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AFFINE PARTS OF ALGEBRAIC THEORIES II 

J. R. ISBELL, M. I. KLUN, AND S. H. SCHANUEL 

Introduction. This paper concerns relative complexity of an algebraic 
theory T and its affine part A, primarily for theories TR of modules over a ring 
R. TRj AR and R itself are all, or none, finitely generated or finitely related. The 
minimum number of relations is the same for T^ and AR. The minimum number 
of generators is a very crude invariant for these theories, being 1 for A^ if it is 
finite, and 2 for TR if it is finite (and 1 9^ 0 in R). The minimum arity of genera­
tors is barely less crude: 2 for TR} and 2 or 3 for A^ (1 ^ 0). AR is generated by 
binary operations if and only if R admits no homomorphism onto Z2. 

For arbitrary algebraic theories T, of course A is a subtheory, so that the 
cardinality of T bounds that of A. However, we find that a finitely presented 
theory can have an affine part that is not finitely generated, or a finitely gener­
ated affine part that is not finitely related. 

In general, T is not determined by A; the close relationship between TR 

and AR holds because TR is constructible from A^ by the "trivial" process 
of adjoining a constant symbol. We find that for general affine theories this 
process is not reversible; there are non-isomorphic affine A, B, which produce 
isomorphic theories A*, B* when a constant is adjoined. The theories A, B 
are not even mutually interprétable. We have not been able to find finitely 
presented affine examples for this; however, we have a similarly related pair of 
theories V, W, which are finitely presented but not affine. 

1. Simplicity. We define the pointed cover A* of an algebraic theory A as 
the coproduct of A and the theory P of pointed sets. Thus a model of A* is 
a (non-empty) model A of A with a distinguished element, p, and morphisms 
are A-morphisms preserving distinguished elements. The w-ary operations 
w(xi,. . . ,xn) of A* may be described as the (n + 1 )-ary operations v (x0,. . . ,xn) 
of A, with the understanding that x0 is treated as a constant denoting p. (For the 
coproduct must have these operations; these w(xi, . . . , xn) = v(p, Xi, . . . , xn) 
are all different since p is arbitrary; and these operations are closed under com­
posing with operations of A or of P). 

Note the known result about theories T^ of modules and their affine parts 
Afl: 

TB = AR*. 
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(For models of AR are cosets in i?-modules, isomorphic by translation with sub-
modules. In view of translations, the category of affine modules with distin­
guished points is isomorphic, by an isomorphism preserving ground sets, with 
the category of modules. Hence the theories are isomorphic.) 

PROPOSITION. For any theory A, both or neither of A and A* are finitely gener­
ated; both or neither are finitely related; the minimum number of operations gener­
ating A* is either the same as for A or one greater; the minimum number of defining 
relations (generators varying) is the same for both. 

Proof. Of course, generators of A and one generator p of P generate A + 
P = A*. Conversely, generators for A* may be written y\(p, Xi, . . . , xni) ; if a 
general operation v(p, Xi, . . . , xn) is expressed as a composite K((vi(p, . . . ))) , 
it is true in A that v(x0, . . . , xn) = if ((i>*(xo, • • •)))• (Legally, we just sup­
pressed an induction.) Similarly, generators and relations for A, plus p and no 
relations, define A*. Generators and relations for A* written in terms of v(p,...) 
work ("for general p") for A. 

A theory TR, one may readily check, is finitely generated or finitely related if 
and only if R is. For theories like these, the minimum number of generators is 
not very sensitive. If R is finitely generated by g/s, A^ has the single generator 
X\ + x2 — x% + ^gi(yt — Zi). So TR has two generators; not one, since 0-ary 
and non-0-ary operations never generate each other. 

To amplify the last remark: if A has no constants, the minimum number of 
generators for A* is one greater. For the generators v\(p, . . .) of A* must include 
a constant, which can be omitted for A. It seems likely that one can extend this 
equation to reasonable theories with constants, but there are such counter­
examples as the theory A of pointed semigroups with x2 = 0. Two generators 
X1X2 and 0 are needed for A; two generators X1X2 and p suffice for A*. 

On the minimum number of relations for TR (if finite), there is a small finite 
bound because, once we know we have modules, we can combine laws as gener­
ators gi were combined above. Tarski announced in [2] a theorem implying that 
TR is definable by xi — x2 and 0 with one relation if R = Z or Zn. 

