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ABSTRACT

As the simplest case of Langlands functoriality, one expects the existence of the
symmetric power S™ (), where 7 is an automorphic representation of GL(2,A) and A
denotes the adeles of a number field F'. This should be an automorphic representation
of GL(N,A) (N =n+1). This is known for n = 2,3 and 4. In this paper we show how
to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur
representations’, combined with expected results on level-raising, as well as another case
(a particular tensor product) of Langlands functoriality. Our methods assume F' totally
real, and the initial representation 7 of classical type.

1. Introduction

The purpose of this paper is to shed new light on functoriality for regular, algebraic automorphic
representations over CM fields which satisfy a self-duality condition. We formulate three
conjectures. The first, Conjecture 3.1, asserts that one can find congruences between algebraic
modular forms on unitary groups of a certain type. This is a natural generalization of several
results going back to a theorem of Ribet (see [Rib84]) concerning elliptic modular forms, and is
closely related to the conjectural ‘Thara’s lemma’ of [CHTO08].

The other two conjectures are specific instances of Langlands functoriality, essentially the
tensor product GLy x GL,, = GLs2, and the symmetric power GLy — GL,,; for the automorphic
representations under consideration here; see Conjectures 3.2 and 3.3, respectively. Our main
theorem (Theorem 3.4) gives a specific relation between this family of conjectures. As a particular
application, we can prove the following theorem.

THEOREM 1.1. Let 7 be a regular algebraic automorphic representation of GLy(Ag), which is
not automorphically induced from a quadratic extension. Then (cf. § 3.4 below):

(1) Assume Conjecture 3.1 below. Then for each odd integer 1 < n < 25, the nth symmetric
power lifting of m exists, as an automorphic representation of GL,1(Aqg).

(2) Assume Conjectures 3.1 and 3.2 below. Then for each integer n > 1, the nth symmetric
power lifting of m exists, as an automorphic representation of GL,+1(Ag).

We refer the reader to §3 for a detailed description of our results. We begin in §2 by
recalling some background material on automorphic representations and their attached Galois
representations. The proof of Theorem 3.4 occupies §§4-5.
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In a sequel to this paper [CT], we will prove some cases of level-raising, closely related to
Conjecture 3.1, and apply this to the automorphy of symmetric powers, following the program
outlined here. Since these two papers are essentially self-contained, the reader will find some
unavoidable duplication in the material. On the other hand, we have have also referred to some
proofs from the second paper, in particular in §2. We apologise for the possible inconvenience.

2. Automorphic forms

2.1 GL,

Let p be a prime, and let K be a finite extension of Q,. Let {2 denote an algebraically closed
field of characteristic zero. Denote by Admgq GL,, (K) the set of isomorphism classes of irreducible
admissible representations of this group over 2, and by WD Wi the set of Frobenius-semisimple
Weil-Deligne representations (r, N) of W valued in GL,(€2). There is a bijection

recg : Adme GL, (K) <> WD¢ Wk,

characterized by a certain equality of e- and L-factors on either side; cf. [Hen02, HT01]. We define
reck (1) = recg(m| - [(*=™)/2). This is the normalization of the local Langlands correspondence
with good rationality properties; in particular, for any ¢ € Aut(C) and any 7 € Admc GL,(K)
there is an isomorphism
reck(7m) = Treck (m).

This can be seen using, for example, the characterization of recg and the description given in
[Tat79, §3] of the action of Galois on local e- and L-factors. It follows that for any 2 we can
define a canonical bijection

reck : Admq GL,,(K) + WD Wk.

Suppose instead that K is a finite extension of R. Write Admgc GL,(K) for the set
of infinitesimal equivalence classes of irreducible admissible representations of GL,(K) and
Rep¢ Wi for the set of continuous semisimple representations of Wy into GL,,(C). Then there
is a bijection (Langlands’ normalization):

reck : Adme GL, (K) <> ReptWk.

We define reck (7) = recy(n| - |(1=™)/2).

Now suppose that E is an imaginary CM field with totally real subfield F, and let
c € Gal(E/F) denote the non-trivial element.
DEFINITION 2.1. (1) We say that an automorphic representation 7 of GL,(Ag) is RACSDC
(regular algebraic, conjugate self-dual, cuspidal) if it satisfies the following conditions.

e It is conjugate self-dual: ¢ = V.

e It is cuspidal.

e It is regular algebraic. By definition, this means that for each place v|oco of E, the
representation recgv (my) is a direct sum of pairwise distinct algebraic characters.

(2) We say that a pair (7, x) consisting of an automorphic representation 7 of GL, (Ag) and
a character x : F*\Ax — C* is RAECSDC (regular algebraic, essentially conjugate self-dual,
cuspidal) if it satisfies the following conditions.

~

e It is essentially conjugate self-dual: 7¢ = ¥ ® y o Ng/r.
e 7 is cuspidal.
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e 7 is regular algebraic.

e Y is an algebraic character such that y,(—1) = (—1)" for each place v|oo.

(3) We say that a pair (7, x) consisting of an automorphic representation 7 of GL,,(Ar) and
a character x : F*\A% — C* is RAESDC (regular algebraic, essentially self-dual, cuspidal) if it
satisfies the following conditions.

o It is essentially self-dual: 7 = 7V ® .
e 7 is cuspidal.

e 7 is regular algebraic. By definition, this means that for each place v|oo, the representation
rect, (my)|cx is a direct sum of pairwise distinct algebraic characters.

e Y is an algebraic character such that x,(—1) is independent of the place v|co.

If w is a regular algebraic cuspidal automorphic representation of GL,(Ag), then for each
embedding 7 : E — C, we are given a representation r, : C* — GL,(C), induced by recg, (my),
where v is the infinite place induced by 7, and the isomorphism £ = C* induced by 7. There
exists (cf. [Clo90, Lemma 4.9]) an integer w € Z such that this representation has the form

re(z) = (2971FYTOR L g ana

where a,; € (n—1)/24+Z and a;1 > --- > ary. (Note that w = 0 if and only if 7 is unitary; this
will be the case if 7 is conjugate self-dual.) We will refer to the tuple a = (a1, . .., @rn)recHom(E,C)
as the infinity type of 7. We also define a tuple A = (Ar)rctom(E,c) = (A1, - -+ Arn) reHom(E,C)>
which we call the weight of 7, by the formula A;; = —a; 41— + (n —1)/2 — (n — i). Then for
each 7 : E — C, we have A1 > --- > A5, and the irreducible admissible representation of
GL,,(C) corresponding to r, has the same infinitesimal character as the dual of the algebraic
representation of GL,,(C) with highest weight A;. If 7 is a regular algebraic cuspidal automorphic
representation of GL,(Afr), then for each embedding F' — C, we get a representation r, =
recr, (my)|cx, where v is the place of F corresponding to 7. In this case we use the same formulae
to define the infinity type and the weight of .

