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Abstract
Consider a company whose business carries the potential for investment losses and is additionally vulnerable to
exogenous shocks. The unpredictability of the shocks makes it challenging for both the company and the regulator
to accurately assess their impact, potentially leading to an underestimation of solvency capital when employing
traditional approaches. In this paper, we utilize a stylized model to conduct an extreme value analysis of the tail risk
of the company under a Fréchet-type and a Gumbel-type shock. Our main results explicitly demonstrate the different
roles of investment risk and shock risk in driving large losses. Furthermore, we derive asymptotic estimates for the
value at risk and expected shortfall of the total loss. Numerical studies are conducted to examine the accuracy of
the obtained estimates.

1. Introduction
1.1. Motivations
Consider a company—such as an investment bank, an insurer, a mortgage provider, or a pension fund—
whose business involves the potential for investment losses. In accordance with a certain regulatory
framework, the company is required to hold an adequate solvency capital, typically determined based
on past experience. In addition to investment losses, the company may also be vulnerable to exogenous
shocks. The unpredictability of such shocks poses challenges to both the company and the regulator in
accurately assessing their impact, potentially leading to an underestimation of the solvency capital when
employing traditional approaches.

Here, we use the general term “shock” to refer to an unexpected event that may cause significant finan-
cial consequences. Shocks can originate from various sources, including financial distress, economic
instability, policy changes, natural disasters, and technological failures.

Our consideration of shocks aligns with various contemporary regulatory frameworks in the banking,
financial services, and insurance industries. In banking, the Basel III reforms set a primary objec-
tive “to improve the banking sector’s ability to absorb shocks arising from financial and economic
stress, whatever the source, thus reducing the risk of spillover from the financial sector to the real
economy.”1 See also Borio et al. (2020), who review post-crisis financial regulatory reforms and
emphasize that at the heart of these reforms lies the notion of shock-absorbing capacity. In the insur-
ance industry, several authoritative regulatory frameworks run in parallel. For instance, the Solvency
II Directive 2009/138/EC, Article 105, outlines provisions for calculating the basic solvency capital

1See the 2011 Basel Committee on Banking Supervision document “Basel III: A global regulatory framework for more resilient
banks and banking systems” available at https://www.bis.org/publ/bcbs189.pdf.
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requirement, taking into account extreme or exceptional events.2 Notably, the European Insurance
and Occupational Pensions Authority has organized a series of stress tests to assess the European
insurance sector’s resilience against a range of shocks, such as the impact of the COVID-19 pan-
demic in its 2021 stress test, as well as adverse market fluctuations that may occur during a financial
crisis.3

Climate change acts as a primary driver of climate-related natural disaster shocks and financial
shocks, which have profound impacts on the environment, economy, and society. According to Swiss
Re, insured losses have exhibited a consistent annual growth rate of 5–7% since 1992, with the trend
anticipated to persist. This upward trajectory can be attributed to a confluence of economic and natural
factors, including the effects of climate change.4 An example of climate-change shocks as a determinant
for bankruptcies is the 2018 Camp Fire, which triggered the bankruptcy of Pacific Gas and Electric
Company (PG&E) in January 2019 and the liquidation of Merced Property and Casualty Company in
December 2018. See Appendix A.1 for a snapshot. Among the already vast and still fast-growing litera-
ture examining the economic consequences of climate change, we refer to the following two most recent
papers, which particularly align with the motivation of our current study. Cantelmo et al. (2023) employ
a dynamic stochastic general equilibrium model to assess the long-term macroeconomic and welfare
effects of natural disaster shocks, modeled as exogenous. Pankratz et al. (2023) present empirical evi-
dence that increased heat exposure negatively impacts firm financial performance, but capital market
participants do not fully anticipate the economic consequences of heat as a first-order physical climate
risk.

The COVID-19 pandemic underscores the unpredictability and potentially devastating consequences
of exogenous shocks. Shortly after its outbreak, it spurred a substantial body of research focusing on
its impacts on financial markets. In contrast to events like the global financial crisis, political shifts,
or regulatory changes, which are at least partially endogenous, COVID-19 represents a truly exogenous
shock to firms. This perspective is highlighted by Ramelli and Wagner (2020), who investigate the initial
market reactions to COVID-19 and emphasize the importance of precautionary cash holdings for firms
confronting a crisis like COVID-19. Bartik et al. (2020) conduct a survey of small businesses between
March 28 and April 4, 2020, a critical period when both the progression of COVID-19 and the gov-
ernment’s response were uncertain, shedding light on the financial fragility of many small businesses
facing a major exogenous economic shock.5

Arguably, most, if not all, major bankruptcies are attributed to unexpected shocks. When a company
faces unexpected shocks, it may experience severe financial distress, operational disruptions, and a loss
of market share. The impact of such shocks can be amplified when the company is unprepared. Failure
to anticipate or effectively respond to these shocks can put the company in financial instability and
ultimately result in bankruptcy. A stark example is the recent collapse of Silicon Valley Bank (SVB).
See Appendix A.1 for a snapshot.

1.2. Overview of the present work
We envision a company that faces both investment losses and exogenous shocks. Our goal is to gain a
quantitative understanding of the roles of the two risk factors in driving large losses. To ensure the clear
delivery of our message, we utilize a highly stylized model for ease of presentation. Nevertheless, we
note that it is straightforward to extend this model in various ways to incorporate more realistic features,
depending on the context. See Remark 5.1 for related discussions.

2See the latest 2021 version available at http://data.europa.eu/eli/dir/2009/138/2021-10-19.
3Refer to https://www.eiopa.europa.eu/browse/financial-stability/insurance-stress-test_en.
4Refer to the Sigma 1/2023 report titled “Natural Catastrophes and Inflation in 2022: A Perfect Storm”, available at

https://www.swissre.com/institute/research/sigma-research/sigma-2023-01.html.
5See also the BIS July 2021 report “Early lessons from the COVID-19 pandemic on the Basel reforms” available at

https://www.bis.org/bcbs/publ/d521.pdf.
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Specifically, suppose the company holds an initial capital u > 0 and incurs an investment loss of
amount uX, where X denotes the overall negative return rate. Besides the investment loss, the company is
vulnerable to an exogenous, hence unpredictable, shock, which can incur an additional loss of amount Y .
Thus, the total loss is

L= uX + Y . (1.1)
As we are concerned with the tail risk of the company, we focus on the tail probability of L; that is, we
study the asymptotic behavior of P (L > �u) as u becomes large for � > 0.

We make the following standing assumptions:

Assumption 1.1. The negative return rate X and the shock variable Y satisfy the following:

• X follows a distribution function F supported on (−∞, x̂], where 0 < x̂ <∞ denotes the upper
endpoint of F (i.e., the essential upper bound of X);

• Y follows a distribution function G supported on R;
• X and Y are independent.

Both the negative return rate X and the shock variable Y are modeled as real-valued random vari-
ables. For X, a positive value indicates a loss, while a negative value indicates a gain in the investment
portfolio. Likewise, for Y , a positive value signifies a bad shock, whereas a negative value signifies a
good shock. The upper bound assumption on X is practically relevant and indeed commonly assumed
in mathematical finance. We allow x̂ to exceed 1 to account for the possibility of a short position. The
independence assumption between X and Y greatly simplifies the problem, but it is not too unrealistic
in view of the exogeneity of the shock. Indeed, it is a fundamental approach in modeling to introduce
shocks that are exogenous to, and thus independent of, underlying factors. Outstanding early works
in finance, economics, and insurance that exemplify this include Merton (1976), Bernanke (1983),
Black and Litterman (1992), Cochrane (1991), Frees et al. (1996), Cox et al. (2000), Froot (2001), and
Lindskog and McNeil (2003). Recent reviews of exogenous shocks in broader contexts include Atanasov
and Black (2016), who survey shock-based methods in corporate finance and accounting research with
a focus on exogenous shocks, Miklian and Hoelscher (2022), who outline an analytical lens suggesting
how small- and medium-sized enterprises experience exogenous shocks, and Röglinger et al. (2022),
who further conceptualize the interplay of exogenous shocks and business process management.

Remark 1.1 Arguably, the financial consequence of a shock should be linked to the business size. To
reflect this linkage, we can replace Y with v(u)Z for some positive and monotonically increasing function
v(u) and a real-valued random variable Z . Then the problem becomes

P (uX + v(u)Z > �u) , u→∞, (1.2)
where � > 0. There are three cases: u= o (v(u)), v(u)� u, and v(u)= o(u) (refer to Subsection 2.1 for
such notational conventions). For the first case, (1.2) roughly reduces to P (Z > 0). For the second case,
as v(u) is of the same order as u, (1.2) roughly reduces to P (cX + Z > �c) for c varying over a certain
closed subinterval of (0,∞). For the third case, (1.2) becomes

P

(
u

v(u)
X + Z > �

u

v(u)

)
= P (ũX + Z > �ũ) ,

where ũ= u
v(u)
→∞. This reduces to our original problem. Only the third case involves tail risk, making

it the most interesting to us. Thus, it does not incur much loss of generality to restrict the study to the
tail probability of L in (1.1).

While we have formulated our study within the general context of a company facing both investment
risk and shock risk, we provide a concrete example below to illustrate its immediate applicability in the
insurance context.
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Example 1.1 Consider an insurer who holds an initial capital x > 0 at the beginning of a year. Suppose
that the policies it underwrites incur a collection of claims with a total amount of S to be paid at the end of
the year. In return, the insurer receives a total premium income equal to (1+ θ) E [S] at the beginning of
the year, where θ > 0 is the safety loading coefficient. Under a certain regulatory framework, the insurer
is required to hold a solvency capital of amount C > 0; that is, x+ (1+ θ) E [S]≥C. The insurer invests
the remaining capital, x+ (1+ θ) E [S]−C, in risky assets to earn higher returns. Then the insurer’s
terminal wealth is

C (1+ r)+ (x+ (1+ θ) E [S]−C) (1+ R)− S,

where r > 0 is a risk-free rate and R ∈R is the overall return rate of its investment portfolio. Note that
conservative insurance regulatory frameworks essentially prohibit insurers from engaging in short sales;
see, for example, Molk and Partnoy (2019). Thus, we may assume a lower bound for R.

