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Homological approximations in
persistence theory
Benjamin Blanchette, Thomas Brüstle, and Eric J. Hanson
Abstract. We define a class of invariants, which we call homological invariants, for persistence
modules over a finite poset. Informally, a homological invariant is one that respects some homo-
logical data and takes values in the free abelian group generated by a finite set of indecomposable
modules. We focus in particular on groups generated by “spread modules,” which are sometimes
called “interval modules” in the persistence theory literature. We show that both the dimension
vector and rank invariant are equivalent to homological invariants taking values in groups generated
by spread modules. We also show that the free abelian group generated by the “single-source” spread
modules gives rise to a new invariant which is finer than the rank invariant.

1 Introduction

When taken at face value, a finite set of points in Euclidean space has no interesting
topological features. There are many cases, however, where such a set of points can
be seen as approximating something more interesting. For a simple example, we can
imagine a set of points inR

2 which are randomly sampled from the unit circle. In such
a context, one may wish to speak of the “topology of the points” as the topology of this
approximated space. The theory of persistent homology, which originated in the 1990s
(see [Bar94, DE93, Fro90, Rob99], and 10 years later [ELZ02]), gives a formalization
of this concept. The core idea is to construct a series of topological spaces (often
simplicial complexes) which begins as a discrete set of points and ends as a contractible
space. This series of topological spaces, often called a filtration, comes equipped with
inclusion maps. The homological features which “persist” under several subsequent
inclusions are considered to be those “of interest.”

The homology, often with field coefficients, of these topological spaces and the
induced maps between them form what is called a persistence module. These objects
can also be formulated abstractly. Motivated by works such as [BCB20, BS14, CL18],
let P be a poset and K a field. We consider P as a category, with a unique morphism
a → b whenever a ≤ b ∈ P. A persistence module over P is then defined to be a functor
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M from P to the category of K-vector spaces. We adopt the standard convention of
denoting by M(a) the result of applying M to the object a ∈ P and by M(a, b) the
result of applying M to the unique morphism a → b in P. If dim M(a) < ∞ for all
a ∈ P, the persistence module M is said to be pointwise finite-dimensional (pfd). All of
the persistence modules considered in this paper will be assumed to have this property
unless otherwise stated.

Let us now restrict to the case where ∣P∣ < ∞. Then the incidence algebra of P is
the finite-dimensional K-algebra I(P) ∶= KQ/J, where Q is the Hasse quiver of P
and J is the two-sided ideal generated by all commutativity relations. Moreover, it is
well known that the category modI(P) of finite-dimensional (right) I(P)-modules is
isomorphic to that of pfd persistence modules over P. As such, we will freely move
between these categories throughout this paper. We refer to [ARS95, ASS06] for more
details about finite-dimensional algebras and their module categories, to [Sim92] for
more details about incidence algebras, and to [Sta11, Chapter 4] for more details about
general poset theory.

When P is totally ordered, the category modI(P) is very well behaved. Indeed,
in this case, the category modI(P) contains finitely many indecomposable objects,
indexed by pairs a ≤ b ∈ P. These are the so-called “interval modules” (see Definition
2.4). Every persistence module can then be uniquely written as a direct sum of these
indecomposables, yielding what is often referred to as the “barcode” of the persistence
module. When viewed in this way, the parameters a and b describing the ends of a
“bar” can be seen as the “birth” and “death” of some topological feature. For additional
details on this topic, readers are referred to [Oud15, Chapter 1], [CB19], and [IRT22].
In Section 7.1, we will also explicitly describe how barcodes are related to the invariants
introduced in this paper.

In both applications and theory, the natural next step is to ask what happens when
the posetP is no longer totally ordered. This gives rise to the theory of “multiparameter
persistence” [CZ09], in which the poset P is often taken to be a closed interval
in the lattice Z

n . Except in small cases, this amounts to studying algebras of “wild
representation type,” i.e., algebras for which a complete description of all indecompos-
able modules is impossible. Since it is no longer computationally feasible to describe
arbitrary persistence modules in terms of direct sums of indecomposables in this
setting, one instead can turn to the study of invariants. The invariants we consider
are maps p ∶ modI(P) → Z

n which are constant on isomorphism classes. We further
assume that our invariants are additive, meaning that p(M ⊕ N) = p(M) + p(N). See
Definition 4.10 for precise definitions.

Perhaps the most natural invariant to consider is the dimension vector, also known
as the Hilbert function. Given a persistence module M, the dimension vector is defined
by

dimM = (dim M(a))a∈P .

As discussed in Section 3, for each a ∈ P, there is an indecomposable projective I(P)-
module Pa which satisfies

dim Hom(Pa , M) = dim M(a).
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(One may also refer to Pa as a “free persistence module.” See Section 2 for notes on our
choice of terminology.) More generally, given any finite setX of indecomposable I(P)-
modules, one obtains an invariant (dim Hom(R, M))R∈X. We will call invariants of
this form dim-hom invariants. These are the types of invariants we consider in this
paper.

In order to motivate the study of dim-hom invariants, we return to our discussion
of classical invariants. While the dimension vector is easy to compute, it is agnostic
to the maps comprising the persistence module. In persistence theory, however, we
are often interested in how long topological features persist through a filtration. By
construction, this is precisely the information stored in the maps comprising the
module. One way to incorporate this information is to use the rank invariant, defined
by

rkM = (rk M(a, b))a≤b∈P ,(1.1)

where rk M(a, b) denotes the rank of the linear map M(a, b) in the traditional sense.
This invariant was first introduced in [CZ09], where it was the first invariant tailored
for multiparameter persistence homology. We note the rank invariant is strictly finer
than the dimension vector, since for all a ∈ P one has dim M(a) = rk M(a, a). (It is
straightforward to construct modules with the same dimension vector but different
rank invariants.)

When P is totally ordered, the rank invariant is equivalent to the barcode (see
[CZ09, Theorem 12]). This in particular means that the rank invariant is complete in
this case; i.e., the isomorphism class of a persistence module can be recovered from
its barcode. For more general posets, however, there exist nonisomorphic persistence
modules with the same rank invariant. See, e.g., Example 7.6.

In the recent preprint [BOO], the rank invariant is shown to be a dim-hom
invariant. While an interesting result on its own, the authors further give a new
interpretation of the rank invariant using relative homological algebra. More precisely,
let M be a module. The authors show that rkM is equivalent to the representative
[M]X of M in the relative Grothendieck group of modI(P) with respect to some
exact structure. See Section 4 for background and definitions pertaining to relative
Grothendieck groups and Theorem 7.2 for the precise statement proven in [BOO]. In
particular, the representative [M]X can be interpreted as a “signed approximation” of
M by the “relative projective” objects in the exact structure. In this paper, we take the
reverse approach: we first develop a theoretical framework using homological algebra,
and then we build new invariants using it. We refer to those invariants which fit into
this framework as homological invariants.