We will also have cause to consider representations which are not cuspidal. Suppose that
01,02 are conjugate self-dual cuspidal automorphic representations of GLj, (Ag), GL,,(AR),
respectively, and that ¥ = oy B 09 is regular algebraic. Then the representations oy - |(%—™)/2
are regular algebraic. We call a representation 3 arising in this way a RACSD sum of cuspidal
representations. In this case, define a’ = (ai)TeHom( g,c) by the requirement that (a371+ (ni—n)/2,

.. al . + (n; —n)/2) equal the infinity type of oy - (":=7)/2 "and define b = (br)reHom(E,C) DY
the formula

(bris. . brn) = (a71_71, . ,a}_’nl,ail, . ,ainz).
Let &,, denote the symmetric group on {1,...,n}. There is a unique tuple w = (w-) reom(E,c) €

GEom{LE’C) such that for each 7 € Hom(E, C),

braw-(1) > > braw, (n)-

The infinity type of ¥ is defined to be (b, (1) - - s brw, (n)) reHom(E,C)-

THEOREM 2.2. (1) Let m be a RACSD sum of cuspidals or a RAECSDC automorphic
representation of GL,(Ag), and fix an isomorphism ¢ : Q; = C. Then there exists a continuous
semisimple representation

r.(m) : Gg — GL,(Q))
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satisfying the following property: for every finite place v of E not dividing [, there is an
isomorphism
WD(r.(7)|ap, YEmss o recg (v 1my).

For each place v of E dividing I, r,(7)|c, is de Rham, and if 7 : E, — Qy is an embedding then
the Hodge—Tate weights with respect to this embedding are

HT,(r(7)) = {—a,~1,1 +(n—=1)/2,...,—a,~1,, + (n—1)/2}.

_(2) Let (m, x) be a RAESDC automorphic representation of GLy,(Ar), and fix an isomorphism
= C. Then there exists a continuous semisimple representation

L Q
r(m) : Gp — GL,(Q))

satisfying the following property: for every finite place v of F not dividing [, there is an
isomorphism
WD(r.(7)|ap, )Es = vect, (17 Mmy).

For each place v of F' dividing I, v,(7)|qy, is de Rham, and if 7 : F}, — Q, is an embedding then
the Hodge—Tate weights with respect to this embedding are

HT,(r/(7)) = {-a,-1,1 +(n—=1)/2,...,—a,~1,, + (n—1)/2}.

Proof. This theorem is due to many people, including Kottwitz, L.C., Harris, Taylor and Shin.
We give references for the case of a RACSDC automorphic representation m, from which the
others can be deduced. In this case the existence of the representation r,(7) is proved in [CH13,
Theorem 3.2.3]. The strong form of local-global compatibility is proved in [Carl2]. See also
[BGGT14, Theorem 2.1.1]. O

LEMMA 2.3. Let m be one of the above types of automorphic representations, and fix an
isomorphism ¢ : Q; = C. Let o be a continuous automorphism of Q,. Then ‘° Tlr s defined,
by [Clo90, Theorem 3.13]. There are isomorphisms

(LO'L71 ~ O

T, ) 21,5 (7m) r, (7).

Proof. This follows from local-global compatibility, the rationality of the local Langlands
correspondence for GL,, and the Chebotarev density theorem. O

We will use the following convention for residual representations. If L is a number field and
p: G — GL,(Q,) is a continuous representation, then after choosing an invariant lattice, defined
over a finite extension of Q;, we obtain by reduction modulo [ a residual representation valued in
GL,(F;). By the Brauer—Nesbitt principle, the semisimplification of this representation depends,
up to isomorphism, only on p, and will be denoted 5 : G, — GL,,(F;).

2.2 Ordinary forms

We recall that deformation theory in the context of ordinary, conjugate self-dual automorphic

representations has been studied by Geraghty [Ger]. Let L = E or F. If m is a regular

algebraic automorphic representation of GL,(Ar) of infinity type a and weight A, we define

Hecke operators Ui as follows at primes v above [. They depend on a choice of isomorphism
: Q; = C, which we fix for the rest of this section, as well as a choice of uniformizer o,

of Or,. Let Iw.(v) C GL,(OL,) be the subgroup of matrices whose reduction modulo w¢ is an
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upper-triangular matrix with 1’s on the diagonal. Define a matrix

o) = diag(wy, ..., @y, 1,..., 1),
—_——— ——
J n—j

and set ‘
U, = HL ()~ Arnt HArnt1-3) Iy (v) o, Tw, (v)].

Here the product runs over embeddings 7 : L — C such that ¢~'7 induces the place v of L. If
T, is an admissible representation of GLy,(L,) over C, then the operator U f\ acts on ¢! IWC(U)

We note that by LGer Lemma 2.3.3], the Hecke operators Uj A commute with the 1nclu510ns
L_lml,wc(v) — L Py v o () when ¢ > c. It therefore makes sense to omit ¢ from the notation
defining Ui,v' We also write T.(v) C Iw.(v) for the group of diagonal matrices with integral
entries which are congruent to 1 modulo @, e, for the absolute ramification index of L,, f, for
the absolute residue degree, and val : @ZX — Q for the valuation such that val(l) = 1.

DEFINITION 2.4. Let 7 be a regular algebraic automorphic representation of GL, (A) of weight
A. We say that 7 is t-ordinary if for each place v of L dividing [/, there exist an integer ¢ > 1 and a
line inside L_lml,wC(v) which is invariant under each operator Ui »» and such that the eigenvalues

of these operators on this line are all [-adic units.

LEMMA 2.5. Let m be a regular algebraic automorphic representation of GL,,(Ap), and let v be
a place of L dividing I. ‘

(1) If L = E and 7 is RACSDC, then the eigenvalues of U i on ™ are integral.

(2) Let m, n denote the normahzed Jacquet module with respect to the standard Borel

subgroup, and suppose that 7T 75 0. Then « 7, is a subquotient of a representation o =
n—Indg a1 ®- - - ®ay, for some Characters a; : LX — Q) such that val(ay(w,)) < Val(ozg(wv)) <
- < val(ay(wy)). If 7 is t-ordinary, then val(oq(wv)) < -+ < val(ay(wy)) and 1+ m, is the

unique generic subquotient of o.
Conversely, if val(ay(wy)) < --- < Val(ozn(wy)) and T, is generic, let uA denote an eigenvalue
ofUi with smallest valuation. Then u)\ 7& 0 is unique and there is a unique line inside 1 =" QI,WC( v)

where Ui acts with eigenvalue uA, 7 =1,...,n. Finally, we have

val(a(w,)) = Val(ug Jul ) —1/en > ar,

the sum being over embeddings T : L — C such that .~ 7 induces the place v of L.