Consider the situation that the terminal wealth runs low, say, lower than a critical level y, in which
case the insurer may be forced to initiate a rehabilitation plan. This has the probability

P (C (1+ r)+ (x+ (1+ θ) E [S]−C) (1+ R)− S < y)

= P ((x+ (1+ θ) E [S]−C) (−R)+ S > x+ (1+ θ) E [S]+Cr− y)

= P (uX + Y > �u) ,

with X =−R, Y = S, u= x+ (1+ θ) E [S]−C, and

�= x+ (1+ θ) E [S]+Cr− y

x+ (1+ θ) E [S]−C
.

Note that the three conditions in Assumption 1.1 become natural in this example. Remarkably, � > 0
necessarily varies within a certain range, which motivates us to derive uniform asymptotic formulas
with respect to �. In conclusion, our study of the tail probability of L has implications for insurance
regulation.

We carry out our asymptotic study of P (L > �u) for x̂≤ � <∞, which describes an ultimate tail
area corresponding to a catastrophic loss. We have excluded 0 < � < x̂ from the current study because
in this case, the tail probability P (L > �u) roughly reduces to P (X > �) and does not involve tail risk.
We make the assumption that the distribution of Y is of the Fréchet or Gumbel type. In the Fréchet case,
Y exhibits a power-like tail, and our analysis shows that P (L > �u) is primarily determined by the tail
of Y ; see Theorem 3.1. In the Gumbel case, Y may have a heavy tail (but less heavy than a power-like
tail) or a light tail, and our analysis shows that P (L > �u) is jointly determined by the tails of X and Y ;
see Theorem 4.1. In summary, concerning the causation of large losses, if Y is of the Fréchet-type then
Y plays a first-order role, but if Y is of the Gumbel-type then X and Y play a joint role.

A remarkable feature of our asymptotic formulas is that they hold uniformly for � over a certain
range. This uniformity not only enhances the theoretical value of the results but also amplifies their
practical applicability. To attain uniformity in our asymptotic formulas, substantial effort is required. As
applications of our main results, we further derive asymptotic estimates for both the value at risk (VaR)
and expected shortfall (ES) of the loss L. In this pursuit, the uniformity of our main results becomes
pivotal.

The rest of the paper is organized as follows: Section 2 collects necessary preliminaries; Section 3
considers a Fréchet-type shock; Section 4 considers a Gumbel-type shock; Section 5 conducts numerical
studies to examine the accuracy of the obtained estimates; Section 6 concludes the work with a few
remarks; finally, Appendix A collects additional information, prepares necessary lemmas, and compiles
the proofs of the main results.

https://doi.org/10.1017/asb.2024.25 Published online by Cambridge University Press
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2. Preliminaries
2.1. Notational conventions
Throughout this paper, all limit relationships are for u→∞ unless stated otherwise. For two positive
functions h1(·) and h2(·) satisfying

m∗ = lim inf
u→∞

h1(u)

h2(u)
≤ lim sup

u→∞

h1(u)

h2(u)
=m∗

for some 0≤m∗ ≤m∗ ≤∞, we write h1(u)= o(h2(u)) if m∗ = 0, write h1(u)∼ h2(u) if m∗ =m∗ = 1,
write h1(u) � h2(u) or h2(u) � h1(u) if m∗ = 1, and write h1(u)� h2(u) if 0 < m∗ ≤m∗ <∞. Furthermore,
when the two functions involve another argument � ∈R for which case we rewrite them as h1 (u, �) and
h2 (u, �), we often equip asymptotic relations with certain uniformity with respect to �. For example, we
say that h1 (u, �)∼ h2 (u, �) holds uniformly for � ∈D �= ∅ if

lim
u→∞

sup
�∈D

∣∣∣∣h1 (u, �)

h2 (u, �)
− 1

∣∣∣∣= 0.

For x ∈R, denote its positive part by x+ = x1(x>0) =max{x, 0} = x∨ 0, where 1(·) is the indicator
function of ( · ). For a general risk variable Z distributed by U and for 0 < q < 1, its VaR at level q
is VaRq[Z]=U←(q)= inf {x ∈R : U(x)≥ q}, and its ES at level q, assuming the integrability of Z+, is

ESq[Z]= 1

1− q

∫ 1

q

VaRp[Z]dp=VaRq[Z]+ 1

1− q

∫ ∞
VaRq[Z]

U(x)dx, (2.1)

where U = 1−U denotes the right tail of U. For the last step in (2.1), refer to Proposition 8.13 of McNeil
et al. (2015).

2.2. Highlights of extreme value theory
To present our main results, we need to collect some basics from extreme value theory.

A positive measurable function h is said to be regularly varying at∞ with index α ∈R, written as
h ∈RVα, if

lim
u→∞

h (su)

h(u)
= sα for every s > 0.

When α = 0, this defines a slowly varying function. In a natural way, the concept of regular variation
can be extended to encompass rapid variation as its extreme. Precisely, a positive measurable function
h is said to be rapidly varying with index∞, written as h ∈RV∞, if

lim
u→∞

h (su)

h(u)
=
{ ∞ for every s > 1,

0 for every 0 < s < 1.

The class RV−∞ is defined in a symmetric way.
A distribution function U is said to belong to the maximum domain of attraction (MDA) of a non-

degenerate distribution function V , denoted by U ∈MDA (V), if there exist some constants cn > 0 and
dn ∈R for n ∈N such that

lim
n→∞

Un (cnx+ dn)= V(x), x ∈R. (2.2)

According to the classical Fisher–Tippett–Gnedenko theorem, as summarized in Theorem 3.2.3 of
Embrechts et al. (1997), V must have the type of one of the following three distributions:

• Fréchet: �α(x)= exp {−x−α} for x > 0 and α > 0;
• Weibull: �α(x)= exp {− (−x)α} for x≤ 0 and α > 0;
• Gumbel: �(x)= exp {−e−x} for x ∈R.

https://doi.org/10.1017/asb.2024.25 Published online by Cambridge University Press
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For latter use, we highlight the characterization theorems for the three MDAs. The reader is referred
to Chapter 1 of Resnick (1987), Chapter 3 of Embrechts et al. (1997), and Chapter 2 of Beirlant et al.
(2006) for comprehensive treatments. For a distribution function U, denote by ẑ≤∞ the upper endpoint
of its support. If ẑ <∞, U necessarily assigns no mass to ẑ.

The Fréchet and Weibull MDAs have characterizations in terms of regular variation. Actually, U ∈
MDA (�α), α > 0, if and only if ẑ=∞ and U ∈RV−α; see, for example, Theorem 3.3.7 of Embrechts
et al. (1997). Moreover, U ∈MDA (�α), α > 0, if and only if ẑ <∞ and U

(
ẑ− (·)−1

) ∈RV−α; see, for
example, Theorem 3.3.12 of Embrechts et al. (1997).

The Gumbel MDA is more complicated. It has a very broad coverage, ranging from moderately
heavy-tailed distributions (such as lognormal) to light-tailed distributions (such as normal), and further
to distributions with finite upper endpoints (namely, ẑ <∞). According to Proposition 1.4 of Resnick
(1987), U ∈MDA (�) if and only if U(x) is equivalent to the tail of a Von Mises distribution function;
that is, there is some z0 < ẑ such that

U(x)= b(x) exp

{
−
∫ x

z0

1

a(y)
dy

}
, z0 < x < ẑ, (2.3)

where a(·), called auxiliary function, is positive and differentiable with limx↑ẑ a′(x)= 0, and b(·) is
positive with limx↑ẑ b(x)= b0 > 0.

3. Under a Fréchet-type shock

Theorem 3.1 In addition to Assumption 1.1, assume that G ∈MDA(�α) for some α > 0.

(a) For some arbitrarily fixed �∗ > x̂, it holds uniformly for � ∈ [�∗,∞) that

P (L > �u)∼ E
[
(1− �−1X)−α

]
G(�u). (3.1)

(b) If in addition E
[
(x̂− X)−κ

]
<∞ for some κ > α, then (3.1) holds uniformly for � ∈ [x̂,∞).

Theorem 3.1 shows that Y plays a first-order role, while X plays a second-order role in driving the
tail risk. In item (b), the additional assumption implies that Y has a heavier tail than that of (x̂− X)−1.
We remark that it is both nontrivial and meaningful to extend the uniformity region of � to [x̂,∞) to
cover the critical point x̂.

Now, we apply Theorem 3.1 to derive asymptotic estimates for the VaR and ES of L. In doing so, the
uniformity established in Theorem 3.1 becomes crucial.

Theorem 3.2 Define ĉ= E
[
(x̂− X)−α

]≤∞. Consider a high confidence level qu ∈ (0, 1) satisfying

1− qu ∼ cG(u) (3.2)

for some constant c ∈ (0, ĉ]∩ (0,∞). Denote by �̂ the unique solution to the equation

E
[
(�− X)−α

]= c. (3.3)

(a) Under the conditions of Theorem 3.1(a), we have

VaRqu [L]∼ �̂u. (3.4)

(b) If further α > 1 and c ∈ (0, ĉ), then

ESqu [L]∼
(

�̂+ c−1

∫ ∞
�̂

E
[
(y− X)−α

]
dy

)
u. (3.5)

As explained before, the independence between X and Y in Assumption 1.1 reflects the exogeneity of
the shock. For a general shock that is not entirely exogenous to the market, this independence assumption
becomes irrelevant, and we need to assume a certain dependence structure to capture the endogeneity of
the shock. Following a reviewer’s request, we illustrate that under a dependence structure called bivariate
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regular variation (BRV), we can derive an explicit uniform asymptotic formula for the tail probability
of L. We choose BRV for this illustration because it nicely couples heavy-tailed marginals with tail
dependence. There are many other dependence structures that enable us to derive explicit uniform
asymptotic formulas for both the current case of Fréchet-type shocks and the case of Gumbel-type shocks
in the next subsection, but we will not expand on such discussions in this paper.

