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Abstract

Consider a continuous-time Markov chain evolving in a random environment. We study
certain forms of interaction between the process of interest and the environmental process,
under which the stationary joint distribution is tractable. Moreover, we obtain necessary
and sufficient conditions for a product-form stationary distribution. A number of examples
that illustrate the applicability of our results in queueing and population growth models
are also included.
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1. Introduction

In many areas of application of stochastic modelling we find processes that evolve under
the influence of a random environment. Several authors have investigated the properties of
such models, either in a general setting (e.g. Bourgin and Cogburn (1981), Cogburn and Torrez
(1981), and Cogburn (1991)), or in specific areas such as reliability (e.g. Anisimov and Sztrik
(1989), Gupta and Gupta (1990), and Lefèvre and Milhaud (1990)), mathematical biology (e.g.
Hambly (1992)), mathematical programming (e.g. Helm and Waldmann (1984) and Posner
and Zuckerman (1990)), and queueing theory (see below). The majority of such models in
the applied probability literature are described by Markov processes evolving in a random
environment. Fakinos (1991) and Yamazaki and Miyazawa (1995) study some models within
the framework of generalized semi-Markov processes in a random environment.

In the present work, we limit ourselves to the usual framework of continuous-time Markov
chains. The general model is a stochastic process {(E(t), X(t)) : t ≥ 0}, where E(t) and
X(t) represent the random environment and the process of interest, respectively. The main
assumption is that the evolution of X(t) does not influence the evolution of E(t), while the
evolution of E(t) does influence the evolution of X(t). The environmental process E(t) can
influence the evolution of X(t) in the following two ways:

1. The rates at which certain transitions in X(t) occur depend on the environmental state.
Thus, a change in the environment might not immediately trigger a transition of X(t),
but changes its dynamics (indirect interaction).

2. An environmental change does trigger an immediate transition ofX(t) (direct interaction).
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186 A. ECONOMOU

Of course, E(t) can influence X(t) in both ways. Most of the reported work concerns
models with indirect interaction. In this work we deal with the general case. Our main focus
is to shed light on the stationary distributions of such models. Several authors have considered
the same problem, using a variety of approaches – matrix-analytic methods seem to be the most
widely used. Neuts (1981) devotes his Chapter 6 to applications of such methods in studying
queues in random environments and summarizes many of the early results in the subject.
More recently, Gaver et al. (1984), O’Cinneide and Purdue (1986), Chang and Nelson (1993),
and Núñez-Queija (1997) used such methods to analyse the equilibrium behaviour of diverse
queueing systems. More specifically, the M/M/1, M/MY /1, and MX/M/1 queues in a random
environment lead respectively to quasi-birth–death-, GI/M/1-, and M/G/1-type processes that
can be studied effectively using matrix-analytic methods. An alternative approach to analysing
similar models is the so-called eigenvalue, or spectral decomposition, method (see, e.g. Mitrani
and Chakka (1995)).

Both of the above methods give very satisfactory, exact results whenever they are applicable.
However, they apply only in cases where the dynamics ofX(t) under the various environmental
states are similar, i.e. they are of the same type and differ only in some parameters. More-
over, they demand strong computational power since they require a great number of matrix
computations. For these reasons, several authors have tried to identify some categories of
model in which the stationary distributions assume a simple product form. More specifically,
Sztrik (1987), Falin (1996), Zhu (1991), (1994), and Tsitsiashvili et al. (2002) have identified
conditions that ensure product-form stationary distributions for several concrete classes of
queueing systems in random environments. In the present paper, we study the same problem
within a general framework and we state necessary and sufficient conditions for product-form
distributions. Moreover, whenever these conditions fail, we develop an alternative approach
for computing the stationary distributions for several classes of model, using the notion of
the potential (or resolvent) of a continuous-time Markov chain. This approach is based on
an inversion formula that expresses the relationship between the stationary distribution of the
original Markov chain and the stationary distribution of its embedded chains (Palm distributions)
at certain environmental change epochs. Thus, we also study the events-see-time-averages
(ESTA) property within this class of model.

The outline of the paper is as follows. After describing the general model and motivating
the problems we consider, in Section 2, we prove the necessary and sufficient conditions for a
product-form stationary distribution in Section 3. In Section 4, we treat some other tractable
cases where the stationary distributions of the models can be obtained in closed form. In
Sections 5 and 6, we present several applications of the product-form results and the inversion
formula, respectively.

2. The general model

In this section, we define a general structure for a continuous-time Markov chain evolving
in a random environment. The model is an ergodic (i.e. irreducible and positive-recurrent)
Markov chain {(E(t), X(t)) : t ≥ 0} with state space E × X, where E(t) and X(t) represent
the random environment and the process of interest, respectively. We assume that E(t) jumps
from state to state according to an ergodic continuous-time Markov chain transition rate matrix
QE = (qE(e, e

′) : e, e′ ∈ E). Upon an environmental change from e to e′, the process X(t) at
state x jumps immediately to some state x′ ∈ X with probability α(x′ | e, x, e′). The discrete
probability density (α(x′ | e, x, e′) : x′ ∈ X) will be referred to as the triggering probability
function for the state x and the environmental transition e → e′.
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Markov chains in random environments 187

In the meantime, between two successive environmental transitions, the processX(t) is gov-
erned by the transition rate matrix QX|E(e) = (qX|E(x, x′ | e) : x, x′ ∈ X) of an irreducible
Markov chain on X, where e is the current environmental state. More concretely, the transition
rates q((e, x), (e′, x′)) of (E(t), X(t)) are given by

q((e, x), (e′, x′)) =
{
qX|E(x, x′ | e) if e′ = e, x′ �= x,

qE(e, e
′)α(x′ | e, x, e′) if e′ �= e.

(1)

Let π = (π(e, x) : e ∈ E , x ∈ X) be the joint stationary distribution of {(E(t), X(t))}
and πE = (πE(e) : e ∈ E), πX = (πX(x) : x ∈ X) its marginal distributions. Furthermore,
let P

(t)
X|E(e) = (p

(t)
X|E(x, x′ | e) : x, x′ ∈ X) be the transition probability matrix at time t for

the Markov chain with rate matrix QX|E(e), and let πX|E(e) = (πX|E(x | e) : x ∈ X) be its
stationary distribution (in the ergodic case in which it exists and is unique). We are interested
in determining π , πE, and πX and in examining their dependences on the transition rate
matrices QE and QX|E(e), e ∈ E . We are also interested in studying the Palm (or embedded)
distributions of X(t) just after (or before) certain environmental transitions. More specifically,
for every e ∈ E , let t0(e) < t1(e) < t2(e) < · · · be the successive times that E(t) ‘arrives’
at state e, and τ0(e) < τ1(e) < τ2(e) < · · · be the successive times that E(t) ‘departs’ from
state e. Define the embedded processes {Xa(e)(n) : n ≥ 0} and {Xd(e)(n) : n ≥ 0} of {X(t)}
by Xa(e)(n) = X(tn(e)) and Xd(e)(n) = X(τ−

n (e)), i.e. Xa(e)(n) is the state of {X(t)} just
after the nth environmental arrival to e, while Xd(e)(n) is the state of {X(t)} just before the nth
environmental departure from e. Let πa(e) = (πa(e)(x) : x ∈ X) and πd(e) = (πd(e)(x) : x ∈ X)
be the stationary distributions of {Xa(e)(n)} and {Xd(e)(n)}, respectively. Since the jump rate
from state (e, x) to (e′, x′) is π(e, x)q((e, x), (e′, x′)), we have (see Section 2.2 of Chao et al.
(1999) for details) that these Palm distributions are given by

πa(e)(x) =
∑
x′

∑
e′ �=e π(e′, x′)qE(e′, e)α(x | e′, x′, e)∑

y

∑
x′

∑
e′ �=e π(e′, x′)qE(e′, e)α(y | e′, x′, e)

, (2)

πd(e)(x) =
∑
x′

∑
e′ �=e π(e, x)qE(e, e′)α(x′ | e, x, e′)∑

y

∑
x′

∑
e′ �=e π(e, y)qE(e, e′)α(x′ | e, y, e′) . (3)

It is known that the Palm distributions of a process that correspond to different sets of
transitions neither coincide with one another nor with the stationary distribution of the process,
in general. In such cases, it is important to study the relationships of these distributions and
also to find conditions under which they do coincide (ESTA property). There are many such
results in the literature, concerning a variety of processes; see, for example, Melamed and Yao
(1995), Stidham and El-Taha (1995), and El-Taha and Stidham (1999). We will study the ESTA
problem within the present framework in Section 3.

The stationary distribution π = (π(e, x)) of {(E(t), X(t))} satisfies the (full) balance
equations

π(e, x)

(∑
e′ �=e

qE(e, e
′)+

∑
x′ �=x

qX|E(x, x′ | e)
)

=
∑
e′ �=e

∑
x′
π(e′, x′)qE(e′, e)α(x | e′, x′, e)+

∑
x′ �=x

π(e, x′)qX|E(x′, x | e),

e ∈ E , x ∈ X. (4)
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188 A. ECONOMOU

By summing these equations over x for every environmental state e, we obtain

πE(e)
∑
e′ �=e

qE(e, e
′) =

∑
e′ �=e

πE(e
′)qE(e′, e), e ∈ E .