Proof. The first part follows from Proposition 2.9, Theorem 2.7, and Lemma 2.10. For the second
part, we note as in the proof of [Ger, Lemma 5.1.3] that there is, for any admissible representation
o of GL,,(L,) over Q, a surjection p, : olwe(v) TC(U), where o denotes the normalized Jacquet
module. The kernel of this map is given by the subspace where some operator UJ does not act
invertibly, and we have the formula for all z € ¢™We(®):

Po(U3, o) = ai = "I T i e ()~ S At (),

~lx, is a subquotient

In particular, if ke N 7é 0, as in the statement of the lemma, then ¢
of a representation o = n—IndgL” a1 @ ® ap, and oy = Oues, V(1) @ @ Qu(ny- The
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characters aj,...,a, are uniquely determined, up to permutation, and we suppose that they
have been chosen so that val(a;(w)) < -+ < val(an(@)).
We may decompose Lflm,wc(v) under the algebra Q [U;\,v’ ey U;iv} as the direct sum of the

simultaneous generalized eigenspaces of these operators; the sum of the elgenspaces corresponding
to a tuple of non-zero eigenvalues is mapped isomorphically onto ¢~ T, ]S[ Y The tuples appearing
in 0% have the form

n

<H[ (n—1)/2—(i— 1>HL (@) Mt (z)(wU)D g

=1 J=1

the jth entry having valuation Zgzl(val(aw(i)(wv)) +1/ey > ar;). If mis t-ordinary then there
exists w € &, such that Y~7_, (val(a,)(@y)) + 1/ey Y ari) = 0 for each j = 1,...,n, and
hence val(av,(j)(@y)) = —1/ey >, ar; for each j = 1,...,n. This implies that w = 1 and the
val(aj(wy)) are distinct.

Suppose now that 7 is not necessarily t-ordinary, but that the val(a;(w,)) are distinct. After
the Zelevinsky classification [Zel80], the Jordan—Holder factors of the representation o appear
with multiplicity one, and ¢ has a unique generic subquotient p, characterized by the following
condition: p%; is a direct sum of those characters o, ® --- ® a;,, such that if o, = | - |arj, some
1<i,j<mn,theni<j. If a; =|-|e; then val(a;(wy)) = — fu + val(a;j(w,)), and hence i < j.
This certainly holds for the character a; ® - -+ ® v, which shows that if 7 is t-ordinary then

my is generic. Conversely, if 7, is generic then the character oy ® --- ® «,, appears in L_lm, N-

e(

It follows that there is a unique line inside L_lml,w v) where the operators Ui , act with their
eigenvalue w} , of minimal valuation

val(u = Z(Val a;(wy)) — l/evzan)

=1
This completes the proof of the lemma. O

LEMMA 2.6. Suppose that 71, my are cuspidal conjugate self-dual automorphic representations of
GLy, (Ag) and GL,, (Ag), respectively, where ny + ny = n. Suppose that I1 = 7w Hmo is regular
algebraic. Then the representations ;| - | (ni=n)/2 are regular algebraic, and II is t-ordinary if
and only if my| - |("M=™/2 7o . |("2=1)/2 are i-ordinary and the following condition on infinity
types holds: let w = (W7 ) cHom(E,C) € GEom(E ©) be the element defined in the paragraph before
Theorem 2.2. Then w, depends only on the place v of E dividing I induced by the embedding
T E = Q.

Proof. We first establish some notation. Let v|l be a place of E. Suppose that L_lm,y is the

generic subquotient of the representation 1(1—IndgLn1 B1 & ® By, and that 11y, is the generic
subquotient of the representation n-IndgLn2 M-+ - ®@Yn,y, where val(S1(wy)) < -+ - < val(SBy, (wy))
and val(y1(wy)) < -+ < val(yn, (wy)). Let 61,...,0n = B1,- -+, Bnis Y1y - - - Yo Since w1, and ma
are unitary and generic, II, is the generic subquotient of a representation n—IndGL"
val(ai(wy)) < -+ < val(ay(wy)) and {aq,...,an} = {01,...,n}.
Similarly, let b, c denote the infinity types of 71 and my respectively, and define d by d; 1,
ldrn=br1,.. . brp Cr1y . Crmy. If 70 B Cis an embedding such that v~ 17 induces the
place v of E, then the Weyl group element w; is defined by the condition that d.,, ;) = ari,
where a is the infinity type of II.
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We now come to the proof of the lemma. Suppose first that II is t-ordinary. Then the
val(aj(wy)) = —1/ey Y ar; are distinct. We can therefore define a permutation w,, uniquely
determined by m and g, by the formula 6, (;y = ;. We show that w, = w, for each 7 as above.
Suppose for contradiction that w, # w;, for some 7, and let j be minimal with the property that
wy(j + 1) #w,(j + 1) for some 7. Suppose that

{5wv(1)7 s 75w1,(j)} = {ﬁla e '567“3717' s a’YS}‘

Since II is ¢-ordinary,
min(val(8y41(@y)), val(Yst1(wv))) = val(du, (j+1)) = —1/ev Z drw, (j+1)

=—1/ey Z max(br 11, Crs41)-
T

Suppose that val(fy11(wy)) < val(yst1(wy)). We have val(fi(w,)) = —1/e, Y. by, for each
i=1,...,r, so the previous lemma implies that val(8,41(@y)) = —1/ey >, brr41, and hence
Yo, max(bryi1, Crsq1) < Y. brpgr. Since IT is regular algebraic, for each 7 we have by ;1 # ¢r 541
so equality holds and w.(j + 1) = wy(j + 1) = r + 1. Similarly, if val(8,+1(wy)) > val(ys+1(wy))
then we deduce that w,(j +1) = w,(j +1) = s + 1, a contradiction.

We therefore have w, = w;, for each 7, and val(8;(w,)) = —1/ey, > brj, j=1,...,n1, and
val(7j(wy)) = —1/ey > ¢rj, § = 1,...,n2. This implies that 7| - |"17/2 7y . |("277)/2 are
t-ordinary.

Suppose conversely that | - |("=™)/2 7| . [(*2=7)/2 are y-ordinary and that the condition
on infinity types holds. We see that for each j = 1,...,n, val(aj(w@y)) = val(dy,()) =
—1/ey ) drw, (j) = —1/€v ), arj. It now follows from Lemma 2.5 that II is also t-ordinary. O

2.3 Soluble base change for GL,

Let E be an imaginary CM field with totally real subfield F'. We suppose that L/E is a soluble
CM extension. Recall that the base change 7y, of a cuspidal representation = of GL,(Ag), an
automorphic representation, always exists. We also fix a prime / and an isomorphism ¢ : Q; = C.

THEOREM 2.7. (1) Let 7 be a RACSDC automorphic representation of GL,(Afg), and suppose
that r,(m)|q, is irreducible. Then there exists a RACSDC automorphic representation my, of
GL,(Ar) such that r,(7)|q, = 7.

(2) Suppose that p: Gg — GL,(Q;) is a continuous representation such that p|¢, is irreducible,
and that there exists a RACSDC automorphic representation II of GL,(Ar) such that
pla, = r,(II). Then there exists a RACSDC automorphic representation m of GLy(Ag)
such that 11 = 7y,

(3) Let m be a RACSDC automorphic representation of GL, (Ag) such that my, is cuspidal.
Then 7 is t-ordinary if and only if 7y, is t-ordinary.

