+1}} = \prod_{\substack{n=1\\n\neq\pm 3,\pm 4,\pm 7,10 \pmod{20}}}^{\infty} (1-q^n)^{-1}$$

(1.3)
$$\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q;q)_{2n}} = \prod_{\substack{n=1\\n\neq\pm1,\pm8,\pm9,10 \pmod{20}}}^{\infty} (1-q^n)^{-1}$$

(1.4)
$$\sum_{n=0}^{\infty} \frac{q^{n(n+2)}}{(q;q)_{2n+1}} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{2n+1})(1-q^{20n+8})(1-q^{20n+12})},$$

where $(a; q)_n$ is a rising q-factorial which in general is defined by

$$(a;q)_n = \sum_{i=0}^{\infty} \frac{(1-aq^i)}{(1-aq^{n+i})},$$

if n is a positive integer, then obviously

$$(a;q)_n = (1-a)(1-aq)\dots(1-aq^{n-1}),$$

Received by the editors November 2, 1987.

1985 Mathematics Subject Classification: 05A17, 11P80.

[©] Canadian Mathematical Society 1987.

and

$$(a;q)_{\infty} = (1-a)(1-aq)(1-aq^2)\dots,$$

were interpreted combinatorially as follows:

THEOREM 1.1. Let $A_1(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal 0 are 0 or 1. Let $B_1(\nu)$ denote the number of partitions of ν in which each part is either odd or congruent to $\pm 4 \pmod{20}$. Then $A_1(\nu) = B_1(\nu)$ for all ν .

THEOREM 1.2. Let $A_2(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -1 are 0 or 1. Let $B_2(\nu)$ denote the number of partitions of ν into parts $\not\equiv \pm 3, \pm 4, \pm 7, 10 \pmod{20}$. Then $A_2(\nu) = B_2(\nu)$ for all ν .

THEOREM 1.3. Let $A_3(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -1 are 1 or 2. Let $B_3(\nu)$ denote the number of partitions of ν into parts $\not\equiv \pm 1, \pm 8, \pm 9, 10 \pmod{20}$. Then $A_3(\nu) = B_3(\nu)$ for all ν .

THEOREM 1.4. Let $A_4(\nu)$ denote the number of partitions of ν such that the anti-hook differences on diagonal -2 are 1 or 2. Let $B_4(\nu)$ denote the number of partitions of ν in which each part is either odd or congruent to $\pm 8 \pmod{20}$. Then $A_4(\nu) = B_4(\nu)$ for all ν .

Note. Theorems 1.3 and 1.4 were incorrectly stated in [3].

Later in [2] following the method of [1], n-color partition theoretic interpretations for the same q-identities (1.1)–(1.4) were given in the following form:

Theorem 1.5. Let $C_1(\nu)$ denote the number of partitions of ν with "n copies of n" such that

- (1.5.a) even parts appear with even subscripts and odd with odd, and
- (1.5.b) each pair of parts has nonnegative weighted difference.

Then $C_1(\nu) = B_1(\nu)$ for all ν .

Theorem 1.6. Let $C_2(\nu)$ denote the number of partitions of ν with "n+1 copies of n" such that

- (1.6.a) even parts appear with odd subscripts and odd with even,
- (1.6.b) each pair of parts has nonnegative weighted difference,
- (1.6.c) for some i, i_{i+1} is a part, and
- (1.6.d) the parts are nonnegative.

Then $C_2(\nu) = B_2(\nu)$ for all ν .

Theorem 1.7. Let $C_3(\nu)$ denote the number of partitions of ν with "n copies of n" such that

- (1.7.a) even parts appear with even subscripts and odd with odd subscripts greater than 1, and
- (1.7.b) the weighted difference of each pair of parts m_i, m_j is either nonnegative or -2.

Then $C_3(\nu) = B_3(\nu)$ for all ν .

Theorem 1.8. Let $C_4(\nu)$ denote the number of partitions of ν with "n+2 copies of n" such that

(1.8.a) even parts appear with even subscripts and odd with odd,

(1.8.b) each pair of parts has a nonnegative weighted difference,

(1.8.c) for some i, i_{i+2} is a part,

and

(1.8.d) the parts are nonnegative.

Then $C_4(\nu) = B_4(\nu)$ for all ν .

Using a technique of [4] we give here a bijective proof of the following:

Theorem 1.9. For $1 \le \kappa \le 4$,

$$A_{\kappa}(\nu) = C_{\kappa}(\nu).$$

Before we give the proof of this theorem we recall the definitions of anti-hook differences from [3] and those of partitions with "n+l copies of n" and the weighted difference from [4].