We show that the dimension vector, the rank invariant, and, when the Hasse quiver
of P is Dynkin type A, the barcode are all examples of homological invariants. We
also concretely describe a new homological invariant for persistence modules over an
arbitrary finite poset. Unless the poset satisfies a very restrictive condition, slightly
more general than being totally ordered, this new invariant is strictly finer than the
rank invariant. Finally, we compare the approximations coming from our homological
invariants to other notions of approximation from the persistence theory literature.
See Section 3 for additional details and motivation.
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1.1 Organization and main results

The contents of this paper are as follows.
In Section 2, we fix notation and terminology for use in the later sections. As we

are mainly drawing intuition from the representation theory of finite-dimensional
algebras, this terminology sometimes diverges from that in the persistence theory
literature. In particular, we define spread modules (Definition 2.4), which are typically
referred to as “interval modules” in the persistence theory literature.

In Section 3, we provide motivation for our study of homological invariants. We
first discuss the many ways one can interpret the dimension vector of a persistence
module, with an emphasis on those interpretations which are rooted in homological
algebra. We then discuss how similar interpretations are used to understand more
complicated invariants. We focus in particular on the recent works [AENYb, BOO,
KM21].

In Section 4, we give a brief overview of relative homological algebra following
Auslander and Solberg [AS93]. We work in this section with an arbitrary finite-
dimensional algebra Λ and a finite setXof indecomposable modules. In Section 4.1, we
define the notions of approximations and resolutions by X, and use these to define the
X-dimension of Λ (Definition 4.4). We then define an “exact structure” EX on modΛ,
which in particular contains all short exact sequences ending with an approximation
by X. Using these short exact sequences, we define the relative Grothendieck group
K0(Λ,X) (Definition 4.7). In Section 4.2, we define the dim-hom invariants and
homological invariants relative to X (Definition 4.12), which are the main objects of
study in this paper. Finally, in Section 4.3, we use the theory of projectivization to
give a sufficient condition for when the relative Grothendieck group K0(Λ,X) is free
abelian (Proposition 4.19). As a consequence, we obtain the following result.

Theorem 1.1 (Theorem 4.22) Let Λ be a finite-dimensional algebra, and let X be a
finite set of indecomposable Λ-modules which contains the indecomposable projectives.
If the algebra EndΛ(⊕R∈X R)op has finite global dimension, then the dim-hom invariant
relative to X and the homological invariant relative to X are equivalent.

In Section 5, we study spread modules in more detail. The main result of this section
is a concrete description of the Hom-space between spread modules (Proposition 5.5).

In Section 6, we specialize the results of Section 4 to the case of persistence (and
more specifically spread) modules. In particular, we prove our first main theorem.

Theorem 1.2 (Theorem 6.2) Let P be a finite poset, and let X be a set of connected
spread modules over I(P) which contains the indecomposable projectives.
(1) If every spread in X has a unique source, then the association M ↦ [M]X is a

homological invariant.
(2) If every spread in X is supported on an upset of P, then the association M ↦ [M]X

is a homological invariant.

If X is the set of all spread modules which contain a unique source, then we call the
association [M] ↦ [M]X the single-source homological spread invariant. Furthermore,
we note that a special case of Theorem 1.2(2) can also be deduced from [Mil, Theorem
6.12]. See Remark 6.3.
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We then show that allowing X to contain spread modules with multiple sources
sometimes leads to invariants which are not homological (Example 6.4). It remains an
open question whether taking X to be the set of all connected spread modules yields
a homological invariant, even in the case where P is a two-dimensional grid. Finally,
in Section 6.2, we discuss the existence of algorithms for computing our homological
invariants and which aspects of the theory can be extended to infinite posets.

In Section 7, we compare our new homological invariants to other invariants used
in persistence theory. We first show that, if the Hasse quiver ofP is Dynkin type A, then
the barcode is a homological invariant (Proposition 7.1). Likewise, we use Theorem 1.2,
together with results from [BOO], to show that the rank invariant (Theorem 7.2) is a
homological invariant. We then prove our second main theorem.

Theorem 1.3 (Theorem 7.4) Let P be a finite poset. Then the single-source homological
spread invariant is finer than the rank invariant onmodI(P). Moreover, these invariants
are equivalent if and only if for all a ∈ P the subposet {x ∈ P ∣ a ≤ x} is totally ordered.

We also explicitly explain why the signed barcode of [BOO] and the homological
invariant relative to the set of interval modules do not coincide, even though both
take values in the same Grothendieck group. See Remark 7.7. Finally, we show that the
generalized persistence diagram of [KM21], which yields signed approximations of
arbitrary persistence modules by spread modules, is not homological with respect to
the set of spread modules. We conjecture that more generally it is also not homological
relative to any set of indecomposables. See Corollary 7.10 and Conjecture 7.11.

2 Notation and terminology

In this section, we fix notation and terminology for use in the remainder of this paper.
We first recall some notation from the introduction. Fix a field K. The notation dim(−)
will always mean dimK(−). We denote by P a poset, which we will assume to be finite
unless otherwise stated. We denote by I(P) the (K-)incidence algebra of P and by
modI(P) the category of finitely generated (right) I(P)-modules. Unless otherwise
stated, the phrase “an I(P)-module” will always refer to an object of modI(P). Given
M and N two I(P)-modules, a “morphism” f ∶ M → N refers to an I(P)-linear map.
We denote by HomI(P)(M , N), or just Hom(M , N), the vector space of morphisms
from M to N. In Section 4, we will work over an arbitrary finite-dimensional algebra,
and thus the symbol I(P)will be replaced with Λ while maintaining our conventions.

We identify modI(P) with the category of pfd persistence modules over P. That is,
we consider a module M ∈ modI(P) as a functor from P to the category of finite-
dimensional K-vector spaces. Given a ≤ b ∈ P, we denote by M(a) and M(a, b)
the result of applying M to the object a and to the unique morphism a → b in P,
respectively.

