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By comparing the budget of a data-driven quasi-linear approximation (DQLA) (Holford,
Lee & Hwang, J. Fluid Mech., vol. 980, 2024, A12) and direct numerical simulation (DNS)
(Lee & Moser, J. Fluid Mech., vol. 860, 2019, pp. 886–938), the energetics of linear models
for wall-bounded turbulence are assessed. The DQLA is implemented with the linearised
Navier–Stokes equations with a stochastic forcing term and an eddy viscosity diffusion
model. The self-consistent nature of the DQLA allows for a global comparison across all
wavenumbers to assess the role of the various terms in the linear model in replicating the
features present in DNS. Starting from the steady-state second-order statistics of a Fourier
mode, a spectral budget equation is derived, connecting Lyapunov-like equations to the
transport budget equations obtained from DNS. It is found that the DQLA and DNS are
in good qualitative agreement for the streamwise-elongated structures present in DNS,
comparing well for production, viscous transport and wall-normal turbulent transport.
However, the DQLA does not have an energy-conservative nonlinear term. This results
in no dissipation under molecular viscosity, with energy instead being dissipated locally
through the eddy viscosity model, which models the energy removal by the nonlinear term
at integral length scales. Comparison of the pressure–strain statistics also highlights the
absence of the streak instability, with production and forcing mainly being retained in
the streamwise and wall-normal components or shifted to the spanwise component. It is
demonstrated that the eddy viscosity diffusion term locally enforces a self-similar budget,
making the model for the nonlinear term self-consistent with a logarithmic mean profile.
Implications and recommendations to improve the current eddy viscosity enhanced linear
models are also discussed concerning the comparison with DNS, as well as considerations
with regard to pressure statistics to mimic the role of the streak instability through colour
of turbulence models.
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1. Introduction

By linearising the Navier–Stokes equations around the turbulent mean profile, an array
of analytical techniques can be employed for the study and modelling of turbulent flows
(for recent reviews, see McKeon 2017; Jovanović 2021). The success of this approach is
largely due to the importance and robustness of linear amplification mechanisms within
fully nonlinear dynamics. Analogously to the classical approach for modelling the mean
profile with an eddy viscosity closure, an appropriate closure is required in the fluctuating
velocity equations to replace the nonlinear term. This nonlinear term mediates energy
transfer and interactions across different scales in turbulent flows. Consequently, to mimic
the role of the nonlinear term played at specific length scales, a scale-dependent model of
nonlinearity should be included in the linearised equations of motion.

To prescribe such a model, the role of the nonlinearity in transferring energy across
scales needs to be well understood. Direct numerical simulation (DNS) precisely resolves
nonlinear interactions (e.g. Kim, Moin & Moser 1987; Hoyas & Jiménez 2006; Lee &
Moser 2015). However, this remains extremely costly, particularly at Reynolds numbers of
practical and theoretical interest. Efforts have been made to find suitable approximations
for the nonlinear term. One such approach is a quasi-linear approximation, where the
interactions through the nonlinear term are manipulated (for a recent review, see Marston
& Tobias 2023). The velocity field is typically decomposed into large- and small-scale
states, the exact definitions of which depend on the specific modelling objectives. By
neglecting the nonlinear self-interactions of the small-scale state, the equations for the
small-scale state are effectively linearised around the large-scale one. In the original
formulations, where the large-scale state is defined to be time-averaged velocity in channel
flow, the closure of the small-scale component was based on a marginal stability criterion
(Malkus 1956). However, the turbulent mean profile in such a flow is typically linearly
stable (Butler & Farrell 1992; Pujals et al. 2009). Therefore, more sophisticated closures
are necessary, leading to a variety of modelling approaches in its modern variants.
Examples include stochastic structural stability theory (Farrell & Ioannou 2007, 2012),
direct statistical simulation (Marston, Conover & Schneider 2008; Tobias & Marston
2013), restricted nonlinear models (Thomas et al. 2014, 2015; Bretheim, Meneveau &
Gayme 2015; Farrell et al. 2016), a quasi-linear approximation applied to exact coherent
states (Pausch et al. 2019) and generalised quasi-linear approximations (Marston, Chini
& Tobias 2016; Tobias & Marston 2017; Hernández, Yang & Hwang 2021, 2022; Luo,
Hernández & Hwang 2023).

While the Reynolds decomposition is used in a variety of situations, it may be
employed for the quasi-linear framework, with the large-scale time-averaged mean state
and the small-scale fluctuating velocity state. For wall-bounded turbulence, a quasi-linear
approximation following the Reynolds decomposition was developed in Hwang &
Eckhardt (2020), referred to as a minimal quasi-linear approximation (MQLA). In this
MQLA, a self-consistent closure for the fluctuating velocity state was provided. Here
and throughout the text, self-consistent refers to the fact that the Reynolds shear stress
generated by the velocity fluctuations should be consistent with the Reynolds shear
stress that appears in the mean momentum equation determining the mean profile.
As the mean profile is empirically well approximated over a wide range of Reynolds
numbers (e.g. Cess 1958), the MQLA becomes a predictive framework over the range of
Reynolds numbers. An extension has recently been provided, in a data-driven quasi-linear
approximation (DQLA) (Holford, Lee & Hwang 2024), to account for the non-zero
streamwise Fourier modes not included in the MQLA. To retain the predictive nature of the
MQLA, the extension into the streamwise wavenumber domain was also made predictive.
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The energetics and colour for linearised models

To this end, the self-similar nature of the energy-containing motions generated by
the linearised Navier–Stokes equations and those present in real turbulent flow was
exploited (Holford, Lee & Hwang 2023). A self-similar weight for the streamwise
wavenumbers was developed for all Reynolds numbers, originally determined by matching
the two-dimensional velocity spectra from the linearised Navier–Stokes equations to
the DNS spectra at Reτ � 5200 (Reτ is the friction Reynolds number). The resulting
steady-state statistics and velocity spectra compare reasonably well with those of DNS,
with Reynolds scaling behaviour consistent with available simulation and experimental
data (Hwang & Eckhardt 2020; Skouloudis & Hwang 2021; Holford et al. 2024). The
linearised fluctuation equations in the DQLA employ an eddy viscosity diffusion model
and a forcing term to replace the nonlinearity. The role of this simple model has been
described in numerous previous linear modelling studies (e.g. Reynolds & Hussain 1972;
del Álamo & Jiménez 2006; Hwang & Cossu 2010; Morra et al. 2019), but precisely how
and why such a simple model effectively replaces the role of the nonlinearity involving
highly complex interactions across a wide range of scales still needs to be answered.
Recent studies by Symon, Illingworth & Marusic (2021) and Symon et al. (2023) provide
insightful discussions on this issue by assessing the role of the eddy viscosity diffusion
operator in resolvent analyses applied to the linearised fluctuation equations. In Symon
et al. (2021), the nonlinear transport in the minimal flow unit of near-wall turbulence, as
well as in exact coherent states, was compared with that of the eddy viscosity diffusion
model. An approximate budget was derived for the leading-order resolvent modes with
integration over the wall-normal direction. It was demonstrated that without the eddy
viscosity diffusion, the nonlinear term computed from DNS projects poorly over the
leading resolvent modes of the linear model. This was reaffirmed in Symon et al. (2023),
where various predictions made with a resolvent analysis, with and without eddy viscosity,
were compared with turbulent channel flow at Reτ ≈ 550. They showed that the resolvent
modes of the eddy viscosity enhanced resolvent operator provide a better basis, with
findings similar to those of Morra et al. (2021). Furthermore, the eddy viscosity model
provides mechanisms of wall-normal energy transfer (see also Hwang 2016), resulting in
the resolvent mode structures comparing favourably with the spectral proper orthogonal
decomposition (Towne, Schmidt & Colonius 2018) modes from DNS.

The aforementioned studies have provided valuable insights into the recent modelling
efforts of turbulence using linearised fluctuation equations. However, these attempts are
limited to low Reynolds numbers (e.g. Symon et al. 2021), at which the separation between
inner and outer scales is very little, or are often restricted to a few wavenumber pairs
and frequencies relevant to particular sets of energy-containing motions (e.g. Morra et al.
2021; Symon et al. 2023). The strength of the forcing inputs considered is often not
self-consistent, hindering the understanding of the global features on the role of the eddy
viscosity diffusion and the forcing in modelling of the nonlinear term, especially at high
Reynolds numbers. In this respect, the self-consistent nature of the same form of the
nonlinearity in the DQLA offers a way to assess the modelled nonlinear term at high
Reynolds numbers. In particular, it will enable us to formulate a full spectral energy budget
of the fluctuations generated by the linearised equations, which can be directly compared
with that of DNS. With the forcing self-consistently determined in the DQLA, the role of
the forcing and eddy viscosity diffusion operator can be clearly separated. This can then
demonstrate the role of the eddy viscosity diffusion model in mimicking the nonlinear
term at high Reynolds numbers.

The main objective of the present study is to analyse the energy transport mechanisms
within the DQLA through a spectral budget analysis, which will be compared with a DNS
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counterpart from Lee & Moser (2019). In § 2, the spectral energy budget is first derived
for the stochastic linear modelling frameworks used in previous studies (e.g. Farrell &
Ioannou 1993; Jovanović & Bamieh 2005; Farrell & Ioannou 2007). The budget in terms
of the Orr–Sommerfeld–Squire system is also provided, and the turbulent transport is
related to the modified form of the Lyapunov equation introduced in some previous studies
(Zare, Jovanović & Georgiou 2017; Abootorabi & Zare 2023). In § 3, the DQLA is briefly
recapped. Particular care is taken in prescribing the model for the nonlinear term, where
the additional terms in the budget present due to the inclusion of an eddy viscosity are
given and discussed. In § 4, the results of the spectral budget analysis for the DQLA are
compared with the DNS termwise. In particular, it is seen that the eddy viscosity term
in the DQLA models the energy removal by the nonlinear term at integral length scales.
Furthermore, the pressure–strain statistics reveal that the linear model for the fluctuation
equations in the DQLA does not contain the streak instability mechanism, which plays
an important role in redistributing energy from the streamwise component to the other
components. A discussion of the entire budget and overall performance of the DQLA
and the eddy viscosity model is given in § 5. Finally, concluding remarks are provided
in § 6.

2. Lyapunov-like equations and the spectral energy budget

To start, a spectral budget equation is considered in the context of the Lyapunov-like
equations. The computation of the white-in-time noise response to the linearised
Navier–Stokes equations has been a standard practice (e.g. Bamieh & Dahleh 2001;
Jovanović & Bamieh 2005; Madhusudanan, Illingworth & Marusic 2019; Jovanović 2021;
Holford et al. 2024). Therefore, relating the Lyapunov-like equations to the spectral energy
budget equation used in, for example, Lee & Moser (2019) will enable us to establish
a framework that compares a model based on linearised Navier–Stokes equations for
fluctuations, such as the DQLA in Holford et al. (2024), with DNS. In particular, the
formulation of the DQLA in Holford et al. (2024) is directly related to the spectral energy
budget analysis of DNS data in Lee & Moser (2019), since the covariance formulated
in the DQLA is computed by solving the Lyapunov equations in Holford et al. (2024).
From this, it will be seen that the spectral budget equation is a Lyapunov-like equation
to be satisfied for each wavenumber pair, and it becomes a statistical budget of the
spectral velocity covariance for the DQLA. No modelling assumptions are made for the
nonlinear term here (additional modelling used in the DQLA is detailed in § 3, where
the corresponding budget terms are also defined). Further details of the derivation are
included in Appendix A (see also Appendix B for details on the computation of the
pressure–velocity and forcing–velocity statistics). The intra-scale budget is then put into a
form that can be compared with the budget equation statistics typically stored in DNS.