Proof. For the first part, the existence of 7y, follows from [AC89, Theorem 4.2]. To see that 7y,
is cuspidal, we reduce to the case L/E cyclic of prime order. If 77, fails to be cuspidal then there
is an isomorphism 7 ® € & 7, where € is an Artin character associated to L/E. This implies that
r,(m)|c, is reducible, a contradiction. The second part follows from [BGHT11, Lemma 1.4]. The
third part follows from [Ger, Lemma 5.1.6]. O
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2.4 Definite unitary groups

Let E be an imaginary CM field with totally real subfield F. We now suppose that E/F is
everywhere unramified and that [F' : Q] is even. Let G be a unitary group in n variables associated
to the extension E/F, quasi-split at every finite place, such that G(R) is compact. Such a group
exists since [F': Q] is even, and is uniquely determined up to isomorphism. We can choose the
matrix algebra B = M,,(F) and an involution  of B of the second kind, so that G is defined by

G(R)={g€ (B®rR)|glg=1}

for any F-algebra R. We may choose an order Op C B, stable under f, so that Op,, is maximal
for any place w of F split over F. This defines an integral model of G over O, and for any place
v of F split as v = ww® in E, we can choose an isomorphism

Op ®o, Of, = My(Og,,) x My(Og,.),

such that 1 acts as (g1,92) — (g2,%91). Projection onto the first factor induces an isomorphism
Ly : G(Fy) = GL,(E,) such that ¢,(G(OF,)) = GL,(Og,,).

Let [ be a prime, and suppose that every prime of F' above [ splits in E. Let S; denote the
set of primes of F' above [. We choose a prime v of E above v for each v € S}, and let S; denote
the set of these primes. Then, as above, we are given an isomorphism 5 : G(F,) — GL,(E7). We
write [; for the set of embeddings F' — Qy, and I; for the set of embeddings E — Q; inducing
an element of S;. These two sets are therefore in canonical bijection.

Let K C Q; be a finite extension of Q;, with ring of integers O and residue field k. We
suppose that K contains the image of E under every embedding E «— Q;. To a tuple A =
(Ar1y-- s Amn), ef of dominant weights of GL,,, we associate a representation My of the group
[l,es, G(Or,) as in [Ger, Definition 2.2.3]. It is an O-lattice inside the representation Wy =
®,cr. (Wi, ®F, - K), where W)_is the algebraic representation of GLy(F%) of highest weight -,
and v is the place of F' induced by 7.

Fix A and an open compact subgroup U = [[, U, C G(A¥), such that U, C G(Op,) for
each v € 5. Let A be an O-algebra. We can then define a space of automorphic forms with A-
coefficients as follows. By definition, Sx (U, A) is the set of functions f : G(F)\G(AYF) = M ®p A
such that for all u € U, we have f(gu) = ul_l - f(g). Here wu; denotes the projection of u to its
[I,es, G(OF,)-component. The relation with classical automorphic forms is given by the following
result. Let A denote the space of automorphic forms on G(F)\G(A), and let ¢ : Q; = C be an
isomorphism. There is an algebraic representation W5 of G(F ®q R), defined by the formula

®T€'fl Wy, ®p,.r C.

ProrosITION 2.8. There is a canonical isomorphism

(h_;)n S)\(U, K)) K, C= HOHIG(F@QR) (WL\éﬂ “4)

In particular, for any irreducible subrepresentation o C A, we have a canonical subspace

1T o®)W C SA(U, Q).
Proof. This can be proved exactly as in the proof of [CHTO08, Proposition 3.3.2]. O

If 7 is an automorphic representation of GL,(Afg) and o is an automorphic representation
of G(Ar), we say that 7 is the base change of o if for any finite place w of E, the following
condition is satisfied.
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e If w is split over the place v of F', then m,, = o, 0 1y, is the standard base change of o,.

e If w is inert over the place v of F' and o, is unramified, then 7, is the standard unramified
base change of o,; cf. [Minl1, §4.1].

PROPOSITION 2.9. (1) Suppose that o is an automorphic representation of G(Ar). Then there
exist a partition n = ny + --- + ng and, for each i = 1,...,s, a discrete, conjugate self-dual
representation m; of GL,, (Ag) such that m = m; B --- B 7, is the base change of o in the above
sense.

(2) Suppose that 7 is a RACSDC automorphic representation of GL,,(Ag) such that if m,
is ramified, then w is split over F'. Then there exists an automorphic representation o of G(Af)
such that m is the base change of o in the above sense.

(3) Suppose that m = m, B, is a RACSD automorphic representation of GLy,(Ag), where
Ta, Tp are cuspidal, conjugate self-dual automorphic representations of GL,(Ag) and GLy(Ag),
respectively. We assume the following hypotheses.

o Letw = (wT)TGHom( g,c) denote the Weyl group element associated to the infinity types of
Ta, Tp. For each place v|oo of F, choose an embedding 7(v) : E — C inducing v. Then
Hv Sgn(wT(v)) =1

e ab is even and a # b.

e Ifm, is ramified then w is split over F'.

Then there exists an automorphic representation o of G(Ap) such that 7 is the base change of
o in the above sense.

Proof. The first part follows from [Labl1, Corollaire 5.3]. The second part follows from [Labll,
Théoréme 5.4]. We now prove the third part. We will use arguments given in more detail in the
companion paper [CT], to which we refer in part.

First consider the quasi-split inner form G* of G. By [Mok, Theorem 2.5.2], there are
representations o = ®,0, of G*(Ar) occurring in L3, (G*(F)\G*(Ar)) such that at any finite
place o, is associated (by standard, i.e. stable, base change) to m, = ®,|,mw. Each such
representation ¢ occurs with multiplicity 1.

In fact, note that Moo = ®y|eTw determines, for each place v|oo of F, an L-packet II, of
discrete series of G*(F,). On the other hand, the datum (m,,7,) defines a parameter ¢ in the
sense of Arthur and Mok [Mok, §2.3]. There is an associated finite group S, (see [Mok, Definition
1.4.8]); in our case, it is equal to {£1}. There is a pairing, at all Archimedean primes v, between
Sy and II,, which determines a sign ey (0y), 0, € II, (see [Mok, Theorem 2.5.1]).

Now 0 = 04 ® 0™ occurs, with multiplicity 1, if and only if

H 6¢(UU) =1.

v|oco

(We have used the fact that €,(0,) = 1 for v finite and o, unramified; cf. [Mok, Theorem 2.5.1].

Recall that E//F is, by assumption, everywhere unramified.)

We now want to transfer (some) o to G(A). The proof is similar to the proof of [CT, Theorem
3.11], but simpler as we do not have to obtain specific local components (different from the
unramified ones) at finite places. Let f* = ®,f, f = ®,f, be decomposed, smooth, compactly
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supported functions on G*(Ar), G(Ar). By [Art03], we have identities

TS (f) = UG, €)STE(f5), (1)
£

TSo(f) =) (G, E)STS (fe), (2)
£

where £ runs over the endoscopic data for G and G*. Recall that these are simply the products
U(n1) x U(ng) where n = nj + ng and U(m) is the quasi-split unitary group of rank m. In fact,
by a simple argument of separation of eigenvalues for the Hecke algebra, only the groups G* and
H =U(a) x U(b) intervene in the calculation; cf. [CT, §3.8].

The terms on the right are stable traces; the functions f, f* determine functions fg«, ff and
fi; on G*, H. Again, after separation of the Hecke eigenvalues associated to 1, it is easy to see
that the left-hand side of (1) reduces to the trace in the (i-part of) L2 (G*(F)\G*(AF)); this
is trivial for the R-anisotropic form.