We adopt the common practice of identifying modules with their isomorphism
classes. In particular, the term “subcategory” will always refer to a subcategory which
is full and closed under isomorphism. Moreover, any use of the phrase “the set of—
modules” could more precisely be replaced with “the set of isomorphism classes of—
modules.”
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Given a set X of I(P)-modules, we denote by add(X) the subcategory of modI(P)
whose objects are (isomorphic to) finite direct sums of the objects in X. That is, a
module M is in add(X) if and only if there is a finite subsetY ⊆ X and a tuple of natural
numbers (nR)R∈Y such that M ≃ ⊕R∈Y R(nR). Note that by taking Y = ∅, we have that
0 ∈ add(X). As an example, ifX is the set of indecomposable projective I(P)-modules,
then add(X) is the subcategory consisting of all projective I(P)-modules.

2.1 Spread modules

In this section, we define a subclass of I(P)-modules which we refer to as spread
modules. As we explain in Remark 2.5, these are often referred to as “interval modules”
in the persistence theory literature. We will study this class of modules in more details
in Section 5.

Let a ∈ P, and let B ⊆ P be a set of incomparable elements. We say a ≤ B (resp.
a ≥ B) if there exists b ∈ B such that a ≤ b ( resp. a ≥ b). Sets of incomparable elements
of P can then be partially ordered by the relation

A ≤ B ⇐⇒ ∀a∈A∀b∈B a ≤ B and A ≤ b.

Let Q be the Hasse quiver of P. We call [a, c] ∶= {b ∣ a ≤ b ≤ c} the interval from a
to c. A subset S of P is called connected if it is a connected part of Q; that is, there exists
a non-oriented path between any two points of S. A subset S of P is called convex if
for any pair (a, b) ∈ S, [a, b] ⊆ S.

Clearly, intervals are connected and convex. We generalize the notion of interval
with the following definition.

Definition 2.1 Let A, B ⊆ P be two sets of incomparable elements with A ≤ B. The
spread from A to B is the subset

[A, B] ∶= {x ∣ there exists a ∈ A, b ∈ B such that a ≤ x ≤ b}.

We refer to A and B as the sets of sources and targets of [A, B], respectively.

If A = {a} contains only a single element, we call [A, B] a single-source spread and
write [a, B] in place of [{a}, B]. Single-target spreads are defined and notated anal-
ogously. Note that spreads that are both single-source and single-target are precisely
intervals (as in the classical poset-theory literature; see, e.g., [Sta11]). Spreads are also
convex. Indeed, if x , z ∈ [A, B], then there exist a and b such that a ≤ x and z ≤ b, so
for any y ∈ [x , z], we have a ≤ x ≤ y ≤ z ≤ b, showing that it is convex. In fact, all finite
convex subsets are spreads, as made precise in the following proposition.

Proposition 2.2 Let X be a convex subset of P. Let A be the set of minimal elements of
X, and let B be the set of maximal elements of X. Then X = [A, B].

Proof It is clear that A and B are sets of incomparable elements and that A ≤ B. Now,
take y ∈ X to be neither maximal nor minimal. Then there exist elements in X that are,
respectively, bigger and smaller than y, say x1 ≤ y ≤ z1. We then iteratively find bigger
and smaller elements, obtaining a sequence

xn ≤ ⋅ ⋅ ⋅ ≤ x1 ≤ y ≤ z1 ≤ ⋅ ⋅ ⋅ ≤ zm ,
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where xn is minimal and zm is maximal. This sequence must end in a finite number
of steps because P, and thus also X, is finite. ∎

We also fix the following notation for convenience.

Definition 2.3 Let X ⊆ P be a set of incomparable elements. By Proposition 2.2, the
sets

[−∞, X] ∶= {y ∣ y ≤ X} [X ,∞] ∶= {y ∣ X ≤ y}
are spreads. We call them downsets and upsets, respectively. Note that downsets
are sometimes called “order ideals,” and are characterized by being closed under
taking predecessors. Likewise upsets are sometimes called “order filters,” and are
characterized by being closed under taking successors.

Definition 2.4 Given a spread [A, B] ⊆ P, we call spread module the persistence
module M[A,B] defined by

M[A,B](p) =
⎧⎪⎪⎨⎪⎪⎩

K , if p ∈ [A, B],
0, if p /∈ [A, B],

M[A,B](p, q) =
⎧⎪⎪⎨⎪⎪⎩

1K , if p, q ∈ [A, B],
0, else.

If in addition ∣A∣ = 1 = ∣B∣, we call M[A,B] an interval module. We likewise define
single-source spread modules, single-target spread modules, upset modules, and downset
modules in the natural way.

Remark 2.5 In much of the recent literature on persistence modules (e.g., [ABE+22,
AENYb, BOO] and several others), the term “interval module” is used for what we
have called a “spread module” and the term “segment module” is used for what is
called an “interval module.” Our naming convention was chosen to emphasize that
spreads are not intervals in the classical poset-theory sense.

The following are some important examples of spread modules.

Example 2.6 (1) All simple modules are interval modules. Indeed, let a ∈ P. Then
Sa ∶= M[a ,a] is the simple module supported at a.

(2) All indecomposable projective modules are upset modules. Indeed, for a ∈ P, we
have that Pa ∶= M[a ,∞] is the projective cover of Sa . Symmetrically, indecom-
posable injective modules are downset modules: Ia ∶= M[−∞,a] is the injective
envelope of Sa .

(3) If the Hasse quiver of P is Dynkin type A, then all indecomposable modules
are spread modules. If moreover P is totally ordered, then all indecomposable
modules are interval modules.

Remark 2.7 The modules Pa in Example 2.6(2) are sometimes referred to as “free
persistence modules.” This is because if P = Z

n , then the module Pa is a free n-graded
module over K[x1 , . . . , xn]. See [CZ09, Section 4.2]. On the other hand, Pa is not free
as an I(P)-module, so we have chosen not to use the word free in this context. See
also [BM21, Section 6].

By construction, if M is a spread module, then dim M(a) ≤ 1 for all a ∈ P. Modules
with this property are sometimes called thin. Another motivation for studying spread
modules is the following.
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Theorem 2.8 [ABE+22, Theorem 24] Suppose P = [0, a] × [0, b] ⊆ Z
2 is a product of

two finite totally ordered sets. Then every thin indecomposable module in modI(P) is
isomorphic to a spread module.

As previously mentioned, if P is totally ordered, then all indecomposable modules
are spread modules. Theorem 2.8 thus points toward a natural invariant: the multiplic-
ity of thin modules in the direct sum decomposition. If the quiver of P is Dynkin type
A, this invariant is equivalent to the barcode. More generally, however, this invariant
loses all information about any indecomposable direct summand which is not thin.
Nevertheless, in some applications, it looks like the proportion of non-thin factors is
small, making this invariant somewhat valuable. See, e.g., [EH16, Section 5] for further
discussion.