2.1. Turbulent channel flow
Fully developed incompressible turbulent flow is considered between two infinitely long
and wide plates, with x, y and z denoting the streamwise, wall-normal and spanwise
directions, respectively. The two parallel plates are separated by a distance of 2h, with
the lower and upper walls located at y = 0 and y = 2h. The velocity vector is denoted
by u = (u, v, w) with components along the streamwise, wall-normal and spanwise
directions, respectively. The velocity field is decomposed into a time-average mean state
and a component fluctuating relative to this state, denoted by U = (U( y), 0, 0) and
u′ = (u′, v′, w′): i.e. the Reynolds decomposition is employed. The states are coupled
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through the following equations:

ν
dU
dy

− u′v′ = τw

ρ

(
1 − y

h

)
, (2.1a)

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = − 1

ρ
∇p′ + ν∇2u′ + N , (2.1b)

where

N = −∇ · (u′u′ − u′u′). (2.1c)

Here an overbar denotes the time average, p′ is the fluctuating pressure, ν is the kinematic
viscosity, ρ is the density and τw is the shear stress at the wall. Equation (2.1a) is the mean
momentum equation, which retains the nonlinear Reynolds shear stress term feeding back
from the fluctuating state. The evolution of the fluctuating state remains fully nonlinear
and exact for the purpose of this budget formulation. Given the homogeneous nature of
the flow in the wall-parallel directions, the following Fourier transform for the states is
considered:

û′(t, y; kx, kz) =
∫∫ ∞

−∞
u′(t, x, y, z) ei(kxx+kzz) dx dz. (2.2)

The evolution equation for the fluctuating state is now rewritten in Fourier space, with the
operator and state dependence on the wavenumber pair and wall-normal location dropped
from the notation:

∂û
∂t

= Aûû − Gp̂ + N̂ , (2.3a)

with linear operators

Aû =
⎡⎣LSQ −(DU) 0

0 LSQ 0
0 0 LSQ

⎤⎦ , (2.3b)

where

LSQ = −ikxU + νΔ (2.3c)

is the Squire operator and

G = (1/ρ)[ikx D ikz]T (2.3d)

is the gradient in column matrix operator form. Here D denotes differentiation along the
wall-normal direction and Δ = D2 − k2 is the Laplacian in Fourier space, where k2 =
k2

x + k2
z . The boundary conditions are the no-slip conditions on the velocity state, û = 0

at y = 0 and y = 2h.

2.2. Lyapunov-like equations
To establish a local energy budget of (2.3a) in Fourier space, an evolution of the equation
for the second-order statistics is derived here in terms of the Lyapunov-like equation.
Following the formulation in Balakrishnan (1981) (see Appendix A for details and also
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Hoepffner et al. 2005; Zare et al. 2017; Jovanović 2021), the evolution of the covariance
operator between velocity states at instances t1 and t2 is given by

d
dt

〈Rûû(t1, t2)m̂, n̂〉 = E

[〈
∂û
∂t

∣∣∣∣
t1

, m̂

〉
〈û(t2), n̂〉∗ + 〈û(t1), m̂〉

〈
∂û
∂t

∣∣∣∣
t2

, n̂

〉∗]
, (2.4)

where 〈·, ·〉 is the standard inner product:

〈m̂, n̂〉 =
∫ 2h

0
n̂Hm̂ dy. (2.5)

Here, (·)H is the complex conjugate transpose and m̂( y; kx, kz) and n̂( y; kx, kz) are
arbitrary three-dimensional vectors. For steady-state statistics, the time derivative of the
covariance operator has to vanish in the limit of t → ∞. Setting the time lag to zero,
t = t1 = t2, and taking the limit to (2.4) yields

lim
t→∞

d
dt

〈Rûû(t, t)m̂, n̂〉 = lim
t→∞ E

[〈
∂û
∂t

, m̂
〉
〈û, n̂〉∗ + 〈û, m̂〉

〈
∂û
∂t

, n̂
〉∗]

= 0. (2.6)

Replacing ∂u/∂t with (2.3a) then gives

lim
t→∞〈Lb(t, t)m̂, n̂〉 = 0, (2.7)

where Lb(t, t) is the linear operator containing the time-dependent budget terms obtained
by rearranging (2.6). For details, see Appendix A. For arbitrary m̂ and n̂ this leads to

L∞
b ≡ lim

t→∞Lb(t, t)

= AûR∞
ûû + R∞

ûûA†
û − (GR∞

ûp̂ + R∞
p̂ûG†) + (R∞

ûN̂ + R∞
N̂ û

) = 0, (2.8)

where (·)∞ denotes a steady-state operator.
For modelling purposes, this budget is typically formulated for the wall-normal

velocity-vorticity state, q = [v′ η′]T, where η′ = ∂u′/∂z − ∂w′/∂x. In this formulation,
the pressure is eliminated, and the resulting budget equation for the q̂ state is given by

L∞
b,q̂ = Aq̂R∞

q̂q̂ + R∞
q̂q̂A†

q̂ + T q̂ = 0, (2.9a)

with
T q̂ = BR∞

q̂N̂ + R∞
N̂ q̂

B†, (2.9b)

where L∞
b,q̂ = BL∞

b B† is the budget operator for q̂, Aq̂ the Orr–Sommerfeld–Squire system
and B a matrix operator which contains the definition of vorticity and a set of operations to
remove the irrotational pressure field (see Appendices A and B). This is a Lyapunov-like
equation, where T q̂ is not necessarily sign definite. In this case, the solution R∞

q̂q̂ is not
guaranteed to be positive definite, as required. Such a modelling framework which relaxes
the sign-definiteness T q̂ has recently been explored in Zare et al. (2017) and Abootorabi
& Zare (2023) (see also Georgiou (2002a) and Georgiou (2002b); Jovanović (2021)
for a more rigorous derivation and review of the modelling framework, respectively).
Alternatively, one can directly prescribe T q̂ to be positive definite and guarantee that
Rq̂q̂ is positive definite through properties of the Lyapunov equation (Zhou, Doyle &
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Glover 1996). Indeed, this is the case when the nonlinear term is replaced by a
white-in-time forcing. The covariance of the model nonlinear term in this case is

RN̂N̂ (t1, t2) = R∞
ÑÑδ(t1 − t2), (2.10)

where δ(t1 − t2) is the Dirac delta function and R∞
ÑÑ is the time-invariant operator giving

the spatial covariance of N . Using properties of the delta-correlated forcing, the model
transport term becomes

BR∞
q̂N̂ + R∞

N̂ q̂
B† = BR∞

ÑÑB†, (2.11)

giving the standard Lyapunov equation.

2.3. Spectral energy budget
The Lyapunov-like equations derived in § 2.2 essentially provide an energy budget
equation for the velocity covariance operators to satisfy at a given wavenumber pair. As the
covariance matrices are not typically stored in DNS, the statistics can be further reduced
to the typical budget equation terms (e.g. Mansour, Kim & Moin 1988; Mizuno 2016;
Lee & Moser 2019). In place of arbitrary functions in (2.7), m̂ and n̂, eiδ( y − y′) and
ejδ( y − y′′) can be used, where ei are the canonical basis vectors of R

3. This provides the
two-point wall-normal correlation statistics, R∞

ûû( y′, y′′; kx, kz). By setting y′ = y′′ = y, a
single wall-normal profile of statistics is then recovered, giving the typical energy budget
statistics for DNS.

Below, the resulting energy budget equation is rearranged to be directly comparable with
that in Lee & Moser (2019). The notation of the statistics follows Lee & Moser (2019),
with E ij( y; kx, kz) denoting the one-point statistics of the Reynolds shear stress tensor
at a wavenumber pair, where the subscript indices correspond to the components. The
formulation of the spectral budget analysis here directly follows Lee & Moser (2019), to
which the reader is referred for a more complete discussion, with the definitions consistent
with other typical budget analyses (e.g. Mansour et al. 1988; Mizuno 2016; Cho, Hwang
& Choi 2018). The formulated budget equation is written in the following form:

EP
ij + Eν

ij + EΠ
ij + ET

ij = 0, (2.12)

for production, viscous, pressure and nonlinear (or turbulent) transport terms, respectively.
Considering that the time-averaged mean profile consists of (U( y), 0, 0), the production
term becomes

EP
ij = −(E[v̂û∗

j ]δ̃1i + E[ûiv̂
∗]δ̃1j)(DU), (2.13)

where δ̃ij is the Kronecker delta. In the physical domain, this provides a source term for
the turbulent kinetic energy in the streamwise component. The viscous term is written as

Eν
ij = ν(E[û∗

j Δûi] + E[ûiΔû∗
j ]), (2.14a)

which can then be split into a wall-normal transport term and viscous dissipation term:

Eν
ij = Eν,D

ij + Eν,ε
ij , (2.14b)

where Eν,D
ij and Eν,ε

ij satisfy ∫ h

0
Eν,D

ij dy = 0 ∀ kx, kz (2.14c)
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and

Eν,ε
ij ≤ 0 ∀ y, kx, kz. (2.14d)

In general, Eν,D
ij has no net effect and simply transports turbulent kinetic energy across the

wall-normal domain, with local positive source regions at a wall-normal location balanced
by negative sink regions to satisfy this integral condition. The term Eν,ε

ij acts as a pure sink
term, dissipating and removing turbulent kinetic energy, with

Eν,D
ij = νD2

E[ûiû∗
j ] (2.14e)

and

Eν,ε
ij = −2ν(k2

E[ûiû∗
j ] + E[(Dûi)(Dûj)

∗]). (2.14f )

The correlation between the pressure gradient and velocity can be decomposed into a
transport term and a traceless term:

EΠ
ij = EΠ s

ij + EΠd

ij , (2.15a)

where EΠ s

ij and EΠd

ij are

EΠ s

ii = 0 ∀ y, kx, kz (2.15b)

and ∫ h

0
EΠ,d

ij dy = 0 ∀ kx, kz. (2.15c)

There is no unique way of employing such a decomposition (Lumley 1975), and here the
typical pressure–strain term is used for EΠ,s

ij , giving

EΠ,s
ij = −(E[p̂(Giûj)

∗] + E[p̂∗Gjûi]), (2.15d)

where Gi is the ith entry in the gradient operator (2.3d), and the transport term becomes

EΠ,d
ij = DE[p̂û∗

j ]δ̃i2 + DE[p̂∗ûi]δ̃j2, (2.15e)

with all transport occurring through the wall-normal velocity component. The traceless
term by construction has zero net effect on the turbulent kinetic energy and does not
appear in the budget for the total turbulent kinetic energy. However, for componentwise
considerations, it acts as a source/sink term, dependent on the sign, with the other velocity
components balancing this and satisfying the traceless condition.
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Finally, the correlation between the nonlinear term and the velocity state, i.e. the
turbulent transport term, can be decomposed. The total term is given by

ET
ij = E[Gkûkui(ûj)

∗] + E[ûi(Gkûkuj)
∗]. (2.16)

In the spectral budget analysis of the DNS (Lee & Moser 2019), this is split into an
interscale transport term and a wall-normal transport term as follows:

ET
ij = ET⊥

ij + ET‖
ij , (2.17a)

where ET⊥
ij satisfies the wall-normal transport condition, as in the previous

decompositions, with ∫ h

0
ET⊥

ij dy = 0 ∀ kx, kz, (2.17b)

which is given by

ET⊥
ij = −1

2D(E[ûj(ûiv)∗] + E[û∗
i (ûjv)]). (2.17c)

The remaining term ET‖
ij (see Lee & Moser (2019) for the full expression) satisfies a

condition that also ensures that ET‖
ij has zero net contribution to the turbulent kinetic

energy. However, this is a global condition with∫∫ ∞

−∞
ET‖

ij dkx dkz = 0 ∀ y. (2.17d)

Hence, ET‖
ij at a local wavenumber pair represents interscale transfer in the sense that

turbulent transport is balanced out by the Fourier modes at other wavenumbers to satisfy
this integral. That being said, both the wall-normal and interscale turbulent transport
terms are precisely interscale, as they mathematically arise from triadic interactions across
wavenumbers. For the model used in the present study, the nonlinear term is replaced by
a forcing term and eddy viscosity diffusion operator (see § 3.1 for further details), and
this condition is not designed to be satisfied, as is evident in § 4. No attempt is made to
satisfy this global condition, as it is beyond the scope of this study. Instead, a separate
decomposition for the nonlinear model used is provided in § 3.1.

Finally, with this budget formed in spectral space, taking the inverse Fourier transform,
a budget in physical space is also satisfied:

Pij( y) + Dij( y) + εij( y) + ΠS
ij ( y) + ΠD

ij ( y) + T ij( y) = 0, (2.18)

with wall-normal profiles of production, viscous transport, dissipation, pressure–strain,
pressure transport and turbulent transport, respectively. Note that due to (2.17d), the profile
T ij( y) is determined solely from the ET⊥

ij spectra in the DNS, while in the presented model,
there are contributions from the non-conservative part of the nonlinear model.