Since G(Fy,) = G*(F),) at finite places, we of course take f, = f = (fg+), at these places.
The assignments f* ~ f7;, f ~ fu depend on a choice of transfer factors. At a finite place v,
in order to use Mok’s results, we must use the ‘Whittaker-normalized’ factors; see [Mok] as well
as [CT, §3.5]. These are the Langlands—Shelstad factors of [LLS87], multiplied by a sign e(V,1)).
Here (see [CT, §3.5]), V = Vg — Vg is a virtual representation of Gal(F,/F,). If ab is even it is
easy to see that Vg = V. The functions fy, fj; coincide at finite places.

Consider now the functions fy, and f7 .. The datum (7q, ™) determines by descent an
L-packet II,,(H) of discrete series for H(F,), for each v|oo; after separation of Hecke eigenvalues,
only representations of H(Fy,) of this type occur in the right-hand side of (1) and (2).

Since G(F) is compact, the datum of (7, m) (with 7, B m, RACSD) also determines a
unique irreducible representation o, = ®,0, of G(Fx). Let foo be a coefficient of ol , with
tro’(foo) = 1; let 0 = ®,0, be a representation of G*(F4) in the pertinent L-packet, and f, a
pseudo-coefficient of . As [F': Q] is even, fo and @, f, are associated. Moreover, the functions
JH,00, 11 oo satisty the identities

(trllo(H), fH00) = Hsgn D{troke, foo) = 1,

by our first assumption in the third part of the proposition. This follows from [Clo11] (cf. [CT,
§3.6]), on checking that the product of the Langlands—Shelstad transfer factors coincides with
the product of the Kottwitz transfer factors: use the fact that ab and [F' : Q] are even.

The other identity is

(tr oo (H), f11,00) = st oy);

see [Mok, Theorem 3.2.1]. Now assume that oo, = ®,0, is a possible factor for G*. In the
spaces cut out by v, the right-hand sides of (1), (2) then coincide term by term, and therefore
0G = 0 @ (Dypoe0v) occurs for G. 0

Let U =[], U, be an open compact subgroup as above, and suppose that there exists an
integer ¢ > 1 such that for each v € Sj, U, = Lgl Iw,(v). For each prime v € 5;, fix a uniformizer
wy of Of,, and define the matrix

Og% = diag(w;, <., Wy, 1, ey 1).
N—— N —
J n—j
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We define an endomorphism U ﬁ\ , of the space Sy (U, O) by the formula

U3, = [ [ 7 ()~ Gt A=) 2 [, (8) 0, Twe (0),
T

the product running over the embeddings 7 : E < C such that :~!7 induces the place ¥ of E.
These operators obviously act on Sy (U, K). In fact, they preserve the integral lattice Sy (U, O),
by the remark after [Ger, Definition 2.3.1].

LEMMA 2.10. If o is an irreducible subrepresentation of A such that (0®)Y #£0 and 04 = WX,
then the eigenvalues of U3 on .~ (0™)V are integral.

Proof. This follows immediately from the above remarks. O

3. Congruences and functoriality

In this section we formulate some conjectures about automorphic forms which are related to
conjugate self-dual Galois representations. Since we mostly take the point of view of Galois
representations, rather than automorphic forms, we formulate these using a Galois-theoretic
language, rather than, for example, the automorphic language of [Clo90].

The conjectures below are stated in the context of an imaginary CM field FE with totally real
subfield F', and automorphic representations 7y, mo,.... When we state later that we will assume
that a given conjecture holds, we mean that it holds for all choices of E/F and automorphic
representations satisfying the given conditions.

3.1 Level raising

We put ourselves in the situation of §2.4. Thus G is a definite unitary group in n variables
associated to a CM extension E/F. Fix an irreducible G(Ap)-subrepresentation o of the space
A with oo &2 W) for some dominant weight X and isomorphism ¢ : Q; & C. By [Guell, Theorem
2.3], there exists a continuous semisimple representation 7,(c) : Gg — Q; satisfying the relation
WD(r,(0)|ap, )™ = recgw(Flav o 1yy) for every place w of E split over F. Let wp be such a
place, and let vg be the place of F' below it. If oy, o ¢y, has an Iwahori-fixed vector and wy does
not divide [, then r,(0) %Ew is unramified. We say that o satisfies the level—rgising congruence
at wq if the eigenvalues 241?- .,y of r (o) %Ewo (Froby,) satisfy a; = a1q," mod mz , up to
reordering, where my C Z; is the unique maximal ideal.

CONJECTURE 3.1 (LR,,). Suppose that o is t-ordinary and that the irreducible constituents
of the residual representation r,(c) have pairwise distinct dimensions. Suppose further that o
satisfies the level-raising congruence at the place wy.

Let U = [[, Uy, C G(A¥) be an open compact subgroup with (0°°)V = 0, and such that for
some finite place v of F, U, contains no non-trivial elements of finite order. Then there exists a
second automorphic representation oy of G(Ap) satisfying the following.

i 0—1700 g Wb\g.
o (o) =r, (o).

e oy is t-ordinary and (0$°)Y # 0.

® 01, O Lw, 1S an unramified twist of the Steinberg representation.

This conjecture is closely related to Thara’s lemma (see, for example, [CHT08, Conjecture
B]). It is known in some cases when n < 3, or when [ is a banal characteristic for GL,,(Ey,);
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cf. [Thob]. We have chosen to restrict the statement to (-ordinary representations since this is all
we require here for the application to symmetric power functoriality, and since we believe that
this may be easier than the most general case. In fact, it would even suffice for our purposes to

treat the case where ¢, = 1 mod [, oy, is unramified, and TL(O')|GEwo is trivial.

3.2 Automorphic tensor product

Let n > 1 be a positive integer, and suppose that E is an imaginary CM field with totally
real subfield F, and that (m1,%1) and (mg,12) are RAECSDC automorphic representations of
GL2(Ag) and GL,,(Ag), respectively. We will state here a version of the conjectural GLg x GL,, —
GLyy, lifting that we hope will be accessible through Galois-theoretic methods.

CONJECTURE 3.2 (TP,,). Fix a prime ! and an isomorphism ¢ : Q; = C. Suppose that the
representation r,(m1) ® r,(mg) is irreducible and Hodge-Tate regular. Then there exists a
RAECSDC automorphic representation (7, ) of GLoy,(Ag) such that r,(7) = r,(71) @ r,(m2).

This conjecture is known to be true if n = 2 or if n = 3 (see [Ram00, KS02], respectively). In
addition, a ‘potential’ version of this conjecture follows in many cases from potential automorphy
theorems; cf. [BGGT14].

3.3 Automorphic symmetric power

Now suppose that F' is a totally real field, and that (m,x) is a RAESDC automorphic
representation of GLy(A ), without CM, i.e. not induced from an algebraic Grossencharacter of
a CM quadratic extension of F. Let n > 2 be an integer, and let K = {K7,..., K} be a set of
finite Galois extensions of Q.