An immediate consequence of Theorem 2.8 is that, over these particular posets,
thin indecomposable modules are uniquely determined by their support. For more
general posets, however, there are thin indecomposables which are neither isomorphic
to spread modules nor determined by their support, as seen in the following example.

Example 2.9 As in [Mil, Example 2.7], let P be the poset with Hasse diagram.

3 4

2

1

Note that the incidence algebra I(P) is in this case a path algebra of type Ã3. Now, for
λ ∈ K, let Nλ be the following thin module.

K K

K

K

1λ

11

It is well known that each Nλ is indecomposable and that Nλ ≃ Nλ′ if and only if λ = λ′.
Moreover, we observe that Nλ is a spread module if and only if λ = 1 (in which case we
have Nλ = M[{1,2},{3,4}]). This shows that modI(P) contains thin indecomposables
which are neither isomorphic to spread modules nor determined by their support.

3 Motivation and related invariants

In this section, we examine many invariants from the literature and how the informa-
tion they contain is interpreted. In particular, we highlight places where homological
algebra can be used to clarify, complement, or expand existing frameworks. This
section is not meant as a thorough treatise, but rather as motivation for studying the
particular invariants we propose.
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While we give formal definitions in Definition 4.10, we recall that an (additive)
invariant is a map p ∶ modI(P) → Z

n which is constant on isomorphism classes and
satisfies p(M ⊕ N) = p(M) + p(N). Furthermore, we say that two invariants p and q
are equivalent if p(M) = p(N) if and only if q(M) = q(N) for all M , N ∈ modI(P).

3.1 The dimension vector/Hilbert function

We begin by overviewing many different ways that one may interpret the dimension
vector. Recall that for a persistence module M, the dimension vector (or Hilbert
function) is defined by

dimM = (dim M(a))a∈P .

This invariant is often considered as taking values in the free abelian group with
basis P; however, we can also see dimM as an element of the free abelian group with
basis {[Sa] ∣ a ∈ P}. (Precisely, we are treating dimM as an element of the classical
Grothendieck group of modI(P). See Section 4.) The second choice highlights the
fact that given a short exact sequence

0 → L → M → N → 0

of persistence modules, one has that

dim(M) = dim(L) + dim(N).

In particular, the dimension vector dimM and the multiset of composition factors for
M uniquely determine one another. As a special case, we have that dim(M ⊕ N) =
dim(M) + dim(N); that is, the dimension vector is an (additive) invariant.

We now turn toward understanding the dimension vector dimM using the pro-
jective modules Pa . To start with, recall the well-known fact that for a ∈ P, one
has dim M(a) = dim HomI(P)(Pa , M). One may then see dimM as counting the
number of “test morphisms” from a set of well-understood modules (namely the
indecomposable projectives). Moreover, if I(P)has finite global dimension, then there
is a change of basis σ ∶ Z∣P∣ → Z

∣P∣ which can be conceptualized as sending the free
abelian group with basis {Sa ∣ a ∈ P} to that with basis {Pa ∣ a ∈ P}. Formally, σ is
defined as the inverse of the Cartan matrix of I(P). Since we are working over a
poset algebra, this also coincides with the Möbius inversion formula. We will give
further details in Section 4, but for the purpose of this section, the change of basis σ
works as follows. Given an arbitrary projective module P, there is a unique direct sum
decomposition P ≃ ⊕a∈P(Pa)ra . We then set [P] = ∑a∈P ra[Pa], where [Pa] is the
basis element corresponding to Pa . Now, given M an arbitrary persistence module, we
choose a finite projective resolution

Pm → ⋅ ⋅ ⋅ → P1 → P0 → M .

One then has σ(dimM) = ∑m
j=1(−1) j[Pj]. Taking this one step further, let us denote

by [M]a the coefficient of [Pa] in σ(dimM). Now, define

P+ = ⊕
a∶[M]a>0

(Pa)[M]a , P− = ⊕
a∶[M]a<0

(Pa)−[M]a .
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One may then consider the pair (P+, P−) as a “signed approximation” of M by the
category of projective modules. Indeed, by applying σ−1, we obtain the equation
dimM = dimP+ − dimP−.

To summarize, we have the following ways to interpret the dimension vector
dimM:
(1) as recording the dimensions of the vector spaces comprising M,
(2) as recording the number of “test morphisms” from the indecomposable projec-

tives to M,
(3) as some data determined by a projective resolution of M,
(4) as a “signed approximation” of M by the category of projective modules.

As we will see in Section 4, “the homological invariants” we introduce in this paper
are readily given interpretations in the spirit (2)–(4) above. In essence, we will enlarge
the set of indecomposable projective modules to a larger set X of indecomposable
I(P)-modules, typically a subset of the connected spread modules. This instantly gives
rise to the invariant (dim HomI(P)(R, M))R∈X, which can be seen as counting “test
morphisms” from the objects in X to M. For many choices of X, this is equivalent
to data coming from an “X-resolution” of M. As each step of such a resolution is an
“approximation” in some precise sense, the result is readily interpreted as a “signed
approximation” of M byX. Finally, as made explicit in Proposition 5.1, it is also possible
to understand our invariants more directly in the spirit of (1) above.

In the remainder of this section, we focus on many of the invariants which serve as
motivation and background for our study. In particular, we emphasize existing works
that yield interpretations in the spirt of (2)–(4) above. We also discuss alternative
approaches to extracting data from a projective resolution, as these can also be readily
applied to our new framework.

3.2 The rank invariant and its generalizations

Recall the definition of the rank invariant rkM from equation (1.1). In this section, we
explain various interpretations and generalizations of the rank invariant which have
appeared in recent work.

3.2.1 The generalized rank invariant and compressed multiplicities

The rank invariant can be seen as associating one nonnegative integer1 to M for each
interval I = [a, b] ⊆ P. The recent works [Tho19, Section 3.2], [KM21], and [AENYb]
each give alternative interpretations of these integers which extend naturally to allow
one to consider subsets of P which are not intervals. This results in new invariants,
known as the multirank invariant [Tho19, Section 3.2], the generalized rank invariant
[KM21], and compressed multiplicities [AENYb]. We give a brief overview of these
constructions.