3. Data-driven quasi-linear approximation

Having established the energy budget equation for the Navier–Stokes equations in Fourier
space in terms of the Lyapunov-like equation in § 2, the DQLA is now introduced. Its
modelling procedure is briefly discussed in § 3.1. The specific modelling feature of the
DQLA (i.e. the nonlinear term model) is then related to the turbulent transport term (2.16)
in the energy budget equation in § 3.2. Finally, the numerical solution procedure for the
DQLA is briefly presented in § 3.3.
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3.1. Formulation
This section provides a brief recap of the DQLA of Holford et al. (2024) and the
computational approach for the spectral energy budget formulated in the previous section.
In the DQLA, the full nonlinear equation for the mean velocity is considered, while the
equations for fluctuations are linearised about the mean. The model nonlinear term consists
of an eddy viscosity diffusion term and a stochastic forcing term. In particular, for a given
prescribed mean velocity, e.g. from Cess (1958), the stochastic forcing is determined such
that the Reynolds shear stress from the fluctuating equations is identical to that from the
mean equation, i.e. self-consistency. This feature allows us to directly compare the spectral
energy budget of the DQLA with that of DNS, enabling us to fully understand the role of
the eddy viscosity diffusion and stochastic forcing used in many previous linear modelling
studies (e.g. Reynolds & Hussain 1972; Hwang & Cossu 2010; Morra et al. 2019; Symon
et al. 2021).

The model for the nonlinear term in the DQLA is prescribed with the following form:

N = ∇ · (νt(∇u′ + (∇u′)T)) + f , (3.1)

with f being the stochastic forcing, and the eddy viscosity is frequently set to the empirical
expression of Cess (1958):

νt = ν

2

[
1 + κ2 Re2

τ

9
(1 − y2)2(1 + 2y2)2

(
1 − exp

{
(|y| − 1)

Reτ

A

})2
]1/2

− ν

2
. (3.2)

In this study, the parameters were set to A = 28.7 and κ = 0.434 based on a least-squares
fit between the DNS mean profile at Reτ ≈ 5200 and the mean profile determined with the
eddy viscosity closure: −u′v′ = νt dU/dy in (2.1a). In Fourier space, the eddy viscosity
diffusion term is given by

Lνt =
⎡⎣(Dνt)D + νtΔ ikxDνt 0

0 2(Dνt)D + νtΔ 0
0 ikzDνt (Dνt)D + νtΔ

⎤⎦ . (3.3)

The stochastic forcing is designed to take the following form of the spectral covariance:

E[f̂ ( y, t; kx, kz)f̂ H( y′, t; kx, kz)]

=
⎡⎣Wu(kx, kz) 0 0

0 Wv(kx, kz) 0
0 0 Ww(kx, kz)

⎤⎦ δ( y − y′)δ(t − t′), (3.4)

where Wr are componentwise weights for the forcing with r = {u, v, w}.
Given the linear nature of the fluctuation equation for the DQLA, the spectral velocity

covariance of the DQLA is written as

Φ∞
ûû =

∑
r=u,v,w

Wr(kx, kz)Φ
∞
ûû,r, (3.5)

where Φ∞
ûû = E[û( y)û( y′)H] and Φ∞

ûû,r is the spectral velocity covariance by solving the
Lyapunov equation with componentenwise forcing: for example, Φ∞

ûû,u is obtained by
setting (Wu, Wv, Ww) = (1, 0, 0) (see Holford et al. (2024) for further details). It was also
shown that replacing Φ∞

ûû,r with the one obtained from a few leading proper orthogonal
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decomposition (POD) modes improves the turbulence statistics from the DQLA, as this
procedure effectively removes some of the unwanted non-physical features originating
from Wr not varying in the wall-normal direction (for a further discussion, see also Hwang
& Eckhardt (2020) and Holford et al. (2024)). For this purpose, the velocity covariance
constructed with a few leading POD modes is further considered:

Φ
∞,NPOD
ûû,r ( y, y′; kx, kz) =

NPOD∑
i

σiûr,POD( y, kx, kz)ûH
r,POD( y′, kx, kz), (3.6)

where ûr,POD( y, kx, kz) is the POD mode obtained from Φ∞
ûû,r and σi the energy content

of each POD mode with σi ≥ σi+1. Consequently, the final form of the velocity covariance
used in the DQLA is given as follows:

Φ∞
ûû =

∑
r=u,v,w

Wr(kx, kz)Φ
∞,NPOD
ûû,r . (3.7)

A value of NPOD = 2 is used, retaining the most energetic structure driven by the
white-in-time forcing based on the symmetry in channel flow. This choice follows from
Hwang & Eckhardt (2020), where the inclusion of higher-order POD modes introduces
a non-physical peak in the velocity statistics towards the channel centreline due to the
forcing in this region – this is also confirmed with the present DQLA by considering all
the POD modes (not shown). For a discussion on the contributions of Φ∞

ûû,r to Φ∞
ûû, albeit

with a white-in-time and wall-normal varying forcing rather than POD modes, the reader
is referred to Holford et al. (2023).

3.2. Spectral energy budget for DQLA
The only difference between the full Navier–Stokes equations and the equations for DQLA
is the form of nonlinear term in (2.3a): i.e. (2.1c) versus (3.1). The difference in the spectral
energy budget therefore appears only in the turbulent transport term. In the DQLA, this
term is loosely referred to as a transport term, as it is a model for the turbulent transport
term. However, strictly speaking, it is not a transport term, because the nonlinear term
is not necessarily energy-preserving, given its form of an eddy-viscosity diffusion and
forcing. Indeed, as is seen in § 4.6, its role only phenomenologically mimics that played
by the nonlinear term in the full Navier–Stokes equations. In the DQLA, the turbulent
transport term is written as

ET
ij = Eνt

ij + E f
ij, (3.8a)

where Eνt
ij is the eddy-viscosity-related transport and

E f
ij = E[û∗

j f̂i + f̂ ∗
j ûi] (3.8b)

is the forcing-related transport. The transport by the eddy viscosity operator can be further
decomposed following Eν

ij with

Eνt
ij = Eνt,D

ij + Eνt,ε
ij + Eνt,G

ij , (3.9a)

where Eνt,D
ij and Eνt,ε

ij satisfy ∫ h

0
Eνt,D

ij dy = 0 ∀ kx, kz (3.9b)
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and

Eνt,ε
ij ≤ 0 ∀ y, kx, kz. (3.9c)

Hence overall the net effect of the eddy viscosity diffusion operator is the removal of
energy through dissipation, given the positive profile of νt, as discussed in Symon et al.
(2021, 2023). The Eνt,G

ij are the statistics that arise from the gradient of the wall-normal
velocity component:

Eνt,G
ij = (Dνt)(E[ûi(Gjv)∗] + E[u∗

j Giv̂]). (3.9d)

These statistics are found to be small and largely negligible. The dissipation remains
identical, with the eddy viscosity replacing the molecular viscosity:

Eνt,ε
ij = −2νt(k2

E[ûiû∗
j ] + E[(Dûi)(Dûj)

∗]), (3.9e)

which remains a sink term, given the eddy viscosity profile remains positive across the
wall-normal domain. The related transport terms vary due to the wall-normal variation of
νt with

Eνt,D
ij = Eνt,D1

ij + Eνt,D2
ij , (3.9f )

where

Eνt,D1
ij = νtD2

E[ûiû∗
j ] and Eνt,D2

ij = (Dνt)DE[ûiû∗
j ]. (3.9g)

These two terms are loosely referred to as transport terms in the current study, even though
it is strictly their sum that satisfies (3.9b). They correspond to the wall-normal transport
under νt and Dνt, respectively, with similar terms offered in Symon et al. (2023).

Finally, the inverse Fourier transform can be applied to the modelled turbulent transport
term, yielding the turbulent transport profile in the wall-normal direction:

T ij( y) = T νt
ij + T f

ij( y), (3.10)

where

T νt
ij ( y) = T νt,D1

ij ( y) + T νt,D2
ij ( y) + T νt,G

ij ( y) + ε
νt
ij ( y). (3.11)

Here, T νt,D1
ij , T νt,D2

ij , T νt,G
ij and ε

νt
ij are from Eνt,D1

ij , Eνt,D2
ij , Eνt,G

ij and Eνt,ε
ij , respectively.

3.3. Numerical methods
The DQLA in this study was recently performed in Holford et al. (2024). The
wall-normal direction of the Orr–Sommerfeld–Squire system for each spatial wavenumber
pair is discretised using a Chebyshev collocation method. The resulting discretised
Lyapunov equation is solved using lyap function in MATLAB to compute Φ∞

ûû,r. Then

Φ
∞,NPOD
ûû,r ( y, y′; kx, kz) is subsequently obtained by computing appropriately weighted

eigenvalues and eigenvectors of Φ∞
ûû,r (Holford et al. 2024). With Φ

∞,NPOD
ûû,r ( y, y′; kx, kz)

computed, the weight Wr(kx, kz) is finally determined such that Φ∞
ûû matches best with the

two-dimensional velocity spectra from DNS at Reτ ≈ 5200 (Lee & Moser 2015), while
the resulting Reynolds shear stress is numerically identical to that from the prescribed
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Figure 1. The wall-normal profiles of the turbulence statistics: (a) r.m.s. streamwise (black), wall-normal
(blue) and spanwise (red) velocity fluctuations; (b) y-premultiplied turbulent kinetic energy budget consisting
of production P (black), dissipation ε (blue), viscous transport D (red), pressure transport ΠD (green)
and turbulent transport T (yellow). Data obtained from DNS are the solid lines and data from the DQLA
with NPOD = 2 are the dashed lines. The logarithmic layer here appears approximately from y+ = 100 to
y/h = 0.15 – for the mean velocity profiles of the DNS and DQLA, see figure 2 in Lee & Moser (2015) and
figure 1 in Hwang & Eckhardt (2020), respectively.

mean velocity given with (3.2). For this purpose, built upon the attached eddy hypothesis
(Townsend 1976), the weight is decomposed into the following form:

Wr(kx, kz) = Wkz(kz)Wr,kx(kx/kz), (3.12)

where Wkz(kz) is a spanwise wavenumber dependent weight and Wr,kx(kx/kz) are
self-similar streamwise weights for each of the velocity components. The weights are
determined by solving the two related optimisation problems and for a more detailed
account of the procedure, the reader is referred to Holford et al. (2024). Since the DQLA
formulation is based on the Orr–Sommerfeld–Squire system, the pressure–velocity and
forcing–velocity correlations from the spectral energy budget analysis in §§ 2.2 and 3.2
need to be computed also. This is detailed in Appendix B. The Reynolds numbers for the
DQLA considered are Reτ = 1000, 2000, 5200, 10 000, 20 000, and the numbers of grid
points in the streamwise and spanwise directions for the different Reynolds numbers are
fully documented in Holford et al. (2024). Here, the number of wall-normal grid points
was increased with Ny = 256, 386, 512, 768, 1024 for the Reynolds numbers considered
in increasing order.

4. Results

In figure 1, the root-mean-square (r.m.s.) velocity profiles and the premultiplied budget
terms between DNS and the DQLA are compared. A detailed discussion on the r.m.s.
velocity profiles and their scaling behaviour with Reynolds number can be found in
Holford et al. (2024). Throughout, superscript ‘+’ indicates the normalisation by the
friction velocity uτ and/or the viscous inner length scale δν = ν/uτ . Overall, the DQLA
exhibits qualitative agreement with the DNS r.m.s. velocity statistics (figure 1a) across
the components, the main missing feature being the plateau in the streamwise component.
The scaling behaviour of the velocity profiles with Reynolds number is also consistent with
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Figure 2. The y-premultiplied production profiles from (a,b) the DQLA and (c,d) DNS in (a,c) inner- and
(b,d) outer-scaled wall-normal coordinates. Here, Reτ ≈ 1000, 2000, 5200 for DNS and Reτ = 1000, 2000,
5200, 10 000, 20 000 for DQLA.

DNS (omitted here; see Holford et al. (2024) for further details), and is in agreement with
the attached eddy hypothesis with finite Reynolds number corrections (Hwang, Hutchins
& Marusic 2022). The complete budget of the turbulent kinetic energy is presented in
figure 1(b), taking the trace of (2.18), where the turbulent ‘transport’ of the DQLA consists
of the sum of T νt

ii and T f
ii, as defined in (3.10). Up to y+ ≈ 20, the budgets exhibit

qualitative agreement. Beyond this wall-normal location, only the dominant production
term demonstrates similar behaviour, consistent with the DQLA model construction. In
the DNS within this logarithmic region, production is effectively balanced by dissipation,
with these two terms dominating budget considerations at a chosen wall-normal location.
However, in the DQLA, production is approximately balanced by the model for the
nonlinear term.