Therefore, the marginal distribution πE = (πE(e)) satisfies the balance equations of the Markov
chain with transition rate matrix QE = (qE(e, e

′)). By the ergodicity of this Markov chain,
which implies the uniqueness of its stationary distribution, we obtain the following lemma.

Lemma 1. The marginal distribution πE = (πE(e)) is the stationary distribution of the Markov
chain with transition rate matrix QE = (qE(e, e

′)).

Using Lemma 1 and the fact that
∑
x′∈X α(x

′ | e, x, e′) = 1 for every x ∈ X and e, e′ ∈ E ,
(2) and (3) simplify respectively to

πa(e)(x) =
∑
x′

∑
e′ �=e π(e′, x′)qE(e′, e)α(x | e′, x′, e)

πE(e)qE(e)
, (5)

πd(e)(x) = π(e, x)

πE(e)
, (6)

where qE(e) = ∑
e′ �=e qE(e, e′).

We will now present some special types of triggering probability function

αe,x,e′ = (α(x′ | e, x, e′) : x′ ∈ X)

that appear in the applications and that are used in the following sections.

Type 1. α(x′ | e, x, e′) = 1{x}(x′) =
{

1 if x′ = x,

0 if x′ �= x.

The indirect interaction that we described loosely in the Introduction is of this type: the
environmental process influences the dynamics of X(t) but does not trigger immediate events.
In this case, (5) assumes the form

πa(e)(x) =
∑
e′ �=e π(e′, x)qE(e′, e)
πE(e)qE(e)

.

Type 2. α(x′ | e, x, e′) = γ (x′ | e, e′).
For this type of triggering probability function, after an environmental change from e to e′,

X(t) forgets its state and starts anew depending on e and e′. In this case, (5) assumes the form

πa(e)(x) =
∑
e′ �=e πE(e′)qE(e′, e)γ (x | e′, e)

πE(e)qE(e)
.

Type 3. α(x′ | e, x, e′) = β(x′ | e′).
This is a special case of type 2, for which X(t) starts anew depending only on the new

environmental state e′. In this case, (5) assumes the form

πa(e)(x) = β(x | e).
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Type 4. α(x′ | e, x, e′) = πX|E(x′ | e′).
This is a special case of type 3, for whichX(t) starts in equilibrium after every environmental

change. To picture this case, imagine that there exists an experiment that is performed con-
currently in |E | positions with different environmental conditions, with an observer that moves
randomly from position to position and records a certain variable of the experiment. Then,
E(t) is the position of the observer and X(t) is the recorded value of the variable at time t .
The evolution of the experiment at each of the |E | positions is assumed to be in equilibrium
and independent of the evolution at every other position. The observer does not influence the
experiments. In this case, (5) assumes the form

πa(e)(x) = πX|E(x | e).

3. Product-form distributions

Equations (4) can be decomposed into the following partial balance equations, which are
not satisfied by π , in general:

π(e, x)
∑
e′ �=e

qE(e, e
′) =

∑
e′ �=e

∑
x′
π(e′, x′)qE(e′, e)α(x | e′, x′, e), e ∈ E , x ∈ X, (7)

π(e, x)
∑
x′ �=x

qX|E(x, x′ | e) =
∑
x′ �=x

π(e, x′)qX|E(x′, x | e), e ∈ E , x ∈ X. (8)

If the partial balance equations (7) are satisfied then, for every state (e, x), the rate out
of it due to an environmental change equals the rate into it due to an environmental change.
Similarly, the partial balance equations (8), whenever satisfied, express a balance between the
rate out of a specific state (e, x), due to a nonenvironmental change, and the rate into the same
state due to a nonenvironmental change.

The phenomenon of partial balance, and its implications, have been extensively studied in the
literature. Kelly (1979) summarizes the early results about the subject, while van Dijk (1993),
Chao et al. (1999), and Serfozo (1999) contain recent results and many queueing applications.
It has been generally noted that the presence of partial balance facilitates the study of a given
model. First, it implies the equality of the Palm distributions at certain event epochs (see,
for example, Theorem 9.5 of Kelly (1979) and Theorem 1 of Fakinos and Economou (1998)).
Second, under certain additional conditions, it implies that the stationary distribution assumes
a certain product form. In the following theorem we investigate the phenomenon of partial
balance within the framework of our model.

Theorem 1. For the general model, with transition rates given by (1), the following statements
are equivalent.

(i) The Palm distributions πa(e) and πd(e) coincide for every e ∈ E .

(ii) The stationary distribution π satisfies the partial balance equations (7).

(iii) The stationary distribution π satisfies the partial balance equations (8).

If, moreover, the transition matrices QX|E(e) are ergodic for all e ∈ E , then (i)–(iii) are
also equivalent to two further statements:

(iv) The stationary distribution π is given by the product-form formula

π(e, x) = πE(e)πX|E(x | e), e ∈ E , x ∈ X. (9)
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190 A. ECONOMOU

(v) The Palm distribution πd(e) coincides with the stationary distribution πX|E(e) for every
e ∈ E .

If the conditions (i)–(v) are satisfied and the additional conditions

πX|E(x | e) =
∑
x′∈X

πX|E(x′ | e′)α(x | e′, x′, e), e, e′ ∈ E , x ∈ X, (10)

hold, then the reversed process of (E(t), X(t)), namely (ER(t), XR(t)), is of the same type,
i.e. its transition rates (qR((e, x), (e′, x′))) are of the form (1) and, more concretely,

qR((e, x), (e′, x′)) =
{
qR
X|E(x, x′ | e) if e′ = e, x′ �= x,

qR
E(e, e

′)α̃(x′ | e, x, e′) if e′ �= e,
(11)

where (qR
X|E(x, x′ | e) : x, x′ ∈ X) are the reversed rates of (qX|E(x, x′ | e) : x, x′ ∈ X) for

every e ∈ E , (qR
E(e, e

′) : e, e′ ∈ E) are the reversed rates of (qE(e, e′) : e, e′ ∈ E), and

α̃(x′ | e, x, e′) = πX|E(x′ | e′)α(x | e′, x′, e)
πX|E(x | e) , e, e′ ∈ E , x, x′ ∈ X.

Proof. (i) ⇔ (ii). The probabilitiesπa(e)(x) andπd(e)(x) given by (5) and (6) are respectively
equal to the right- and the left-hand sides of the partial balance equations (7) divided by
πE(e)qE(e).

(ii) ⇔ (iii). This is immediate, in light of the full balance equations (4).

(iii) ⇒ (iv). Consider a fixed e ∈ E . Then, by (8), the vector (π(e, x) : x ∈ X) satisfies
the balance equations of the Markov chain with transition rate matrix QX|E(e). Therefore,
(π(e, x) : x ∈ X) is a scalar multiple of the stationary distribution πX|E(e) = (πX|E(x | e) :
x ∈ X) of QX|E , that is, π(e, x) = c(e)πX|E(x | e). By summing over x, we obtain that
πE(e) = c(e); hence, π(e, x) assumes the form (9).

(iv) ⇒ (iii). Substitute π(e, x), given by (9), into (8) and divide by πE(e). The resulting
equations are the balance equations for QX|E(e).
(iv) ⇔ (v). This is immediate, in light of (6).

When conditions (i)–(v) hold, the reversed ratesqR((e, x), (e′, x′)) can be directly computed,
and we obtain (11). Condition (10) ensures that (α̃(x′ | e, x, e′) : x′ ∈ X) is a probability
function.

Remark 1. Theorem 1 completely characterizes the partial balance for the general model.
Moreover, in the important special case where all matrices QX|E(e) are ergodic, the theorem
suggests the following approach to checking partial balance in a given model. First, compute
the stationary distributions πE and πX|E(e), e ∈ E . Second, check whether the distribution
(πE(e)πX|E(x | e) : e ∈ E , x ∈ X) satisfies the full balance equations (4) or, equivalently, the
partial balance equations (7) (noting that it always satisfies the partial balance equations (8)).
If it does then conditions (i)–(v) of Theorem 1 are satisfied and we have that the stationary
distribution π of the model is given by (9), while πa(e) = πd(e) = πX|E(e) for every e ∈ E .

By applying Theorem 1 in models with type-1 or type-3 triggering probability functions, we
obtain the following corollaries.
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Corollary 1. Consider the model with transition rates given by (1) and type-1 triggering
probability function α(x′ | e, x, e′) = 1{x}(x′), with all matrices QX|E(e) being ergodic. The
following statements are equivalent.

(i) The stationary distribution π is given by the product-form formula (9).

(ii) In stationarity, E(t) and X(t) are independent, that is, π has the form

π(e, x) = πE(e)πX(x), e ∈ E , x ∈ X. (12)

(iii) All the stationary distributions πX|E(e) coincide.