1We recall that we are using the term “interval” in its classical order-theoretic sense. This is different
from the definition used in [KM21].
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Remark 3.1 In [KM21], the authors work over general posets (without the assump-
tion that ∣P∣ < ∞), but we keep the assumption that ∣P∣ < ∞ for simplicity. Moreover,
they consider functors with target categories more general than vec(K).

The definition that follows makes use of the categorical notions of limits and
colimits. A brief explanation of these constructions can be found in [KM21, Section
3.1 and Appendix A]. Note also that our definition is slightly more general than that
of [KM21], in which it is required that X be (path-)connected as a subset of P.

Definition 3.2 Let M be a (P-)persistence module, and let X ⊆ P such that X is a
connected poset with the induced order from P.2 We define a diagram M(X) in the
category of finite-dimensional K-vector spaces as follows:
• The objects of M(X) are the vector spaces M(a) for a ∈ X.
• The morphisms of M(X) are the linear maps M(a, b) for a ≤ b ∈ X.
Alternatively, one may view M(X) as the restriction of M to X. We denote by rk(M , X)
the rank of the natural map from the limit of M(X) to the colimit of M(X). We refer
to rk(M , X) as the X-rank of M. More generally, for R a subset of the power set 2P
consisting of sets X as in Definition 3.2, we define the R-rank of M to be rk(M ,R) ∶=
(rk(M , X))X∈R.

If X = [a, b] is an interval subset ofP, then rk(M , X) = rk(M(a, b)). In particular,
if I is the set of intervals in P, then rk(M , I) = rk(M). Motivated by this fact, Kim
and Mémoli define the generalized rank invariant in [KM21]. This is precisely the
invariant rk(M ,R) for R, the set of “path-connected” subsets of P. In the subsequent
works [DKM, KM], the set R has been restricted to that of (all) connected spreads.
More generally, in [BOO], Botnan, Oppermann, and Oudot consider the invariants
rk(M ,R), where R is any set of the connected spreads. (They actually work over
posets which may not be finite and impose some conditions on these sets, but these
conditions are always satisfied over finite posets.)

In another recent work [AENYb], Asashiba, Escolar, Nakashima, and Yoshiwaki
work exclusively with finite posets of the form [0, a] × [0, b] ⊆ Z

2. For every spread
[A, B], they introduce three invariants. It is shown in [KM], using [CL18, Lemma
3.1], that the “total compression factor” of [AENYb] is precisely rk(M , [A, B]). An
analogous argument shows that the “sink-source compression factor” and “corner-
complete compression factor” of [AENYb] are both of the form rk(M , X) for some
choice of X. For example, let [A, B] ⊆ P be a connected spread. Then the invariant
d ss(M , [A, B]) introduced in [AENYb] is precisely rk(M , A∪ B).

Finally, the “multirank function” introduced by Thomas in [Tho19, Section 3.2]
is similar in concept to the association X ↦ rk(M , X), but it does not rely on the
formal concepts of limits and colimits. Indeed, given a pair of subsets X , Y ⊆ P

with no restrictions, Thomas defines the “multirank from X to Y” as the rank of a
map ⊕a∈X M(a) → ⊕b∈Y M(b) formed by the component maps of M together with
zero maps where necessary. When X = A and Y = B are antichains and [A, B] is a
connected spread, we expect that the rank of this map will be related to rk(M , A∪ B).

2Note that X may be a connected poset even if it is not connected as a subset of P. For example, take
P = {0, 1} × {0, 1}. Then X = {(0, 0), (1, 1)} is connected as a poset, but not as a subset of P.
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3.2.2 Signed barcodes and Möbius inversion

In this section, we will discuss how Möbius inversion can be used to reinterpret the R-
rank invariants. We refer to [Sta11, Section 3.7] for the definition of Möbius inversion.

As previously mentioned, when P is totally ordered, the (classical) rank invariant
is equivalent to the barcode (see also Section 7.1 for the formal statement). To unpack
this fact, let us view the rank invariant and barcode as taking values in the free abelian
groups whose bases are given by the sets of (i) interval subsets of P and (ii) interval
modules over I(P). Then Möbius inversion is a change of basis σ ∶ Z(∣P∣2 ) → Z

(∣P∣2 )

which sends rk(M) to the barcode of M. We emphasize that this change of basis is
not the one that sends the interval [a, b] to the interval module M[a ,b].

We now return to the case where P is not totally ordered. As in the preceding
section, let R be a subset of the power set 2P consisting of sets X as in Definition 3.2.
Then R is itself a poset under inclusion. We denote by δ(M ,R) the result of applying
the resulting Möbius inversion formula to the invariant rk(M ,R). Invariants obtained
in this way are sometimes referred to as “generalized persistence diagrams.” See, e.g.,
[AENYb, BBE22, BE22, BOO KM21, MP22, Pat18].

In [AENYb, BOO, KM21], the invariants δ(M ,R) are considered for the choices
of R (and generality of poset) discussed in the previous section. To better under-
stand these invariants, given a set R of connected spreads, we denote M(R) =
{[M[A,B]]∣[A, B] ∈ R}. In all three works, the invariant δ(M ,R) is considered as
taking values in the free abelian group which has M(R) as a basis.3 It is then shown
that for any [A, B] ∈ R one has δ(M[A,B] ,R) = [M[A,B]]. Due to this fact, one can
interpret these particular invariants as “signed approximations” by spread modules.
The word “signed” here refers to the fact that some of the coefficients of δ(M ,R) may
be negative.

Finally, for [A, B] ∈ R, let us denote by r[A,B] the coefficient of [M[A,B]] in δ(M ,R).
Now, define

M+ = ⊕
[A,B]∶r[A,B]>0

(M[A,B])r(M ,[A,B]), M− = ⊕
[A,B]∶r[A,B]<0

(M[A,B])−r(M ,[A,B]).

By applying the inverse Möbius inversion formula, one then obtains the equa-
tion rk(M ,R) = rk(M+ ,R) − rk(M−,R). See [BOO, Theorem 2.5], where the pair
(M+ , M−) is referred to as a “signed rank decomposition.” In the special case thatR = I

is the set of intervals, we recall that rk(M , I) = rk(M). In this case, the pair (M+ , M−)
admits a visual interpretation called the “signed barcode.” See [BOO, Section 6].

To summarize, there has been a large amount of recent work aimed at turning the
R-rank invariants rk(M ,R) into signed approximations δ(M ,R) by spread modules.
One of our goals is to examine if and when these coincide with the homological
notion of a (signed) approximation by spread modules, as defined in Section 4. For

3To be precise, we note that the Möbius inversion procedures for the “corner-complete” and “sink-
source” invariants of [AENYb] are done using connected spreads. Since these invariants are both of the
form rk(M,R) for sets R which contain non-spreads, the Möbius inversion procedure described here
would lead to a different result. Nevertheless, the resulting invariants would still be equivalent since
Möbius inversion is an invertible procedure.
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the (classical) rank invariant, [BOO] has already given an affirmative answer to this
question, which we will now explain.

