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Abstract

Rosen gave a determinant formula for relative class numbers for cyclotomic function fields, which may be
regarded as an analogue of the classical Maillet determinant. In this paper, we give a determinant formula
for relative congruence zeta functions for cyclotomic function fields. Our formula may be regarded as a
generalization of the determinant formula for the relative class number.
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1. Introduction

Let i, be the relative class number of the cyclotomic field of pthroots of unity. Carlitz
and Olson [CO] computed the number h; in terms of a certain classical determinant,
known as the Maillet determinant.

In the cyclotomic function field case, several authors gave analogues of the Maillet
determinant. Let k be the field of rational functions over the finite field IF, with g
elements. Fix a generator T of k, and let A be the polynomial subring F, [T'] of k. Let
m be a monic polynomial of A, and A,, be the set of all m-torsion points of the Carlitz
module. The field K, obtained by adjoining the points of A, to k is called the mth
cyclotomic function field. For the definition of the Carlitz module and the basic facts
about cyclotomic function fields, see Section 2 below. Let K, be the decomposition
field of the infinite prime of k in K,,/k, which is called the ‘maximal real subfield’
in K.

Let hy, and h} be the orders of the divisor class group of degree zero for K, and
K} Define the relative class number /), of K,, by h,, = hp /b
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Rosen [Rol] gave a determinant formula for /2, in the case of the monic irreducible
polynomial P, which is regarded as an analogue of the Maillet determinant. Recently,
several authors generalized Rosen’s formula and gave class number formulas (see, for
instance, [ACJ, BK]).

Let ¢ (s, K;;) be the congruence zeta function for K,,. The function ¢(s, K,,) can
be expressed in the form

Zm(q™?)
(1 =g —q'=)’
where Z,,(X) is a polynomial with integral coefficients. Then we have the
decomposition

;(S, Km) =

Zn(X) = Z,D(X) 237 (X),
where Z,g:r)(X) is the polynomial corresponding to the congruence zeta function
¢(s, an ) for K,;t . For the polynomial Z,(J ) (X), the author gave the determinant
formula in the paper [Sh]. We see that
£(s, Kn)
¢G5, Kim)'
this is called the relative congruence zeta function for K,,.

Zi(q ™) =

The main result of this paper is a determinant formula for Z,(,,_)(X). Since

Z,(n_)(l) = h,,, our formula may be regarded as a generalization of the determinant

formula for the relative class number.
As an application of our determinant formula, we will give an explicit formula for
some coefficients of low-degree terms for Z,Sf) (X).
2. Basic facts

In this section, we outline several basic facts about cyclotomic function fields and
their zeta functions. For the proofs of these facts, see [GR, Ha, Ro2, Wa].

2.1. Cyclotomic function fields. Let K be the algebraic closure of k. For x € K*
and m € A, we define the action

m-x =m(yp + u)(x),
where ¢ and u are the [F;-linear maps of K defined by
¢:K* — K* x> x4,
n:K*— K* x—T-x.

Under the above action, K2 becomes an A-module, called the Carlitz module. Let
A, be the set of all x such that m - x = 0; this is a cyclic sub-A-module of K?°. Fix a
generator A,, of A,. Then we have the following isomorphism of A-modules:

A/(m) — A, a mod ma- Ay,

where (m) is the principal ideal mA generated by m. Let (A/(m))* be the group of
units of A/(m), and ® (m) be the order of (A/(m))*. Let K,, be the field obtained by
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adjoining all the elements of A,, to k. We call K,,, the mth cyclotomic function field.
The extension K, /k is abelian, and the following isomorphism is valid:

