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RINGS IN WHICH EVERY ELEMENT IS
THE SUM OF TWO IDEMPOTENTS

YASUYUKI HIRANO AND HISAO TOMINAGA

Let R be a ring with prime radical P. The main theorems of this paper are (1) The
following conditions are equivalent: 1) R is a commutative ring in which every element
is the sum of two idempotents; 2) R is a ring in which every element is the sum of two
commuting idempotents; 3) R satisfies the identity x3 = x. (2) If R is a Pi-ring in which
every element is the sum of two idempotents, then RjP satisfies the identity x — z. (3)
Let it be a semi-perfect ring in which every element is the sum of two idempotents. If

is quasi-projective, then R is a finite direct sum of copies of GF[2) and/or GF(3).

Throughout, R will represent a ring with prime radical P. A Boolean ring is
defined as a ring in which every element is an idempotent. As a generalisation of
Boolean rings, we consider the class of rings in which every element is the sum of two
idempotents. We begin with an example which shows that such a ring need not be
Boolean or even commutative.

Example. Let A{^ 0) and B be Boolean rings, and W(^ 0) a B- A-bimodule. As-
sume, furthermore, that W is s-unital as a right A-module, that is, for any ti> in
W, there exists an element e in A such that we — w. Then every element of

A 0
the non-commutative ring -R = I I is the sum of two idempotents. In fact,

\W B)
/ a 0 \ / e 0 \ / a - e 0 \ ,

= I + , I , where e is an element of A such that we = w .
\w bj \w OJ V 0 bj

Our present objective is to prove the following theorems.

THEOREM 1. The following conditions are equivalent:

1) R is a commutative ring in which every element is the sum of two idem-
potents.

2) R is a ring in which every element is the sum of two commuting idempo-
tents.

3) R satisfies the identity x3 = x.
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THEOREM 2. Let R be a Pi-ring in which every element is the sum of two idem-

potents. Then R/P satisfies the identity x3 = x.

THEOREM 3. Let R be a semi-perfect ring in which every element is the sum of

two idempotents. If RRR is quasi-projective, then R is a finite direct sum of copies of

GF{2) and /or GF(3).

In preparation for proving our theorems, we state four lemmas.

LEMMA 1. Let R(^ 0) be a ring in which every element is the sum of two idem-

potents. If R contains no non-trivial idempotents, then R is either GF{2) or GF{3).

PROOF: Since 0 and 1 are the only idempotents of R, we have either R = {0,1}
or R= {0,1,2}. Thus R is either GF{2) or GF(3). |

LEMMA 2. Let a be an element of R with a2 = 0.

(1) If a = e + / for idempotents e, / then 4a = 0 .

(2) If a — e + f for c o m m u t i n g i d e m p o t e n t s e,f t h e n a = 2 e a n d 4 e = 0 .

PROOF: (1) Obviously,

0 = a3 - 2a2

= a + 2(e/ + fe) -f efe + fef - 2(a + ef + fe)

= efe + fef - a.

Hence 0 = ea2e + fa2f = a + 3(e/e + fef) = 4a.
(2) Since 0 = a2 = a + 2e/ , we get a = —2e/, and so 0 = a ( / — e) — f — e.

Hence a = 2e and 4e = a2 = 0. |

LEMMA 3. Let R be a ring with 1, and n a positive integer greater than 1. Then

the n x n full matrix ring Mn(R) over R contains an element which cannot be written

as the sum of two idempotents.

PROOF: We write Mn{R) = ^2™j=1Reij, where eij are matrix units. Suppose,
to the contrary, that every element of Mn(R) is the sum of two idempotents. Then,
by Lemma 2(1), 4.e12 = 0 and so 4R = 0. Consider the element a = e n + e12 + e2i,
and choose idempotents e = YLriieij an(^ / s u c n that a = e + / . Since a — e = f —

f2 = a2 — ae — ea + e , we get a2 — a + ae + ea — 2e . Comparing the coefficients of en ,
e12 and e2i on both sides, we get 1 = r]2 + r2l , 0 = r n + r22 — r12 and 0 = rn +

7-22 — 2̂1 > a i ld therefore 1 = 2r]2 . Then 4R = 0 implies that 1 = 4r2
2 = 0, which is a

contradiction. |
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LEMMA 4. Let R be a prime ring in which every element is the sum of two idem-

potents. If R^ Z , the centre of R, then char R-2 and Z is either 0 or GF(2).