For a nonnegative random variable ξ distributed by U, note that U ∈RV−α for α > 0 can be
equivalently written as

lim
u→∞

1

U(u)
P

(
ξ

u
> s

)
= s−α s > 0.

This naturally extends to BRV. Precisely, a nonnegative random vector (ξ , η) is said to follow BRV if
there exist a reference distribution U and a non-degenerate limit measure ν such that

lim
u→∞

1

U(u)
P

(
(ξ , η)

u
∈ B

)
= ν(B)

holds for every relatively compact and ν-continuous (i.e., ν(∂B)= 0) Borel set B⊂ [0,∞]2\{(0, 0)}.
Necessarily, the limit measure ν is homogeneous in the sense that there exists some index α > 0 such that
ν (tB)= t−αν (B) for every t > 0 and every Borel set B ∈ [0,∞]2\{(0, 0)}. For this case, we write (ξ , η) ∈
BRV−α(ν, U). We refer the reader to Resnick (1987, 2007) for textbook treatments of multivariate regular
variation.

Back to our stylized model (1.1). Define

ξ = 1

x̂− X
and η= Y+. (3.6)

Proposition 3.1 Assume that (ξ , η) defined by (3.6) follows BRV−α(ν, U) for some α > 0. For �b =
x̂+ bu−1/2 for arbitrarily fixed b≥ 0, we have

lim
u→∞

P (L > �bu)

U
(√

u
) = ν (Ab) , (3.7)

where Ab =
{
(x, y) ∈R2

+ : y− 1
x
> b

}
.

It is easy to see that ν (Ab) is non-increasing and continuous in b, with 0= ν (A∞)≤ ν (A0) <∞.
Thus, the convergence (3.7) is automatically uniform for 0≤ b <∞, meaning that

lim
u→∞

sup
0≤b<∞

∣∣∣∣∣P (L > �bu)

U
(√

u
) − ν (Ab)

∣∣∣∣∣= 0.

Moreover, if ν shows tail dependence, that is, ν
(
(1,∞)2

)
> 0, we have 0 < ν (Ab) <∞ for all

0≤ b <∞. Then it holds locally uniformly that

P (L > �bu)∼ ν (Ab) U
(√

u
)

.

Remarkably, Proposition 3.1 shows that the tail behavior of L is jointly determined by the tails of
X and Y , contrasting with the conclusion of Theorem 3.1.

4. Under a Gumbel-type shock
We assume that G ∈MDA(�) fulfills the representation (2.3) with an infinite upper endpoint and an
auxiliary function a(·). In the theorem below, we need a function φ(·) specified as follows: (1) if a(·) is
bounded, we choose φ(u)=∞; (2) If a(·) is unbounded, then by the argument after (A5), we can always
find a positive and increasing function φ(·) such that φ(u)→∞ and a(φ(u)u)= o(u).
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As usual, define the gamma function

� (r)=
∫ ∞

0

xr−1e−xdx, r > 0. (4.1)

Theorem 4.1 In addition to Assumption 1.1, assume that F ∈MDA(�β) for some β > 0 and that G ∈
MDA(�) fulfills the representation (2.3) with an infinite upper endpoint. If the auxiliary function a(·) is
unbounded, further assume that it is non-decreasing. Then for some arbitrarily fixed �∗ > x̂ and for the
function φ(·) specified above, it holds uniformly for � ∈ [�∗, φ(u)) that

P (L > �u)∼ �(β + 1)F
(
x̂− u−1a(�u− x̂u)

)
G(�u− x̂u). (4.2)

Recall that the assumption F ∈MDA(�β) implies F
(
x̂− (·)−1

) ∈RV−β . Also recall that the assump-
tion G ∈MDA(�) implies G ∈RV−∞ and consequently Y+ has a finite moment of any positive order;
see, for example, Corollary 3.3.32 of Embrechts et al. (1997). Therefore, Y has a lighter tail than that of
(x̂− X)−1. In contrast to the conclusion of Theorem 3.1, Theorem 4.1 shows that X and Y play a joint
role in driving the tail risk.

Now we apply Theorem 4.1 to derive asymptotic estimates for the VaR and ES of L. In doing so, the
uniformity established in Theorem 4.1 becomes crucial.

Theorem 4.2 Consider a high confidence level qu ∈ (0, 1) satisfying

1− qu ∼ �(β + 1)F
(
x̂− u−1a(cu)

)
G(cu) for some c > 0. (4.3)

(a) Under the conditions of Theorem 4.1, we have

VaRqu [L]∼ (x̂+ c
)

u. (4.4)

(b) If further u−
1
δ � a(u) � u1−δ for some 0 < δ < 1, then

ESqu [L]−VaRqu [L]∼ a
(
VaRqu [L]− x̂u

)
. (4.5)

Since a (u)= o(u) from (A5), a combination of (4.4)–(4.5) implies that VaRqu [L] and ESqu [L] share
the same tail behavior, both asymptotic to

(
x̂+ c

)
u. Nevertheless, (4.5) contains an additional merit by

offering a precise asymptotic estimate for the difference between ESqu [L] and VaRqu [L]. This becomes
meaningful in some circumstances (e.g., when we possess the true value of VaRqu [L] or a highly accurate
estimate for it).

Our study still misses the scenario that both the negative return rate X and the shock variable Y are
of Gumbel-type. For the sake of completeness, as requested by a reviewer, we present a result under a
special case of such a Gumbel–Gumbel scenario. Note that in our setting, X always has a finite upper
endpoint, while Y is unbounded. We assume that both the tail of X as it approaches its upper endpoint x̂
and the ultimate tail of Y are of the exponential power form. These distributions, although not entirely
general, arguably encompass most useful examples in the Gumbel MDA.

Proposition 4.1 In addition to Assumption 1.1, assume that{
F(x)∼K1e−c1(x̂−x)

−τ1
, x ↑ x̂,

G(y)∼K2e−c2yτ2 , y→∞,
(4.6)

where K1, c1, τ1, K2, c2, τ2 are all positive constants. Then

P
(
L > x̂u

)∼K1K2c2

(
2πsρ+2

∗
c1ρ(ρ + 1)

) 1
2

u
τ1τ2

2(τ1+τ2) exp
{
−t∗u

τ1τ2
τ1+τ2

}
, (4.7)

where ρ = τ1
τ2

, s∗ =
(

c1ρ

c2

) 1
ρ+1

, and t∗ = c1s−ρ
∗ + c2s∗.
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As a sanity check, letting all parameters in (4.6) be 1, the asymptotic formula (4.7) reduces to

P
(
L > x̂u

)∼√πu
1
4 e−2

√
u.

Note that P
(
L > x̂u

)= P (ξY > u), where ξ = 1
x̂−X

. This result is consistent with Example 2.1 of Tang
(2008).

As the proof of Proposition 4.1 shows, it is usually quite troublesome to derive precise asymptotic
formulas for the Gumbel–Gumbel scenario, and the obtained formulas are typically quite involved.
Challenges arise mainly because most powerful techniques dealing with regular variation are not appli-
cable anymore. For this reason, we refrain from pursuing general results for the Gumbel–Gumbel
scenario, and we do not provide uniformity with respect to � for Proposition 4.1. Asymptotic formu-
las for the Gumbel–Gumbel scenario may offer certain theoretical insights, but admittedly, they often
exhibit poor numerical performance.

5. Numerical studies
5.1. Models for the negative return rate and the shock variable
In this section, we conduct numerical studies to examine the accuracy of the asymptotic estimates for
P(L > �u) as well as for the VaR and ES of L obtained in Sections 3–4. First introduce three distributions:

(a) We always assume that the negative return rate X follows a scaled beta (α, β) distribution over
[−0.75, 0.5] for α, β > 0. Precisely, F has the probability density function

f (x)= 0.8
� (α + β)

� (α) � (β)
(0.8x+ 0.6)α−1(0.4− 0.8x)β−1, − 0.75≤ x≤ 0.5. (5.1)

(b) In Subsection 5.2, we assume that the shock variable Y follows a mixed Lomax distribution,
which assigns a probability 0.4 over (−∞, 0) according to the Lomax (α, θ1) distribution and
assigns a probability 0.6 over (0,∞) according to the Lomax (α, θ2) distribution, where the
shape parameter α and the two scale parameters θ1 and θ2 are all positive. Precisely, G has the
probability density function

g(y)= 0.4× α

θ1

(
1− y

θ1

)−α−1

1(y<0) + 0.6× α

θ2

(
1+ y

θ2

)−α−1

1(y≥0). (5.2)

(c) In Subsection 5.3, we assume that the shock variable Y follows a mixed Weibull distribution,
which assigns a probability 0.4 over (−∞, 0) according to the Weibull (τ , λ1) distribution and
assigns a probability 0.6 over (0,∞) according to the Weibull (τ , λ2) distribution, where the
shape parameter τ and the two scale parameters λ1 and λ2 are all positive. Precisely, G has the
probability density function

g(y)= 0.4× τ

λ1

(
− y

λ1

)τ−1

e−(−y/λ1)τ 1(y<0) + 0.6× τ

λ2

(
y

λ2

)τ−1

e−(y/λ2)τ 1(y≥0). (5.3)

The specification in (5.1) accounts for both investment gains (corresponding to negative values of X)
and investment losses (corresponding to positive values of X). In both (5.2) and (5.3), the specifications
of the probabilities 0.4 and 0.6 signify the perception that bad shocks (corresponding to positive values
of Y) are more likely than good shocks (corresponding to negative values of Y). Furthermore, we allow
Y to be distributed differently over (−∞, 0) and (0,∞) to reflect the reality that good shocks and bad
shocks may exhibit different patterns.

All numerical results in this paper are realized in Python. We adopt the quad function in the
scipy.integrate module to obtain the true value of P(L > �u). Given u > 0 and 0 < q < 1, by let-
ting P(L > vqL )= 1− q, we adopt the fsolve function in the scipy.optimize module to obtain vqL as
the true value of VaRq[L]. Then we follow (2.1) to compute the true value of ESq[L].
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Figure 1. Compare the estimate (3.1) for P (L > �u) with its true value.