(A/(m))* — Gal(K,,/k) a mod m > 64 mod m> 2.1)

where Gal(K,, / k) is the Galois group of K,/ k, and 64 mod 1, 18 the isomorphism given
by 04 mod m(Am) =a - Ay. By using isomorphism (2.1), we find that the extension
degree of K,,/k is ®(m). We see that IF; is contained in (A/(m))*. Let K} be
the subfield of K, corresponding to Fj. Again from isomorphism (2.1), we find
that the extension degree of K} /k is ®(m)/(g — 1). Let Po be the unique prime
of k which corresponds to the valuation v, With vso(7T) < 0. The prime Py, splits
completely in K, /k, and any prime of K} over Py is totally ramified in K, /K,}.
Hence K ;g = K, N koo Where ko 1s the completion of k by v,. The field K ,ﬁ is called
the maximal real subfield of K,,; it is an analogue of the maximal real subfield of a
cyclotomic field.

Next, we review some basic facts about Dirichlet characters. For a monic
polynomial m € A, let X,, be the group of all primitive Dirichlet characters of
(A/(m))*. Let Xn‘*; be the set of all characters in X,, such that x(a) =1 for any

ac IF;;. Put
K= U K
m monic
where m runs through all monic polynomials of A. Let D be the group of all primitive
Dirichlet characters. By the same argument as in [Wa, Ch. 3], we have a one-to-one
correspondence between finite subgroups of I and finite subextension fields of K/ k.
The following theorem is useful for obtaining information about primes.

THEOREM 2.1 (See [Wa, Theorem 3.7]). Let X be a finite subgroup of D, and K x the
associated field. For an irreducible monic polynomial P € A, put

Y={xeX|x(P)#0}, Z={xeX|x(P)=1}

Then the following hold.

° X /Y is isomorphic to the inertia group of P in Kx /k.

° Y /Z is isomorphic to the cyclic group of order fp; where fp is the residue class
degree of P in Kx / k.

° X /Z is isomorphic to the decomposition group of P in Kx / k.

2.2. The relative congruence zeta function. Our next task is to investigate
congruence zeta functions for cyclotomic function fields. Let K be a geometric
extension of k of finite degree. We define the congruence zeta function of K as

1 —1
= 10 5h)
prime

where P runs through all primes of K, and NP is the number of elements of the
residue class field of the prime P. We see that {(s, K) converges absolutely when
Re(s) > 1.
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THEOREM 2.2 (See [Ro2, Theorem 5.9]). Let gx be the genus of K and hg be
the order of the divisor class group of degree zero. Then there is a polynomial
Zk (X) € Z[X] of degree 2gk satisfying

Zk(q™")
(1 —g=)(1 —q'=s)’

’(s, K)= (2.2)

and Zx(0) =1 and Zg (1) = hg.
Since the right-hand side of Equation (2.2) is meromorphic on the whole of C, this
equation provides the analytic continuation of ¢ (s, K) to the whole of C.

Next, we explain the zeta function of Ok, which is the integral closure of A in the
field K. We define the zeta function ¢ (s, Ok) for the ring Ok by

1\
s, Okx) = l——— .
£(s, Ok) 1;[( NPS)
where the product runs over all primes of Og. Let X be a finite subgroup of D, and
K x be the associated field. By the same argument as in the case of number fields (see

[Wa]), we have the L-function decomposition
£(s. Oky) =[] Ls. 0
xeX
where the L-function is defined by

1—x(P)\!
L(s, x) = H(%) ,

P

where P runs through all monic irreducible polynomials of A. Let f, be the residue
class degree of P, in Kx/k and goo be the number of primes in Ky over Py,. Then

£(s, Kx) = (5, O ) (1 — g )76,
From now on, we will focus on the cyclotomic function field case. For a monic

polynomial m € A, let K, and K, be the mth cyclotomic function field and its
maximal real subfield. The relative congruence zeta function for K, is defined by

_ (s, Km)
(O, Ky = S22
¢(s, Kiy)
By Theorem 2.2, there are polynomials Z,,(X) and Z,S:r) (X) with integral coefficients
such that
Z ( —S)
g(s’ Km) = _’:l q 1—s\’
(1=g=)A —-q' %)
)/, —s
Zw (™)
t(s, K = = —.
(1=g=)1—qg"~)
Put 7 (x
ZD(X) = %;
Zn (X)

https://doi.org/10.1017/51446788710000261 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788710000261