4.1. Production
Figure 2 compares the premultiplied production profiles from DNS and the DQLA in
inner- and outer-scaled wall-normal coordinates. There is a good agreement for the
inner-scaled coordinates, with both DNS and the DQLA scaling well up to y+ ≈ 70. The
only small differences lie in the slightly lower peak in the DQLA, with this peak being
broader: for example, y+P+ � 5 for y+ ∈ [10, 60] as opposed to y+ ∈ [10, 40] for the
DNS. When comparing the profiles in outer-scaled coordinates, the DQLA scales much
better, with well-defined outer scaling for y/h � 0.1. On the contrary, in the DNS a peak
occurs in the logarithmic region, with a Reynolds-dependent magnitude and location, at
least for the Reynolds numbers considered here. Despite this difference, the production of
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Figure 3. The kxy- and kzy-premultiplied one-dimensional production spectra from (a,b) DQLA and (c,d)
DNS for (a,c) streamwise and (b,d) spanwise wavenumbers at Reτ ≈ 5200. The solid lines are y = 0.1λz and
y = 0.01λx and the dashed lines are y = 0.5λz and y = 0.35λx. Contour levels are separated by 1 % of the
maximum value up to 10 % of the maximum, and then in 10 % increments.

DQLA captures the important scaling behaviour for the logarithmic region, with a plateau
in the production profile indicating inverse scaling with y. The magnitude of this plateau
is consistent with the Cess profile of the eddy viscosity and its prescribed von Kármán
constant, with the production in the logarithmic layer acting as

y+P+ = −2y+u′v′+ dU+

dy+ � 2y+ν+
t

(
1

κ2y+

)2

= 2
κ

, (4.1)

with νt ∼ y being used, and 2/κ � 4.61. Given this plateau occurs in the logarithmic
region, the overall production there increases with Re as the inner and outer length scales
are better separated to define the logarithmic region. Overall, the comparison of the
production profiles is related to the input of the DQLA model (i.e. the mean profile or
the Cess eddy viscosity) rather than to the modelling framework itself, as this production
profile is purely determined by the eddy viscosity closure used. Therefore, the framework
could benefit from a more precise closure than the Cess profile used, particularly for
modelling the outer peak and its scaling behaviour.

The premultiplied one-dimensional wavenumber spectra of production are compared in
figure 3. The DQLA and DNS share the same qualitative features. There is a bimodal
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Figure 4. The y-premultiplied dissipation profile from (a–c) DQLA and (d–f ) DNS in inner-scaled
wall-normal coordinates for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components. Here
Reτ ≈ 1000, 2000, 5200 for DNS and Reτ = 1000, 2000, 5200, 10 000, 20 000 for the DQLA.

structure in the spanwise wavenumber spectra, with peaks occurring at approximately the
same wall-normal locations and spanwise length scales in the near-wall and outer regions
(i.e. the inner and outer peaks in figure 3b,d). Both the DQLA and DNS are energetic
along a linear ridge, with the length scales exhibiting self-similar y behaviour. In general,
the DQLA is more energetic closer to the wall, with a length selection associated with
long streaky motions, y = 0.1λz (figure 3b). On the other hand, the DNS is energetic closer
towards the length scale associated with vortex packets, y ≈ 0.5λz (Hwang 2015), with the
spectra energetic between these two linear length scales (figure 3d). This trend is repeated
in the streamwise wavenumber spectra with the DNS and DQLA (figure 3a,c). Again,
the DQLA spectra are more energetic towards the associated streamwise length scale of
the elongated streaky motions. It is also interesting to see that both DNS and the DQLA
have a region of negative production in the streamwise spectra, with the peak occurring
at approximately the same wall-normal location and streamwise length scale, although
the DQLA region extends over the wall-normal domain and towards larger streamwise
length scales. The origin of the negative production for the DQLA case is further
explained in § 4.4. Here it is just pointed out that this region of negative production can
be phenomenologically modelled by the forcing of the Orr–Sommerfeld–Squire system,
considering that the DQLA spectra are constructed by weighting the most energetic
structures of the linear model.

4.2. Dissipation
Figure 4 compares the premultiplied dissipation profiles of the velocity components,
with a lesser degree of agreement between DNS and the DQLA compared with the
production profiles. The dissipation of the DQLA model is seen to present only in the
near-wall region scaling in inner units, displaying very little values in the outer region
(figure 4a–c). There is a well-defined near-wall peak at y+ ≈ 8 in the wall-parallel

1000 A42-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.929


The energetics and colour for linearised models

components, while the wall-normal component is considerably smoother, with a broad
peak at y+ ≈ 15. The near-wall region in the wall-parallel components exhibits some
Reynolds number dependence. In DNS (figure 4d–f ), dissipation scales well in inner
units up to y+ ≈ 100, although the amplitude for each component is seen to very mildly
grow with Reτ . Below this location, anisotropic dissipation occurs, albeit with different
characteristics when compared with the DQLA. In the DNS, the dissipation levels are
roughly comparable in the streamwise perpendicular components, with the streamwise
component dominating dissipation in the near-wall region. In the DQLA model, the
two wall-parallel components more closely resemble each other, with the spanwise
component having a reduced magnitude, while the wall-normal component has the least
significance. The subtle Reynolds number dependence observed in the DNS spectra for
the wall-parallel components in the near-wall region is notably weaker when compared
with the DQLA model, with Reynolds dependence around the peak also. The primary
qualitative differences between DNS and the DQLA lie in the absence of any features in
the logarithmic/outer region in the DQLA model. In the DNS there is an approximate
plateau with isotropic dissipation across the components, which provides an approximate
balance for production in the logarithmic region. Given that the dissipation in the DQLA
is present only in the near-wall region across different Reynolds numbers, another term in
the budget must be balancing production, namely the nonlinear model in the DQLA from
figure 1.

The premultiplied one-dimensional streamwise wavenumber spectra are compared in
figure 5, with a similar comparison in the spanwise domain (not shown here). Overall,
the spectra reflect the differences highlighted by the dissipation profiles: there is very
weak/absent dissipation away from the wall, say for y+ � 100 in all components for the
DQLA (figure 5a–c). In particular, in the DQLA the dissipation in the logarithmic region
occurs along a length scale much more local to production than in DNS, following a linear
length scale selection slightly further from the wall than the linear length scale selection
in production. In DNS the length scale selection for the strong dissipation region follows
the local Kolmogorov length scale (figure 5d–f ). In contrast, in the near-wall region,
say for y+ � 10, the streamwise and spanwise dissipation spectra spread over a wide
range of streamwise length scales for both DQLA and DNS, confirming the previously
proposed mechanisms on their association with the wall-attached footprints observed in
the streamwise and spanwise velocity spectra (Cho et al. 2018; Holford et al. 2024).
However, some quantitative differences are also seen. The DQLA streamwise and spanwise
dissipation spectra are relatively similar in their overall shape, with a near-wall peak
and dissipation extending to the large-scale attached regions. Although the dissipation
in the streamwise component of the DQLA may be reflective of the DNS for y+ � 10,
the dissipation of the DQLA is much larger in the relative contribution to dissipation.
Moreover, the dissipation of the spanwise component in the DNS is more similar to the
wall-normal one, with the wall-attached features much more subtle.

4.3. Viscous transport
The viscous transport profiles are shown in inner-scaled wall-normal coordinates in
figure 6, with a strong level of agreement between the DQLA and DNS. Both are
highly anisotropic, with the streamwise component being the dominant term. The viscous
transport shows weak Reynolds dependence, with this more pronounced in the DQLA.
Three distinct near-wall peaks occur at y+ ≈ 3, 13 and 10 that transfer energy towards
and away from the wall, respectively. The most notable difference lies in the spanwise
component, with this term in DNS being much less significant than the DQLA counterpart.
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Figure 5. The premultiplied streamwise wavenumber spectra for dissipation from (a–c) DQLA and (d–f ) DNS
for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components at Reτ ≈ 5200. Contour levels are
separated by 1 % of the maximum value up to 10 % of the maximum, and then in increments of 10 %. The solid
lines are y/λx = 0.03, 0.5 and 0.1, and y1/4/λx = 13, 20 and 20 for streamwise, wall-normal and spanwise
components in the DQLA and DNS, respectively.

The spanwise component shares the same qualitative features as the streamwise component
at a reduced magnitude. This is true for both DNS and the DQLA, with the stronger
viscous transport in the DQLA having a similar degree of Reynolds dependence to the
streamwise component, with the Reynolds dependency in DNS being negligible relative
to the streamwise component.

The premultiplied wavenumber spectra for the streamwise component of viscous
transport are shown in figure 7, with strong agreement between DQLA and DNS. All three
peaks are found at common streamwise and spanwise length scales, (λ+x , λ+z ) ≈ (800, 100)

for DNS, and slightly larger scales in the DQLA, (λ+x , λ+z ) ≈ (2000, 200). Both the DNS
and DQLA also show a region of viscous transport for the larger scales, accounting for
the Reynolds dependency in the wall-normal profiles. This is further confirmed in the
two-dimensional spectra, and is present in the DQLA also, with growth along the linear
ridge for larger streamwise and spanwise length scales at this near-wall location (not
shown). This Reynolds dependency in the near-wall region occurs largely for elongated
streaky motions, similar to production, for say λx/λz � 10, with the large-scale motions
becoming increasingly significant with Reynolds number.

The strong similarity of viscous transport is due to the strong similarity in the velocity
spectra between DQLA and DNS (Holford et al. 2024). Indeed, using the Taylor expansion,
the near-wall two-dimensional viscous transport spectra may be written such that

E+
ij = (Eν,D

ij )+y+2 + O(y+4
), (4.2)

where the superscript (·)+ denotes the viscous inner scaling and E ij = E[ûiû∗
j ].
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Figure 6. The y-premultiplied viscous transport profile from (a–c) the DQLA and (d–f ) DNS in inner-scaled
wall-normal coordinates for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components. Here
Reτ ≈ 1000, 2000, 5200 for DNS and Reτ = 1000, 2000, 5200, 10 000, 20 000 for the DQLA.
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Figure 7. The premultiplied spectra for viscous transport in the streamwise component from (a–c) the DQLA
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4.4. Pressure–strain
The premultiplied pressure–strain profiles are shown in figure 8. By construction, this term
is traceless; therefore, the profiles can be interpreted as a statistical energy transfer between
the components. Importantly, for components with significant source terms, for example,
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Figure 8. The y-premultiplied pressure–strain profile from (a–c) DQLA and (d–f ) DNS in inner-scaled
wall-normal coordinates for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components. Here
Reτ ≈ 1000, 2000, 5200 for DNS and Reτ = 1000, 2000, 5200, 10 000, 20 000 for the DQLA.

the production term in the streamwise component, the pressure–strain can redistribute
the source term to other components. When comparing the profiles, the streamwise and
spanwise share the same sign when comparing the DNS and DQLA, with the streamwise
component negative (figure 8a,d), consistent with the redistribution of the production
source term, and the spanwise component positive across the entire wall-normal domain
(figure 8c, f ). However, the streamwise component in the DQLA is at a significantly
reduced magnitude when compared with the DNS, indicating that more of the production
source term is retained in the streamwise component in the DQLA model. The wall-normal
component in the DQLA is primarily negative, the opposite sign of the DNS (figure 8b,e).
This can be associated with the fundamental limitations of the linear model used in the
DQLA, where the streak instability/transient growth is not present by construction – these
processes have been understood to redistribute the streamwise velocity fluctuations to
cross-streamwise components in DNS (Cho et al. 2018; Doohan, Willis & Hwang 2021).
Here, in the DQLA model, the wall-normal velocity fluctuations arise primarily from the
forcing, acting as a production-like term, explaining the differences in sign. It is also
worth noting that this sign difference in the wall-normal component of pressure–strain
is also present in the near-wall ‘splat’ region (Mansour et al. 1988; Lee & Moser 2019)
for y+ � 10, where the impermeability condition/continuity is enforced, shifting energy
to the wall-parallel components. Moreover, in the DNS this ‘splat’ region is a transfer
between the wall-normal and spanwise components, whereas in the DQLA the transfer is
primarily between the streamwise and wall-normal fluctuations. Aside from the qualitative
differences in the profiles, both DNS and DQLA appear to show a weak Reynolds
number dependence in the near-wall region (streamwise and spanwise components, in
particular). The profiles of the DQLA approximately collapse up to y+ ≈ 12, except in
the streamwise component, compared with the DNS, which does so up to y+ ≈ 50. This
difference between the DQLA and DNS is reflective of the differences in the production
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Figure 9. The kxy-premultiplied streamwise wavenumber spectra for pressure–strain from (a–c) DQLA and
(d–f ) DNS for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components at Reτ ≈ 5200. Contour
levels are separated by 1 % of the maximum value of the streamwise component for DNS and spanwise
component for the DQLA, increasing up to 10 % of the maximum, and then in 10 % increments. The solid
lines are y = 0.01λx and the dashed lines are y = 0.35λx.

profiles (figure 2). The streamwise component of pressure–strain in the DQLA remains
an approximate universal plateau, whereas in the DNS the peak in production in the
logarithmic region (not modelled by the Cess profile) is presumably responsible for the
similar behaviour in the DNS pressure–strain.