Remark 5.1 We have selected these standard distributions (5.1)–(5.3) mainly to facilitate our numerical
studies. It is important to note that, for general cases, directly computing P (L > �u), VaRq[L], and ESq[L]
may become challenging or even impossible. In practice, X as the negative return rate of an investment
portfolio may be modeled as a randomly weighted sum of dependent negative return rates of individual
assets, while Y may represent the accumulating result of a sequence of shocks and hence be modeled as
the sum of a random number of dependent shock variables. In such a situation, it is generally impossible
to get the exact distributions of X and Y . However, the theorems in Sections 3–4 only require conditions
on the tails X and Y rather than their exact distributions. There are established procedures in asymptotic
analysis to deal with such intricate stochastic structures and determine conditions under which X and
Y are amenable to the theorems in Sections 3–4, enabling us to still easily derive asymptotic estimates
for P (L > �u), VaRq[L], and ESq[L]. To save space, we will not expand on discussions along this line,
but refer the interested reader to Ng et al. (2002) and Tang and Yuan (2014)) for some results readily
applicable here.

5.2. For Theorems 3.1 and 3.2

Example 5.1 Let X follow a scaled beta (6,5) distribution described by (5.1). Then E[X]≈−0.0682,
which means that the expected return rate is approximately 6.82%, and F(0)≈ 0.6331, which is
the probability that the risky investment results in an overall profitable outcome. Let Y follow a
mixed Lomax distribution described by (5.2) with α = 1.2, θ1 = 1, and θ2 = 2, so that Y has a finite
mean.

Figure 1 plots the estimate (3.1) for P(L > �u) against its true value in subfigures (a1)–(c1)
and their ratio in subfigures (a2)–(c2), for �= 0.6, 0.8, and 1.2. We allow u to vary within a cer-
tain interval to ensure that P(L > �u) roughly varies from 0.001 to 0.01, a range corresponding to
tail risk in most regulatory frameworks. All subfigures confirm that the estimate closely matches
the true value. Noticeably, as u increases, the ratio approaches 1 from above in subfigures (a2)–
(b2) but from below in subfigure (c2), with relative errors ranging from 0.5% to 0.05% across
all cases.

Tables 1–2 tabulate the estimates (3.4)–(3.5) for VaRq[L] and ESq[L], as well as the ratios of these
estimates to the corresponding true values, for u= 25, 50, 100, and 150, and q= 95%, 97.5%, 99%,
99.5%, 99.75%, and 99.9%, respectively. To apply (3.4)–(3.5), given u and q, by (3.2) we calculate
c= 1−q

G(u)
and then adopt the fsolve function to solve (3.3) to obtain �̂. The tables show that the ratios

are always close to 1, especially for larger values of u.
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Table 1. Compare the estimate (3.4) for VaRq[L] with its true value.

VaRq[L]
q 95.00% 97.50% 99.00% 99.50% 99.75% 99.90%

Asymptotic 14.53 25.31 54.85 98.58 176.70 380.94
u=25 True 13.58 25.34 57.31 104.56 188.96 409.55

Ratio 1.0700 0.9988 0.9570 0.9427 0.9352 0.9302
Asymptotic 27.15 56.43 101.35 182.21 394.12

u=50 True 26.09 56.70 103.47 187.60 408.00
Ratio 1.0406 0.9952 0.9795 0.9713 0.9660
Asymptotic 58.77 102.48 183.83 399.15

u=100 True 57.83 102.53 185.57 405.23
Ratio 1.0163 0.9995 0.9906 0.9850
Asymptotic 104.00 183.98 399.48

u=150 True 103.31 184.46 402.89
Ratio 1.0066 0.9974 0.9915

Table 2. Compare the estimate (3.5) for ESq[L] with its true value.

ESq[L]
q 95.00% 97.50% 99.00% 99.50% 99.75% 99.90%

Asymptotic 87.25 155.77 335.45 598.77 1068.08 2293.86
u=25 True 92.23 166.30 360.39 644.79 1151.65 2475.50

Ratio 0.9459 0.9367 0.9308 0.9286 0.9274 0.9266
Asymptotic 161.44 347.32 620.50 1107.71 2380.54

u=50 True 165.89 359.28 643.42 1150.13 2473.88
Ratio 0.9732 0.9667 0.9644 0.9631 0.9623
Asymptotic 353.22 0.8314 1126.89 2424.32

u=100 True 358.29 1.1285 1147.47 2470.83
Ratio 0.9859 0.9834 0.9821 0.9812
Asymptotic 633.72 1132.21 2437.25

u=150 True 640.19 1145.32 2468.00
Ratio 0.9899 0.9886 0.9875

5.3. For Theorems 4.1 and 4.2

Example 5.2 Let X follow a scaled beta (0.6, 0.5) distribution described by (5.1). Then F ∈MDA(�0.5)
with upper endpoint x̂= 0.5. We still have the same mean E[X]≈−0.0682 but F(0)≈ 0.5144. Let
Y follow a mixed Weibull distribution described by (5.3) with τ = 0.9, λ1 = 1.5, and λ2 = 2. Then
G ∈MDA(�) with an auxiliary function a(y)= λτ

2τ
−1y1−τ for y > 0. Notably, g(0)=∞, which is not

problematic but may be interpreted as reflecting the reality that there are significantly more small shocks
than large shocks.

Figure 2 plots the estimate (4.2) for P(L > �u) against its true value in subfigures (a1)–(c1) and their
ratio in subfigures (a2)–(c2), for �= 0.6, 0.8, and 1, where we allow u to vary within a certain inter-
val to ensure that P(L > �u) roughly varies from 0.001 to 0.01. All subfigures show that the estimate
closely matches the true value and the ratio approaches 1 from below as u increases, indicating a slight
underestimation.
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Figure 2. Compare the estimate (4.2) for P (L > �u) with its true value.

Table 3. Compare the estimate (4.4) for VaRq[L] with its true value.

VaRq[L]
q 95.00% 97.50% 99% 99.50% 99.75% 99.90%

Asymptotic 7.471 9.153 11.453 13.240 15.061 17.512
u=10 True 7.586 9.256 11.549 13.334 15.153 17.603

Ratio 0.9849 0.9889 0.9917 0.9930 0.9939 0.9948
Asymptotic 11.622 13.272 15.537 17.303 19.106 21.536

u=20 True 11.714 13.341 15.595 17.356 19.156 21.584
Ratio 0.9921 0.9948 0.9963 0.9969 0.9974 0.9978
Asymptotic 16.141 17.773 20.017 21.770 23.562 25.981

u=30 True 16.239 17.838 20.067 21.815 23.603 26.018
Ratio 0.9940 0.9963 0.9975 0.9980 0.9983 0.9986

Tables 3–4 tabulate the estimates for VaRq[L] and ESq[L] based on (4.4)–(4.5), as well as the ratios
of these estimates to the corresponding true values, for u= 10, 20, and 30, and q= 95%, 97.5%, 99%,
99.5%, 99.75%, and 99.9%, respectively. To apply (4.4)–(4.5), given u and q, we understand (4.3) as
an equality and then adopt the fsolve function to solve it to obtain c. The tables show that the ratios
approach 1 and the estimates improve as u increases.

5.4. Empirical discussions
To elaborate on our thoughts regarding empirical studies concerning the obtained theoretical results,
we interpret our stylized model in the insurance context, where X represents the annual negative return
rate of an insurance company and Y represents its annual loss due to climate shocks. In this context, our
study of the tail probability of L in (1.1) can help us gain a quantitative understanding of the roles of the
two risk factors in driving potentially large losses. For a representative insurance company, the overall
negative return rate X of its investment portfolio can be approximated as the industry average. Then
useful datasets for modeling X include: (1) The Dow Jones U.S. Select Insurance Index, which, as part
of the Dow Jones U.S. Broad Stock Market Index, tracks the performance of U.S. insurance companies
since 1991, including 53 constituents; (2) The S&P Insurance Select Industry Index, which is a subset of
the S&P Total Market Index, focusing specifically on U.S. insurance companies since 2003, including
49 constituents. Datasets useful for modeling the climate shock loss Y include: (1) The Spatial Hazard
Events and Losses Database for the U.S. (SHELDUS), which records and analyzes hazard events and
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Table 4. Compare the estimate for ESq[L] based on (4.5) with its true value.

ESq[L]
q 95.00% 97.50% 99% 99.50% 99.75% 99.90%

Asymptotic 9.741 11.544 13.952 15.800 17.672 20.181
u=10 True 10.060 11.800 14.166 15.995 17.854 20.350

Ratio 0.9683 0.9783 0.9849 0.9878 0.9898 0.9917
Asymptotic 13.798 15.606 17.998 19.833 21.692 24.184

u=20 True 14.137 15.847 18.182 19.992 21.834 24.310
Ratio 0.9760 0.9848 0.9899 0.9920 0.9935 0.9948
Asymptotic 18.242 20.068 22.453 24.281 26.132 28.616

u=30 True 18.629 20.320 22.636 24.435 26.268 28.733
Ratio 0.9792 0.9876 0.9919 0.9937 0.9948 0.9959

their associated losses in the U.S. since 1960; (2) The Emergency Events Database (EM-DAT), which
provides comprehensive information on natural and technological disasters globally since 1900.

A potential issue in utilizing these datasets for our study is that a major climate event may concurrently
drive up both the negative return rate X and the climate shock loss Y , which violates our independence
assumption. We propose two methods to mitigate this issue. First, we can eliminate the effects of climate
shocks on the investment portfolio by employing intervention analysis (Box and Tiao, 1975) to pinpoint
the occurrence of such shocks. Then we utilize the resulting negative return rate to inform the modeling
of X to ensure its independence of Y . Second, we can instead use the data for Y during a period subse-
quent to that of X so that the unpredictability of climate events well justifies the independence between
X and Y .