3.2.3 Test morphisms and exact structures

In [BOO], the authors consider a set H of spreads called hooks. (See Section 7.2 for the
definition.) They then show that the rank invariant rk(M) is equivalent to the (dim-
hom) invariant (dimK HomI(P)(H, M))H∈H. In other words, the rank invariant can
be seen as recording the number of “test morphisms” from the hook modules to M.

It is further shown that the hook modules are precisely the indecomposable
“relative projective” modules for some exact structure on modI(P). We will discuss
exact structures in more detail in Section 4. For the purposes of motivation, this
amounts to choosing a subset of short exact sequences in modI(P)which are deemed
“admissible.” In [BOO], these are the short exact sequences 0 → L → M → N → 0 for
which rk(M) = rk(L) + rk(N). As a consequence of our Theorem 7.4, this means
that the rank invariant is equivalent to a “signed approximation” by hook modules
in the homological algebra sense. In other words, the rank invariant is a “homological
invariant” as defined in Definition 4.12. In Section 7.2, we more carefully examine how
this compares to the signed approximation coming from the invariant δ(M ,H).

3.3 Generalized Betti numbers and g-vectors

As the dimension vector can be derived from the data of a projective resolution,
so too can homological invariants be derived from the data of a “relative projective
resolution.” In our discussion of the dimension vector, this is done by taking the signed
sum of the terms which appear in the resolution. However, this is not the only way to
turn the data of a resolution into a vector which is readily usable in machine learning.
We will briefly explain some of the alternative vectorization methods, all of which can
be used in a straightforward manner for our relative homological algebra framework.

Let M be an I(P)-module and assume it admits a finite projective resolution

Pm
fm�→ ⋅ ⋅ ⋅ f2�→ P1

f1�→ P0
f0�→ M .

We will further assume that this projective resolution is taken to be “minimal,”
meaning that each map fk is the projective cover of ker( fk−1). For a ∈ P, and k ∈
{0, . . . , m}, we denote by rk ,a the multiplicity of Pa as a direct summand of Pk .
Each rk ,a can be seen as an invariant of M, and in particular each tuple (rk ,a)a∈P is
referred to as the kth generalized Betti numbers of M. This is a straightforward analog
of classical Betti numbers, where one records the multiplicities of free modules in a
free resolution.

We recall that the dimension vector can be recovered from the general-
ized Betti numbers. Indeed, the dimension vector dimM is then (equivalent to)
∑m

k=0 ∑a∈P rk ,a[Pa], where [Pa] is the basis element associated with Pa . This means
that the generalized Betti numbers contain more information than the dimension
vector. On the other hand, we caution that, unlike the dimension vector, the gener-
alized Betti numbers require the assumption that our chosen projective resolution is
minimal. Without this, they will no longer be well defined.
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Especially in cases where an algebra has infinite global dimension, one may also
record only the first k generalized Betti numbers for some choice of k. This is related to
the concept of “g-vectors” from representation theory. Given a module M, its g-vector
is by definition (r0,a − r1,a)a∈P. This invariant is particularly important to the concepts
of cluster algebras [FZ07], τ-tilting theory [AIR14], and stability conditions [Kin94].

3.4 Amplitudes and a view toward stability

We conclude our motivation section with a brief discussion of stability. In this paper,
we primarily discuss invariants as a tool for determining whether two persistence
modules belong to the same isomorphism class. However, in applications, one is
often interested in whether two persistence modules are derived from similar data
(or from similar filtrations of topological spaces). In order for invariants to be useful
for this purpose, one turns to stability. Given an invariant p, the key idea is to define
a meaningful notion of distance on the output space of p. Informally, one then says
that p is stable if given two “similar” persistence modules M and N, one has that the
distance between p(M) and p(N) is sufficiently small.

After the first version of this manuscript was posted to arXiv, Oudot and Scoccola
proved a stability result for certain invariants coming from exact structures [OS, The-
orem 26]. Their result is proved with respect to the “Bottleneck dissimilarity function”
for finitely presented R

n-persistence modules. Another place one may turn to look for
stability results is the recent work of Giunti, Nolan, Otter, and Waas on amplitudes and
their stability [GNOW]. Amplitudes areZ-valued invariants which are defined for any
abelian category, and are characterized by how they behave with respect to short exact
sequences. One could readily adapt this definition to the generality of exact categories
by considering only those short exact sequences which are deemed “admissible.” It
remains an open question to determine whether such a modification could be used to
prove stability results for the invariants introduced in this paper.

4 Relative homological algebra

The purpose of this section is to provide background on relative homological algebra
and relative Grothendieck groups. We largely follow the setup of Auslander and
Solberg [AS93]. As these results are fully general, throughout this section, we will
work over a finite-dimensional K-algebra Λ and assume only (i) that Λ is basic and
(ii) that every simple Λ-module is one-dimensional over K. Nevertheless, we note that
the incidence algebras I(P) satisfy both (i) and (ii), and so readers interested mainly
in applications to persistence theory can safely replace Λ with I(P).

The assumptions (i) and (ii) are made to facilitate the discussion of the dimension
vector in the sequel. We recall its more general definition now.

Definition 4.1 Let U be the set of indecomposable projective Λ-modules, and let
M ∈ modΛ. Then the dimension vector of M is

dimM ∶= (dimK HomΛ(P, M))P∈U .

Alternatively, the assumptions (i) and (ii) are equivalent to the existence of a finite
quiver Q such that Λ is a quotient of the path algebra KQ by an admissible ideal.
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In particular, every module M ∈ modΛ can be considered as a representation of Q
analogously to the way an I(P)-module is seen as a functor from P. For each vertex v
of Q, we denote by M(v) the vector space at vertex v arising from viewing M in this
way. There is then a bijection σ from U to the set of vertices of Q such that for all P ∈ U
one has dimK M(σ(P)) = dimK HomΛ(P, M).