Figure 9 compares the premultiplied streamwise wavenumber pressure–strain spectra,
which, like the profiles, are locally traceless for a considered wavenumber pair and sum
to zero, and can be interpreted as a statistical intercomponent transfer. The spanwise
wavenumber spectra compare similarly to the streamwise wavenumber spectra between
the DNS and DQLA and are not shown, the only difference being in the streamwise
component, which does not have a positive region in the spanwise wavenumber spectra.
Both the DQLA and DNS exhibit pressure–strain spectra aligned along linear ridges
(i.e. λx ∼ y), with the length scales of the elongated streaky motion and vortex packets
indicated by the solid and dashed lines, respectively, in the figures (Hwang 2015). In
particular, for the DNS spectra (figure 9d–f ), it becomes clear that the streak instability
(or transient growth) mechanism is responsible for the intercomponent transfer with
all the DNS spectra aligning well with y ∼ 0.35λx (Schoppa & Hussain 2002; de
Giovanetti, Sung & Hwang 2017). There is little intercomponent transfer occurring for
the elongated motions of y ∼ 0.01λx, with production being retained in the streamwise
component. In contrast, in the DQLA (figure 9a–c), there is no substantial mechanism
for redistributing the turbulent kinetic energy from production across the components. In
the streamwise pressure–strain component, the transfer is mainly towards the spanwise
component, with the linear length scale aligning close to production, although slightly
further from the wall (see figure 3). It is also worth pointing out that there is a
region of positive pressure–strain in the streamwise component. This aligns well and is
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Figure 10. The y-premultiplied pressure transport profiles from (a) DNS and (b) DQLA in inner-scaled
wall-normal coordinates. Here Reτ ≈ 1000, 2000, 5200 for DNS and Reτ = 1000, 2000, 5200, 10 000, 20 000
for the DQLA.

the same magnitude as the negative region in the streamwise wavenumber spectra of
production (figure 3). This positive streamwise pressure–strain arises from the wall-normal
component, indicating this negative production in the DQLA is a result of transfer from
the wall-normal component to the streamwise one, with the wall-normal component itself
arising from the forcing term, given its predominantly negative sign (see also Gupta et al.
(2021), where the modification of the forcing also removed the negative production).
A similar feature is present in the spanwise component pressure–strain of DNS, with
a negative region at relatively large streamwise wavelengths, with an intercomponent
transfer from the wall-normal component. This negative region in the spanwise component
and corresponding positive region in the wall-normal component are associated with
streamwise vortices (Lee & Moser 2019); with inspection of the two-dimensional spectra,
this transfer is concentrated for streamwise-elongated structures. As expected, the physics
of this is not present in the DQLA model, and this transfer is extremely weak upon
inspection of the two-dimensional spectra (not shown here).

4.5. Pressure transport
Next, the pressure transport term is compared. In Lee & Moser (2019), this term is grouped
with the wall-normal turbulent transport, as both represent wall-normal transport arising
from the nonlinearity. Here, the comparison is done separately, as the DQLA model has no
constraints on pressure and the pressure–velocity correlation arising from the irrotational
forcing is zero. Hence, grouping the pressure transport in the DQLA with the wall-normal
nonlinear transport does not follow the same rationale.

The pressure transport is compared between the DQLA and DNS in figures 10 and 11.
Here, there is little in common between the DNS and DQLA. The DNS pressure transport
profile has a relatively simple structure, depositing energy in the near-wall region, with the
source of this being further away from the wall (figure 10a). There is only weak Reynolds
number dependence up to y+ ≈ 30, with approximately three inner scaling peaks at y+ ≈
7, 20 and 40, and the profile eventually plateaus in the logarithmic region and becomes
largely negative in the outer region. This is also reflected in the spanwise wavenumber
spectra, where the spectra exhibit approximate linear scaling, removing energy away from
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Figure 11. The kzy-premultiplied pressure transport spanwise wavenumber spectra from (a) DNS and
(b) DQLA at Reτ ≈ 5200. Contour levels are separated by 1 % of the maximum value up to 10 % of the
maximum, and then in 10 % increments.

the wall and depositing it towards the wall (figure 11a). The DQLA differs significantly
from the pressure transport seen in DNS. For most of the wall-normal domain, the two
have opposite signs, and the DQLA exhibits a much larger amplitude. In the transport
profiles, there are still approximately three peaks at y+ ≈ 7, 20 and 40, however, with a
sign change in pressure transport relative to the DNS (figure 10b), indicating that energy
is mainly removed in the near-wall region and deposited in logarithmic/outer wall-normal
locations. This is also reflected in the spectra, with most of the energy being transferred
away from the wall along integral length scales (figure 11b). This is likely a consequence of
neglecting any pressure-based constraints or irrotational forcing in the DQLA framework,
with the focus solely on modelling velocity statistics.

4.6. Turbulent transport and the nonlinear model
Before comparing the behaviour of the turbulent transport profile from the DNS and its
model used in the DQLA, each term present in the DQLA nonlinear model is presented
in figure 12. If the model (3.1) was energy conservative like the nonlinear term in the
Navier–Stokes equations, the sum of all these terms integrated in the wall-normal domain
should vanish. This condition is not imposed for the construction of the DQLA model
(Holford et al. 2024), but the form of the model (3.1) allows it to have the mechanisms
for both energy injection and removal through the forcing and eddy viscosity terms.
Considering the wall-normal transport terms from the eddy viscosity integrated out to zero
by the construction of the decomposition, the sum of the forcing ‘transport’ and dissipation
is the injection/removal of energy by the nonlinear model at a given wall-normal location.
Just from inspection of the profiles, it is clear that the model is non-conservative in each
of the components. In the streamwise and spanwise components (figure 12a,c), the eddy
viscosity dissipation results in the removal of energy for a majority of the wall-normal
domain, with the only exception in the near-wall region of the spanwise component for
y+ � 10 due to the forcing ‘transport’. In the wall-normal component (figure 12b), the
forcing ‘transport’ is larger than the eddy viscosity dissipation, resulting in the injection
of energy across the entire wall-normal domain. This is consistent with the observation
in the pressure–strain spectra, where the wall-normal pressure–strain spectra are mainly
negative, redistributing energy to the spanwise component.
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Figure 12. The premultiplied nonlinear model profile from the DQLA decomposed into the Tf s
(black), −ενt

(blue), Tνt,D1 (red), Tνt,D2 (green) and Tνt,G (yellow) for the (a) streamwise, (b) wall-normal and (c) spanwise
components. In (b), Tνt,D2

22 = Tνt,G
22 and the plot is not repeated.

The eddy viscosity transport term, consisting of the ‘transport’ through eddy viscosity
and the derivative of eddy viscosity, also represents the injection/removal of energy at a
considered wall-normal location. As this term integrates out to zero across the wall-normal
domain, the injection/removal at a given wall-normal location is balanced out by other
regions, allowing the source location of local energy injections to be identified. Note
that the ‘transport’ through the eddy viscosity profile (Tνt,D1 , the red line in figure 12)
is the wall-normal viscous transport simply weighted by the eddy viscosity (see (3.9g)),
with the same streamwise dominant term and with significant transfer in the spanwise
component and negligible transfer in the wall-normal component. All three components
of the transport by eddy viscosity are generally negative in the near-wall region while
being positive away from the wall, indicating that this mechanism predominantly transfers
the energy away from the wall. The transfer of energy in the proximity of the wall
(y+ < 5) is generally highly damped compared with viscous transport (figure 6) by the low
magnitude of the eddy viscosity. Moving a little away from the wall, the negative transfer
of energy through the streamwise component becomes the main transport mechanism,
with the peak at y+ ≈ 11. As the eddy viscosity profile substantially increases in the buffer
layer (y+ ≈ 10–30), the streamwise-component-dominant transport becomes increasingly
substantial on increasing y. There is a peak in the positive transfer of energy for y+ ≈ 50,
with this now spanning the remainder of the wall-normal domain.

The ‘transport’ through the eddy viscosity derivative (Tνt,D2 , the green line) can
similarly be regarded as the wall-normal derivative of the turbulence intensity profiles
weighted by the wall-normal eddy viscosity gradient; see (3.9g). Taking into account
that both the eddy viscosity and the velocity experience growth in the near-wall region
due to the no-slip condition, this eddy viscosity derivative term is going to inject energy
in the near-wall region (Symon et al. 2023). Moreover, the sign of the eddy viscosity
derivative with the Cess profile remains positive for most of the wall-normal domain, as it
monotonically increases with νt ∼ y, especially in the logarithmic region. Therefore, the
overall sign of the transfer will depend on the derivative of the r.m.s. velocity profile. Given
the impermeability condition at the wall, the wall-normal velocity spectra will always
be negligible in this region, with the eddy viscosity derivative transfer term injecting
energy primarily for the wall-parallel components. Consistent with the r.m.s. profiles, the
eddy viscosity derivative ‘transport’ injects energy up to the near-wall peak in the r.m.s.
velocity profiles at y+ ≈ 15 in both the wall-parallel components. As y increases, this
transport becomes negative for both wall-parallel components, indicating that the injection
of energy into the near wall by Tνt,D2 is a consequence of energy transfer towards the wall
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Figure 13. The premultiplied turbulent transport/nonlinear model profile from (a–f ) DQLA and (g–i) DNS
in inner-scaled wall-normal coordinates for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise
components. For DQLA, the transport profile is decomposed into (a–c) the forcing ‘transport’ and eddy
viscosity dissipation and (d–f ) the eddy viscosity transport. Here Reτ ≈ 1000, 2000, 5200 for DNS and
Reτ = 1000, 2000, 5200, 10 000, 20 000 for DQLA.

from the logarithmic and outer regions. This negative transport approximately balances the
positive eddy viscosity transport Tνt,D1 . Finally, it is noted that the statistics arising from
the gradient of the wall-normal velocity component (the magenta lines in figure 12a,c and
blue line in figure 12b) are largely negligible. The role of this term goes mainly into the
pressure, particularly in the logarithmic region, where (Dνt) ∼ 1 and the gradient of the
wall-normal velocity is irrotational, thereby not affecting the velocity field (see also the
discussion in Appendix B).

With the role of the various terms in the nonlinear model established, the total eddy
viscosity transport term (Tνt,D1 + Tνt,D2) is presented together, as well as the eddy
viscosity dissipation and forcing transport term and compared with the turbulent transport
from DNS in figure 13. The forcing transport and eddy viscosity dissipation profiles bear
no resemblance to the turbulent transport in DNS. Instead, it becomes clear that the local
balance of production and dissipation through molecular viscosity has been replaced by
that of dissipation through eddy viscosity (see also figure 1b).

When comparing the scaling of the eddy viscosity transport profile (Tνt,D1 + Tνt,D2)
in the DQLA (figure 13d–f ) with the turbulent transport profile in DNS (figure 13g–i),
it is remarkable to observe that there is strong agreement in both the qualitative features
and the scaling behaviour, although no explanation can be given at this moment. In the
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Figure 14. The premultiplied spanwise wavenumber spectra for wall-normal turbulent transport from (a–c)
DQLA and (d–f ) DNS for the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components at Reτ ≈
5200. Contour levels are separated by 1 % of the maximum value up to 10 % of the maximum, and then in 10 %
increments.

streamwise component, the eddy viscosity transport well models the turbulent transport
from DNS, with the positive and negative peaks at y+ ≈ 5 and y+ ≈ 11, respectively.
Both DNS and the DQLA exhibit Reynolds-number-dependent peak magnitudes in these
two near-wall transfers. The peak magnitudes are slightly increased in the DQLA, most
noticeably the near-wall transfer towards the wall at y+ ≈ 5. Moving away from the wall,
the DQLA replicates the approximate positive logarithmic slope in the turbulent transfer
from DNS for y+ � 300, although this emerges at higher Reynolds numbers in the DQLA
(Reτ � 5200) compared with the DNS (Reτ � 2000). The other components compare less
favourably. In the wall-normal component, the DQLA contains a negative peak in energy
transfer at y+ ≈ 100, while in DNS this is much closer to the wall at y+ ≈ 40. Beyond this
region, the DNS appears to scale well in inner units even up to the upper boundary of the
logarithmic layer. There are even fewer common features in the spanwise component, with
the DQLA transport being significantly dependent on Reynolds number.