CONJECTURE 3.3 (SP,41(K)). Suppose that F' does not contain Kj;, for any ¢ = 1,...,s. Then
the nth symmetric power lifting of 7 exists, in the following sense: there exists a RAESDC
automorphic representation (II,7) of GL,41(Ap) such that for any isomorphism ¢ : Q; = C,
there is an isomorphism Sym" r,(7) = r,(II).

We remark that if K C K’, then SP,,11(K) = SP,4+1(K’). This conjecture is known to be
true with K =¥ if n = 2,3 or 4 (see [GJ78, Kim03, KS02], respectively). The ‘potential’ version
follows from potential automorphy theorems. (See [BGG11] for the final result, following earlier
work by L.C., Harris, Shepherd-Barron and Taylor. The reason for introducing the set K here is
that the automorphy lifting theorems to be used later require supplementary hypotheses on the
presence of roots of unity in the base field F'.)

3.4 Main theorem
Let K = {Ky,..., K} be a set of finite Galois extensions of Q. We write Q({;)" for the totally
real subfield of Q((;).

THEOREM 3.4. Let | > 5 be prime, and let 0 < r < [ be an integer. Suppose that Q(¢;)" € K.
Then the following implication holds:

SPl—r(K) + SPT(K) + TPr + LRZ'H" = SPl+T(K)‘

The proof of this theorem will be given in §§4-5.
COROLLARY 3.5. Suppose that TP, and LR, 41 hold for all integers r > 1. Let F' be a totally real

field, and let (7, x) be a RAESDC automorphic representation of GLa(Ap), not automorphically
induced from a quadratic CM extension.
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Suppose that if | > 5 is prime, then [F((;) : F] > 2. Then the symmetric rth power lifting of
7 exists for all integers r > 1.

Proof of Corollary 3.5. If » > 1 is an integer, let K, denote the set of fields Q({;)™, as [ runs
over primes 5 < [ < r. Under the assumption of hypotheses TP, and LR, 1, the above theorem
simply gives the implication (whenever [ > 5 is prime and 0 < s < [, and Q({;)" € K)

SP;_(K) + SP,(K) = SP;,.(K).

To prove the corollary, it suffices to prove SP, 11 (K, ) for all » > 1. We prove this by induction on
r > 1. It is already known to hold for 1 < r < 4. For general r, note that by Bertrand’s postulate
there exists a prime [ satisfying (r+1)/2 <l <r+1, and hence [ < r+1 < 2. Writing r+1 = [+s,
we therefore have 0 < s < [. The above implication now implies that SP;; (K,) = SP,+1(K,)
holds.

COROLLARY 3.6. Suppose that LR, 11 holds for all 1 < r < 26. Then SP,11(Kzs5) holds for all
integers 1 < r <9, and for all odd integers 1 < r < 25.

Proof of Corollary 3.6. The deduction of this corollary is similar, using the fact that TP, and
SP,(¥) are already known to hold for 1 < r < 3. Indeed, we now have the implications (under
LR,+1, and Q(¢;)" € K)

SPl_l(K) = SP[_H(K), SPl_Q(K) = SP[+2(K) and SPl_g(K) = SPH_g(K).
The result follows on using the primes 5,7,...,23. O

3.5 Lemmas about ordinariness
In certain situations, the functorial operations above preserve the property of being ordinary.
This is the content of the results of this section.

LEMMA 3.7. In the situation of conjecture TP, suppose the following.

e 71 and mwo are t-ordinary.

e Let a and b denote the infinity types of w1 and s, respectively. Then a, and b, depend
only on the place of E induced by the embedding 1~ '7: E — Q.

Then 7 is t-ordinary.

Proof. Let v|l be a place of E, and suppose that ¢~!7; , is a subquotient of n—IndgLQ ] ® g
and ¢~ !, is a subquotient of n—Ind%L” f1 ® -+ ® By, where val(a;(w,)) < val(az(w,)) and
val(p1(wy)) < -+ < val(fp(wy)). Since m and 7y are t-ordinary, we have by Lemma 2.5 the
equalities

val(oi(wy)) = —1/ey ¥ _ar; and  val(Bj(wy)) = —1/ey > by,

the sum being over embeddings 7 : E < C such that :~'7 induces the place v. In particular,
since r,(m) ® r,(m2) is Hodge-Tate regular, the quantities val(c;(w,)B;j(wy)) are distinct as i, j
vary, and the permutation required to put these quantities in strictly increasing order is the same
as the permutation required, for each 7, to put the quantities a,; + b, ; in strictly decreasing
order. The same argument as in the proof of Lemma 2.6 now gives the conclusion. O

LEMMA 3.8. In the situation of conjecture SP,11(K), suppose that 7 is t-ordinary. Then II is
t-ordinary.

Proof. The proof is essentially the same as the proof of Lemma 3.7. O
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4. Construction of a special automorphic representation

Let E be an imaginary CM field with totally real subfield F' such that E/F is everywhere
unramified and [F' : Q] is even. Suppose that 7 is a RACSDC automorphic representation of
GL2(Ag) of weight A =0. Let [ > 5 be a prime, and let 0 < r <. Set n =1+ r.

We fix a choice of isomorphism ¢ : Q; = C. In order to reduce notation, we now write p = r, (7).
We suppose that the following hypotheses are in effect.

e Every prime of F' dividing [ or above which 7 is ramified is split in E.

e 7 is t-ordinary.

e The residual representation p : Gg — GLo(IF;) is irreducible, and its image contains SLy (FFja)
up to conjugation, for some a > 1.

e There exist RACSDC automorphic representations II;, IIy of the groups GL,(Ag) and
GL;_,(Ag), respectively, such that r,(II;) = Sym" ! p and r,(Ily) = Sym! "' p. (These
Galois representations are irreducible, by the previous hypothesis.)

e There exists a place wg of E, split over F' and coprime to [, such that m,, is an unramified
twist of the Steinberg representation. We write vy for the place of F' below wy.

In this case we note that there is an isomorphism of residual representations
(Sym™" ™ p)* = (“p @ Sym' ™' p) & X" Sym "' 5,

where ¢ denotes a lift to Q; of the arithmetic Frobenius, and y = det p. (This follows from the
corresponding identity of representations of GLy(IF;), which can be seen by calculating the trace
on either side of an upper-triangular element.) The two summands here are irreducible, and each
of different dimension, prime to I. We remark that #p is already the residual representation of
a RACSDC automorphic representation of GL2(Ag) of weight zero, by Lemma 2.3 and [Clo90,
Proposition 4.12], which describes the action of Galois on infinity types.

PRrROPOSITION 4.1. Suppose that conjecture TP, holds. Then there exist cuspidal conjugate
self-dual automorphic representations 01,09 of Gla.(Ag) and GL;_.(Ag), respectively, and
satisfying the following.

e X = gy H oy is regular algebraic and t-ordinary of weight zero.

e The representation ¥,,, has an Iwahori-fixed vector.

e There is an isomorphism of residual representations

R(S) * (Sym* 7
e If¥,, is ramified then m,, is ramified.