Under conditions (i)–(iii), the reversed process (ER(t), XR(t)) has transition rates given by

qR((e, x), (e′, x′)) =
{
qR
X|E(x, x′ | e) if e′ = e, x′ �= x,

qR
E(e, e

′) if e′ �= e, x′ = x.
(13)

Proof. (i) ⇒ (ii). The equivalent conditions (i)–(v) of Theorem 1 are satisfied. By Theo-
rem 1(ii), we have that the stationary distribution π satisfies (7), which, in this case, assumes
the form

π(e, x)
∑
e′ �=e

qE(e, e
′) =

∑
e′ �=e

π(e′, x)qE(e′, e), e ∈ E , x ∈ X.

For a fixed x ∈ X, the above equations show that (π(e, x) : e ∈ E) satisfies the balance
equations of the Markov chain with transition rate matrix QE . Therefore, (π(e, x) : e ∈ E) is
a scalar multiple of the stationary distribution πE , that is, π(e, x) = c(x)πE(e). By summing
over e, we obtain c(x) = πX(x) and π(e, x) assumes the form (12).

(ii) ⇒ (iii). The distribution (π(e, x)) given by (12) satisfies (4) and (7). Therefore, it also
satisfies (8). We divide by πE(e) to obtain

πX(x)
∑
x′ �=x

qX|E(x, x′ | e) =
∑
x′ �=x

πX(x
′)qX|E(x′, x | e), e ∈ E , x ∈ X.

For a fixed e ∈ E , these equations show that (πX(x) : x ∈ X) is the stationary distribution of
QX|E . Therefore πX|E(e) = πX for every e ∈ E , i.e. all the stationary distributions πX|E(e),
e ∈ E , coincide.

(iii) ⇒ (i). Let πX|E(x | e) = c(x), e ∈ E , x ∈ X. Then, the distribution (πE(e)c(x) : e ∈ E ,
x ∈ X) is easily seen to satisfy the balance equations (4). Therefore, condition (iv) of Theorem 1
is valid and we obtain the result.

For this type of triggering probability function, condition (10) is obviously valid, and (11)
is reduced to (13).

Corollary 2. Consider the model with transition rates given by (1) and type-3 triggering
probability function α(x′ | e, x, e′) = β(x′ | e′), with all matrices QX|E(e) being ergodic.
The following statements are equivalent.

(i) The stationary distribution π is given by the product-form formula (9).

(ii) The distributions (β(x | e) : x ∈ X) and (πX|E(x | e) : x ∈ X) coincide for every e ∈ E .
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192 A. ECONOMOU

Under conditions (i) and (ii), the reversed process (ER(t), XR(t)) has transition rates
qR((e, x), (e′, x′)) given by

qR((e, x), (e′, x′)) =
{
qR
X|E(x, x′ | e) if e′ = e, x′ �= x,

qR
E(e, e

′)β(x′ | e′) if e′ �= e.
(14)

Proof. (i) ⇒ (ii). The equivalent conditions (i)–(v) of Theorem 1 are satisfied. Therefore,
the stationary distribution π satisfies (7), which, in this case, reduces to

π(e, x) = πE(e)β(x | e), e ∈ E , x ∈ X.

However, π(e, x) is also given by (9), so we obtain

πX|E(x | e) = β(x | e), e ∈ E , x ∈ X.

(ii) ⇒ (i). The distribution π given by (9) always satisfies the partial balance equations (8). In
the case where πX|E(x | e) = β(x | e), it is readily seen to satisfy the partial balance equations
(7) also and, hence, to be the stationary distribution of the model.

For this type of triggering probability function, condition (10) is reduced to πX|E(x | e) =
β(x | e), which is valid by statement (ii) of Corollary 2. Therefore, (11) applies with

α̃(x′ | e, x, e′) = β(x′ | e′),
and we obtain (14).

4. The inversion formula

Theorem 1 and Corollaries 1 and 2 exactly describe the relationships between the stationary
distribution π and the Palm distributions πa(e) and πd(e), e ∈ E , when partial balance holds.
Unfortunately, the models that fall into the framework of Theorem 1 are very limited. Therefore,
in the general case, we rely solely on (5) and (6). It is clear that if we know π or (πd(e) : e ∈ E),
we can easily obtain (πa(e) : e ∈ E). It is not obvious how to invert (5) and obtain π and
(πd(e) : e ∈ E) when (πa(e) : e ∈ E) is known, but in Theorem 2, below, we provide just such
an inversion formula. Apart from the theoretical interest of the inversion formula, having one
will enable us easily to compute the stationary distribution π of any model with triggering
probability function of type 2 or 3. Moreover, it is the basis of a powerful computational
procedure for computing the stationary distributions for a broad class of models.

Theorem 2. (Inversion formula.) Given the Palm distributionsπa(e), the stationary distribution
π can be computed as follows:

π(e, x) = πE(e)qE(e)

∫ ∞

0
e−qE(e)tπ(t)a(e)(x) dt, e ∈ E , x ∈ X, (15)

where π
(t)
a(e) = (π

(t)
a(e)(x) : x ∈ X) is the transient probability function at time t of a Markov

chain with initial distribution πa(e) and transition rate matrix QX|E(e).

Proof. By using (5) and π(t)a(e)(x) = ∑
y∈X πa(e)(y)p

(t)
X|E(y, x | e), we obtain

πE(e)qE(e)

∫ ∞

0
e−qE(e)tπ(t)a(e)(x) dt

=
∑
y∈X

∑
x′∈X

∑
e′ �=e

π(e′, x′)qE(e′, e)α(y | e′, x′, e)
∫ ∞

0
e−qE(e)tp(t)X|E(y, x | e) dt. (16)
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By the full balance equations (4), we have that∑
e′ �=e

∑
x′
π(e′, x′)qE(e′, e)α(y | e′, x′, e)

= π(e, y)qE(e)+ π(e, y)
∑
x′ �=y

qX|E(y, x′ | e)

−
∑
x′ �=y

π(e, x′)qX|E(x′, y | e), e ∈ E , x ∈ X,

and, therefore, (16) becomes

πE(e)qE(e)

∫ ∞

0
e−qE(e)tπ(t)a(e)(x) dt

=
∑
y∈X

π(e, y)qE(e)

∫ ∞

0
e−qE(e)tp(t)X|E(y, x | e) dt

+
∑
y∈X

π(e, y)
∑
x′ �=y

qX|E(y, x′ | e)
∫ ∞

0
e−qE(e)tp(t)X|E(y, x | e) dt

−
∑
y∈X

∑
x′ �=y

π(e, x′)qX|E(x′, y | e)
∫ ∞

0
e−qE(e)tp(t)X|E(y, x | e) dt. (17)

By using the Chapman–Kolmogorov differential equations for the transition probabilities

p
(t)
X|E(y, x | e),

the last term in the right-hand side of (17) can be written equivalently as∑
x′∈X

π(e, x′)
∫ ∞

0
e−qE(e)t ∑

y �=x′
qX|E(x′, y | e)p(t)X|E(y, x | e) dt

=
∑
x′∈X

π(e, x′)
∫ ∞

0
e−qE(e)t d

dt
p
(t)
X|E(x

′, x | e) dt

+
∑
x′∈X

π(e, x′)
∫ ∞

0
e−qE(e)t ∑

y �=x′
qX|E(x′, y | e)p(t)X|E(x

′, x | e) dt. (18)

By substituting (18) into (17), we obtain

πE(e)qE(e)

∫ ∞

0
e−qE(e)tπ(t)a(e)(x) dt =

∑
y∈X

π(e, y)qE(e)

∫ ∞

0
e−qE(e)tp(t)X|E(y, x | e) dt

−
∑
x′∈X

π(e, x′)
∫ ∞

0
e−qE(e)t d

dt
p
(t)
X|E(x

′, x | e) dt.

(19)

Using integration by parts, the last term is transformed into∑
y∈X

π(e, y)[e−qE(e)tp(t)X|E(y, x | e)]∞t=0 +
∑
y∈X

π(e, y)

∫ ∞

0
qE(e)e

−qE(e)tp(t)X|E(y, x | e) dt.

By substituting this, in turn, into (19) and simplifying, we arrive at (15).
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Remark 2. The inversion formula (15) can be written equivalently as

π(e, x) = πE(e)qE(e)
∑
y∈X

πa(e)(y)mq(e)(y, x | e), e ∈ E , x ∈ X, (20)

where mα(y, x | e) = ∫ ∞
0 e−αtp(t)X|E(y, x | e) dt (α > 0) are the so-called α-potentials (or re-

solvents) of the Markov chain with transition probabilities (p(t)X|E(y, x | e) : y, x ∈ X). There-
fore, we see that the stationary distribution π is expressed in terms of the stationary distribution
πE of the environmental process, the Palm distributions πa(e), and the qE(e)-potentials of the
Markov chains with transition rate matrices QX|E(e), e ∈ E . From now on, we suppress the
subscript ‘q(e)’ and write m(y, x | e) instead of mq(e)(y, x | e), e ∈ E .