The spanwise wavenumber spectra of the wall-normal turbulent transport from DNS
and from the DQLA are shown in figure 14. In comparing them, it is clear that the eddy
viscosity diffusion model well replicates the wall-normal turbulent transport from DNS,
with the main transport being from the self-similar integral length scale (blue region),
upwards away from the wall (dark red region). All three components also have weak
positive transport in the region relatively close to the wall (the pale red region below blue
region). However, in the wall-parallel components, these positive transport regions appear
in the near-wall region. In the DQLA, this is relatively much stronger, particularly in
the spanwise component. Moreover, in the spanwise component, this positive transport in
the near-wall region follows the behaviour of the streamwise component, spanning outer-
to inner-scaling spanwise length scales, while in the DNS, the transfer towards the wall
mainly holds for the larger spanwise length scales.
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Figure 15. The premultiplied spanwise wavenumber spectra for eddy viscosity dissipation and forcing
transport summed together from the DQLA (a–c) and interscale turbulent transport from DNS (d–f ) for
the (a,d) streamwise, (b,e) wall-normal and (c, f ) spanwise components at Reτ ≈ 5200. Contour levels are
separated by 1 % of the maximum value up to 10 % of the maximum, and then in 10 % increments.

Finally, the spanwise wavenumber spectra of conservative interscale transport term
from the DNS are compared with the non-conservative DQLA forcing and eddy viscosity
dissipation terms in figure 15. As the DNS spectra are energy-conservative, the sink and
source regions can be identified, and the related transport is across the different spanwise
length scales. Here, there is the most significant difference between the DQLA and the
DNS. In the DQLA (figure 15a–c), the nonlinear model mainly removes energy close
to integral length scales, especially in the wall-parallel components, or acts as a driving
term in the wall-normal case – the dissipation in the wall-normal component occurs
slightly above this forcing ‘transport’ input, with the remnants of the eddy viscosity
dissipation spectra present as the negative region in the spectra. As the eddy viscosity
dissipation is mainly balancing production, the spectra also exhibit approximate y scaling,
indicating self-similarity. Although this self-similar scaling at the integral length scale in
the logarithmic region is also present in the interscale transport of DNS (figure 15d–f ), the
only available mechanism for dissipation is through molecular viscosity. As such, the DNS
has interscale transport through energy cascade down to the Kolmogorov length scale for
dissipation, a feature not present in the DQLA. This is consistent with the observations
on the dissipation in the DQLA, with the dissipation spectra following a linear length
scale selection and being largely negligible in the logarithmic region. In both wall-parallel
components, there is also a region of transport towards large scales in the near-wall region,
originating from small scales (Cho et al. 2018; Lee & Moser 2019). This is not present in
the streamwise component of the DQLA. While these non-conservative spectra from the
DQLA do not compare as favourably with the wall-normal transport by the eddy viscosity,
the linear scaling feature in the eddy viscosity dissipation (and forcing in the wall-normal
component) plays a crucial role in the energy balance (see the discussion in § 5.2).
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5. Discussion

The preceding section of results highlights the capabilities and limitations of the DQLA
and its associated eddy-viscosity-enhanced linear model. The key points are summarised
below:

(i) Production: When examining the sole source term in DNS, production, the DQLA
demonstrates the most favourable comparison. The agreement in the production
profile is expected due to the utilisation of the self-consistent Reynolds shear
stress constraint in the DQLA. In particular, the DQLA accurately captures the
plateau in the logarithmic region of the production profile, indicating the mean
velocity proportional to y−1, consistent with the law of the wall. However, it misses
the Reynolds-dependent peak observed in DNS, attributed to the simplistic Cess
eddy viscosity profile employed. In terms of spectra, the self-similar behaviour of
production spectra is evident, with streamwise and spanwise length scales following
y scaling, albeit closer to the wall than the DNS spectra. The success of this
modelling is attributed to the application of the linearised Navier–Stokes equations
along with the eddy viscosity model. Essentially, the DQLA enforces the attached
eddy model, where the linearised Navier–Stokes equations, coupled with the eddy
viscosity diffusion model, yield a self-similar structure in the wall-normal direction.
These structures are superposed onto one another, guided by the self-consistent
Reynolds shear stress constraint, resulting in self-similar premultiplied production
spectra with most of the energetic content in streamwise-elongated structures.

(ii) Componentwise energy redistribution: At the integral length scales, production
is transferred across components via pressure–strain, with a negative streamwise
pressure–strain that is comparable in magnitude to production. The DNS spectra
suggest the streak instability as the mechanism for intercomponent transfer (Cho
et al. 2018; Doohan et al. 2021), demonstrated by well-aligned streamwise
wavenumber spectra at y = 0.35λx (Hwang 2015). Through this mechanism,
turbulent kinetic energy in the streamwise component primarily transfers to
the wall-normal and spanwise components, serving as the primary statistical
energy source at integral length scales in these components. In DNS, energy
is also transferred from the spanwise to the wall-normal component through
streamwise-elongated vortices, evident as the negative region in streamwise
wavenumber spectra. Notably, this feature is absent in the DQLA. Production
predominantly remains in the streamwise component, with the streamwise
pressure–strain significantly lower than production. A wall-normal forcing term
mimics the driving mechanism through the streak instability (or transient growth)
and the subsequent nonlinear processes (Schoppa & Hussain 2002; de Giovanetti
et al. 2017; Doohan et al. 2021). Hence, this is only phenomenological, where
the wall-normal component’s pressure–strain is positive, transferring energy to the
spanwise component. Despite differing signs in pressure–strain components, similar
to production, the spectra display linear scaling, showcasing self-similar production
transfer across components in DNS and redistributing the forcing in the DQLA.

(iii) Energy transport and dissipation: Finally, with production redistributed across
components, turbulent kinetic energy undergoes transport and dissipation. In
DNS, the primary term that balances the remaining production in the streamwise
component and pressure–strain in the spanwise and wall-normal components is
the interscale turbulent transport term. This term removes energy at integral
length scales approximately scaling with y in the logarithmic region, subsequently
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redistributing it towards the local Kolmogorov length scale through energy cascade
under the energy-conservative nonlinear term in DNS. In contrast, the DQLA
dissipates the source term locally in each component. The eddy viscosity dissipation
serves as a substitute for interscale transport, removing energy at integral length
scales and providing a self-similar energy balance, as well as replacing the role of
molecular viscosity in balancing production globally in the wall-normal profiles.
Despite neglecting energy cascade features, the self-consistent nature of the DQLA
provides a sound energy balance, comparable to DNS and allows for a fair
assessment of the eddy-viscosity-enhanced linear model. The eddy viscosity model
contributes essential features to the linear model, which is discussed in the following
subsections.

5.1. Eddy viscosity model as a colour of turbulence
Revisiting the problem formulation, one of the key features that the eddy viscosity
diffusion provides is a colour of turbulence term in the same sense as in Zare et al. (2017).
When examining the turbulent transport statistics from DNS, it becomes evident that a
coloured-in-time model for the nonlinear term is indispensable for any linear model aiming
to replicate the energy balance. In the white-in-time setting, where the nonlinear term is
replaced solely by a forcing term delta-correlated in time, the turbulent transport term is
equivalent to

R∞
ûN̂ + R∞

N̂ û
= R̃∞

ÑÑ , (5.1)

similar to (2.11), where Ñ is a white-in-time forcing term and R̃∞
ÑÑ contains the spatial

statistics. Notably, as this term is an autocorrelation, the resulting turbulent transport
statistics will strictly have a positive wall-normal profile. This poses important limitations
since the primary role of interscale turbulent transport is to remove energy from integral
length scales and redistribute it for dissipation. Therefore, in the white-in-time model,
the statistics are inherently non-physical. With the introduction of a coloured-in-time
model, the nonlinear term can now relax the sign definiteness issue for the white-in-time
forcing. The resulting turbulence transport statistics are no longer restricted to be
positive throughout the wall-normal domain. This highlights the essential nature of a
coloured-in-time term in accurately replicating turbulent transport statistics, allowing for
the removal and redistribution of energy across the wall-normal domain. Moreover, in
the white-in-time setting, a conservative model for the nonlinear term is not possible
from an interscale perspective. The statistics will always integrate out to be positive,
given the model transport term is the variance profile of the white-noise forcing for each
wavenumber.

While the preceding discussion advocates the use of a coloured-in-time model for the
nonlinearity, the use of the eddy viscosity diffusion term in providing this can now be
made more precise. Following the interpretation of this coloured-in-time term offered by
Zare et al. (2017), the eddy viscosity diffusion term provides the colour of the turbulence
model, that is, a modification to the linear dynamical operator. This modification preserves
linear stability, allowing a white-in-time forcing to be used, where the Lyapunov equation
of the modified linear operator can be solved to determine statistics. In the case of the eddy
viscosity operator, following the Orr–Sommerfeld system, the modification of the linear
dynamical operator gives the following equation for q̂:

∂ q̂
∂t

= (Aq̂ + BC f )q̂ + Bf̂ , (5.2a)
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where

C f = Lνt C (5.2b)

is the modification of the linear dynamical operator. Despite this relatively simplistic eddy
viscosity term as a colour of turbulence model and it not offering the same efficacy
in reproducing velocity statistics when compared with a more precise data-driven form
(Zare et al. 2017; Abootorabi & Zare 2023), it yields the advantage of having an explicit
expression. This allows the eddy viscosity diffusion as the colour of turbulence model to
be more easily interpreted. Furthermore, it retains a physical B operator in (A4), which
effectively filters out the irrotational part of the nonlinear model (see also Appendix B),
rather than a data-driven alternative in Zare et al. (2017). This colour of turbulence
term is componentwise negative definite. It strictly removes energy through the eddy
viscosity dissipation, with a conservative wall-normal transport term. With the DQLA
framework self-consistently weighting the model to essentially match production, the
statistics obtained from this simple yet effective colour of turbulence model can be
compared with DNS, providing implications and potential improvements for the current
eddy viscosity model.

As the problem formulation establishes a clearer connection between statistics from the
Lyapunov-like equation for the linearised fluctuation model and the turbulent transport
statistics from DNS, some immediate enhancements of the eddy viscosity model could be
pursued by tuning it to match the DNS output – such a study was recently carried out for a
turbulent jet by Pickering et al. (2021) from a context of improving their resolvent analysis.
Note that there is no reason for the eddy viscosity model in the fluctuating equation to be
identical to that of the mean momentum equation. However, the parametrised form should
probably possess the same key features as the Cess viscosity profile: (1) νt ∼ y in the
logarithmic region; (2) the same Reynolds-number scaling; (3) a wall-normal derivative
to phenomenologically drive the footprints of the structures in the logarithmic and outer
region (see figure 14).

First, at a given wavenumber pair, an eddy viscosity profile could be parametrised and
tuned such that the wall-normal transport and eddy viscosity dissipation best match the
associated features of the turbulent transport statistics. However, modifying the eddy
viscosity profile will impact the DQLA framework, as the self-consistent forcing and
weighting would need to change relative to the eddy viscosity profile, resulting in a
coupled problem. To address this issue, the eddy viscosity could be optimised through a
framework such as that of Holford et al. (2023), where a white-in-time forcing of the eddy
viscosity model is optimised to best match the velocity spectra from DNS. This could also
allow a scale-dependent eddy viscosity profile to be used, given the qualitative nature of
the interscale and wall-normal turbulent transport in DNS differs most from the current
eddy viscosity model. Second, it is also clear that even though the application of forcing
to the linearised Navier–Stokes equations yields anisotropic turbulence statistics due to
the production term present only in the streamwise component, the anisotropy across the
components does not match that of the DNS. Given that the main balance at integral scales
essentially arises from the eddy viscosity term, the isotropic eddy viscosity diffusion term
could also be tuned componentwise to reflect this. The dissipation, viscous transport and
eddy viscosity wall-normal transport results suggest that the spanwise component would
benefit most. In the DQLA, the response of the spanwise component is overly energetic
and follows the same structure as the streamwise component. Whereas in the DNS the
elongated streaky structures are relatively less significant in the spanwise component.