Note that the three types for the limit distribution in (2.2) can be unified through a shape parameter
(often called the extreme value index) γ ∈R to

Vγ = exp
{−(1+ γ x)−1/γ

}
,

for x ∈R such that 1+ γ x > 0, where in case γ = 0 the right-hand side is understood as exp {−e−x},
namely, the limit as γ → 0. Precisely, when γ > 0, we have the Fréchet case with α= 1

γ
, when γ < 0,

we have the Weibull case with α=− 1
γ
, while when γ = 0, we have the Gumbel case. A three-parameter

family can be constructed by introducing a real-valued location parameter and a positive scale parameter.
To implement empirical studies, the first step is to estimate the shape parameter γ ∈R, which is a

classical topic in univariate extreme value theory. This estimation will help us determine which MDA
highlighted in Subsection 2.2 is relevant. Traditional methods include: (1) the block-maxima method,
which divides data into non-overlapping blocks of equal size and fits the block maxima to a three-
parameter limit distribution; (2) the peaks-over-threshold method, which restricts attention to data over
a given large threshold and fits the exceedances to a corresponding generalized Pareto distribution;
(3) the Pickands estimation, which relies on the fact that, for U ∈MDA

(
Vγ

)
,

lim
t→∞

Ũ(2t)− Ũ(t)

Ũ(t)− Ũ(t/2)
= 2γ ,

where Ũ(t)=U←(1− 1/t), and then constructs an empirical version of the expression for γ . These three
methods work for γ ∈R, and, in particular, the peaks-over-threshold method can estimate the upper
endpoint of U if the estimated value for γ is negative. When we are certain that the shape parameter γ

is positive, indicating heavy-tailed losses, as is often the case in climate losses, we can resort to: (4) the
Hill estimation, which relies on the fact that, for U ∈MDA (�α) for α= 1

γ
> 0,

lim
t→∞

1

U(t)

∫ ∞
t

(ln x− ln t) dU(x)= γ ,
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and then constructs an empirical version of this expression for γ > 0.
Each of these methods has its advantages and limitations. Many improved estimators for the general

case of γ ∈R have been developed since Dekkers et al. (1989). To keep the paper short, we will not
expand on this discussion here, but we refer the reader to Sections 6.4–6.5 of Embrechts et al. (1997),
Section 3 of de Haan and Ferreina (2006), Chapters 4–6 of Beirlant et al. (2006), and Section 5.1 of
McNeil et al. (2015), among other monographs, for comprehensive reviews of these methods, case
studies, and further discussions for data exhibiting serial features. The latest developments can be found
in Beirlant et al. (2005), Fraga Alves et al. (2009), and Buitendag et al. (2019); see also the recent
reviews by Gomes and Guillou (2015) and Fedotenkov (2020).

6. Concluding remarks
In this paper, we envision a company facing both investment risk (quantified as a real-valued, upper-
bounded random variable denoting the negative return rate) and shock risk (quantified as an independent
random variable denoting the shock loss). We utilize a stylized model to conduct an extreme value
analysis of its tail risk across various extreme scenarios. Our main results explicitly demonstrate the
different roles of the two risk factors in driving large losses.

As an initial step in exploring this topic, our work gives rise to a series of new research problems. First,
the standing assumption in our current work is the exogeneity of shocks. It is desirable to also consider
shocks that are partially or entirely endogenous to the financial market, which would allow us to delineate
the interplay between the two risk factors. Proposition 3.1 represents a preliminary exploration in the
current static setting. Second, it is meaningful to extend the study to a dynamic setting, be it continuous-
time or discrete-time (i.e., multi-period). In a dynamic setting, we can incorporate additional practical
features of investment risk and shock risk. This extension may yield new insights into their roles in
driving tail risk. Third, our entire work relies on certain tail assumptions rooted in extreme value theory.
However, it is typically infeasible to know the tails of these risk factors. In addition to their intricate
stochastic structures, as highlighted in Remark 5.1, these risk factors are surrounded by multiple layers of
uncertainty, hindering the precise estimation of their distributions. Consequently, it becomes important
to robustify the estimation against model uncertainty. This consideration is particularly relevant when
analyzing tail risk.
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A. Appendix
A.1. Snapshots
Two bankruptcies triggered by the Camp Fire
The 2018 Camp Fire—the deadliest and most destructive wildfire in California’s history—serves as a
perfect example of climate-change shocks as a determinant for bankruptcies. This disaster was triggered
by the faulty power line of PG&E, ultimately leading to PG&E filing for Chapter 11 protection in January
2019, citing expected wildfire liabilities of $30 billion. This event is often regarded as the first major
climate-change-induced bankruptcy. Prior to the bankruptcy, PG&E, as one of the largest U.S. energy
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utilities, was rated by S&P Global, Moody’s, and Fitch as investment grade, and by Sustainalytics in the
top 10% of its peers in the environmental category.

Less media attention has been given to the fact that the 2018 Camp Fire also directly caused the
liquidation of Merced Property and Casualty Company, a regional insurer established in March 1906.
Merced’s liquidation occurred in December 2018, with an estimated USD 87 million in liabilities, far
exceeding its USD 23 million of capital. Like PG&E, as of year-end 2017, Merced appeared healthy
from many aspects, notably holding an A- rating from A.M. Best.6

The Silicon Valley Bank collapse
Due to its rapid growth in deposits during the COVID-19 pandemic, SVB made an outsized bet on gov-
ernment debt with durations ranging from 10 to 30 years. According to the SVB 2022 annual report
filed on February 24, 20237, SVB put at least 75% of its debt as held to maturity. When interest
rates began to rise in 2022, depositors started demanding their funds back, triggering a subsequent
bank run that ultimately led to the closure of SVB on March 10, 2023. Apparently, when taking this
gamble, SVB significantly underestimated the likelihood of interest rate hikes. Moreover, neither rat-
ing agencies nor regulators did a better job than SVB during this process. Indeed, it was only on the
evening of March 8, 2023, after SVB disclosed a $1.8 billion loss on the sale of bonds, that Moody’s
downgraded SVB Financial by just one notch, from A3 to Baa1. The same indolent was S&P Global
Ratings, who followed suit one day later, downgrading SVB Financial from BBB to BBB-, also by just
one notch.

In its self-review of the Federal Reserve’s Supervision and Regulation of Silicon Valley Bank con-
ducted in April 2023, the Board of Governors of the Federal Reserve System pointed out in hindsight
that “More than a decade of banking system stability and strong performance by banks of all sizes may
have led bankers to be overconfident and supervisors to be too accepting. Supervisors should be encour-
aged to evaluate risks with rigor and consider a range of potential shocks and vulnerabilities, so that
they think through the implications of tail events with severe consequences.”8

A.2. Proofs for Section 3
Potter’s bounds
The following Potter’s bounds are a restatement of Theorem 1.5.6 of Bingham et al. (1987):

Lemma A.1 Let h ∈RVα for α ∈R. It holds for every 0 < ε < 1, all large u, and all s > 0 that

(1− ε)
(
sα+ε ∧ sα−ε

)≤ h (su)

h(u)
≤ (1+ ε)

(
sα+ε ∨ sα−ε

)
.

Lemma A.1 forms a foundation for the proofs of our main results.

Proof of Theorem 3.1
(a) It is easy to see that the expectation E

[
(1− �−1X)−α

]
appearing in (3.1) is uniformly away from both

0 and∞ for � ∈ [�∗,∞). Actually, it holds for all � ∈ [�∗,∞) that

6For further discussions regarding Merced’s liquidation, refer to the Property and Casualty Insurance Compensation Corporation
report titled “Why Insurers Fail 2022: Mapping the road to ruin: Lessons learned from four recent insurer failures”, available at
available at https://www.pacicc.ca/publication/research/why-insurers-fail/.

7Available at https://ir.svb.com/financials/annual-reports-and-proxies/default.aspx.
8Available at https://www.federalreserve.gov/publications/files/svb-review-20230428.pdf.
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0 < P (X > 0) ≤ E
[
(1− �−1X)−α1(X>0)

]
≤ E

[
(1− �−1X)−α

]
≤ (1− �−1x̂

)−α ≤ (1− �−1
∗ x̂
)−α

<∞. (A1)

Now we turn to prove the uniform asymptotic formula (3.1). By the last assertion of Theorem 1.5.2 of
Bingham et al. (1987), it is easy to see that the convergence

P
(
Y > (1− �−1x)�u

)
G(�u)

→ (1− �−1x)−α

holds uniformly for � ∈ [�∗,∞) and x≤ x̂. Thus, by (A1), it holds uniformly for � ∈ [�∗,∞) that

P(L > �u)

G(�u)
=
∫ x̂

−∞

P
(
Y > (1− �−1x)�u

)
G(�u)

dF(x)→ E[(1− �−1X)−α].

(b) Under the strengthened moment condition, the expectation E
[
(1− �−1X)−α

]
in (3.1) for � ∈ [x̂,∞)

is uniformly away from both 0 and∞. Actually, the proof for the lower bound in (A1) is still valid. For
the upper bound, we slightly modify the proof as

E
[
(1− �−1X)−α

] = E
[
(1− �−1X)−α

(
1(X>0) + 1(X≤0)

)]
≤ E

[
(1− x̂−1X)−α1(X>0)

]+ E
[
1(X≤0)

]
≤ x̂αE

[
(x̂− X)−α

]+ P (X ≤ 0)

<∞.

To prove the uniformity of (3.1) for � ∈ [x̂,∞), introduce h(u) to be a positive, non-decreasing, and
slowly varying function diverging to∞ as u→∞. According to whether �u− uX ≤ h(u), split

P (Y > �u− uX)

= P (Y > �u− uX, �u− uX ≤ h(u))+ P (Y > �u− uX, �u− uX > h(u))

= I1 + I2.

Clearly, I1 ≤ P(�u− uX ≤ h(u)). When � > x̂, the probability P(�u− uX ≤ h(u)) is exactly 0 for all
large u. When �= x̂, this probability is bounded by

P(x̂u− uX ≤ h(u))= P

(
(x̂− X)−1 ≥ u

h(u)

)
= o(1)

(
u

h(u)

)−κ

= o(G(x̂u)),

where the last step follows from the conditions G ∈MDA(�α) and κ > α. Thus, in any case, uniformly
for � ∈ [x̂,∞),

I1 = o(G(�u)).