[5] A determinant formula for zeta functions 137

then

¢ Km) =247 (07,
Notice that the fields K,, and K} are associated with X,, and X, respectively. Since
any prime in K} above P is totally ramified in K,/ K},

5@ =[] LG 0 2.3)
XE€Xm

where X, = X,, — X;}. The L-function associated with the nontrivial character can
be expressed by a polynomial of ¢—° with complex coefficients. Hence, we see that

z,i,‘) (X) is a polynomial with integral coefficients.

3. The determinant formula for Z,(,,_)(X )

In the previous section, we defined the relative congruence zeta function
(s, K, for the mth cyclotomic function field, and showed that ¢ (s, K;;;) is given

by a polynomial Z,Sf) (X) with integral coefficients. The goal of this section is to give

a determinant formula for Z,(,,_)(X ). First, we need some notation to construct the
determinant formula. Let m be a monic polynomial of degree d. For « € (A/(m))*,
there is a unique element r,, € A satisfying

o =anT" +ay_1T"" '+ +ay wheren=degry <d,

rq = mod m,
where deg f denotes the degree of the polynomial f. Then we define
Deg(a) =n, L(x)=a,eFy,

and c* (o) = A~} (L(«)), where A is a character of IF;. Put N, = ®(m)/(g — 1). Let
ay, 0, ..., ay, beall of the elements of (A/(m))* such that L(«) = 1; these form a
complete system of representatives for R,, = (A/(m))* /IE"qX. We put

i =cMaia;") Vi, j=1,2,..., N,

dij =Deg(aia;") Vi, j=1,2,..., Np.
For any character A of F*, we define the matrix
DI (X) = (¢} X)) j=12,....Ny-

This matrix plays an essential role in our argument. Note that d;; > 0 when i # j, and
dij =0 and clij =1 wheni = j. Thus D,Sf) (0) is the unit matrix. We put

D (X) = ]—[ det D (X),
A#£1
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where the product runs over all nontrivial characters of IFqX. To be able to state the
main result, we define the polynomial Jn(f) (X) by
IO =] JTa-x@x*e9),
xeXy Clm

where Q is an irreducible monic polynomial dividing m. First, we prove the following
proposition.

PROPOSITION 3.1. With the notation above,

I (X) = ]_[
0lm

(1 — xfodeg Qg0

a- Xfér deg Q)gg '

where fg and fg are the residue class degrees of Q in K,/ k and K.} / k, and g and
g'Q|r are the numbers of primes in K, and K} over Q.

PROOF. Notice that X,, and X! are associated with the mth cyclotomic function field
K, and its maximal real subfield K} respectively. Let Q be an irreducible monic
polynomial dividing m. Put

Yo={x €Xn|x(Q)#0} and Zg={x € Xy |x(Q)=1}.
From Theorem 2.1,

[Ta-x@x®? =[] a-x@x%?)

XEXm XEYQ

= [T TIIa-xv@x*e?

X€Yg/Zg YeZg
80
= ( [T a- x(Q)XdegQ)> :
xX€Yo/Zg
Since Yo /Z is a cyclic group of order fg,
[T - x@x%e2) =q-xfode)
x€¥o/Zg
Hence we obtain the formula
[T a-x@x%e€) =1~ xlede)se,
XEXm
By the same argument,
[T (- x(@x%E2) = (1 - x/0 %),
xeXn

Noting that X,, = X,, — X;}, we can deduce the proposition from the last two

equations. O
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There are several consequences of this proposition. First of all, by Proposition 3.1,

we see that J,fl_) (X) is a polynomial with integral coefficients. Second, if m is a power
of an irreducible polynomial P, the prime P is totally ramified in K,,/k (see [Ro2]).