The α-potentials play a very important role, both in the theory, and in the applications
of Markov chains; Chapters 7 and 8 of Çinlar (1975) present the main results, and some
applications. For a nice, recent account, see also Norris (1997, Chapter 4). For the sake of
completeness, we state the following fundamental result about the computation of α-potentials
directly from the transition rate matrix of a Markov chain.

Proposition 1. Let Q be the transition rate matrix of a continuous-time Markov chain with
transition probabilities (p(t)(x, y)) and α-potentials

mα(x, y) =
∫ ∞

0
e−αtp(t)(x, y) dt, α > 0. (21)

Then, the matrix Mα = (mα(x, y)) is the unique bounded solution of (αI − Q)X = I (or
X(αI − Q) = I ), I being the identity matrix. Moreover, when the state space of the Markov
chain is finite, we find that Mα = (αI − Q)−1.

Proof. See Norris (1997, Theorem 4.2.6).

By applying this proposition, we can compute the matrix M(e) = (m(y, x | e) : y, x ∈ X)
that we need for the inversion formula: it is the unique bounded solution of the matrix equations

(qE(e)I − QX|E(e))X = I ,

X(qE(e)I − QX|E(e)) = I . (22)

In the special case where QX|E(e) is finite dimensional, we find that

M(e) = (qE(e)I − QX|E(e))−1. (23)

Therefore, the quantities m(y, x | e) are the entries of the matrix (qE(e)I − QX|E(e))−1

and can be computed by performing a simple matrix inversion. In many cases where the matrix
QX|E(e) has a special structure, this inversion is carried out at a very low computational cost.
Hence, we do not need to perform the laborious task of computing the transient probabilities
p
(t)
X|E(y, x | e). In Section 6, we will present several computations of M(e) in the framework

of specific applications.

Remark 3. For a fixed e ∈ E , to compute πe = (π(e, x) : x ∈ X) when πa(e) is given, we
must compute the matrix M(e) = (qE(e)I − QX|E(e))−1 and then apply (20). This reveals
the important fact that, given πa(e), the only information that we need to compute πe lies in
πE(e), qE(e), and QX|E(e). In particular, we do not need the matrices QX|E(e′) for e′ �= e.
This is in some sense a decomposability result. From this perspective, the inversion formula
can be considered to be a generalized product-form result.
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Another consequence of the inversion formula is that the original system of full balance
equations (4) can be transformed into another system of equations that is more convenient in
some cases. Indeed, by substituting πa(e)(x), given by (5), into the inversion formula (15), we
obtain

π(e, x) =
∑
e′ �=e

∑
x′∈X

π(e′, x′)qE(e′, e)
∑
y∈X

α(y | e′, x′, e)m(y, x | e), e ∈ E , x ∈ X.

(24)
Moreover, we have the following result.

Theorem 3. The system of equations (24) is equivalent to the system of full balance equa-
tions (4). Therefore, the unique solution of (24) that satisfies the normalization equation∑
e∈E

∑
x∈X π(e, x) = 1 is the stationary distribution of {(E(t), X(t))}.

Proof. From the above discussion, we have already seen that the full balance equations (4)
imply (24) via the inversion formula. Conversely, suppose that (π(e, x)) is a solution of (24).
Then, we have that

π(e, x)

(
qE(e)+

∑
x′ �=x

qX|E(x, x′ | e)
)

=
∑
e′ �=e

∑
x′∈X

π(e′, x′)qE(e′, e)

×
∑
y∈X

α(y | e′, x′, e)m(y, x | e)
(
qE(e)+

∑
x′ �=x

qX|E(x, x′ | e)
)
. (25)

By (22), we have that M(e)(qE(e)I − QX|E(e)) = I . By equating the (y, x) entries of the
left- and the right-hand sides, we obtain

m(y, x | e)
(
qE(e)+

∑
x′ �=x

qX|E(x, x′ | e)
)

−
∑
z �=x

m(y, z | e)qX|E(z, x | e) = 1{y}(x), y, x ∈ X. (26)

Therefore, (25) assumes the form

π(e, x)

(
qE(e)+

∑
x′ �=x

qX|E(x, x′ | e)
)

=
∑
e′ �=e

∑
x′∈X

π(e′, x′)qE(e′, e)α(x | e′, x′, e)

+
∑
z �=x

(∑
e′ �=e

∑
x′∈X

π(e′, x′)qE(e′, e)
∑
y∈X

α(y | e′, x′, e)m(y, z | e)
)
qX|E(z, x | e).

(27)

The multiple sum in brackets in the last term is equal to π(e, z), because of (24). Therefore
(27) is reduced to the full balance equations (4).
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When the triggering probability functions are of type 2 or 3, we have, more specifically, the
following corollary.

Corollary 3. Consider a model with transition rates given by (1) and a type-2 or -3 triggering
probability function. Then, the stationary distribution π is directly computable from πE and
M(e), e ∈ E . For type-2 and -3 models, the stationary distributions are given respectively by

π(e, x) =
∑
e′ �=e

πE(e
′)qE(e′, e)

∑
y∈X

γ (y | e′, e)m(y, x | e), e ∈ E , x ∈ X, (28)

π(e, x) = πE(e)qE(e)
∑
y∈X

β(y | e)m(y, x | e), e ∈ E , x ∈ X. (29)

Proof. By substituting α(y | e′, x′, e) = γ (y | e′, e) or α(y | e′, x′, e) = β(y | e) into
(24), we obtain (28) or (29), respectively.

Remark 4. Corollary 3 strengthens Remark 3. We have a complete decomposability result for
models with type-2 and -3 triggering probability functions: to compute πe = (π(e, x) : x ∈ X),
we need (πE(e) : e ∈ E), QE , and M(e). We do not need M(e′) for e′ �= e.

In the case of type-1 models, which are the most common in the literature, (24) assumes the
form

π(e, x) =
∑
e′ �=e

∑
y∈X

π(e′, y)qE(e′, e)m(y, x | e), e ∈ E , x ∈ X. (30)

This formula may facilitate the exact computation of the stationary distribution π in certain
cases that we present later, in applications of the inversion formula in Section 6. As a trivial
example of its use, consider the case where there are only two environmental states andN states
for the process {X(t)}. Then, by applying (30) twice, we obtain

π(e, x) = qE(e, e
′)qE(e′, e)

∑
z∈X

π(e, z)
∑
y∈X

m(z, y | e′)m(y, x | e), x ∈ X.

Therefore, the 2N × 2N system of balance equations is reduced to an N × N system. In
a similar manner, if the environmental process has K states e1, e2, . . . , eK , which are always
visited in the order e1 → e2 → · · · → eK → e1, etc. (i.e. the only positive transition rates
of the process are qE(e1, e2), qE(e2, e3), . . . , qE(eK−1, eK), qE(eK, e1)), then theKN ×KN
system of balance equations is easily reduced to anN ×N system. Formula (24) is also useful
in more complicated cases, as we will see in Section 6.

The inversion formula (15), or its equivalent (20), is also useful in simulation studies of
certain intractable models. In such cases, it is convenient to ‘observe’ the system only during
environmental changes, and deduce its stationary distribution using the inversion formula.

5. Applications of the product-form results

In this section, we apply the results of Section 3 to several models occurring in queueing,
and other applied probability problems.
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5.1. Product-form stationary distribution for a Markov-modulated birth–death process

A continuous-time Markov chain {(E(t), X(t))} on E×Z+ is called a Markov-modulated
birth–death process if its nonzero transition rates have the form

q((e, x), (e′, x′)) =

⎧⎪⎨
⎪⎩
λ(x | e) if e′ = e, x ≥ 0, x′ = x + 1,

µ(x | e) if e′ = e, x ≥ 1, x′ = x − 1,

qE(e, e
′) if e′ �= e, x ≥ 0, x′ = x,

(31)

where λ(x | e) and µ(x | e) denote the birth and death rates, respectively.
Zhu (1994) proved that a sufficient condition for a product-form stationary distribution is

for λ(x − 1 | e)/µ(x | e) to be independent of e for all x ≥ 1. Using Corollary 1, we can
immediately show that Zhu’s condition is actually necessary and sufficient. More specifically,
we have the following result.

Corollary 4. Let {(E(t), X(t))} be a Markov-modulated birth–death process with transition
rates given by (31), where, for every environmental state e, the corresponding birth–death
process with birth rates λ(x | e) and death rates µ(x | e) is positive recurrent. Then, the
following statements are equivalent.

(i) λ(x − 1 | e)/µ(x | e) is independent of e for all x ≥ 1.

(ii) In stationarity, E(t) and X(t) are independent, that is, π has the form (12).

Under conditions (i) and (ii), π is given by

π(e, x) = πE(e)B

x∏
i=1

ρ(i), e ∈ E , x ∈ X,

where (πE(e) : e ∈ E) is the stationary distribution of the Markov chain with transition rates
(qE(e, e

′)), ρ(i) = λ(i − 1 | e)/µ(i | e) (i ≥ 1, e ∈ E), and B = (1 + ∑∞
x=1

∏x
i=1 ρ(i))

−1.
Moreover, the reversed process {(ER(t), XR(t))} is a Markov-modulated birth–death process
with nonzero transition rates

qR((e, x), (e′, x′)) =

⎧⎪⎨
⎪⎩
λ(x | e) if e′ = e, x ≥ 0, x′ = x + 1,

µ(x | e) if e′ = e, x ≥ 1, x′ = x − 1,

πE(e
′)qE(e′, e)/πE(e) if e′ �= e, x ≥ 0, x′ = x.