For I2, by conditioning on X and applying Lemma A.1, it holds for arbitrarily fixed 0 < ε < (κ − α)∧ α,
all large u, and uniformly for � ∈ [x̂,∞) that

I2

G(�u)
≤ (1+ ε)E

[
(1− �−1X)−α+ε ∨ (1− �−1X)−α−ε

]
. (A2)

If we can get rid of ε > 0 on the right-hand side of (A2), then an asymptotic upper bound for (3.1) will
be established. Moreover, a corresponding asymptotic lower bound for (3.1) can be established similarly
and we will conclude the proof.

Now we show how to get rid of ε > 0 on the right-hand side of (A2). For arbitrarily fixed large M > 0
and small 0 < δ < 1, according to the value of X belonging to (−∞,−M), [−M, 0], (0, (1− δ)x̂], or
((1− δ)x̂, x̂], we split the expectation in (A2) into four parts as

4∑
i=1

Ji = E
[(

(1− �−1X)−α+ε ∨ (1− �−1X)−α−ε
)

1(−∞,−M)∪[−M,0]∪(0,(1−δ)x̂]∪((1−δ)x̂,x̂]

]
.
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Clearly, we have

J1 ≤ E[1(X<−M)].

We also have

J2 = E
[
(1− �−1X)−α+ε1(−M≤X≤0)

]
≤ (1+ x̂−1M)εE

[
(1− �−1X)−α1(−M≤X≤0)

]
≤ (1+ x̂−1M)ε

(
E
[
(1− �−1X)−α1(X≤0)

]− x̂αE
[
(x̂− X)−α1(X<−M)

])
.

Moreover,

J3 = E
[
(1− �−1X)−α−ε1(0<X≤(1−δ)x̂)

]
≤ δ−εE

[
(1− �−1X)−α1(0<X≤(1−δ)x̂)

]
≤ δ−ε

(
E
[
(1− �−1X)−α1(X>0)

]− E
[
1(X>(1−δ)x̂)

])
.

Finally,

J4 = E
[
(1− �−1X)−α−ε1((1−δ)x̂<X≤x̂)

]
≤ E

[
(1− x̂−1X)−α−ε1((1−δ)x̂<X≤x̂)

]
≤ E

[(
1− x̂−1X

)−κ
1((1−δ)x̂<X≤x̂)

]
.

Plug these bounds into (A2), first let ε ↓ 0, then let both M ↑∞ and δ ↓ 0. Also keep in mind that
E
[
(x̂− X)−α

]
<∞ and P(X = x̂)= 0. We eventually arrive at

I2

G(�u)
� E

[
(1− �−1X)−α1(X≤0)

]+ E
[
(1− �−1X)−α1(X>0)

]= E[(1− �−1X)−α].

Proof of Theorem 3.2
(a) We start with collecting two facts. First, for arbitrarily fixed � > x̂, applying Theorem 3.1(a) but
relaxing the uniformity requirement, we can rewrite (3.1) as

P (L > �u)∼ E
[
(�− X)−α

]
G(u). (A3)

Second, due to the strict monotonicity of E
[
(�− X)−α

]
in � ∈ [x̂,∞) and the range of c, Equation (3.3)

has a unique solution �̂ ∈ [x̂,∞), where �̂= x̂ occurs only if ĉ <∞ and c= ĉ.
Now we turn to the proof of (3.4). If �̂ > x̂, we arbitrarily choose �1 and �2 such that x̂ < �1 < �̂ <

�2 <∞. By applying (A3) to both P (L > �1u) and P (L > �2u) and keeping in mind equation (3.3), it is
easy to see the following two-sided inequality:

lim
u→∞

P(L > �1u)

G(u)
> c > lim

u→∞
P(L > �2u)

G(u)
. (A4)

If �̂= x̂, we arbitrarily choose �1 ∈ C(F)∩ (0, x̂) and x̂ < �2 <∞, where C(F) denotes the set of continu-
ity points of F. The right-hand inequality in (A4) still holds based on the same reasoning. Moreover, it
is obvious that P(L > �1u)→ F(�1) > 0. Then the first limit in (A4) becomes∞ and thus the left-hand
inequality in (A4) remains valid. For both cases, it follows from (A4) that, for all large u,

P(L > �1u) > 1− qu > P(L > �2u),

which gives �1u≤VaRqu [L]≤ �2u. By letting �1 ↑ �̂ and �2 ↓ �̂, we obtain (3.4).
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(b) The condition α > 1 ensures the integrability of Y+ and hence of L+. Thus, the ES of L is finite.
Starting from (2.1) and applying a change of variables x= yu, we obtain

ESqu [L]=VaRqu [L]+ u

1− qu

∫ ∞
u−1VaRqu [L]

P (L > yu) dy.

Since c ∈ (0, ĉ), following the discussion at the beginning of the proof of item (a), we have �̂ ∈ (x̂,∞).
By (3.4), the uniform asymptotic formula (3.1) can be applied to the integrand above. We continue to
derive

ESqu [L] ∼ �̂u+ u

1− qu

∫ ∞
u−1VaRqu [L]

E
[
(1− y−1X)−α

]
G(yu)dy

∼ �̂u+ c−1u
∫ ∞

u−1VaRqu [L]

E
[
(1− y−1X)−α

] G(yu)

G(u)
dy,

where the last step is due to (3.2). For the last integral above, subject to a discussion on the upper bound
for G(yu)

G(u)
by using Lemma A.1, we apply the dominated convergence theorem to obtain

lim
u→∞

∫ ∞
u−1VaRqu [L]

E
[
(1− y−1X)−α

] G(yu)

G(u)
dy=

∫ ∞
�̂

E
[
(y− X)−α

]
dy.

This proves (3.5).

Proof of Proposition 3.1
According to whether Y > 0, we do the split

P (L > �bu)

= P (uX + Y > �bu, Y > 0)+ P (uX + Y > �bu, Y ≤ 0)

= P (uX + Y+ > �bu)− P (X > �b, Y ≤ 0)+ P (uX + Y > �bu, Y ≤ 0) .

The second term in the right-hand side above is 0 because �b = x̂+ bu−1/2 ≥ x̂. Similarly, the third term
is 0 too. Then by (3.6), we rewrite

P (L > �bu) = P(uX + Y+ > �bu)

= P

(
η− u

ξ
> (�b − x̂)u

)

= P

(
η− u

ξ
> b
√

u

)

= P

(
(ξ , η)√

u
∈ Ab

)
.

Thus, the desired result follows from the assumption that (ξ , η) ∈BRV−α(ν, U).

A.3. Proofs for Section 4
Preliminaries about the Gumbel MDA
To prepare the proofs for Section 4, we collect some well-known results about the Gumbel MDA.

Let U ∈MDA(�) with the representation (2.3) and upper endpoint ẑ≤∞. At the core of analyzing
the Gumbel MDA is its auxiliary function a(·) in (2.3). It possesses the following nice properties. First,
by Lemma 1.2 of Resnick (1987), {

lim
x→∞

a(x)
x
= 0, if ẑ=∞,

lim
x↑ẑ

a(x)
ẑ−x
= 0, if ẑ <∞. (A5)
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Therefore, for the first case of ẑ=∞, it is easy to see that there is always a positive and increasing
function φ(·) such that φ(x)→∞ and a(φ(x)x)= o(x) as x→∞.

As an example, we check the Weibull-like distribution with tail
U(x)∼Ke−cxτ

, x≥ 0, K, c, τ > 0,

which has been employed in Proposition 4.1 and Example 5.2. Its auxiliary function is a(x)= c−1τ−1x1−τ ,
x > 0. Then it is easy to see that the function φ(·) can be chosen as φ(x)= xr for 0 < r < τ

1−τ
for 0 < τ < 1

and as φ(·)=∞ for τ ≥ 1.
Second, by Lemma 1.3 of Resnick (1987), the convergence

a (x+ sa(x))

a(x)
→ 1, x ↑ ẑ, (A6)

holds locally uniformly in s ∈R. This means that a(·) is self-neglecting.
Third, it follows immediately from (2.3) and (A6) that the convergence

U (x+ sa(x))

U(x)
→ e−s, x ↑ ẑ, (A7)

holds locally uniformly in s ∈R. This means that a(·) serves as a scale of the tail U as U decays to 0.
Theorem 3.3.27 of Embrechts et al. (1997) states that (A7) actually provides another characterization
for the Gumbel MDA.

The following lemma is a restatement of Lemma 3.4 of Tang and Yang (2012):

Lemma A.2 Let U ∈MDA(�) with the representation (2.3) and upper endpoint ẑ≤∞. Then, for
arbitrary 0 < ε < 1, there is some z0 < ẑ such that, for all z0 < x < ẑ and all s≥ 0,

U (x+ sa(x))

U(x)
≤ (1+ ε) (1+ εs)−1/ε .

Proof of Theorem 4.1
We follow the proof of Theorem 3.1(a) of Hashorva et al. (2010), but we need to address some techni-
cal issues arising from the uniformity requirement. By conditioning on Y and applying the change of
variables y= �u− x̂u+wa(�u− x̂u), we derive

P (L > �u) =
∫ ∞

�u−x̂u

F

(
�u− y

u

)
dG(y)

= −
∫ ∞

w=0

F
(
x̂− u−1wa(�u− x̂u)

)
dG

(
�u− x̂u+wa(�u− x̂u)

)
. (A8)

For every u > 0, introduce a nonnegative random variable Wu with tail satisfying

P(Wu > w)= G
(
�u− x̂u+wa(�u− x̂u)

)
G(�u− x̂u)

, 0≤w <∞. (A9)

By the scaling property (A7) of the Gumbel MDA, the condition Y ∈MDA(�) with the representation
(2.3) implies that

lim
u→∞

P(Wu > w)= e−w, 0≤w <∞;

that is, Wu converges in distribution to an exponential random variable W with mean 1. We can rewrite
the right-hand side of (A8) in terms of the expectation with respect to Wu, as

P (L > �u)=G(�u− x̂u)E
[
F
(
x̂− u−1Wua(�u− x̂u)

)]
. (A10)

For arbitrarily fixed 0 < δ < 1, split the expectation above into two parts as

E
[
F
(
x̂− u−1Wua(�u− x̂u)

) (
1(Wu≤ δu

a((�−x̂)u)

) + 1(Wu> δu
a((�−x̂)u)

))]= E [I1 + I2] .
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We notice that u
a((�−x̂)u)

→∞ holds uniformly for � ∈ [�∗, φ(u)). Actually, this is trivial if a(·) is bounded.
If a(·) is unbounded, by the conditions on a(·), we have u

a((�−x̂)u)
≥ u

a(φ(u)u)
→∞.