Though the number of generators required for A^ is always 1 or infinite, 
the generators for various R are not equally simple. AR is always generated by 
binary and ternary operations (viz. x + y — z and all gx + (1 — g)y). It is 
generated by binary operations if and only if R admits no homomorphism onto 
Z2. We prove a bit more. Define the Boolean radical B of R to be the intersec­
tion of the kernels of all (1-preserving) ring homomorphisms from R to Z2. 
If there are no such, then of course B — R. 

PROPOSITION. The affine operation 
n  

f(xi, . . . , xn) = ]T nxt (with X ?i = 1) 
1 = 1 

is expressible in terms of binary affine operations if and only if rfr;- Ç B for all 
pairs i ^ j . 
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Proof. If R = Z2, the only affine operations/ expressible in terms of binary 
affines are those with one rk = 1 and the rest zero; that is, those with r^j = 0 
for all i 7e- j . From the definition of B it follows for general R that if/ is expres­
sible in terms of binary affines, then r^j Ç B for i 7e j . 

Now let I be the set of all b £ R for which X + b Y — bZ is expressible in 
terms of binary affines. The preceding paragraph shows I C B. To prove the 
reverse inclusion, observe that the equations 

X + rbY - rbZ = (1 - r)X + r(X + bY - bZ) 

X + brY - brZ = X + b(rY + (1 - r)X) - b(rZ + (1 - r)X) 

X + (6 + V)Y - (b + b')Z 

= (X + bY - bZ) + b'(Y+ bX - bZ) - V(bX + (1 - b)Z) 

X + 0 2 - r)Y - (r2 - r)Z 

= r((r - 1 ) 7 + (2 - r)X) + (1 - r){rZ + (1 - r)X) 

demonstrate that if r G R and b £ I, b' £ I then rb £ I, br £ I, b + b' £ I, 
and r2 — r £ I. Since 0 G / , we conclude that / is a two-sided ideal, and R/I is 
a ring in which every element is idempotent. Thus B C / as desired. 

Now by induction on n, for n ^ 3, we show that r,-r;- g ^ for all pairs i 9^ j 
implies/ is expressible in terms of binary affine operations. The initial and in­
ductive steps both follow by writing 

Ê rtXi = X + bXi - bX2, 
2 = 1 

where 

- = (n + r2)(r1X1 + (1 - n )Z 2 ) + è ^ ^ ^ 

and 

This concludes the proof. 

Leaving modules, what can one say about models of the affine part of T? 
By Part I [1], they are representable as subsets of T-algebras, closed under 
affine operations. Functorial semantics provides a distinguished representation 
and a description of the (affine) morphisms. If / : A —> T inserts the affine part, 
then ( ) ®A / , or 0 / for short, is the adjoint of the forgetful functor. For 
any A-algebra X, X ® I is generated by the subset which is (under) the image 
of the adjunction map X —> Hom(7, X 0 / ) (because of the universal problem 
which X ® I solves). The free affine algebra P on one generator is a singleton, 
so there is a unique morphism h: X —>P. P ® J is a free T-algebra on one 
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generator, h ® I extends (lies over) h, so it takes the subset X to the generator 
p; but a T-word in the elements of X taken by h ® I to the generator is pre­
cisely the result of an idempotent operation, so we have X = (h ® I)~l(p). 

We write ST for the category of T-algebras; and ST / F(p) for the category of 
objects over F(p), the free T-algebra on one generator p. We have thus obtained 
an equivalence of categories between SA and a full subcategory ^ of ST/F(p), 
given by X f-> (X ® I -> p ® 7) for SA -> <£ and 

for c~€ —> 5A. What is the subcategory ^ (the essential image of SA —> 
ST/F(p))? If T is a T-algebra and X C (the underlying set of) T} T is relatively 
free on X if for every T-homomorphism ç: T' —> T such that <^-1(X) generates 
T' and <̂  restricts to a bijection ^_ 1(X) —> X, p is necessarily an isomorphism. 
Then we can sum up the elementary facts: 

The functors SA <=̂  ST/ F(p) induce an equivalence of categories between SA and 
the full subcategory of ST/F(p) with objects those ir: T —» F(p) such that T is 
relatively free omr~l(p). 