Proof. The transition rates given by (31) have the form (1) with type-1 triggering probability
functions α(x′ | e, x, e′) = 1{x}(x′), and the matrices QX|E(e) (e ∈ E ) correspond to birth–
death processes, i.e.

qX|E(x, x′ | e) =

⎧⎪⎨
⎪⎩
λ(x | e) if x ≥ 0, x′ = x + 1,

µ(x | e) if x ≥ 1, x′ = x − 1,

0 otherwise.

Therefore, Corollary 1 is applicable and, hence, we have that condition (ii) holds if and only
if all the stationary distributions πX|E(e) coincide. However,

πX|E(x | e) = c(e)

x∏
i=1

λ(i − 1 | e)
µ(i | e) , x ∈ X,
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and we have that πX|E(e) coincide if and only if λ(x − 1 | e)/µ(x | e) is independent of e for
x ≥ 1. The rest of the corollary is obvious, in light of (9) and (13).

5.2. Product-form stationary distribution for a Jackson network in a random environment

A Jackson network in a random environment is a continuous-time Markov chain on E × Z
J+

with transition rates given by (1) and type-1 triggering probability functions and matrices
QX|E(e) (e ∈ E ) corresponding to Jackson networks, i.e.

qX|E(x, x′ | e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ(e)p0j (e) if x′ = x + ej ,

µi(xi | e)pij (e) if x′ = x − ei + ej ,

µi(xi | e)pi0(e) if x′ = x − ei ,

0 otherwise,

(32)

where λ(e), µi(xi | e), and pij (e) denote the arrival rate, the service rates, and the routing
probabilities, respectively. Also, by x = (x1, x2, . . . , xJ ), we denote a generic state of the
network representing the queue lengths at the J stations, and ej is the j th unit vector with
J components (with 1 in the j th position and 0 elsewhere).

Zhu (1994) and Tsitsiashvili et al. (2002) proved a sufficient condition for product form.
Using Corollary 1, we can easily show both the necessity and the sufficiency of that condition.

Corollary 5. Let {(E(t),X(t))} be a Jackson network in a random environment with transition
rates given by (32) and, for every e ∈ E , let α(e) = (α1(e), α2(e), . . . , αJ (e)) be the unique
solution to the system of equations

αj (e) = λ(e)p0j (e)+
J∑
i=1

αi(e)pij (e), j = 1, 2, . . . , J.

Moreover, we assume that

∞∑
xj=1

αj (e)
xj

µj (1 | e)µj (2 | e) · · ·µj (xj | e) < ∞, e ∈ E .

The following statements are equivalent.

(i) αj (e)/µj (xj | e) is independent of e.

(ii) In stationarity, E(t) and X(t) are independent, that is, π has the form (12).

Under conditions (i) and (ii), π is given by

π(e, x) = πE(e)B

J∏
j=1

xj∏
i=1

ρj (i), e ∈ E , x ∈ X = Z
J+,

where (πE(e) : e ∈ E) is the stationary distribution of the Markov chain with transition rates
(qE(e, e

′)), ρj (i) = αj (e)/µj (i | e) (i ≥ 1, j = 1, 2, . . . , J, e ∈ E), and

B =
( ∑
x1,x2,...,xJ

J∏
j=1

xj∏
i=1

ρj (i)

)−1

.
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Moreover, the reversed process {(ER(t), XR(t))} is a Jackson network in a random environment
with parameters

qR
E(e, e

′) = πE(e
′)qE(e′, e)/πE(e), e ∈ E ,

λR(e)pR
0j (e) = αj (e)pj0(e), e ∈ E , j = 1, 2, . . . , J,

µR
j (xj | e) = µj (xj | e), e ∈ E , j = 1, 2, . . . , J, xj ≥ 1,

pR
ij (e) = αj (e)pji(e)/αi(e), e ∈ E , i, j = 1, 2, . . . , J,

pR
i0(e) = λ(e)p0i (e)/αi(e), e ∈ E , i = 1, 2, . . . , J.

Proof. Using Corollary 1, we have that condition (ii) holds if and only if all the stationary
distributions πX|E(e) coincide. However,

πX|E(x | e) = c(e)

J∏
j=1

xj∏
i=1

αj (e)

µj (i | e) , x ∈ Z
J+,

and we thus have that πX|E(e) coincide if αj (e)/µj (xj | e) is independent of e. The rest of
the corollary follows easily, using (9) and (13).

5.3. Product-form stationary distribution for a heterogeneous blocking system in a ran-
dom environment

Fakinos (1982) considered a heterogeneous blocking system with a set of servers C =
{1, 2, . . . , c}. The rate of arrival when there are i busy servers is λ(i). If there are free servers
at an arrival epoch, an arriving customer chooses one of them randomly, receives service,
and leaves the system. If, on the other hand, all servers are busy, the customer leaves the
system immediately. The service time of a customer assigned to server s ∈ C is exponentially
distributed with parameter µs (mean 1/µs). The rate of service when there are i busy servers
is r(i) . This system will be referred to as the heterogeneous blocking system with parameters
λ(i), r(i), and µs . The state of the system at time t is the set of busy serversX(t). The process
{X(t)} is a continuous-time Markov chain on the set P (C) of all subsets of C.

Fakinos (1982) showed that the stationary distribution (πX(x) : x ∈ P (C)) of this system
is given by

πX(x) = G(c − |x|)!
∏
s∈x

1

µs

|x|∏
i=1

λ(i − 1)

r(i)
, x ∈ P (C), (33)

where |x| is the cardinality of the set x and G is a normalizing constant.
Falin (1996) considered this system in a random environment, i.e. he considered a contin-

uous-time Markov chain on E × P (C) with transition rates given by (1) and type-1 triggering
probability functions and matrices QX|E(e) corresponding to a heterogeneous blocking system
with parameters λ(i | e), r(i | e), and µs , for every fixed environmental state e. He proved
a necessary and sufficient condition for product form, which follows immediately, in light of
Corollary 1. We state this result below.

Corollary 6. Let {(E(t), X(t))} be a heterogeneous blocking system in a random environment.
The following statements are equivalent.

(i) λ(i − 1 | e)/r(i | e) is independent of e for all i = 1, 2, . . . , c.

(ii) In stationarity, E(t) and X(t) are independent, that is, π has the form (12).
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Under conditions (i) and (ii), π is given by

π(e, x) = πE(e)G(c − |x|)!
∏
s∈x

1

µs

|x|∏
i=1

ρ(i), e ∈ E , x ∈ P (C),

where (πE(e) : e ∈ E) is the stationary distribution of a Markov chain with transition rates
(qE(e, e

′)), ρ(i) = λ(i − 1 | e)/r(i | e) (i = 1, 2, . . . , c), and

G =
( ∑
x∈P (C)

(c − |x|)!
∏
s∈x

1

µs

|x|∏
i=1

ρ(i)

)−1

.

Proof. Using Corollary 1, we have that condition (ii) holds if and only if all the stationary
distributions πX|E(e) coincide. However, by (33), we have

πX|E(x | e) = G(e)(c − |x|)!
∏
s∈x

1

µs

|x|∏
i=1

λ(i − 1 | e)
r(i | e) , x ∈ P (C),

where G(e) is the normalizing constant G for the specific e under consideration, and we have
that πX|E(e) coincide if λ(i − 1 | e)/r(i | e) is independent of e for all i = 1, 2, . . . , c.

6. Applications of the inversion formula

In this section, we present several models that can be studied effectively using the results
of Section 4. As we have already seen, the use of the inversion formula and its conse-
quences (formulae (24), (28), (29), and (30)) requires the computation of the matrices M(e) =
(m(x, y | e) : x, y ∈ X), e ∈ E . In principle, these computations correspond to a matrix
inversion, when X is finite (see formula (23)). In some remarkable cases where QX|E(e)
has a special structure (for example, when it is (block) tridiagonal or (block) triangular), we
can obtain explicit expressions at a very low computational cost. We begin by presenting a
variety of such cases. For simplicity, we suppress the dependence on e of the transition rates
qX|E(y, x | e) in the presentation of the following lemmas. First, we consider the cases of
pure-birth and pure-death processes.

Lemma 2. (i) For a pure-birth transition rate matrix QX|E(e)with birth ratesλ(y), the nonzero
qE(e)-potentials m(y, x | e) are given by

m(y, x | e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

qE(e)+ λ(y)
if 0 ≤ x = y,

1

qE(e)+ λ(y)

x∏
i=y+1

λ(i − 1)

qE(e)+ λ(i)
if 0 ≤ y < x.