Proof. Consider the following conditions on a RAECSDC automorphic representation
(7[-,7 | : ‘l_l)'

o (7/,|-|'*7) is t-ordinary.
p.

[aS]

o (1) = (n)Ve .

I

o 1, (7)

e T, has an Iwahori fixed vector.
e If 7/, is ramified then m, is ramified.
e For all embeddings 7 : E < Q;, we have HT,(r, (7)) = {0,1}.
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By [Thol2, Theorem 10.2], the deformation ring R associated to the corresponding local
conditions on a representation of Gg is a finite O-module. By [CHTO08, Corollary 2.1.5], its
Krull dimension is strictly positive. Thus there is a homomorphism R — @Q;, and hence a lift
of p satistfying these local conditions. By applying [Thol2, Theorem 9.1] we see that this lift is
automorphic, and conclude that there exists a t-ordinary RAECSDC automorphic representation
(7, |- 171 of GLa(AR) satisfying the specified conditions.

By TP,, there exists a RAECSDC automorphic representation (II5, x’) of GLg,(Ag) such
that r,(IT) = 7, (7') @7, (Ils). In fact, we have x’ = ||, and II} is t-ordinary, by Lemma 3.7.
Let o9 = II,] - ](l*r)/ 2. Then oy is conjugate self-dual and cuspidal, and o2, has an Iwahori
fixed vector. Let ¢ = (ex)". Then 99 = 1 and o1 = II; ® 1yp is RACSDC, t-ordinary, and has
an Iwahori-fixed vector.

We claim that 3 = o1 oy is regular algebraic. To see this it suffices to calculate the infinity
types of the constituent cuspidal representations at each embedding 7 : E < C. These are
independent of 7; for o2 we have the infinity type (I —r —1)/2,...,(r +1—1)/2), and for oy
we have

(47 —1)/2 . (I —r+1)/2,(r —1—1)/2,....(L =7 —1)/2).

The representation ¥,,, has an Iwahori-fixed vector, and is t-ordinary by Lemma 2.6. It satisfies
the third and last points by construction. This concludes the proof. O

THEOREM 4.2. With hypotheses as above, assume conjectures TP, and LR;,.. Then there exists
a RACSDC automorphic representation II of GL;y,.(Ag) satisfying the following.

e Il is t-ordinary.
e The representation Il,,, is an unramified twist of the Steinberg representation.

e There is an isomorphism
() 2 (Sym! 71 ),

Proof. Let ¥ denote the automorphic representation constructed in Proposition 4.1. Let G be
the definite unitary group of § 2.4, with n = [4r. By Proposition 2.9, there exists an automorphic
representation 3 of G(Ap) such that ¥ is the base change of ¥;. Applying conjecture LR,
to X1, we deduce the existence of an t-ordinary automorphic representation ¥y of G(Ap) of the
same weight, such that X, 0 ¢y, is an unramified twist of the Steinberg representation. Let 11
denote the base change of Y9 to GLj4,(Ag), which exists, again by Proposition 2.9. Since II,,
is an unramified twist of the Steinberg representation, IT must be cuspidal. This completes the
proof. O

5. Proof of Theorem 3.4

In this section we give the proof of Theorem 3.4. We therefore suppose throughout that [ > 5 is
a prime, and that 0 < r < 1. We fix a set K = {K1, ..., K} of finite Galois extensions of Q, and
suppose that Q(¢;)* € K. We also assume that conjectures SP;_,.(K), SP,.(K), LR;,,, and TP,
hold. The linchpin in the proof is the following special case, which asserts that we can deduce
the existence of the (I +r —1)th symmetric power lifting of a Hilbert modular form when certain
local hypotheses are in play.

Let Sd denote the standard representation of SLy(TF;) on Flz By [Gur, Theorem 1.2], there
exists an integer a > 1 such that the representations ¥Sd@Sym” ! Sd and Sym!~"~! Sd of SLy(F})
are adequate (in the sense of [Thol2, §2]|) whenever b > a. We recall that by [Gur, Lemma 1.4],
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any finite subgroup of GLa(TF;) containing an adequate subgroup as a normal subgroup of index
prime to [ is adequate.

PROPOSITION 5.1. Let F be a totally real field, and fix an isomorphism « : Q; = C. Suppose that
(m,x) is a RAESDC automorphic representation of GLa(AF) satisfying the following hypotheses.

e 7 is t-ordinary of weight A = 0. (In more classical language, = has parallel weight two.)

e The image of the residual representation r,(m) contains SLo(IF;») for some integer b > a.

o There exists a place vg { | of F' such that m,, is an unramified twist of the Steinberg
representation.

Then the (I + r — 1)th symmetric power lifting of m exists: there exists an t-ordinary RAESDC
automorphic representation I1 of GL,.(Ar) such that r,(II) = Sym'*" 1 r, ().

Proof. We deduce the theorem from [Thoa, Theorem 7.1]. After replacing F' by a soluble
extension not containing any K;, we can assume that there exists a quadratic CM imaginary
extension E/F, linearly disjoint over F' from the extension of F'(¢;) cut out by r,(7) and satisfying
the hypotheses of § 4. Arguing as in the proof of [CHT08, Theorem 4.4.3], we see that there exists
an algebraic character ¢ : Gp — @lx such that x|g, = ¥¢°¢ and (if 7 denotes the base change
of mto E) ©' = np @1~ is RACSDC. Replacing F again by a soluble extension, we can arrange
that the hypotheses of §4 apply to 7/, so by Theorem 4.2 there exists a RACSDC automorphic

representation IT of GL;;,(Ag) such that
r,(1I) = (SymH_r_l r(7))%,

and moreover that II is (-ordinary and II,,, is an unramified twist of the Steinberg representation,
for some place wy of E above vg. The result follows from [Thoa, Theorem 7.1] and Theorem 2.7,
on checking the following remaining hypotheses of [Thoa, Theorem 7.1].

e The element (; is not fixed by ker ad r,(II).

e Each irreducible constituent of r,(IT) is adequate.

G
The first point holds because, on the one hand, [E((;) : E] > 2 and the extension of E cut
out by adr,(II) is contained inside the extension cut out by adr, (), while, on the other hand,
the projective image of r,(m) contains a simple normal subgroup of index at most 2 (by the
classification of finite subgroups of PGL2(TF;)). The second point follows from our hypothesis on
the image of r,(7) and [Gur, Lemma 1.4]. O

We now reduce the general case of SP;,.(K) to this one by using a chain of congruences.
Let F be a totally real field not containing K;, i = 1,...,s, and let (7, x) denote a RAESDC
automorphic representation of GLa(Ar) without CM. We must show that the symmetric (I +
r — 1)th power lifting of 7 exists.

PROPOSITION 5.2. There exist a prime p # 1, an isomorphism ¢, : @p = C, a soluble totally real
extension F'/F linearly disjoint from the extension of F((,) cut out by r,,(r) and not containing
any field K;, and a RAESDC automorphic representation 7’ of GLa(Ap) satisfying the following.

e The image of the residual representation r,,(m) contains SLy(IF,), up to conjugation.

e 7' has weight zero, and for every prime v|l, 7, is an unramified twist of the Steinberg
representation.
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e There exists a place vy of F', not dividing pl, and such that 7, is an unramified twist of
the Steinberg representation.

e The symmetric (I+r—1)th power lifting of w exists if and only if the symmetric (I+r—1)th
power lifting of ' exists.