For I1, by the condition F
(
x̂− ( · )−1

) ∈RV−β and Lemma A.1, for arbitrarily fixed 0 < ε1 < β, it
holds for δ small enough and for all large u that

I1

F
(
x̂− u−1a(�u− x̂u)

) ≤ (1+ ε1)
(
Wβ+ε1

u ∨Wβ−ε1
u

)
.

We claim that Wβ+ε1
u ∨Wβ−ε1

u on the right-hand side above are uniformly integrable for all large u.
Actually, applying Lemma A.2 to (A9), for arbitrarily fixed ε2 > 0, it holds for all large u > 0 and all
w≥ 0 that

P(Wu > w)≤ (1+ ε2)(1+ ε2w)−1/ε2 . (A11)

By specifying ε2 < 1/(β + ε1), one sees that the collection of random variables Wu, indexed by all large u,
are stochastically bounded by a positive random variable with tail of order w−1/ε2 as w→∞, and thus
the claim. Then we apply the dominated convergence theorem to obtain

lim
u→∞

E [I1]

F
(
x̂− u−1a(�u− x̂u)

) = E

[
lim
u→∞

F
(
x̂− u−1Wua(�u− x̂u)

)
F
(
x̂− u−1a(�u− x̂u)

) 1(Wu≤ δu
a((�−x̂)u)

)
]

= E[Wβ]

= �(β + 1), (A12)

where the second step is due to F
(
x̂− ( · )−1

) ∈RV−β .
For I2, by (A11) with ε2 < 1/(β + ε1),

E [I2] ≤ P

(
Wu >

δu

a((�− x̂)u)

)

≤ (1+ ε2)

(
1+ ε2δu

a((�− x̂)u)

)−1/ε2

= o(1)F
(
x̂− u−1a(�u− x̂u)

)
, (A13)

where the last step is due to F
(
x̂− ( · )−1

) ∈RV−β and 1/ε2 > β.
Finally, a combination of the two estimates (A12)–(A13) for E [I1] and E [I2] gives

E
[
F
(
x̂− u−1Wua(�u− x̂u)

)]∼ �(β + 1)F
(
x̂− u−1a(�u− x̂u)

)
.

Plugging this into (A10) yields (4.2).

Proof of Theorem 4.2
We need to prepare two elementary lemmas. The following first lemma, to be used in the proof of
Theorem 4.2, is a corollary of Lemma A.2:

Lemma A.3 Let U ∈MDA(�) with the representation (2.3) and upper endpoint ẑ=∞. If a(u) � u1−δ

for some 0 < δ < 1, then it holds for every d1 > 1 and d2 ∈R that

lim
u→∞

ud2
U (d1u)

U(u)
= 0.

Proof. For arbitrary 0 < ε < 1, by Lemma A.2, it holds for all large u that

ud2
U (d1u)

U(u)
≤ (1+ ε) ud2

(
1+ ε

(d1 − 1)u

a(u)

)− 1
ε

� ud2

(
u

a(u)

)− 1
ε

� ud2− δ
ε .

Thus, we can always find ε > 0 such that d2 − δ

ε
< 0. �

The following second lemma is to be used in the proof of Theorem 4.2 too:
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Lemma A.4 Under the conditions of Theorem 4.1, let h : (0,∞)→ (0,∞) be a function satisfying
h(u)∼ �u for some � > x̂. Then it holds for arbitrarily fixed s ∈R that

P
(
L > h(u)+ sa

(
h(u)− x̂u

))∼ e−sP (L > h(u)) . (A14)

Proof. Thanks to the uniformity established in Theorem 4.1, we apply (4.2) with �u replaced by
h(u)+ sa

(
h(u)− x̂u

)
to obtain

P
(
L > h(u)+ sa

(
h(u)− x̂u

)) ∼ �(β + 1)F
(
x̂− u−1a

((
h(u)− x̂u

)+ sa
(
h(u)− x̂u

)))
×G

((
h(u)− x̂u

)+ sa
(
h(u)− x̂u

))
. (A15)

Observe the right-hand side. We have

F
(
x̂− u−1a

((
h(u)− x̂u

)+ sa
(
h(u)− x̂u

)))∼ F
(
x̂− u−1a(h(u)− x̂u)

)
due to the self-neglecting property (A6) of the auxiliary function a(·) and the regular variation of
F
(
x̂− (·)−1

)
. Moreover,

G
((

h(u)− x̂u
)+ sa

(
h(u)− x̂u

))∼ e−sG
(
h(u)− x̂u

)
due to the scaling property (A7) of the Gumbel MDA. It follows from (A15) that

P
(
L > h(u)+ sa

(
h(u)− x̂u

)) ∼ e−s�(β + 1)F
(
x̂− u−1a(h(u)− x̂u)

)
G
(
h(u)− x̂u

)
∼ e−sP (L > h(u)) ,

where the last step applies (4.2) again. This proves (A14). �
Now we are ready to show the Proof of Theorem 4.2:
(a) By the very definition of VaRqu [L], we have

P
(
L > VaRqu [L]

)≤ 1− qu ≤ P
(
L≥VaRqu [L]

)
. (A16)

Applying Lemma A.4 with h(u)= (x̂+ c)u, then applying Theorem 4.1, we derive

P
(
L > (x̂+ c)u+ sa(cu)

) ∼ e−sP
(
L > (x̂+ c)u

)
∼ e−s�(β + 1)F

(
x̂− u−1a(cu)

)
G(cu)

∼ e−s(1− qu),

where the last step is due to (4.3). By specifying s=−1 and 1 and comparing the resulting relations
with the two sides of (A16) accordingly, we see that the following strict inequalities hold for all large u:

{
P
(
L > VaRqu [L]

)
< P

(
L > (x̂+ c)u− a(cu)

)
,

P
(
L≥VaRqu [L]

)
< P

(
L > (x̂+ c)u+ a(cu)

)
.

These strict inequalities jointly imply that, for all large u,

VaRqu [L] > (x̂+ c)u− a(cu)

∼ (x̂+ c)u

∼ (x̂+ c)u+ a(cu) > VaRqu [L],

where we have applied a(u)= o(u) by (A5). This proves (4.4).
(b) As in the proof of Theorem 3.2(b), we start with

ESqu [L]=VaRqu [L]+ 1

1− qu

∫ ∞
VaRqu [L]

P(L > x)dx.

Thus, it suffices to prove that

I =
∫ ∞

VaRqu [L]

P(L > x)dx∼ (1− qu)a
(
VaRqu [L]− x̂u

)
. (A17)
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In terms of φ(u) specified in Theorem 4.1, we split I into two parts as

I =
∫ ∞

uφ(u)

+
∫ uφ(u)

VaRqu [L]

= I1 + I2.

First deal with I1. Recall the expression for L in (1.1). Since φ(u)→∞, by Lemma A.3 and a
dominated convergence argument, it holds for any M > 0 that

I1 ≤
∫ ∞

uφ(u)

P(Y > x− x̂u)dx= o(1)u−MG(cu). (A18)

On the other hand, by (4.3),

(1− qu)a
(
VaRqu [L]− x̂u

)∼ �(β + 1)F
(
x̂− u−1a(cu)

)
G(cu)a

(
VaRqu [L]− x̂u

)
.

Observe the right-hand side. The regular variation of F
(
x̂− (·)−1

)
implies that, for any 0 < ε < 1,

F
(
x̂− u−1a(cu)

)
� (1− ε)

(
u−1a(cu)

)β+ε
.

By the condition on a(·) and the result (4.4),

a
(
VaRqu [L]− x̂u

)
�
(
VaRqu [L]− x̂u

)− 1
δ ∼ (cu)

− 1
δ .

Put together, it follows that

(1− qu)a
(
VaRqu [L]− x̂u

)
� �(β + 1)(1− ε)

(
u−1a(cu)

)β+ε
G(cu) (cu)

− 1
δ

� �(β + 1)(1− ε)
(

u−1(cu)−
1
δ

)β+ε

G(cu) (cu)
− 1

δ

� u−(1+ 1
δ )(β+ε)− 1

δ G(cu). (A19)

Comparing (A19) with (A18) in which M is chosen to be large enough, it follows that

I1 = o(1)(1− qu)a
(
VaRqu [L]− x̂u

)
. (A20)

Next deal with I2. By (4.4), the uniform asymptotic formula (4.2) is applicable. We derive

I2 ∼ �(β + 1)
∫ uφ(u)

VaRqu [L]

F
(
x̂− u−1a(x− x̂u)

)
G(x− x̂u)dx

= �(β + 1)

(∫ ∞
VaRqu [L]

−
∫ ∞

uφ(u)

)
F
(
x̂− u−1a(x− x̂u)

)
G(x− x̂u)dx

= I21 − I22.