Lastly, the implications of using an eddy viscosity diffusion for colouring white noise
(or even coloured) forcing and the possibility of a globally conservative model for the
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nonlinear term are discussed. The eddy viscosity model with the forcing should possess
all the statistical features necessary for such a model: the eddy viscosity diffusion provides
energy removal at integral scales and can mimic the turbulent wall-normal transport, while
the white-in-time forcing could be tuned to deposit the energy at the Kolmogorov scales
for dissipation under molecular viscosity. In fact, this is exactly the role of the energy
cascade mediated by the nonlinear term in the original turbulent fluctuation equations.
Therefore, the enforcement of global energy conservation is certainly possible using an
eddy viscosity diffusion accompanied with a forcing from a technical viewpoint. It is,
however, evident that it will not be able to replicate the dynamical processes involved
in energy cascade, as the model is expected to remain only phenomenological. Such a
modelling effort would not be largely beneficial to obtain novel physical insights. For
the exploration of the dynamical processes of energy cascade and scale interactions, the
generalised quasilinear approximations (e.g. Marston et al. 2016) would probably be more
useful, as recently demonstrated by Hernández et al. (2021, 2022) for turbulent channel
flow.

5.2. Local self-similar energy balance
Despite the eddy viscosity diffusion model being limited to mimicking only wall-normal
turbulent transport and energy removal at integral length scales, it will now be
demonstrated that this eddy viscosity dissipation is essential for achieving a local
self-similar budget. Following Hwang & Lee (2020), this means the eddy viscosity
diffusion model itself is consistent with a logarithmic mean profile, a generic feature
that should be achieved by colour of turbulence models following these arguments. First,
the mean-momentum equation in the logarithmic layer is revisited. At a sufficiently high
Reynolds number, in the logarithmic region, the mean-momentum equation (2.1a) reduces
to

− u′v′

u2
τ

= 1. (5.3)

In terms of the two-dimensional spectra, this may be rewritten as∫ ∞

−∞

∫ ∞

∞
E12

u2
τ

dkx dkz = −1. (5.4)

Given that the only relevant length scale in the logarithmic region is y, with 1/y ∼ kx ∼ kz,
self-similarity variables in the streamwise and spanwise directions are introduced through

ξx = kxy and ξz = kzy. (5.5a,b)

This results in (5.4) reducing to∫ ∞

−∞

∫ ∞

∞
E12

u2
τ y2 dξx dξz = −1, (5.6)

which implies the following must be true:

E12

y2 = f (ξx, ξz) or, equivalently k2
z E12 = f (ξx, ξz)

ξ2
z

≡ g(ξx, ξz). (5.7)

The relation (5.7) results solely from the mean-momentum equation and the assumption
that the only relevant length scale is y. Note that other self-similar variants for (5.7) are
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possible (e.g. using kx) as long as the premultiplication factor for E12 is dimensionally
proportional to 1/y2 using the self-similar variables in (5.5). While (5.7) must be true
in real flows, there is no guarantee the output of a linearised model for fluctuations
satisfies this condition. This is precisely what the DQLA implements, albeit over the
entire wall-normal domain, by ensuring the spectra are self-consistent with the mean shear
present in the mean-momentum equation, with∫ ∞

−∞

∫ ∞

∞
E12 dkx dkz = u′v′. (5.8)

With this theoretical property of the real flow spectra established and achieved in the
linearised model by the DQLA self-consistent framework, now consider the fluctuating
equations at a given spatial wavenumber pair. This can then be rewritten in terms of
self-similarity variables. For convenience, take kz( /= 0) as a given reference length scale
(l = 1/kz). First, the Aû operator is decomposed into the streamwise advection by the mean
profile, diffusion under molecular viscosity and the off-diagonal production term:

Aû = −IikxU + Aû,ν + Aû,P. (5.9)

Rescaling into the self-similar variables, this becomes

Aû(kx, y, kz) = −IikxU + k2
z Ãû,ν(ξx, ξz) + kzÃû,P(ξx, ξz), (5.10)

where (·̃) is an identical operator, with the differential operators replaced by self-similar
counterparts (see Appendix C). Similarly, the gradient acting on the pressure and the eddy
viscosity diffusion model can be rescaled as

G = kzG̃(ξx, ξz) and Lνt = kzL̃νt(ξx, ξz), (5.11a,b)

where νt ∼ y is used for the eddy viscosity diffusion model. The fluctuating equation can
now be rewritten as

∂û
∂t

= −IikxU + kz[(Ãû,P + L̃νt)û + G̃p̂] + k2
z Ãû,ν û + f̂ . (5.12)

In the logarithmic layer, the effects of viscous diffusion can be neglected as Reτ → ∞.
With rescaled states and forcing below

ũ = kzû, p̃ = kzp̂, f̃ = f̂ , (5.13a–c)

the evolution equation for the rescaled state is finally given by

∂ũ
∂τ

= −IikxU + (Ãû,P + L̃νt)ũ + G̃p̃ + f̃ , (5.14)

where time is rescaled with τ = kzt. Note that IikxU here does not remain self-similar due
to the mean velocity, U( y) ∼ ln y. However, since this is anti-self-adjoint, it does not enter
the spectral budget.
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The energetics and colour for linearised models

Following the procedure introduced in § 2.2, the Lyapunov-like equation, which
determines the energy budget, is now given in terms of the self-similar variables as

lim
t→∞〈L̃bm̂, n̂〉 = 0, (5.15a)

where

L̃b ≡ (Ãũ,P + L̃νt)R
∞
ũũ + R∞

ũũ(Ãũ,P + L̃νt)
† − G̃R∞

ũp̃ − R∞
p̃ũG̃†

+ (R∞
ũf̃

+ R∞
f̃ ũ

) (5.15b)

and

R∞
ũũ = k2

z R∞
ûû, R∞

ũp̃ = k2
z R∞

ûp̂, R∞
ũf̃

= kzR∞
ûf̂

. (5.15c)

Furthermore, following Hwang & Lee (2020), taking the trace and considering the
statistics or spectra, if the pressure transport is assumed small at the considered integral
length scales, the balance of the statistics becomes

−2kz(DU)g(ξx, ξz) + Ẽνt
ii + Ẽ f

ii ≈ 0, (5.16)

which rearranges to

DU = 1
y

h(ξx, ξz), (5.17a)

where

h(ξx, ξz) = Ẽνt
ii + Ẽ f

ii
2ξz

. (5.17b)

Equation (5.17a) can only hold if both sides of it are a constant, resulting in a logarithmic
mean profile. Hence, the eddy viscosity dissipation, as well as the self-similar forcing
transport term, is essential in making the linear model consistent with a logarithmic mean
profile, as is done in the DQLA (Holford et al. 2024).

5.3. Colour of turbulence and pressure
It is finally worth pointing out that concerning the modelling of pressure, considering a
coloured-in-time modification to the linear operator for the nonlinear term is the only way
to have a meaningful model for the slow pressure. Note that any part of the nonlinearity
replaced by an irrotational forcing goes straight into the pressure and cannot affect the
velocity: the pressure can simply be redefined relative to this term. This is most clearly
seen through the pressure Poisson equation:

∇2p = −2
dU
dy

∂v′

∂x
+ ∇ · N . (5.18)

Consider a coloured nonlinear term N = Lcu′ + f , where Lc is the operator that adds
the colour and f is a white-in-time forcing (Zare et al. 2017). Since the slow pressure
is defined as the component of the pressure driven by ∇ · N , the operator Lc can now
be used to model the intercomponent transfer of energy mediated by it: i.e. the slow
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pressure–strain effects. Setting the irrotational forcing to zero, the rapid and slow pressure
terms can be determined by

(I − P)AûR∞
ûû + R∞

ûûA†
û(I − P) = GR∞

ûp̂r
+ R∞

p̂rûG† (5.19a)

and

(I − P)LcR∞
ûû + R∞

ûûL†
c(I − P) = GR∞

ûp̂s
+ R∞

p̂sûG†, (5.19b)

where p̂r and p̂s are the rapid and slow pressure, respectively (see Appendix B for the
derivation). Hence, without the colouring operator, Lc, the modelling of slow pressure is
not possible.

As it currently stands, an isotropic eddy viscosity diffusion model does not possess
the physics to even phenomenologically mimic this. Although not shown, it is found that
the pressure–strain arising from the eddy viscosity diffusion model is negligible when
compared with the rapid pressure–strain, with the spectra obtained from (5.19a). In other
words, the rapid pressure–strain spectra of the DQLA model are virtually indistinguishable
from figure 9. Although this may appear to suggest that the pressure–strain arising in the
DQLA is not compatible with that from the DNS, decomposing the pressure–strain from
the DNS into its rapid and slow components reveals that the pressure–strain from the
DQLA does, in fact, resemble that from the DNS.

Figure 16 shows the spanwise wavenumber spectra of the rapid pressure–strain obtained
from DNS. It is seen that the signs of rapid pressure–strain spectra for each component
in the DNS are consistent with those of the DQLA (compare figures 16 and 9a–c).
Most noticeably, the wall-normal component changes sign, indicating that the role of
the rapid pressure in the DNS is in line with that in the DQLA. That is, both the
streamwise and wall-normal components mainly transfer energy from the source terms
to the spanwise components. Moreover, the near-wall ‘splat’ region, or ‘antisplat’ in
this case, of the DNS (figure 16b) is also consistent with the DQLA pressure–strain
(compare the near-wall red region in figure 16b with that in figure 9b) – the wall-normal
component transfers energy to the streamwise component, as opposed to the opposite sign
of transfer from the wall-normal to the spanwise component in the slow-pressure case
(see figure 9e). The magnitude of the streamwise pressure–strain component is also more
consistent with the DQLA, with a majority of the production being redistributed across
the components through the slow pressure–strain. The DQLA model with the use of eddy
viscosity can only model this rapid pressure–strain. A more physics-rich colouring of the
turbulence model for the nonlinear term is required to model slow pressure–strain, a feature
responsible for a bulk of the redistribution of production across components.

6. Concluding remarks

In this study, the spectral budget of the DQLA in Holford et al. (2024) was computed
and compared with that of DNS. Turbulent fluctuations in the DQLA model are described
by the linearised Navier–Stokes equations, with an eddy viscosity diffusion model and
a stochastic forcing term to replicate the nonlinear term from the full Navier–Stokes
equations. The self-consistent nature of the DQLA ensures that the shear stress generated
by the linearised model is consistent with the Reynolds shear stress present in the mean
momentum equations. This allows for a fair comparison of the linear fluctuation models’
capabilities across an entire range of length scales. The main findings of this comparison
can be summarised as follows:
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Figure 16. The premultiplied spanwise wavenumber spectra for the rapid pressure–strain from DNS for the
(a) streamwise, (b) wall-normal and (c) spanwise components at Reτ ≈ 5200. Contour levels are separated
by 1 % of the maximum value up to 10 % of the maximum, and then in 10 % increments. The solid lines are
y = 0.01λx and the dashed lines are y = 0.35λx.

(a) The budget of the DQLA compares most favourably for the streamwise-elongated
structures with strong agreements in production and viscous transport. This is due
to the linear model in the DQLA that contains all the necessary physics to replicate
such features in combination with the self-consistent nature of the DQLA.

(b) The dissipation under molecular viscosity in the DQLA is largely negligible
above the near-wall region. Instead, energy is dissipated locally through the eddy
viscosity diffusion term. Overall, the linear model and DQLA framework capture the
streamwise-elongated features of turbulence but do not return to isotropic dissipation
across the components at smaller length scales, lacking any Kolmogorov scaling
features in dissipation, as expected.

(c) By computing the pressure–strain, the key physical process missing from the linear
model used in the DQLA becomes apparent: the streak instability and the related
nonlinear mechanisms for the generation of streamwise vortical structures. These
processes mainly facilitate an efficient transfer of energy from the streamwise
component to the other components. This is not available in the linear fluctuation
model for the DQLA. In the DQLA, the forcing term, dominated by the wall-normal
component, and turbulence production in the streamwise component form the source
terms for turbulent kinetic energy. The pressure–strain mainly redistributes this
energy into the spanwise component, with some transferred to the streamwise
component, resulting in the region of negative production.