(34)

In particular, for a Poisson birth process with rate λ, we have

m(y, x | e) = 1

qE(e)+ λ

(
λ

qE(e)+ λ

)x−y
if 0 ≤ y ≤ x. (35)

The corresponding kth convolution of m(y, x | e) is given by

m(k)(y, x | e) =
(
x − y + k − 1

k − 1

)
λx−y

(qE(e)+ λ)x−y+k
if 0 ≤ y ≤ x. (36)
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(ii) For a pure-death transition matrix QX|E(e) with death rates µ(y), the nonzero qE(e)-
potentials m(y, x | e) are given by

m(y, x | e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

qE(e)
if 0 = x = y,

1

qE(e)+ µ(y)
if 1 ≤ x = y,

1

qE(e)+ µ(y)

y−1∏
i=x

µ(i + 1)

qE(e)+ µ(i)
if 1 ≤ x < y,

1

qE(e)+ µ(y)

(y−1∏
i=1

µ(i + 1)

qE(e)+ µ(i)

)
µ(1)

qE(e)
if 0 = x < y.

(37)

In particular, for a Poisson death process with rate µ, we have

m(y, x | e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

qE(e)
if 0 = x = y,

1

qE(e)+ µ

(
µ

qE(e)+ µ

)y−x
if 1 ≤ x ≤ y,

1

qE(e)+ µ

(
µ

qE(e)+ µ

)y−1
µ

qE(e)
if 0 = x < y.

(38)

Proof. In the case of a pure-birth transition rate matrix, (22) or, equivalently, (26) assumes
the (collective) form

m(y, x | e)(qE(e)+ λ(x)) = 0 if 0 ≤ x < y, (39)

m(y, y | e)(qE(e)+ λ(y)) = 1 if 0 ≤ x = y, (40)

m(y, x | e)(qE(e)+ λ(x)) = m(y, x − 1 | e)λ(x − 1) if 0 ≤ y < x. (41)

The first branch ofm(y, x | e) in (34) is now obvious by (39) and (40), while the second branch
follows by iterating (41). In the case where λ(y) = λ, (34) is reduced to (35). For a fixed y,
(m(y, x | e)qE(e) : x = y, y+1, . . . ) is a geometric distribution. Therefore, its kth convolution
(i.e. (m(k)(y, x | e)(qE(e))k : x = y, y + 1, . . . )) is a negative binomial distribution and we can
easily obtain (36). Statement (ii), for the pure-death case, can be proved similarly.

We now turn our attention to finite birth–death processes. Let QX|E(e) be the transition rate
matrix of a finite birth–death process on X = {0, 1, 2, . . . , N}, with nonzero rates

qX|E(y, x | e) =
{
λ(y) if 0 ≤ y ≤ N − 1, x = y + 1,

µ(y) if 1 ≤ y ≤ N, x = y − 1.
(42)

The so-called Karlin–McGregor polynomials Qn(x), n = 0, 1, 2, . . . , N + 1, are defined
recursively by the relations

Q0(s) = 1, Q1(s) = (λ(0)− s)/λ(0),

Qn+1(s) = [(λ(n)+ µ(n)− s)Qn(s)− µ(n)Qn−1(s)]/λ(n), 1 ≤ n ≤ N − 1,

QN+1(s) = (µ(N)− s)QN(s)− µ(N)QN−1(s).
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Karlin and McGregor (1965) introduced these polynomials to study the transient behaviour of
birth–death processes. They showed that QN+1(s) has N + 1 distinct, real zeros s0 = 0 <
s1 < s2 < · · · < sN . Moreover, the polynomials Qn(s) (n = 0, 1, 2, . . . , N) are orthogonal
on the set {s0, s1, s2, . . . , sN } with respect to the positive weights ρ0, ρ1, ρ2, . . . , ρN , that is,

N∑
k=0

Qy(sk)Qx(sk)ρk = 0, 0 ≤ y �= x ≤ N,

where ρk = (
∑N
i=0Q

2
i (sk)ψi)

−1 (k = 0, 1, 2, . . . , N), and ψi are the so-called potential
coefficients, defined by

ψ0 = 1, ψn = λ(0)λ(1) · · · λ(n− 1)

µ(1)µ(2) · · ·µ(n) , n = 1, 2, . . . , N.

The transition probabilities p(t)X|E(y, x | e) then have the spectral representation

p
(t)
X|E(y, x | e) = ψx

N∑
k=0

e−sktQy(sk)Qx(sk)ρk, y, x = 0, 1, . . . , N. (43)

Using the Karlin–McGregor spectral representation (43) and the definition (21) of the
α-potential, we can immediately obtain the form of the qE(e)-potentials in the case of finite
birth–death processes. In fact, we have the following lemma.

Lemma 3. For a finite birth–death transition matrix QX|E(e) with transition rates given by
(42), the qE(e)-potentials m(y, x | e) are given by

m(y, x | e) = ψx

N∑
k=0

Qy(sk)Qx(sk)ρk

sk + qE(e)
, y, x = 0, 1, . . . , N.

In view of Lemma 3, the problem of finding the qE(e)-potentialsm(y, x | e), which we need
in order to apply the inversion formula (and its consequences), reduces to that of finding the
orthogonal polynomialsQn(s), n = 0, 1, 2, . . . , N and the roots s0, s1, s2, . . . , sN ofQN+1(s).
In many cases, the birth–death polynomials are connected to classical orthogonal polynomials
for which the form and the roots are well known. We present two important cases below.

Proposition 2. (i) For the finite birth–death transition matrix QX|E(e), with nonzero transition
rates

qX|E(y, x | e) =
{
λ if 0 ≤ y ≤ N − 1, x = y + 1,

µ if 1 ≤ y ≤ N, x = y − 1,

that corresponds to the M/M/1/N queue, the Karlin–McGregor polynomials Qn(x), n =
0, 1, 2, . . . , N , are given by

Qn(s) =
(
µ

λ

)n/2(
Un

(
λ+ µ− s

2
√
λµ

)
−

√
µ

λ
Un−1

(
λ+ µ− s

2
√
λµ

))
,

whereUn(s) are the Chebyshev polynomials of the second kind. These polynomials are defined
recursively by

U−1(s) = 0, U0(s) = 1, Un+1(s) = 2sUn(s)− Un−1(s), n = 0, 1, 2, . . . .

The set of roots of QN+1(s) is {0, {λ+ µ− 2(λµ)1/2 cos(kπ/(N + 1)) : k = 1, 2, . . . , N}}.
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(ii) For the finite birth–death transition matrix QX|E(e), with nonzero transition rates

qX|E(y, x | e) =
{
(N − y)λ if 0 ≤ y ≤ N − 1, x = y + 1,

yµ if 1 ≤ y ≤ N, x = y − 1,

that corresponds to the Engset model (an M/M/N queue with a finite number of potential
customers N ), the Karlin–McGregor polynomials Qn(x), n = 0, 1, 2, . . . , N , are given by

Qn(s) = Kn

(
s

λ+ µ
; λ

λ+ µ
,N

)
,

whereKn(s;p,N)are the Krawtchouk polynomials. These polynomials are defined recursively,
for N ∈ Z+ and p ∈ (0, 1), by

K−1(s;p,N) = 0, K0(s;p,N) = 1,

Kn+1(s;p,N) = (p(N − n)+ n(1 − p)− s)Kn(s;p,N)− n(1 − p)Kn−1(s;p,N)
p(N − n)

,

where n = 0, 1, 2, . . . , N . The set of roots of QN+1(s) is {0, {k(λ+ µ) : k = 1, 2, . . . , N}}.
Proof. See van Assche et al. (1999).

We can now use the results of Section 4 to study several models.

6.1. A population process subject to total catastrophes

Consider a population that evolves according to some continuous-time Markov chain (e.g.
a general immigration–birth–death process). Total catastrophes occur according to a renewal
process and reduce the population size instantaneously to 0. By approximating the interrenewal
distribution by a phase-type distribution, we can see that this situation fits exactly within the
framework of a continuous-time Markov chain in a random environment. To be exact, suppose
that the natural evolution of the population follows the dynamics of a continuous-time Markov
chain on X = {0, 1, . . . , N} or Z+, with rates qX(x, x′), and that the catastrophes occur
according to a renewal process with interrenewal distribution Erlang(K, ν) (i.e. the sum of K
independent exponentials with parameter ν). If X(t) is the population size at time t and E(t)
is the number of the remaining Exp(ν) phases until the next catastrophe, then {(E(t), X(t))} is
a continuous-time Markov chain on {1, 2, . . . , K} × X with nonzero transition rates

q((e, x), (e′, x′)) =

⎧⎪⎨
⎪⎩
ν if e = 2, 3, . . . , K, e′ = e − 1, x′ = x ≥ 0,

ν if e = 1, e′ = K, x ≥ 0, x′ = 0,

qX(x, x
′) if e = 1, 2, . . . , K, e′ = e, x ≥ 0, x′ �= x.

(44)

We can use Theorem 3 to obtain the stationary distribution of this model.