4.1 Approximations, exact structures, and Grothendieck groups

Let X be a finite set of indecomposable modules, and let M be an arbitrary module.
We recall that add(X) is the subcategory of modΛ consisting of all finite direct sums
(including the empty direct sum) of modules in X. We say a morphism f ∶ R → M,
where R ∈ add(X), is a (right) X-approximation if every morphism R′ → M with R′ ∈
add(X) factors through f. Since we have assumed X to be finite, such a morphism is
guaranteed to exist. We call f a minimal approximation by X if for all g ∶ R → R such
that f ○ g = f , the endomorphism g is an isomorphism. This is equivalent for asking
the domain of f to have the minimum possible number of direct summands.

The following lemma is crucial to the remainder of our setup.

Lemma 4.2 Suppose X contains all of the indecomposable projective modules, and let
f ∶ R → M be an approximation by X. Then f is an epimorphism.

Proof Let q ∶ P → M be the projective cover of M. By assumption, P ∈ add(X), so
there exists g ∶ P → R such that q = f ○ g. Since q is an epimorphism, this implies that
f is an epimorphism as well. ∎

We now consider two examples. Note in particular that Example 4.3(2) shows that
there may exist epimorphisms from add(X) to M which are not X-approximations.

Example 4.3

(1) If X consists only of the indecomposable projectives, then any epimorphism
f ∶ R → M with R ∈ add(X) is an X-approximation. Indeed, any morphism g ∶
R′ → M with R′ ∈ add(X) will factor through f by the definition of projective.
Moreover, such an epimorphism f will be minimal if and only if it is the projective
cover of M.

(2) Let Λ = K(1 → 2). Then modΛ contains three indecomposable modules: the
projective-injective P1, the simple-projective P2, and the simple-injective S1. Let
X = {P1 , P2 , S1}. Then the identity S1 → S1 is an X-approximation which does not
factor through the projective cover P1 → S1. This shows that the projective cover
P1 → S1, which is an epimorphism from add(X), is not an X-approximation.

We will assume from now on thatX contains all of the indecomposable projectives.
In light of the previous lemma, we can then consider an analog of a projective
resolution of M, formed by taking approximations by X at each step. This yields
the following diagram, where each p j is an approximation by X and q j = i j−1 ○ p j
for every j.
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⋅ ⋅ ⋅ R2 R1 R0 M 0

ker(q2) ker(q1) ker(q0) ker(q−1) = M

q2

p2

q1

p1

q0

p0

q−1 = 0

i2 i1 i0 i−1=1M

The first row of this diagram is exact by definition, and is called a resolution of M by X
or X-resolution. If every p i is a minimal approximation, then the resolution itself is
called minimal. We then have the following definitions (see [EJ00, Section 8.4]).

Definition 4.4

(1) Let M ∈ modΛ, and let R● be a minimal resolution of M by X. The X-dimension
of M is then defined as min({ j ∣ R j+1 = 0} ∪ {∞}).

(2) The X-dimension of Λ is defined to be the supremum over M ∈ modΛ of the X-
dimension of M.

(3) If there exists a module of infinite X-dimension, we say the X-dimension of Λ is
properly infinite. On the other hand, if the X-dimension of Λ is infinity but every
M ∈ modΛ has finite X-dimension, we say that the X-dimension of Λ is effectively
infinite.

Remark 4.5

(1) IfX contains only the indecomposable projectives, theX-dimensions of a module
M and of the algebra Λ coincide with the projective dimension and global
dimension, respectively. In this case, it is well known that algebras with effectively
infinite X-dimension do not exist.

(2) The relationship between the projective dimension andX-dimension of a module,
and by extension between the global dimension and X-dimension of an algebra,
is not clear. For example, in the setup of Example 4.3, the projective dimension of
S1 is 1, whereas its X-dimension is 0. On the other hand, in Example 6.4, we give
an example of a module with projective dimension 1 and infinite X-dimension.
One way to explain this discrepancy is that as we increase the size of X, we have
both added more modules with which to form X-approximations, but also added
more maps which need to factor through these approximations.

Now, let Emax be the class of short exact sequences in modΛ. We then denote

EX =
⎧⎪⎪⎨⎪⎪⎩
(0 → M

f�→ N
g�→ L → 0) ∈ Emax

!!!!!!!!!!!
(∀R ∈ X) Hom(R, g) is surjective

⎫⎪⎪⎬⎪⎪⎭
.

Equivalently, the short exact sequences in EX are precisely those on which the functor
Hom(R,−) is exact for all R ∈ X.

It is shown in [DRSS99] that EX gives an exact structure on modΛ. Readers are
referred to [Bü11] for more information on exact structures. In the present paper, we
will only use the following straightforward facts about EX.
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Proposition 4.6
(1) Let 0 → M → N → L → 0 be an exact sequence in EX. Then

dim Hom(R, N) = dim Hom(R, L) + dim Hom(R, M)

for all R ∈ add(X).
(2) Let f ∶ R → M be an approximation of some module M by X. Then

0 → ker( f ) → R
f�→ M → 0

is in EX. Moreover, EX is the smallest exact structure which contains all such
short exact sequences.

(3) Every split short exact sequence is included in EX.

Bearing this result in mind, we are prepared for the main definition of this section.

Definition 4.7
(1) Let F be the free abelian group generated by the symbols [M] for every iso-

morphism class of M ∈ modΛ. Denote by HX the subgroup generated by the
collection

{[M] − [N] + [L] ∣ there exists a short exact sequence 0→ M → N → L → 0 in EX}.

The quotient group K0(Λ,X) ∶= F/HX is called the Grothendieck group of Λ
relative to X.

(2) Given M ∈ modΛ, we denote by [M]X (or just [M] if the set X is clear from
context) the representative of M in the Grothendieck group K0(Λ,X).

Before proceeding, we highlight two important examples of relative Grothendieck
groups.

Example 4.8
(1) Let X be the set of indecomposable projective modules. Then EX = Emax contains

all short exact sequences. In this case, we call K0(Λ) ∶= K0(Λ,X) the classical
Grothendieck group. This group has a basis given by the simple modules. By our
assumptions (i) and (ii) from the beginning of Section 4, we can identify [M] ∈
K0(Λ) with the dimension vector of M using this basis. If in addition we assume
that the global dimension of Λ is finite, then K0(Λ) also has a dual basis given by
X.