Proof. By [Dim05, Proposition 3.8], all but finitely many pairs (p,¢,) satisfy the first bullet
point. We can therefore choose p > 2(l +r + 1) and ¢, such that the first bullet point is satisfied
and p is unramified in . We can, moreover, assume that for every embedding 7 : F — @p, the
Hodge-Tate weights HT(r,, (7)) differ by at most p — 2. For each place v|p of F, r,,(7)|c,, is
potentially diagonalizable, by [BGGT14, Lemma 1.4.1]. Let F’ be a soluble totally real extension
of I, linearly disjoint from the extension of F'({,) cut out by r,,(7), not containing any K;, and
such that for every prime v|l of F”, r, (7 )\GF, is trivial and ¢, = 1 mod p. Choose a place v 1 Ip
of F’ such that er( mla, , 1 tr1v1al and gy, = 1 mod p. By [Geell, Corollary 3.1.7], there exists
a second RAESDC automorphlc representation 7’ of GLa(Ap) such that r, (7)|q,, = 7, (1),
such that r, (7 )|GF{, is potentially diagonalizable of weight zero at every prime v of F’ dividing
p, and such that the representations 7, and 7, for each place v|l of F’ are each an unramified
twist of the Steinberg representation. Here we note [GK, Lemma 4.4.1], which states that a
potentially Barsotti—Tate representation is also potentially diagonalizable.

It now follows that both representations Sym'™~'r, (m)lgp, and Sym 7, (') are
potentially diagonalizable on restriction to any decomposition group at a place v|p of F’.
Moreover, their residual representations are irreducible and isomorphic, and adequate, even on
restriction to G'pr(c,), since p > 2(I+r+1) (see the appendix to [Tho12]). We deduce immediately
from [BGGT14, Theorem 4.2.1] that the automorphy of either one of these Galois representations
is equivalent to that of the other. The final bullet point for 7/ now follows on combining this
with soluble base change [BGHT11, Lemma 1.3]. O

I+r—1

After replacing F' by F’ and 7 by 7/, we can suppose without loss of generality that the
following hypotheses are in effect.

(1) 7 has weight zero.
(2) For each place v|l, m, is an unramified twist of the Steinberg representation.

(3) There exists a place vy of F, not dividing [, such that m,, is an unramified twist of the
Steinberg representation.

With these assumptions, we have the following result.

PROPOSITION 5.3. There exists a RAESDC automorphic representation ' of GLy(A ) satisfying
the following hypotheses.

e 7' has weight zero, and for every prime v|l, 7, is an unramified twist of the Steinberg
representation.

e 7, Is an unramified twist of the Steinberg representation.

e For every isomorphism ¢ : Q; = C, the image of the residual representation r,(r') contains
SLo(Fp ), up to conjugation, for some b > a.

e The symmetric (I+1r—1)th power lifting of w exists if and only if the symmetric (I+r—1)th
power lifting of w' exists.

Proof. We use a trick inspired by Khare and Wintenberger’s use of so-called ‘good-dihedral’
primes, in their proof of Serre’s conjecture; cf. [KW09, Lemma 8.2]. Let E C C denote the
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coefﬁcient field of 7. As in the proof of Proposition 5.2, we choose a prime p > max(2(l +

+ 1), #GLy(Fa)) split in E(y/—1) and such that F and 7 are unramified above p. We fix
an isomorphism ¢, : (@p C. After conjugating we can assume that the image of the residual
representation p = r,,(7) is contained in GLy(IF,); we assume also that p has been chosen so that
the residual image contains SLo(IF)).

Let K/F denote the maximal abelian extension of exponent 2 which is ramified only at
primes of F' where 7 is ramified. Let M/F denote the extension inside F cut out by Pp, the
projective representation associated to p. Thus Gal(M/F') is isomorphic to either PGLy(F),) or
PSLy(F,), the index 2 simple subgroup. Let L = M N F((p). Then M and F((,) are linearly
disjoint over L, and L/F is an extension of degree at most 2. Let v be an infinite place of F', and
let ¢, € Gr denote a complex conjugation at this place. Since p = 1 mod 4, p(¢,) € Gal(M/L).
By linear disjointness, we can therefore choose a prime u of F' coprime to p at which p is
unramified and such that Pp(Frob,) = Pp(c,), up to conjugation, and such that w is split in L
and ¢, = —1 mod p. We can, moreover, assume that u is split in K.

Applying [Geell, Corollary 3.1.7] once more, we can find a RAESDC automorphic
representation 7’ of GLa(Ar) such that r,,(7") = p, such that the representations ;, and 7, for
v|l are each an unramified twist of the Steinberg representation, and such that 7’ is of weight
zero and r,, (') is potentially diagonalizable on restriction to any decomposition group at a place
v|p of F, and moreover such that there is an isomorphism

@i, = ().

with ¢ : Ip, — Z; a character of order p. In particular, er(7r’ )‘GFH is irreducible, and induced
from a character. Moreover, we can suppose that, away from u, 7’ is ramified only at those places
of F where 7 is also ramified.

The representation 7’ satisfies the final point above. This is proved in exactly the same
manner as the same point for the representation 7’ of Proposition 5.2. It remains to show that 7’
satisfies the penultimate bullet point. Fix an isomorphism ¢ : Q; = C, and consider the residual
representation r,(7’). It is irreducible, since its restriction to G, is already irreducible, being
induced from a character whose restriction to I, has order pt ¢, — 1. Since the projective image
of r,(7’) contains an element of order p > 5, either r,(n’) contains a conjugate of SLa(FF;») for
some b > 1, or W is induced from a character. In the first case, by choice of p we obtain a
conjugate with b > a.

It therefore remains to rule out the p0851b1hty that r,(7') = Indg0 a, for some quadratic
extension Ky/F and some character o : Gg, — Fl . The extension Ky/F is ramified only at
those places where r,(7’) is also ramified, hence at the places dividing [, u, or where 7 is ramified.
Since 7,(7’)|Gy, is induced from a character of the unramified quadratic extension of F, by
construction, we see that K is unramified at u, and hence Ko C K. But u is split in K, hence
in Ko, which implies that the representation r,(7’)|g, is a direct sum of two characters. This
contradiction shows that r,(7’) must in fact have residual image containing SLa(F}), for some
b > a, and therefore concludes the proof. O

After replacing m by ' we may therefore suppose that 7 satisfies, in addition to the above
three points, the following hypothesis.

(4) For every isomorphism ¢ : Q; = C, the image of the residual representation r,(7) contains
SLa(Fp), up to conjugation, for some b > a.
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We claim that m now satisfies the hypotheses of Theorem 5.1. Indeed, it remains to check only
that 7 is t-ordinary, for some choice of ¢. This follows immediately from points (1) and (2) above,
by [Ger, Lemma 5.1.5]. We deduce that the (I + r — 1)th symmetric power lifting of 7 exists.
This concludes the proof.
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