Hence Jn(f)(X) =1 in this case.
The next theorem is the main result of this paper.

THEOREM 3.2. Let m € A be a monic polynomial. Then

DI(X) =z (X)) (X).
PROOF. For any x € X,,, let the monic polynomial f, be the conductor of x. Define
x by )

X=XP© JTX
where 7, : (A/(m))* — (A/(fy))* is the natural homomorphism. Then
L(s, ) =L(s, x) - [ = x(Q)g™* %2 2).
Qlm

Fix a nontrivial character A of IF;; and ¥ € X, (Y |F; = A). Then

Vo Xy ={x € X, | xlpx =4},
For each character x € X, ( X|1qu =), there is a unique character ¢ € X} with
X = V¥ - ¢. By the same argument as in [GR, Lemma 3],

Non
L(s, ) = ) X(aj)g e

i=1
N

= Z d;(Oll')&(ai)C)L (O{,’)q_Deg(at‘)S'
i=1

Notice that &(a)c*(oz) and Deg are functions over R,,, and ¢~> runs through all
characters of R,, when ¢ runs through all characters of X. By the Frobenius
determinant formula (see [Wa, Lemma 5.26]),

Nn’l
l_[ L(s, x) = l_[ Z ‘P(Oli)w(ai)ck(ai)q_Deg(“i)s
Xl =2 pex; i=1

—1\ A —sd;j
=det(‘/’(0‘iali )Ci‘,‘q y ”)i,j:l,z ..... N,

= det DM (g™%).
From the decomposition

X = € Xon | xliz =2,
A£L
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we see that
D (g ™) = ( [T L. x)) x I,
XE€Xm
By Equation (2.3), we obtain the formula
Dy G =277 @),

Putting X = ¢g—°, we obtain the desired result. ]

We offer two remarks about this theorem. First, Z,(,,_)(X ) = 1 when m is a monic
polynomial of degree one. In fact, we can calculate that D,Sf)(X ) =1 in this case.
Second, recall that Jn(,_)(X ) =1 when m is a power of an irreducible polynomial.
Hence D,(,,_)(X) = Z,(n_)(X) in this case.

As a special case of our result, we obtain the following determinant formula for
relative class numbers.

COROLLARY 3.3 (See [ACJ, BK]). Let h,, be the relative class number of K,,. Put
fo= fQ/fé_ and g, = gQ/gE. Then
1_[ det(Cf\j)i,jzl,z,...,Nm =W, -h,,
A£l
where
B 1_[ (fQ_)g5 if gy = 1 for every prime Q dividing m,

m =1 0lm

0 otherwise.
PROOF. Putting X =1 in Theorem 3.2, we see that
DS (1) =[] det(c}y).
A#£1

and J,;_)(l) = W,, by Proposition 3.1. Since Z,(n_)(l) = h,,, we obtain the desired
result. O

If m is a power of an irreducible polynomial, we see that W, = 1. Otherwise, each
finite prime in K, is not ramified in K,,/K, . Thus we see that fQ_ =g — 1 for a

prime Q with g, = 1.

4. Some coefficients of the low degree terms of D,(,,_)(X )

In this section, we will calculate the coefficients of D,S,_ )(X ) of degrees one and
two, by using the derivative of the determinant. Let m € A be a monic polynomial.

Noting that D,Sf)(O) =1, we see that D,Sf)(X ) may be written in the form
DSY(X)=1+aX +aX>+---,

where each ¢; is an integer (i =1, 2, ...).
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PROPOSITION 4.1. Let m € A be a monic polynomial of degree d, where d > 1. Then
a; =0, 4.4)
a;=0 ifdegm > 2, 4.5)
N
ay = %{(q — 1A = Cw)+ Nu— 1} ifdegm =2,
where
Con=#i=1,2,..., Ny | L") =1}
Here #A is the number of elements of a set A.