Theorem 4. Let {(E(t), X(t))} be a continuous-time Markov chain, with transition rates
(44), which describes the evolution of a population subject to total catastrophes occurring
according to a renewal process with Erlang interrenewal intervals. The stationary distribution
of {(E(t), X(t))} is given by

π(e, x) = 1

K
νK−e+1m(K−e+1)(0, x), e = 1, 2, . . . , K, x ∈ X, (45)
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where m(k)(y, x) is the kth convolution of the ν-potentials of the process with rates qX(x, x′).
When the natural evolution of the population follows a Poisson process at rateλ (i.e. qX(x, x′) =
λ1{x+1}(x′)) we find that

π(e, x) = 1

K

(
x +K − e

K − e

)
νK−e+1λx

(ν + λ)K−e+x+1 , e = 1, 2, . . . , K, x ≥ 0. (46)

Proof. We are in the framework of (1), with nonzero parameters

qX|E(x, x′ | e) = qX(x, x
′), x′ �= x, e = 1, 2, . . . , K,

qE(e, e
′) =

{
ν if e = 2, 3, . . . , K, e′ = e − 1,

ν if e = 1, e′ = K,
(47)

α(x′ | e, x, e′) =
{

1 if e = 2, 3, . . . , K, e′ = e − 1, x′ = x,

1 if e = 1, e′ = K, x ∈ X, x′ = 0.

In this case, (24) assumes the form

π(e, x) =
∑
x′
π(e + 1, x′)νm(x′, x | e), e = 1, 2, . . . , K − 1, x ∈ X, (48)

π(K, x) =
∑
x′
π(1, x′)νm(0, x | K), x ∈ X. (49)

Equation (47) implies that πE(e) = 1/K (e = 1, 2, . . . , K) while, by (49), we obtain
π(K, x) = νm(0, x | K)/K . Then, by iterating (48), we obtain (45). In the special case
of a Poisson process, (36) implies (46).

6.2. An inventory process in a random environment

Consider a storage space for a certain product that operates in a random environment.
The random environment may represent the market conditions, the seasonal periodicity in the
demand rate and/or the frequency of the inventory inspector visits. The random environment
is described by a continuous-time Markov chain {(E(t))} with state space E and transition
rates qE(e, e′). The manager of the storage space inspects and controls the inventory of the
product each time an environmental change occurs. More specifically, when a transition e → e′
occurs, the inventory is forced to be S(e, e′) just after the transition (i.e. the inventory control is
immediate). Whenever the environment is in state e, demands for the product arrive according
to a Poisson process at rateµe. Every demand is satisfied immediately and reduces the inventory
level by one unit. IfX(t) is the inventory level at time t then {(E(t), X(t))} is a continuous-time
Markov chain on E × Z+ with nonzero transition rates

q((e, x), (e′, x′)) =
{
µe if e ∈ E , e′ = e, x ≥ 1, x′ = x − 1,

qE(e, e
′) if e ∈ E , e′ �= e, x ≥ 0, x′ = S(e, e′).

(50)

We can use Corollary 3 to obtain the stationary distribution of this model.

Theorem 5. Let {(E(t), X(t))} be a continuous-time Markov chain with transition rates (50),
which describes the evolution of an inventory process in a random environment. The stationary
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distribution of {(E(t), X(t))} is given by

π(e, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
{e′ �=e : S(e′,e)≥x}

πE(e
′)qE(e′, e)

qE(e)+ µe

(
µe

qE(e)+ µe

)S(e′,e)−x
if x ≥ 1,

∑
e′ �=e

πE(e
′)qE(e′, e)

qE(e)+ µe

(
µe

qE(e)+ µe

)S(e′,e)−1
µe

qE(e)
if x = 0.

(51)

Proof. We are in the framework of the transition rates (1), with

qX|E(x, x′ | e) = µe, x ≥ 1, x′ = x − 1, e ∈ E ,

α(x′ | e, x, e′) = γ (x′ | e, e′) = 1{S(e,e′)}(x′).

Using Corollary 3 and substituting the potentials m(y, x | e) given by (38), we immediately
obtain (51).

As another example, consider the case of an inventory process under the following ‘S-policy’.
The inventory is inspected periodically according to a renewal process with Erlang(K, ν)
interrenewal distribution, and replenished up to level S. The demands arrive according to
a Poisson process at rate µ. Let E(t) be the number of the remaining Exp(ν) phases until the
next inspection, and let X(t) be the inventory level at time t . In this case, {(E(t), X(t))} is a
continuous-time Markov chain on {1, 2, . . . , K} × {0, 1, . . . , S} with nonzero transition rates

q((e, x), (e′, x′)) =

⎧⎪⎨
⎪⎩
ν if e = 2, 3, . . . , K, e′ = e − 1, x ≥ 0, x′ = x,

ν if e = 1, e′ = K, x ≥ 0, x′ = S,

µ if e = 1, 2, . . . , K, e′ = e, x ≥ 1, x′ = x − 1.

(52)

We have the following theorem.

Theorem 6. Let {(E(t), X(t))} be a continuous-time Markov chain with transition rates (52),
describing a periodic review inventory model with Erlang(K, ν) distribution, operating
according to the above S-policy. The stationary distribution of {(E(t), X(t))} can be obtained
recursively from the formulae

π(K, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ν

K

1

ν + µ

(
µ

ν + µ

)S−x
if 1 ≤ x ≤ S,

ν

K

1

ν + µ

(
µ

ν + µ

)S−1
µ

ν
if x = 0,

(53)

and, for e = K − 1,K − 2, . . . , 1,

π(e, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S∑
x′=x

π(e + 1, x′) ν

ν + µ

(
µ

ν + µ

)x′−x
if 1 ≤ x ≤ S,

S∑
x′=0

π(e + 1, x′) ν

ν + µ

(
µ

ν + µ

)x′−1
µ

ν
if x = 0.

(54)
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Proof. We are in the framework of the transition rates (1) with nonzero rates and triggering
probabilities

qX|E(x, x′ | e) = µ if x ≥ 1, x′ = x − 1,

qE(e, e
′) =

{
ν if e = 2, 3, . . . , K, e′ = e − 1,

ν if e = 1, e′ = K,

α(x′ | e, x, e′) =
{

1 if e = 2, 3, . . . , K, e′ = e − 1, x′ = x,

1 if e = 1, e′ = K, 0 ≤ x ≤ S, x′ = S.

In this case, (24) and (38) imply (53) and (54).

6.3. The PH/M(n)/1 queue

In a PH/M(n)/1 queue, customers arrive according to a renewal process with phase-type inter-
renewal distribution. The customers have exponential, independent, and identically distributed
service requirements, also independent of the arrival process. There exists one server, which
works at a rate that depends on the number of customers present. Here, the process {(E(t))}
represents the remaining phases of the interrenewal distribution until the next arrival, while
the process {(X(t))} records the current number of customers. For simplicity and to be exact,
we assume that the interarrival distribution is Erlang(K, ν), that the service requirements are
exponentially distributed with parameter 1, and that the server works at rateµ(x)whenever there
are x customers. This is an EK /M(n)/1 queue. The process {(E(t), X(t))} is a continuous-time
Markov chain on {1, 2, . . . , K} × Z+ with nonzero transition rates

q((e, x), (e′, x′)) =

⎧⎪⎨
⎪⎩
ν if e = 2, 3, . . . , K, e′ = e − 1, x′ = x ≥ 0,

ν if e = 1, e′ = K, x ≥ 0, x′ = x + 1,

µ(x) if e = 1, 2, . . . , K, e = e′, x ≥ 1, x′ = x − 1.

(55)

We can use Theorem 3 to obtain the stationary distribution of this model.

Theorem 7. Let {(E(t), X(t))} be a continuous-time Markov chain, with transition rates (55)
and stationary distribution (π(e, x)), which describes the evolution of an EK/M(n)/1 queue.
Also, let m(k)(y, x) be the kth convolution of the ν-potentials m(y, x) given by (37). Then, the
stationary probabilities (π(1, x) : x ∈ Z+) are the unique solution to the system of equations

π(1, x) = νK
∑
x′
π(1, x′)m(K)(x′ + 1, x), x ∈ Z+, (56)

∑
x

π(1, x) = 1/K. (57)

The stationary probabilities (π(e, x) : x ∈ Z+, e = 2, 3, . . . , K) are given by

π(e, x) = νK−e+1
∑
x′
π(1, x′)m(K−e+1)(x′ + 1, x), x ∈ Z+, 2 ≤ e ≤ K. (58)
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Proof. We are in the framework of (1) with nonzero rates and triggering probabilities

qX|E(x, x′ | e) = µ(x) if x ≥ 1, x′ = x − 1,

qE(e, e
′) =

{
ν if e = 2, 3, . . . , K, e′ = e − 1,

ν if e = 1, e′ = K,
(59)

α(x′ | e, x, e′) =
{

1 if e = 2, 3, . . . , K, e′ = e − 1, x′ = x,

1 if e = 1, e′ = K, x ≥ 0, x′ = x + 1.

In this case, (24) assumes the form

π(e, x) =
∑
x′
π(e + 1, x′)νm(x′, x | e), e = 1, 2, . . . , K − 1, x ≥ 0, (60)

π(K, x) =
∑
x′
π(1, x′)νm(x′ + 1, x | e), x ≥ 0. (61)

Equation (59) implies that πE(e) = 1/K (e = 1, 2, . . . , K) and, specifically, results in (57).
By iterating (60), we obtain

π(1, x) = νK−1
∑
x′
π(K, x′)m(K−1)(x′, x).