DEFINITION 1. Let Π be a partition whose Ferrers graph is embedded in the fourth quadrant. Each node (i, j) of the fourth quadrant which is not in the Ferrers graph of Π is said to possess an anti-hook difference $\rho_l - \kappa_j$ relative to Π , where ρ_i is the number of nodes on the i-th row of the fourth quadrant to the left of node (i, j) that are not in the Ferrers graph of Π and κ_j is the number of nodes in the j-th column of the fourth quadrant that lie above node (i, j) and are not in the Ferrers graph of Π .

DEFINITION 2. A partition with "n + l copies of n" $l \ge 0$ is a partition in which a part of size n, $n \ge 0$, can come in n + l different colors denoted by subscripts: $n_1, n_2, \ldots, n_{n+l}$. Thus for example, the partitions of 2 with "n + 1 copies of n" are:

$$2_1, 2_1 + 0_1, 1_1 + 1_1, 1_1 + 1_1 + 0_1$$

 $2_2, 2_2 + 0_1, 1_2 + 1_1, 1_2 + 1_1 + 0_1$
 $2_3, 2_3 + 0_1, 1_2 + 1_2, 1_2 + 1_2 + 0_1$.

Note that zeros are permitted if and only if l is greater than or equal to 1.

DEFINITION 3. The weighted difference of two parts m_i and n_j , $m \ge n$ is defined by m - n - i - j and is denoted by $((m_i - n_j))$.

2. Proof of the Theorem 1.9.

Each of these four cases is proved in a similar way. We provide the details for $\kappa=1$ and sketch the main steps to treat the remainder.

Let Π be a partition enumerated by $A_1(\nu)$. Let

$$\begin{pmatrix} a_1 & a_2 & \dots & a_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}$$
,

where $a_1 > a_2 > ... > a_r \ge 0$, $b_1 > b_2 > ... > b_r \ge 0$, and $a_1 + a_2 + \cdots + a_r + b_1 + b_2 + \cdots + r = \nu$, be the corresponding Frobenius' notation. Then the anti-hook difference conditions of Theorem 1.1 are equivalent to

$$(2.1.a) a_i \ge b_i, \text{ and }$$

$$(2.1b) b_i \ge a_{i+1} + 1.$$

We now establish a 1-1 correspondence between the ordinary partitions enumerated by $A_1(\nu)$ and the partitions with n copies of n enumerated by $C_1(\nu)$. We do this by mapping each column $\frac{a}{b}$ of the Frobenius Symbol to a single part m_i of a partition with n copies of n. The mapping ϕ is

(2.2)
$$\phi: \begin{pmatrix} a \\ b \end{pmatrix} \to \begin{cases} (a+b+1)_{b-a} & \text{if } a < b \\ (a+b+1)_{a-b+1} & \text{if } a \ge b, \end{cases}$$

the inverse mapping ϕ^{-1} is then given by

(2.3)
$$\phi^{-1}: m_1 \to \begin{cases} \binom{(m-i-1)/2}{(m+i-1)/2} & \text{if } m \not\equiv i \pmod{2} \\ \binom{(m+i-2)/2}{(m-i)/2} & \text{if } m \equiv i \pmod{2}. \end{cases}$$

Now for any two adjacent columns $\frac{a}{b} \frac{c}{d}$ in the Frobenius symbol with $\phi(\frac{a}{b}) = m_i$ and $\phi(\frac{c}{d}) = n_i$ (defined by (2.2)) we have

$$(2.4) ((m_i - n_j)) = \begin{cases} 2b - 2c - 2 & \text{if } a \ge b, c \ge d\\ 2a - 2c - 1 & \text{if } a < b, c \ge d\\ 2b - 2d - 1 & \text{if } a \ge b, c < d\\ 2a - 2d & \text{if } a < b, c > d \end{cases}$$

Clearly (2.1.a) and (2.2) imply (1.5.a) and then (2.1.b) and only the first line of (2.4) will imply (1.5.b).