By Proposition 3.1, we can find J,;_)(X). Hence we can also calculate the

coefficients of the low-degree terms of Z,(n_) (X). As a preliminary to Proposition 4.1,
we first state the next lemma, which can be proved by simple calculations.

LEMMA 4.2. Let F(X) = (f;j(X))i,; be a matrix with coefficients in the ring of
functions of one variable. If F(X) is twice differentiable and invertible when X = Xy,

then
d det F(X dF
dX  |y_x dx
0
- 7 = de : r v
dX2 X=Xy ’ ’ dX2 "

e FXo) 2 (xo) P (xo) 4L ()
0 dx 0 0 dx 0
+Tr| F(X )—1d—F(x ) ’
0 dx 0 s
where Tr(A) denotes the trace of the matrix A.

We now prove Proposition 4.1.

PROOF. Let A be a nontrivial character of IE‘;, and write
det DIV (X)=1+a} X +a5X* +---
Note that D,(,,A ) (0) is the unit matrix, and

dpg’
X

0) = Uij)i, j=1,2,.... N>

where
0 ifd,'j=00rd,-j>1,

l: =
Ty ifdy =1
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By Lemma 4.2, a{\ =0and

1 dD%  \?
agz—ETr« o (0)) )

Thus we have shown assertion (4.4).

If deg m > 2, there is no pair (i, j) such that d;; =1 and d;; = 1. Thus aé =01in
the case where deg m > 2. Since a; = Zhé 1 a%, we obtain assertion (4.5).

Next we consider the case where deg m = 2. In this case,

0 ifi=j,
1,-,-:{ ’

cf ifi# .
Thus
Nm 1 N"l N}n 1 ] 1
> ah = Z(T -3 D) T L L(eja; )))
1#1 1#1 i=1 j=1
_ Nam@=2) 1IN
-2 2 éis
i=1 j=1
where
o = qg—2 if L(aiaj*l)L(ajai*l) =1,
! -1 otherwise.
For any i, j €{1,2,..., Ny}, there exist y;; € IF‘[}< and B;; € (A/(m))™ such that

L(Bij)=1 anda,-aj_l =¥;jBij- Then
L(oia7 ) Liajo; ) = L(BT.

By noting that

we see that
Nﬂl
Y eij=(q—=1)Cn = Nu.
j=1
Thus we have completed the proof of Proposition 4.1. O

We consider the case where m=T2+aT +be A. If a=T —c¢ satisfies
L(a~") =1, then ¢ is a root of the equation T2 +aT + b+ 1. Thus C,, < 3.

5. Examples

We conclude this paper with some examples.
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EXAMPLE 5.1. When ¢ =3 and m = T? + 1, we see that the extension degree of
K,,/k is 8 and N,,, = 4. Since the polynomial m is irreducible, D,Sf)(X) = Z,§1_)(X).
Put

ar=1, op=T, az=T+1, oag=T+2.
Then

2 (X) = D, (X)

1 - X X X
X 1 -X X
X X 1 —X
X X X 1
=1-2x%4+9x%

The relative class number £, of K, is Z,(n_)(l) =8.
EXAMPLE 5.2. When ¢ =3 and m = T3 + T2, we see that the extension degree of
K, /kis 12 and N,,, = 6. Put

aj=1, ay=T*+2T+2, az3=T>+T+1,
as=T+2, as=T>+1, ag=T>+T+2.

Then

1 X -—-x2 xz x? _—x?
Xz 1 —-x%? —-x? -—-Xx? -x
X2  xZ 1 X —-x? xZ
vy —
Pi@0=ly x x 1 x x
Xz x? —-x —-x% 1 X2
Xz —x? —x? x? X 1
—1-6X>-3X*—6X>+23X°+30x7 +6x% —18x° —27x10

and
IOX) =1+X - X3 —x*
Thus
o Dy (X)
Zn (X) =~
Im " (X)

=1—-X+X>—6X>+3x*—9x° +27x°.
The relative class number £, of K, is Z,ﬁf)(l) = 16.
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