"Relatively free on" can be replaced by ''generated by" when a congruence 
on a T-algebra is determined by one of its cosets. 

For the usual (clarified as we continue) varieties ST in which that happens, 
a surjective ir: Y —» F will be generated by ir~1(p), because there is a zero 
0 G F, and Y is generated by the kernel ^ ( O ) and any one element of Tr~x{p) 
(an extension of F by 7r_1(0)), and any element of 7r-1(0) is some sort of dif­
ference of two elements of ir~l{p). It is not true that all h ® I: X ® I —» F are 
surjective, but the only wTay to fail is for X —> P to be non-surjective, i.e. for 
X to be the empty affine algebra. 

We conclude with examples showing: 
A. Non-mutually interprétable affine theories can have isomorphic pointed 

covers. 
Ar. Finitely presented theories which are not mutually interprétable can have 

isomorphic pointed covers. 
B. The affine part of a finitely presented theory need not be finitely generated. 
C. The affine part of a finitely presented theory can be finitely generated and 

still not finitely related. 
For examples A, k', we want the following observation. Let Tx, T2 be ele­

mentary theories, M a model of T2, and / : M —•> M an automorphism of M. 
If there is an interpretation of Ti in T2, then Ti has a model on the same under­
lying set as M with an automorphism given by the same function as / . 

Example A. Each of the theories A, B, is generated by infinitely many opera­
tions ak, where ak is &-ary. A has such an operation for each even k ^ 2, B for 

https://doi.org/10.4153/CJM-1978-021-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-021-3


ALGEBRAIC THEORIES 235 

odd k ^ 3. The laws of both theories are 

a (%i, %2, • • • , X#_l , %k—l) ~ %k—li 

ak(xi, . . . , xk-2, xk, xk-i) = a*(*i» . . . , x*_2, x*_i, x*) ; 

ak(xh . . . , xt, xu x,+2, . . . , xk) = ak-2(xu . . . , x<_i, x{+2, . . . , xk) 

for 1 ^ i ^ & - 3. 
To distinguish A from B, define a two-element B-algebra {0, 1} as follows. 

ak(xu • • • , xk-i, xk-i) is as required, xk-i. For x^-i ^ x*, note that the odd 
number of occurrences Xi, . . . , #* of 0 and 1 include an odd number of one of 
them, u, and an even number of the other; define ak{x\, . . . , xk) = u. The 
laws are obvious, and symmetry is obvious. However, any A-structure on {0, 1} 
involves a2(0, 1) = a2(l , 0), a definable element. Hence there is no interpreta­
tion of A in B. 

A* and B* are isomorphic. Interpret A* in B* by taking p to p and 
ak(xi, . . . , xk) to ak+l(p, Xi, . . . , xk). Laws go to laws, so we have an interpre­
tation. The same formulas for odd k define an interpretation of B* in A*. 
Since ak+2(p, p, Xi, . . . , xk) = ak(xi, . . . , xk), the composites are identities. 

Example A'. One of the theories V is nearly the theory of Z2-modules; but 
we omit the 0-ary operation. So V is given by a commutative associative binary 
operation + satisfying the further (torsion) law x + x + y = y. The theory W 
is generated by a symmetric associative ternary operation which will be written 
x 0 y © z; symmetry means x ®- y ® z = y © x © z = x © z © y, and 
associativity (a@b@c)®d($e = a®b® (c ® d ® e). It follows that 
parentheses can be omitted, for there is only one operation on a, b, c, d, e which 
involves all of them. Finally, the torsion law of W is the weak one 

x®x®y®y®z = z. 

There is no interpretation <p: V —> W. For every W-algebra has a transitive 
automorphism group; the functions hah taking x to a®a®a®b®x are 
easily seen to be homomorphic and involutory and take a to b. There exist 
many W-algebras, e.g. every Z2-module (with x © y ® z defined as x + y + z). 
If <p existed it would convert those algebras into homogeneous V-algebras, 
which is absurd; an automorphism of a non-empty V-algebra fixes x + x = 
(x + x + y + y) = y + y. 

However, V* is easily interpreted in W*, p as p and x + 3 > a s £ © x © 3 > . 
Among the interpretations of W* in V* use the one taking p to p and x © y © z 
to p + x + y + z. There is no difficulty in checking that the composites are 
identities; so V* and W* are isomorphic. 