Then, using (61), we obtain (56). Thus, the vector of the stationary probabilities (π(1, x) :
x ∈ Z+) is a solution to the system of equations (56), (57). Given such a solution, we define
(π(e, x) : x ∈ Z+, e = 2, 3, . . . , K) by (58). Then, it is easy to see that (56) and (58) imply
(60) and (61). Moreover, (58) implies that∑

x

π(e, x) = νK−e+1
∑
x′
π(1, x′)

∑
x

m(K−e+1)(x′ + 1, x), e = 2, 3, . . . , K. (62)

However, by the definition (21) of the qE(e)-potentials, we can easily show that∑
x

m(k)(y, x | e) = 1/qE(e)
k

and, hence, ∑
x

m(K−e+1)(x′ + 1, x) = 1/νK−e+1.

Furthermore, (62) is reduced to
∑
x π(e, x) = ∑

x′ π(1, x′) = 1/K, e = 2, 3, . . . , K, by (57).
Hence,

∑
e

∑
x π(e, x) = 1, and we have that (π(e, x) : x ∈ Z+, e = 1, 2, . . . , K) is a solution

to the system (60), (61) that also satisfies the normalization equation. By Theorem 3, we then
have that (π(e, x)), defined by (56)–(58), is the stationary distribution of {(E(t), X(t))}.
6.4. The M(n)/M(n)/1/N queue with a deteriorating server

In an M(n)/M(n)/1/N queue with a deteriorating server, there exists one server and a waiting
room for N customers (including the one in service). The server may be in one ofK operating
modes 1, 2, . . . , K (K and 1 denoting the best and worst operating conditions, respectively)
or in the nonoperating mode 0 (under repair). The server operates at mode e for an Exp(νe)
time and then deteriorates, going to the next-worse mode e − 1, etc. When the server reaches
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the nonoperating mode 0, it goes to a repair facility. The repair times are Exp(ν0) random
variables. After a repair, the server is reduced to the perfect operating condition K and starts a
new operation cycle.

When there are x customers in the system and the state of the server is e, customers arrive
to the system at exponential rate λ(x | e), and the service rate is µ(x | e). We suppose that
λ(N | e) = 0 (no arrivals are accepted when the system is full) and that µ(x | 0) = 0 (no
service is provided when the server is under repair). If E(t) and X(t) respectively denote
the state of the server and the number of customers in the system at time t , then the process
{(E(t), X(t))} is a continuous-time Markov chain on {0, 1, 2, . . . , K} × {0, 1, . . . , N} with
nonzero transition rates

q((e, x), (e′, x′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
νe if e = 1, 2, . . . , K, e′ = e − 1, 0 ≤ x ≤ N, x′ = x,

ν0 if e = 0, e′ = K, 0 ≤ x ≤ N, x′ = x,

λ(x | e) if e = 0, 1, . . . , K, e′ = e, 0 ≤ x ≤ N − 1, x′ = x + 1,

µ(x | e) if e = 0, 1, . . . , K, e′ = e, 1 ≤ x ≤ N, x′ = x − 1.
(63)

Again, we can use Theorem 3 to study the stationary distribution of this model.

Theorem 8. Let {(E(t), X(t))} be a continuous-time Markov chain, with transition rates (63)
and stationary distribution (π(e, x)), which describes the evolution of an M(n)/M(n)/1/N queue
with a deteriorating server. Also, let

m(k)(y, x | e1, . . . , ek) =
∑
x1

∑
x2

· · ·
∑
xk−1

m(y, x1 | e1)m(x1, x2 | e2) · · ·m(xk−1, x | ek)

be the kth convolution of the potentials m(y, x | e1), m(y, x | e2), . . . , m(y, x | ek). Then,
the stationary probabilities (π(0, x) : 0 ≤ x ≤ N) are the unique solution to the system of
equations

π(0, x) =
K∏
e′=0

νe′
N∑
x′=0

π(0, x′)m(K+1)(x′, x | K, . . . , 1, 0), 0 ≤ x ≤ N, (64)

K∑
x=0

π(0, x) = 1

ν0

( K∑
e′=0

1

νe′

)−1

. (65)

The stationary probabilities (π(e, x) : 1 ≤ e ≤ K, 0 ≤ x ≤ N) are given by

π(e, x) = ν0

K∏
e′=e+1

νe′
N∑
x′=0

π(0, x′)m(K−e+1)(x′, x | K,K − 1, . . . , e). (66)

Proof. We are in the framework of (1) with type-1 triggering probability functions

α(x′ | e, x, e′) = 1{x}(x′)

and nonzero rates

qX|E(x, x′ | e) =
{
λ(x | e) if 0 ≤ x ≤ N − 1, x′ = x + 1,

µ(x | e) if 1 ≤ x ≤ N, x′ = x − 1,

qE(e, e
′) =

{
νe if e = 1, 2, . . . , K, e′ = e − 1,

ν0 if e = 0, e′ = K.
(67)
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In this case, (24) assumes the form

π(e, x) =
∑
y

π(e + 1, y)νe+1m(y, x | e), 0 ≤ e ≤ K − 1, 0 ≤ x ≤ N, (68)

π(K, x) =
∑
y

π(0, y)ν0m(y, x | K), 0 ≤ x ≤ N. (69)

By (67), we can easily show that

πE(e) = 1

νe

( K∑
e′=0

1

νe′

)−1

, e = 0, 1, . . . , K,

and iterating (68) results in

π(0, x) =
K∏
e′=1

νe′
∑
z

π(K, z)m(K)(z, x | K − 1,K − 2, . . . , 1, 0).

Using (69), we obtain (64). Therefore, the vector of stationary probabilities (π(0, x) : 0 ≤ x ≤
N) is a solution to the system (64), (65). We will prove that it also the unique solution to this
system. To this end, consider a solution (π(0, x) : 0 ≤ x ≤ N) to the system (64), (65) and
define (π(e, x) : 1 ≤ e ≤ K, 0 ≤ x ≤ N) according to (66). Then, we can easily see that
(64) and (66) imply (68) and (69). Moreover, for every e = 1, 2, . . . , K, by summing (66) for
0 ≤ x ≤ N we have

N∑
x=0

π(e, x) = ν0

K∏
e′=e+1

νe′
N∑
x′=0

π(0, x′)
N∑
x=0

m(K−e+1)(x′, x | K,K − 1, . . . , e). (70)

Using (21), we can show that
∑
x m

(k)(y, x | e1, e2, . . . , ek) = ∏k
i=1(1/qE(ei)). In this case,

we have
∑N
x=0m

(K−e+1)(x′, x | K,K − 1, . . . , e) = ∏K
e′=e(1/νe′) and (70) assumes the form

N∑
x=0

π(e, x) = ν0

νe

N∑
x′=0

π(0, x′) = 1

νe

( K∑
e′=0

1

νe′

)−1

, e = 1, 2, . . . , K,

where the second equality follows from (65). Hence,
∑K
e=0

∑N
x=0 π(e, x) = 1 and we conclude

that (π(e, x) : 0 ≤ e ≤ K, 0 ≤ x ≤ N) is a solution to the system (68), (69) that also satisfies
the normalization equation. By Theorem 3, we then have that (π(e, x)), defined by (64)–(66),
is the stationary distribution of the process {(E(t), X(t))}.

The potentialsm(y, x | ei) for the above theorem are computed using Lemma 3 and Propo-
sition 2, and the (K + 1)(N + 1)× (K + 1)(N + 1) system of balance equations is reduced to
the (N + 1)× (N + 1) system (64).

7. Conclusion

Our focus in this work was to study the stationary behaviour of a continuous-time Markov
chain in a random environment. We have proved necessary and sufficient conditions for a
product-form stationary distribution, in Section 3. However, as was clear from the statements
of the theorems and their applications in queueing models, presented in Section 5, the class of
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models that have product-form stationary distributions is very limited. On the other hand, the
inversion formula, which gives the stationary distribution when the Palm distributions at certain
environmental transitions are known, has universal applicability in the class of continuous-time
Markov chains in random environments. The inversion formula and its consequences seem
to be efficient tools for the study of a model in this class. First, they are useful in simulation
studies, since they make it possible to observe the system only during environmental changes
and deduce conclusions for its equilibrium behaviour in continuous time. More importantly,
they provide an (equivalent) alternative to the system of balance equations (24), which is more
readily solved in many cases. We have given some examples of this approach in Section 6, but
the overall method requires further investigation. We think that the first step in this direction
is to combine this approach with the matrix-analytic or spectral decomposition methods in
the case where the continuous-time Markov chain in a random environment is a quasi-birth–
death process (and perhaps nonhomogeneous). It also seems important to deduce bounds
and approximations for some stationary characteristics, using information about certain Palm
distributions. An asymptotic analysis using this approach, for systems with very high or very
low environmental change rates, also seems possible.
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