To see the reverse implication we note that by (1.5.a) $m = i, n \equiv j \pmod 2$ and so under ϕ^{-1}

(2.5)
$$a-c = \frac{1}{2}((m_i - n_j)) + i$$

(2.6)
$$b - d = \frac{1}{2}((m_i - n_j)) + j$$

$$(2.7) a - b = i - 1$$

(2.8)
$$b-c-1=\frac{1}{2}((m_i-n_j))$$

Now (2.5) and (2.6) by (1.5.b) guarantee that $a_i > a_{i+1}$ and $b_i > b_{i+1}$. (2.7) implies (2.1.a) and (2.8) by (1.5.b) implies (2.1.b). This completes the proof of $A_1(\nu) = C_1(\nu)$. For $\kappa = 2$, the anti-hook difference conditions are equivalent to

$$(2.9) b_{i+1} + 2 \le a_i \le b_i + 1.$$

The map ϕ is

(2.10)
$$\phi \begin{pmatrix} a \\ b \end{pmatrix} \to \begin{cases} (a+b+1)_{b-a+2} & \text{if } a \le b+1 \\ (a+b+1)_{a-b-1} & \text{if } a > b+1. \end{cases}$$

and ϕ^{-1} is given by

(2.11)
$$\phi^{-1}: m_i \to \begin{cases} \binom{(m+i)/2}{(m-i-2)/2} & \text{if } m \not\equiv i+1 \pmod{2} \\ \binom{(m-i+1)/2}{(m+i-3)/2} & m \equiv i+1 \pmod{2} \end{cases}$$

For $\kappa = 3$, the anti-hook difference conditions are equivalent to

$$(2.12) a_{i+1} \le b_i < a_i.$$

The map ϕ is

(2.13)
$$\phi \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow \begin{cases} (a+b+1)_{b-a} & \text{if } a < b \\ (a+b+1)_{a-b+1} & \text{if } a > b \end{cases}$$

and the inverse map $\phi^{\scriptscriptstyle 1}$ is given by

(2.14)
$$\phi^{-1}: m_i \to \begin{cases} \binom{(m-i-2)/2}{(m+i-1)/2} & \text{if } m \not\equiv i \pmod{2} \\ \binom{(m+i-2)/2}{(m-i)/2} & \text{if } m \equiv i \pmod{2}, i \neq 1 \end{cases}$$

Lastly, in the case $\kappa=4$, we see that the anti-hook difference conditions are equivalent to

$$(2.15) b_{i+1} + 3 \le a_i \le b_i + 2, a_i \ne 1.$$

The map ϕ is

(2.16)
$$\phi \begin{pmatrix} a \\ b \end{pmatrix} \longrightarrow \begin{cases} (a+b+1)_{b-a+3} & \text{if } a \le b+2, a \ne 1 \\ (a+b+1)_{a-b-2} & \text{if } a > b+2 \end{cases}$$

and ϕ^{-1} is given by

(2.17)
$$\phi^{-1}: m_i \to \begin{cases} \binom{(m+i+1)/2}{(m-i-3)/2} & \text{if } m \not\equiv i+2 \pmod{2} \\ \binom{(m-i+2)/2}{(m+i-4)/2} & \text{if } m \equiv i+2 \pmod{2}, m \neq i. \end{cases}$$

In Theorems 1.6 and 1.8 the reason why i_{i+l} (l=1 in Th. 1.6 and l=2 in Th. 1.8) is required as a part and that the parts are nonnegative can be given in a similar way as given in [4, p. 46].

To illustrate the bijections we have constructed we give an example for $\kappa=1$, $\nu=7$ shown in the following table:

Partitions enumerated by $A_1(7)$	Frobenius Symbol for partitions enumerated by $A_1(7)$	Image under ϕ i.e., partitions enumerated by $C_1(7)$
7	(⁶ ₀)	77
6+1	$\binom{5}{1}$	75
5 + 1 + 1	$\binom{4}{2}$	7 ₃
4+1+1+1	$\binom{3}{3}$	71
4+2+1	$\begin{pmatrix} 3 & 0 \\ 2 & 0 \end{pmatrix}$	$6_2 + 1_1$
3 + 3 + 1	$\begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}$	$5_1 + 2_2$
5 + 2	$\begin{pmatrix} 4 & 0 \\ 1 & 0 \end{pmatrix}$	$6_4 + 1_1$

REFERENCES

- 1. A. K. Agarwal, *Partitions with "N copies of N"*, Lecture Notes in Mathematics, 1234, Proceedings of the Colloque De Combinatorie Enumerative, University of Quebec at Montreal, (1985), Springer-Verlag, 1–4.
- 2. —— Rogers-Ramanujan identities for n-color partitions, J. Number Theory, 28 (3), (1988), pp. 299–305.
- 3. A. K. Agarwal and G. E. Andrews, *Hook-differences and lattice paths*, J. Statist. Plann. Inference, 14 (1986), 5–14.
- 4. ——Rogers-Ramanunujan identities for partitions with "N copies of N", J. Combin. Theory Ser A, Vol. 45, No. 1, (1987), 40–49.
- 5. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. **25** (1884), 318–343.

Department of Mathematics
The Pennsylvania State University
(Mont Alto Campus)
Mont Alto, PA 17237, U.S.A.