Example B. Present T by a binary associative multiplication and a unary 
operation (1) subject to xx(1) = x and (x;y)(1) = x(1). We write x(0) = x, x{n+l) = 
x(w)(1). Observe that x(Jl)zx{n+k) = x{n)z for k ^ 1, even for z empty (by induc­
tion; for k = 1, xwz x(w+1) = (x(n)£)(x(w)20(1) = xwz; and if true for k, then 
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xin)z x(n+k+i) = x(n)z x(n+k)x(n+k+i) = %{n)z x(n+k) = xwzy Qne readily verifies 
t h a t the free T-algebra on a set X consists of non-empty expressions Hxi{ni) 

with Xi G X, rit ^ 0, and when xt = Xj with i < j , then nj ^ n^ For such an 

expression e, e{l) is Xi(Wl+1). T h e product ILc/71»0 IT/y/™?0 is the concatenat ion 

reduced by erasing any y^m^ if jj occurs in Hxi{ni) with a smaller superscript. 

n ^ / W i ) is affine provided I I x ^ 0 = x, which means n\ = 0 and nt > 0 for 

a l H > 1. So an affine word which is not a variable has the form XoI ix / n i ) with 

the product non-empty and all w* > 0. Suppose its value W o i l w / ^ on certain 

affine words is XiX2
(w). T h e value is a product expression having w0 as an initial 

segment; so w0 = XiX2
(w) or w0 = %\. We shall show t h a t in the la t ter case as well 

as the former, one cannot get the superscript n unless one already had it, speci­

fically some fii = n. T h e concatenat ion of w0, Wi (ni ), . . . , wT
{rlr) is a monomial 

in x\ and x2 (because the product XiX2
(w) has t ha t form). Since Ui > 0, w^ni) 

involves only one variable. T h e first t ime t ha t variable is x2, wt is x2 or an 

affine word x2Y\zj{m^, In ei ther case, %i = n, since x2
{7li) mus t occur in the 

value Xix2
(n). T h u s the affine pa r t is not finitely generated. 

Example C. (The affine par t to be finitely generated bu t not finitely related.) 
Present T by a (non-associative) idempotent mult ipl icat ion and a unary opera­
tion *, with the laws (xy)x = xy, x*y = x*, and xy* = (xy)y. I t will be con­
venient to describe words inductively. (w\ • w2) will mean the concatenat ion of 
words W\ and w2 (not necessarily a word. Of course W\W2 is the product , a word 
whose appearance is not given by this notat ion.) Observe t h a t there is no need 
for ordinary exponents since multiplication is idempotent . We define Wi[w2~\l 

to mean {w\ • w2) , Wi[w2]
n+l = Wi[w2\

n[w2\
l. Also (without brackets) w° = w, 

T h e words in a free T-algebra are (1) the variables, (2) u>* for any word w, 
and (3) expressions (wi • w2) where W\ and w2 are dist inct uns tar red words and 
Wi is not of the form w2[wd]

r for a power of 2 ( ^ 2°), r. Operat ions are performed 
as follows. T h e star of w is w*. T h e product W\W2 is (w\ • w2) if t h a t is a word, 
W\ if W\ is s tarred or equal to w2 or of the mentioned form w2[wz]T. I t remains to 
define WiVn, n > 0. 

W e may assume inductively t ha t wvn~1 is defined for all words w; then WiV71 = 

T h e last case overlaps the cases W\ — w2 and w1 = u*, bu t consistency is 
obvious. So are the laws except perhaps (wiW2)wi = W\W2. If WiW2 is (w\ • w2), 
this is Wi[w2]1, and the law holds; it certainly holds if the product is W\\ it holds 
by induction if w2 is s tarred. Since the identifications made are clearly required 
by the laws, we have the free T-algebra. 

T h e affine pa r t of T is the theory of multiplication, i.e. affine words are words 
wri t ten wi thout *; for the free T-algebra on one generator x consists of the 
words xn, and equat ing the generators of any free algebra takes products to x 
and words wn (w uns tar red) to xn. T h e rules for mult iplying affine words are 
ww = w and w[v]rw = w[v]r for r a power of 2. I t is obvious t ha t there is a 
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two-generator algebra satisfying any initial segment of these laws but not the 
rest. 
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