PROOF: First, we claim that R cannot be reduced. Actually, if R is reduced, then

every iclerapotent is central, and so R = Z by hypothesis, a contradiction. Hence R

has a non-zero element a with a2 = 0. By Lemma 2 (1), we conclude that char R = 2.

Now, let 2 be an arbitrary element of Z . By hypothesis, we can write z = e + / for

idempotents e , / in R. Then it is easily observed that ef = fe. Since char R = 2 ,

we obtain that z2 = e + f + 2ef = e + f = z. Since R is prime, this implies that z is

either 0 or 1. This completes the proof. I

PROOF OF THEOREM 1: 1) =4- 3). It is well-known that R is a subdirect sum

of subdirectly irreducible rings R\. Since, by Lemma 1, each Rx is either GF(2) or

G'F(3), R satisfies the identity x3 = x.

3) = t - 2). As is well-known, R is a commutative ring. Replacing x by 2x in

a;3 = x, we obtain 6x = 0. Further, replacing x by x2 - a; in x3 = x , we obtain

3x2 = 3x. By making use of these, we see easily that ( -2x 2 ) = 4x4 = - 2 x 4 = -2x2

and (x + 2x2)2 = x2 + 4x3 + 4x4 = x2 +4.t-)-4x2 = z + 2x2 +3(x - x2) +6x2 = x + 2x2 .

Hence x is the sum of the idempotents - 2 x 2 and x + 2x2 .

2) =$• 1). Let a be an element of R with a2 = 0. Then, by virtue of Lemma 2

(2), there exists an idempotent e such that a = 2e and 4e = 0. Now, -e - f -\-g with

some commuting idempotents / , 5 . Then e = ( —e) = -e + 2fg, so 2e = 2fg — 2efg.

Noting that fe - ef, we see easily that a = 2e = 2e /^ = 2 e / ( - e - / ) = - 4 e / = 0.

Hence /? is a reduced ring. As is well-known, every idempotent of the reduced ring R

is central, and so R is commutative. I

COROLLARY 1. Let R be a semiprime ring. If R has the property that every

element is the sum of two idempotents, then the centre Z of R has the same property.

PROOF: Since R is semiprime, R is a subdirect sum of prime rings R\{\ E A).

By Lemmas 1 and 4, the centre Zx of #A is 0, or GF(2), or GF(3). Now we may

regard Z as a subring of the direct product [IAGA ^\ • Hence Z satisfies the identify

x3 = x. Then, by Theorem 1, every element of Z is the sum of two idempotents in

Z. I

PROOF OF THEOREM 2: In view of Lemma 1, it suffices to show that every prime
factor ring of R is commutative. Suppose, to the contrary, that a prime factor ring R'

of R is not commutative. By [3, Corollary 1], the ring Q{R') of central quotients of R'

is a full matrix ring over a division ring. Then, by Lemma 4, we have that R' = Q{R')-

Now, Lemmas 1 and 3 force a contradiction that R' is either GF(2) or C?F(3). |

COROLLARY 2. Let R be an Azumaya Z-algebra in which every element is the
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sum of two idempotents. Then R satisfies the identity x3 = x .

PROOF: By [1, Lemma II.3.1], Z is a Z -direct summand of R, say R = Z ©T.
Then P = (PC\Z)® (PnZ)T by [l, Corollary II.3.7]. As is well-known (see, for
example, [1, Theorem II.3.4]), R is a finitely generated Z-module, and therefore R is
a Pi-algebra. Hence, by Theorem 2, R/P is commutative. Then, by [1, Proposition
II.1.11], we obtain (P D Z)T = T. Since Pf\Z is a nil ideal of Z, and T is a finitely
generated Z -module, we conclude that T — 0 , and hence R = Z. Now, by Theorem
1, R satisfies the identity x3 — x . |

PROOF OF THEOREM 3: By [2, Theorem 4.6], R is the finite direct sum of full
matrix rings over local rings. Hence, by Lemmas 1 and 3, R is the finite direct sum of
copies of GF(2) and/or G'F(3). |

Remark. As is shown in [5] (see also [4]), the following conditions are equivalent:

1) There exists an involution * of R such that xx*x = x* for all x in R;
2) R is an anti-inverse ring, that is, every element x in R has an anti-inverse

x*; xx*x = x* and x*xx* = x;
3) For each element x of R there exists x* in R such that x2x* = x* and

x*2x = x ;
4) R is a (dense) subdirect sum of fields isomorphic to GF(2) or GF(3)
5) R satisfies the identity x3 = x.
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