Following the proof for (A20), we have

I22 = o(1)(1− qu)a
(
VaRqu [L]− x̂u

)
. (A21)

To deal with I21, for notational convenience, introduce �u =VaRqu [L]− x̂u, which is asymptotic to
cu due to (4.2). By the change of variables x=VaRqu [L]+ za(�u), we rewrite I21 as

I21 ∼ �(β + 1)a(�u)
∫ ∞

0

F
(
x̂− u−1a (�u + za(�u))

)
G (�u + za(�u)) dz

= �(β + 1)a(�u)J(u). (A22)

Observe that
J(u)

F
(
x̂− u−1a(�u)

)
G(�u)

=
∫ ∞

0

F
(
x̂− u−1a (�u + za(�u))

)
F
(
x̂− u−1a(�u)

) × G (�u + za(�u))

G(�u)
dz. (A23)

For arbitrarily fixed 0 < ε < 1, by limx→∞ a′(x)= 0, it holds for all large u and all z≥ 0 that
a (�u + za(�u))≤ (1+ εz) a(�u). Then by the regular variation of F

(
x̂− (·)−1

)
and Lemma A.1,
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it holds for all z≥ 0 and all large u that

F
(
x̂− u−1a (�u + za(�u))

)
F
(
x̂− u−1a(�u)

) ≤ F
(
x̂− u−1 (1+ εz) a(�u)

)
F
(
x̂− u−1a(�u)

) ≤ (1+ ε) (1+ εz)β+ε .

By Lemma A.2, the inequality

G (�u + za(�u))

G(�u)
≤ (1+ ε) (1+ εz)−1/ε

holds for all z≥ 0 and all large u. By choosing ε small enough such that 1/ε − ε > 1+ β, these bounds
indicate that, for all large u, the integrand in (A23) is bounded by an integrable function. Therefore,
applying the dominated convergence theorem to (A23) gives

lim
u→∞

J(u)

F
(
x̂− u−1a(�u)

)
G(�u)

=
∫ ∞

0

1× e−zdz= 1, (A24)

where the convergence of the first ratio to 1 is due to the self-neglecting property (A6) of a(·) and the
regular variation of F

(
x̂− (·)−1

)
, while the convergence of the second ratio to e−z is due to the scaling

property (A7) of G ∈MDA(�). It follows from (A22) and (A24) that

I21 ∼ �(β + 1)a
(
VaRqu [L]− x̂u

)
F
(
x̂− u−1a

(
VaRqu [L]− x̂u

))
G
(
VaRqu [L]− x̂u

)
∼ a

(
VaRqu [L]− x̂u

)
P
(
L > VaRqu [L]

)
, (A25)

where the last step applies Theorem 4.1 with �u replaced by VaRqu [L].
Comparing (A25) with (A17), it remains to show that

P
(
L > VaRqu [L]

)∼ 1− qu. (A26)

Actually, for arbitrarily fixed s < 0, it holds for all large u that

1− qu ≤ P
(
L≥VaRqu [L]

)
≤ P

(
L > VaRqu [L]+ sa

(
VaRqu [L]− x̂u

))
∼ e−sP

(
L > VaRqu [L]

)
,

where the last step is due to Lemma A.4 with h(u)=VaRqu [L]. By the arbitrariness of s < 0, we obtain
1− qu � P

(
L > VaRqu [L]

)
. This, together with the obvious inequality P

(
L > VaRqu [L]

)≤ (1− qu),
gives (A26).

Proof of Proposition 4.1
For the proof of Proposition 4.1, we need to derive asymptotics, as x→∞, for the integral

I =
∫ ∞

0

exp
{− (c1s

−ρ + c2s
)

x
}

ds, c1, c2, ρ > 0. (A27)

Observe the function t= c1s−ρ + c2s for s > 0. By analyzing the derivative

dt

ds
=−c1ρs−ρ−1 + c2,

we see that the function attains its global minimum t∗ at the root s= s∗. For later reference, we list here

⎧⎪⎨
⎪⎩
−c1ρs−ρ−1

∗ + c2 = 0,

s∗ =
(

c1ρ

c2

) 1
ρ+1

,

t∗ = c1s−ρ
∗ + c2s∗.

(A28)
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Lemma A.5 The integral I in (A27) satisfies

I ∼
(

2πsρ+2
∗

c1ρ(ρ + 1)

) 1
2

x−
1
2 e−t∗x, x→∞. (A29)

Proof. The working limit procedure in this proof is as x→∞. We split the integral I into two parts
as

I =
(∫
|s−s∗|≤ ln x√

x

+
∫

s>0:|s−s∗|> ln x√
x

)
= I1 + I2. (A30)

We are going to derive asymptotics for I1 and show that I2 = o(I1).
By the third equation in (A28), we rewrite I1 as

I1 = e−t∗x
∫
|s−s∗|≤ ln x√

x

exp
{− (c1

(
s−ρ − s−ρ

∗
)+ c2 (s− s∗)

)
x
}

ds.

Over the range |s− s∗| ≤ ln x√
x
, we do Taylor’s expansion

s−ρ − s−ρ

∗ =−ρs−ρ−1
∗ (s− s∗)+ 1

2
ρ(ρ + 1)s−ρ−2

∗ (s− s∗)
2 +O

(
(s− s∗)

3
)

,

where the remainder is o(x−1). By the change of variables h= s− s∗, it follows that

I1 ∼ e−t∗x
∫
|h|≤ ln x√

x

exp

{
−
(
−c1ρs−ρ−1

∗ h+ 1

2
c1ρ(ρ + 1)s−ρ−2

∗ h2 + c2h

)
x

}
dh.

Due to the first equation in (A28), the h terms in the exponent above cancel out. The remaining part is
an even function of h. Therefore,

I1 ∼ 2e−t∗x
∫

0<h≤ ln x√
x

exp

{
−1

2
c1ρ(ρ + 1)s−ρ−2

∗ h2x

}
dh.

By the change of variables v= h2x again,

I1 ∼ x−
1
2 e−t∗x

∫
0<v≤ln2 x

exp

{
−1

2
c1ρ(ρ + 1)s−ρ−2

∗ v

}
v−

1
2 dv

∼ x−
1
2 e−t∗x

∫ ∞
0

exp

{
−1

2
c1ρ(ρ + 1)s−ρ−2

∗ v

}
v−

1
2 dv

=
(

2πsρ+2
∗

c1ρ(ρ + 1)

) 1
2

x−
1
2 e−t∗x,

where the last step applies the gamma integral (4.1) subject to a change of variables.
Next, we need to show that I2 = o

(
x−

1
2 e−t∗x

)
. We only consider

∫
s>s∗+ ln x√

x
as the consideration of the

other part
∫

0<s<s∗− ln x√
x

is similar. For some large constant M > s∗, we further split
∫

s>s∗+ ln x√
x

into two parts
as (∫

s∗+ ln x√
x
<s≤M

+
∫

s>M

)
exp

{− (c1s−ρ + c2s
)

x
}

ds= I21 + I22.
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In I21, the function c1s−ρ + c2s is increasing since s > s∗. We have

c1s−ρ + c2s ≥ c1

(
s∗ + ln x√

x

)−ρ

+ c2

(
s∗ + ln x√

x

)

= c1s−ρ

∗

(
1− ρ

ln x

s∗
√

x
+ 1

2
ρ(ρ + 1)

(
ln x

s∗
√

x

)2

+O(1)

(
ln x

s∗
√

x

)3
)
+ c2

(
s∗ + ln x√

x

)

= t∗ + 1

2
c1s−ρ

∗ ρ(ρ + 1)

(
ln x√

xs∗

)2

+ o(x−1),

where the second step applies Taylor’s expansion and the last step is due to the first and third equations
in (A28). Thus, for arbitrarily fixed M > 0,

I21 ≤M exp

{
−
(

t∗ + c1s−ρ

∗
ρ(ρ + 1)

2

(
ln x√

xs∗

)2

+ o(x−1)

)
x

}
= o

(
x−

1
2 e−t∗x

)
.

For I22, by the change of variables v= s−M, we have

I22 =
∫ ∞

0

exp
{− (c1(v+M)−ρ + c2(v+M)

)
x
}

dv

≤ e−c2Mx

∫ ∞
0

e−c2vxdv,

which is o
(

x−
1
2 e−t∗x

)
for M large enough. This ends the proof of Lemma A.5. �

Now we are ready to show the Proof of Proposition 4.1:
This proof builds on Lemma A.5. Recall the specifications in (4.6). Define ξ = 1

x̂−X
, which is

nonnegative with an ultimate tail

P (ξ > z)= P

(
X > x̂− 1

z

)
∼K1e

−c1zτ1 , z→∞.

We have

P
(
L > x̂u

)= P (ξY > u)=
∫ ∞

0

P

(
ξ >

u

y

)
dP (Y ≤ y) .

Note that the tails of ξ and Y are both rapidly varying. Thus, by Lemma A.5 of Tang and Tsitsiashvili
(2004), we can replace them with their asymptotics and obtain

P
(
L > x̂u

)∼−K1K2

∫ ∞
0

exp

{
−c1

(
u

y

)τ1
}

de−c2yτ2 .

Applying the change of variables r= yτ2 ,

P
(
L > x̂u

)∼K1K2c2

∫ ∞
0

exp
{
−c1uτ1 r−

τ1
τ2 − c2r

}
dr.

Applying the change of variables r= su
τ1τ2

τ1+τ2 again, it follows that

P
(
L > x̂u

)∼K1K2c2u
τ1τ2

τ1+τ2

∫ ∞
0

exp
{
−
(

c1s−
τ1
τ2 + c2s

)
u

τ1τ2
τ1+τ2

}
ds.

The integral above is reduced to I in (A27) with ρ = τ1
τ2

and x= u
τ1τ2

τ1+τ2 . Then by Lemma A.5, we obtain
(4.7) and conclude the proof of Proposition 4.1.

https://doi.org/10.1017/asb.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.25

	Introduction
	Motivations
	Overview of the present work

	Preliminaries
	Notational conventions
	Highlights of extreme value theory

	Under a Fr"00E9`chet-type shock
	Under a Gumbel-type shock
	Numerical studies
	Models for the negative return rate and the shock variable
	For Theorems 3.1 and 3.2
	For Theorems 4.1 and 4.2
	Empirical discussions

	Concluding remarks
	Snapshots
	Two bankruptcies triggered by the Camp Fire
	The Silicon Valley Bank collapse

	Proofs for Section 3
	Potter"2019`s bounds
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Proposition 3.1

	Proofs for Section 4
	Preliminaries about the Gumbel MDA
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Proposition 4.1