(d) There was good agreement between the wall-normal transport by the eddy viscosity
model in the DQLA and that of the wall-normal turbulent transport in DNS. The use
of the derivative of the eddy viscosity term to replicate the wall-attached features in
the wall-parallel components is reaffirmed following Symon et al. (2023).

(e) Dissipation through the eddy viscosity model provides an essential role in energy
removal at integral scales. While the eddy viscosity diffusion model is not energy
conservative, its dissipation also keeps the local energy balance self-similar at a
considered wavenumber pair. This enables the linear model used in the DQLA to
be theoretically consistent with the key properties of the mean-momentum equation
in the logarithmic layer, allowing for the self-consistent coupling with the mean
equation, as numerically demonstrated by previous studies (Hwang & Eckhardt
2020; Skouloudis & Hwang 2021; Holford et al. 2024).
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Appendix A. Details of the budget formulation

The probabilistic setting for which the Lyapunov-like equations are derived follows the
adjoint formulation in Balakrishnan (1981) (see also Hoepffner et al. 2005; Zare et al.
2017; Jovanović 2021; Holford et al. 2024). The covariance of two zero-mean random
variables, ξ1, ξ2, is given by

Covξ1,ξ2(φ1, φ2) = E[〈ξ1, φ1〉1〈ξ2, φ2〉∗2], (A1a)

where (·)∗ denotes the complex conjugate, E[·] denotes the expectation operator, 〈·, ·〉1
and 〈·, ·〉2 are the inner products for the corresponding random variables and φ1 and φ2
are arbitrary elements from the same vector space. Given that this covariance function is
bilinear, it can be determined through a covariance operator Rξ1ξ2 , satisfying

Covξ1,ξ2(φ1, φ2) = 〈Rξ1ξ2φ1, φ2〉2, (A1b)

where the first of the subscripts denotes the domain and the latter the range of the
linear operator. For a budget equation, where most terms are linear transformations of the
velocity state, the covariance operator for the various terms is similarly determined through
linear transformations and their adjoints. For linear transforms of random variables, say,
ξ̃1 = L11̃ξ1, ξ̃2 = L22̃ξ2, the covariance operator becomes

Rξ̃1ξ̃2
= L22̃Rξ1ξ2L†

11̃
, (A2)

where (·)† denotes the adjoint of the linear operator, defined as follows:

〈L†
11̃

φ̃1, φ1〉1 = 〈L11̃φ1, φ̃1〉1̃, (A3)

where φ̃1 are elements in the same vector space as ξ̃1.
To transform the budget equation for û to that for q̂, the linear relationship between the

states can be used, as well as the operations which remove pressure from the momentum
equations. The operations describing the elimination of pressure from the momentum
equations are described by the first row, Bûv̂ , of the following B operator:

B =
[

Bûv̂

Bûη̂

]
=

[−Δ−1 0
0 I

] [
ikxD k2 ikzD
ikz 0 −ikx

]
. (A4)

Here, the divergence is taken, the wall-normal derivative is then applied and finally
the divergence of the wall-normal momentum equation is subtracted. The inverse
Laplacian is then applied to get the evolution of v̂. The second row, Bûη̂, transforms
û into the wall-normal vorticity state η̂, by definition, with the vorticity evolution not
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The energetics and colour for linearised models

involving pressure. To recover the û state from the q̂ state, continuity is enforced, resulting
in the following:

û = Cq̂, (A5a)

where

C =
⎡⎣Cq̂û

Cq̂v̂

Cq̂ŵ

⎤⎦ = 1
k2

⎡⎣ikxD −ikz
k2 0

ikzD ikx

⎤⎦ . (A5b)

This C operator is also used to prescribe an inner product for the q̂ state so that the inner
product induces a norm proportional to the turbulent kinetic energy with

‖û‖2 = 〈Cq̂, Cq̂〉 = 〈Mq̂, q̂〉 = 〈q̂, q̂〉e = ‖q̂‖2
e, (A6a)

where 〈·, ·〉 is the unweighted standard vector inner product of the corresponding vector
space and

M = 1
k2

[−Δ 0
0 I

]
(A6b)

is a positive definite matrix operator to weight the q̂ vector space. With this inner product,
using the adjoint definition (A3), B† = C (Jovanović & Bamieh 2005). The equation for
the steady-state covariance operator of q̂ can then be determined from (2.8) by applying B
and using (A2) and (A5a) with

BL∞
b B† = Aq̂R∞

q̂q̂ + R∞
q̂q̂A†

q̂ + BR∞
q̂N̂ + R∞

N̂ q̂
B† = 0. (A7)

Here,

BAûCq̂ = Aq̂q̂ =
[

Δ−1LOS 0
−ikz(DU) LSQ

] (
v̂

η̂

)
(A8a)

is the Orr–Sommerfeld–Squire system, where

LOS = −ikx(UΔ − (D2U)) + 1
Re

Δ2 (A8b)

is the Orr–Sommerfeld operator, where Δ2 = ΔΔ with the additional boundary conditions
Dv̂ = 0 at y = 0 and y = 2h to satisfy continuity at the wall.

Appendix B. Computation of some cross-correlations

Since the pressure does not explicitly appear in the present formulation based on the
Orr–Sommerfeld–Squire system, here the computation method for the forcing–velocity
and the pressure–velocity correlations is described. Note that only the solenoidal part
of the forcing can affect the velocity, and the B operator that acts on the forcing in the
Orr–Sommerfeld–Squire system removes the irrotational part of the forcing. From this
observation, combining the B and C operators together into a single expression defines a
projection operator,

P = CB, (B1)

eliminating the irrotational field, projecting a vector onto its solenoidal component.
Moreover, C† = B (Jovanović & Bamieh 2005), where the inner product on the
wall-normal velocity vorticity state is given by (A6a). Therefore, P is an orthogonal
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projection operator, ensuring a unique orthogonal decomposition of a vector into its
solenoidal and irrotational parts, provided the operator has suitably defined boundary
conditions, i.e. no-slip for the velocity state. Therefore, for a three-dimensional vector m̂,
which is sufficiently smooth to allow the following decomposition, m̂ = m̂s + m̂i, where
∇ · ms = 0 and ∇ × mi = 0, then ms and mi can be determined from

m̂s = Pm̂, (B2a)

m̂i = (I − P)m̂, (B2b)

where I is the identity operator of the corresponding space. Note that this decomposition
is referred to as the Helmholtz decomposition.

Application of the Helmholtz decomposition to the linearised fluctuation equations for
the DQLA subsequently yields

∂û
∂t

= P(Aû + Lνt)û + f̂ s, (B3a)

0 = (I − P)(Aû + Lνt)û − Gp̂ + f̂ i, (B3b)

where Lνt is the eddy-viscosity-related part of N in (3.1). Note that the pressure satisfies
the following Poisson equation:

∇̂ · (Gp̂) = −2ikxv̂
dU
dy

+ ∇̂ · ((I − P)Lνt û) + ∇̂ · f̂ i, (B3c)

with ∇̂ = (ikx, d/dy, ikz). It is useful to further decompose the pressure such that p̂ =
p̂u + p̂ f , where p̂u and p̂ f are from the first two terms and the last term of the right-hand
side of (B3c), respectively. Since f̂ i = ∇̂φ̂ by definition, where φ̂ is a scalar potential for
f̂ i, it becomes evident that p̂ f = φ̂. This suggests that p̂ f is only directly correlated with the
irrotational part of the forcing, which does not influence the velocity field in the DQLA.
Therefore, p̂ f and û must not be correlated with each other, indicating that the correlations
between the pressure and irrotational part of the forcing in the DQLA must vanish, i.e.

Rp̂û = Rp̂uû or, equivalently,Φp̂û = Φp̂uû, (B4a)

where Φp̂û = E[p̂( y)ûH( y′)]. Similarly, the correlations between û and f̂i must vanish,
indicating

Rf̂ û = Rf̂ sû or, equivalently,Φf̂ û = Φf̂ sû, (B4b)

where Φf̂ û = E[ f̂ ( y)ûH( y′)].
Now, given Φ∞

ûû available from the DQLA model, the forcing–velocity and
pressure–velocity correlations can be determined. First, combining with (B4a), right
multiplication of (B3a) by uH and subsequent application of the expectation operation
give

Φf̂ û = −P(Aû + Lνt)Φ
∞
ûû. (B5a)

Similarly, after right multiplication of (B3a) by uH , taking divergence and the
expectation operator to (B3b) yields

∇̂2Φ∞
p̂û = ∇̂ · (I − P)(Aû + Lνt)Φ

∞
ûû, (B5b)

using (B4b). The pressure–velocity correlation is finally obtained by inverting the
Laplacian above subject to Neumann boundary conditions.
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Appendix C. Definition of the rescaled self-similar operators

To rescale the linear operators in terms of self-similar variables (5.5), using kz as a
reference length scale, the differential operators become

ikx = ikz
ξx

ξz
, D = kz

d
dξz

= kzD̃, (C1a,b)

where D̃ = d/dξz and ikz is a constant. The gradient can then be expressed as

G(kx, y, kz) = kzG̃(ξx, ξz), (C2)

where

G̃(ξx, ξz) =
[

i
ξx

ξz
D̃ i

]T

. (C3)

The Laplacian is given by
Δ(kx, y, kz) = k2

z Δ̃(ξx, ξz), (C4)
where

Δ̃(ξx, ξz) = D̃2 −
(

ξ2
x

ξ2
z

+ 1
)

. (C5)

Similarly, the mean shear and the eddy viscosity can be rescaled approximately in the
logarithmic layer. Using the logarithmic mean profile, the mean shear is rescaled as

(DU)( y) ≈ 1
κy

= kzD̃U(ξz), (C6)

with D̃U(ξz) = 1/(κξz). The rescaling of the eddy viscosity relies upon the mean
momentum equation (5.3) in the logarithmic layer. Using νt(DU)( y) = u2

τ ,

νt = u2
τ κy = k−1

z ν̃t (C7a)

is obtained, where
ν̃t = u2

τ κξz (C7b)
and

Dνt( y) = u2
τ κ = D̃νt(ξz). (C7c)

Substituting these into the Aû decomposition (5.9) gives

Aû,P(kx, y, kz) = kz

⎡⎣0 D̃U 0
0 0 0
0 0 0

⎤⎦ = kzÃû,P(ξz), (C8)

Aû,ν(kx, y, kz) = k2
z

⎡⎣Δ̃ 0 0
0 Δ̃ 0
0 0 Δ̃

⎤⎦ = k2
z Ãû,ν(ξx, ξz), (C9)

and the eddy viscosity operator becomes

Lνt(kx, y, kz) = kz

⎡⎢⎢⎣D̃νtD̃ + ν̃tΔ̃ i
ξx

ξz
D̃νt 0

0 2D̃νtD̃ + ν̃tΔ̃ 0
0 iD̃νt D̃νtD̃ + ν̃tΔ̃

⎤⎥⎥⎦ = kzL̃νt(ξx, ξz).

(C10)
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Figure 17. The premultiplied spanwise wavenumber spectra for (a,c,e) total turbulent transport and for (b,d,f )
dissipation: (a,b) NPOD = 1530; (c,d) NPOD = 8; (e, f ) NPOD = 2. Contour levels are separated by 1 % of the
maximum value up to 10 % of the maximum, and then in 10 % increments.

Appendix D. Effects of NPOD on turbulent transport and dissipation in DQLA

To further justify the use of NPOD = 2, figure 17 shows the spanwise wavenumber spectra
of total turbulent transport and dissipation from the DQLA. For NPOD = 1530, it can
be seen that the main role of the nonlinear model term in the DQLA (figure 17a) is
providing energy at small length scales (λz/h ≈ 0.5), as the turbulent transport spectra
are mostly positive especially around the small spanwise length scales. In the dissipation
spectra (figure 17b), it can be seen that most of this energy is dissipated locally.
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However, this feature appears across the entire channel and is particularly strong at the
channel centre. The strong positive turbulent transport in the channel centre and the
corresponding dissipation are non-physical, and this is evident when comparing with
the interscale transport spectra of DNS (figure 15d–f ). Upon decreasing NPOD, this
non-physical artefact remains for NPOD = 8 (figure 17c), with the dissipation spectra
also extending to the channel centre (figure 17d). For the NPOD = 2 case, the positive
turbulent transport near the channel centre (3.1) is almost absent, having little effect on the
dissipation (figure 17e, f ).
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