(2) LetX be the set of all indecomposable Λ-modules. While this will generally not be
a finite set, much of the theory developed in this section still applies. In particular,
the exact structure EX contains only the split short exact sequences. This exact
structure is often denoted Emin, and the corresponding relative Grothendieck
group is often denoted Ksplit

0 (Λ) ∶= K0(Λ,Emin). This is the free abelian group
with basis the set of isomorphism classes of indecomposable Λ-modules (see, e.g.,
Proposition 4.9). That is, given a module M ∈ modΛ, the data [M] ∈ Ksplit

0 (Λ) are
equivalent to the direct sum decomposition of M. In particular, the isomorphism
class of M is uniquely determined by [M].
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Proposition 4.9 If the X-dimension of Λ is not properly infinite, the Grothendieck
group K0(Λ,X) is free abelian with basis {[R] ∣ R ∈ X}. In particular, K0(Λ,X) ≃ Z

∣X∣.
Moreover, if

0 → Rn
qn�→ ⋅ ⋅ ⋅ q2�→ R1

q1�→ R0
q0�→ M → 0

is a finite X-resolution of M ∈ modΛ, then [M] = ∑n
i=0(−1)i[R i].

Proof Let M ∈ modΛ and choose a finite X-resolution of M as in the statement. We
can extract short exact sequences

0 → ker(q i) ↪ R i ↠ ker(q i+1) → 0.

Each of these short exact sequences is in EX by Proposition 4.6. So, in the
Grothendieck group, [R i] = [ker(q i)] + [ker(q i+1)] for all i. This yields

[M] = [R0] − [ker(q0)]
= [R0] − ([R1] − [ker(q1)])
= [R0] − [R1] + ([R2] − [ker(q2)])
= ⋅ ⋅ ⋅

=
n
∑
i=0
(−1)i[R i],

where each R i is in add(X). This shows {[R] ∣ R ∈ X} generates the Grothendieck
group.

It remains to show that K0(Λ,X) = ⟨[R]⟩R∈X is free abelian. To see this, we
recall that the short exact sequences ending in an X-approximation generate the
subgroup HX defining K0(Λ,X). See Definition 4.7 and [AS93]. Moreover, given
R ∈ add(X), the identity R → R is a minimal X-approximation. Together, these facts
imply that every exact sequence generating HX on the subcategory add(X) is split.
This concludes the proof. ∎

4.2 Homological and dim-hom invariants

In this section, we define dim-hom invariants and homological invariants. In order to
make these definitions precise, we first formalize what we mean by an invariant, as
outlined in the introduction.

Definition 4.10

(1) An invariant is a surjective group homomorphism p ∶ Ksplit
0 (Λ) → Z

n for some
n ∈ N. We call n the rank of the invariant p.

(2) Given p and q two invariants, we say that p is finer than q if ker p ⊆ ker q. Likewise,
we say that p is equivalent to q if ker p = ker q. In particular, p is finer than q if and
only if q(M) = q(N) implies p(M) = p(N).

To study different types of invariants, we consider inclusions of exact structures
(see [BHLR20]). We need in particular the following lemma.
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Lemma 4.11 Let X and Y be finite sets of indecomposable modules which contain
the indecomposable projectives, and suppose that X ⊆ Y. Then there is a well-defined
quotient map p ∶ K0(Λ,Y) → K0(Λ,X).

Proof It is immediate from the definitions of EX and EY that EX ⊇ EY. The result
then follows immediately from the definitions of K0(Λ,X) and K0(Λ,Y). ∎

We note that, even if modΛ contains infinitely many indecomposable objects, the
statement and proof of Lemma 4.11 can be adapted to allow one to take X to be the set
of all indecomposable modules. Thus, for any finite set Y of indecomposable modules
containing the indecomposable projectives, we have that K0(Λ,Y) is a quotient of
Ksplit

0 (Λ). This leads to the following definition.

Definition 4.12 Let p ∶ Ksplit
0 (Λ) → Z

n be an invariant, and let X be a finite set of
indecomposable modules.

(1) We say that p is a dim-hom invariant relative to X if it is equivalent to the invariant
given by the map

Ksplit
0 (Λ) → Z

∣X∣

M ↦ (dim HomΛ(R, M))R∈X .

(2) We say that p is homological relative to X if all of the following hold:
(1) All of the indecomposable projectives are in X.
(2) The X-dimension of Λ is not properly infinite.
(3) p is equivalent to the invariant given by the quotient map Ksplit

0 (Λ) →
K0(Λ,X) ≃ Z

∣X∣ .
(3) We say that p is a dim-hom invariant (resp. homological invariant) if it is a dim-

hom (resp. homological) invariant relative to some X.

We will show that if a given X respects some assumptions extending (2b) above,
then the homological and dim-hom invariants relative to X coincide. See Theo-
rem 4.22.

The following example is well known.

Proposition 4.13 Suppose that Λ has finite global dimension, and let X be the
set of indecomposable projective modules. Then the dimension vector M ↦ dimM ∶=
(dim HomΛ(R, M))R∈X and the homological invariant p ∶ Ksplit

0 (Λ) → K0(Λ) are
equivalent.

Remark 4.14 In Proposition 4.13, one often interprets dimM as sitting inside of
K0(Λ) by taking the simple modules as a basis. One can change to the basis of
K0(Λ) given by the indecomposable projectives by sending each simple module to the
alternating sum of the terms in its projective resolution. See Section 3.1 for additional
discussion.

We will explore homological invariants (and dim-hom invariants) in the context of
persistence modules in Section 6.
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4.3 Projectivization

Fix a finite set X of indecomposable modules which contains the indecomposable
projectives. In this section, we use the theory of projectivization to construct an
algebra with indecomposable projective modules corresponding to modules in X. In
particular, this will allow us to show that, for many choices of X, the homological
and dim-hom invariants relative to X coincide. It will also allow us to reduce the
problem of computing X-resolutions to that of computing projective resolutions over
an endomorphism algebra. The ideas outlined here are well known, and readers are
referred to [ARS95, Section II.2] for details.

We recall that a morphism f ∶ M → N is called a section (resp. retraction) if there
exists a morphism g ∶ N → M such that g ○ f (resp. f ○ g) is the identity.
Definition 4.15 A morphism f ∶ R → R′, with R, R′ ∈ X, is called X-irreducible if it is
not itself a section or a retraction and if all factorizations of f of the form R

g�→ M h�→ R′,
with M ∈ add(X), must have g be a section or h be a retraction.

Now, consider the module T = TX ∶= ⊕R∈X R. Then Γ = ΓX ∶= EndΛ(T)op is a
finite-dimensional K-algebra under the composition of morphisms and the standard
vector space structure. Denote by Q the Gabriel quiver of Γ. The vertices of Q can
be identified with X. Moreover, for R, R′ ∈ X, the number of arrows R → R′ in Q
coincides with the number of linearly independent X-irreducible morphisms R′ → R
in HomΛ(X , Y).

The association M ↦ HomΛ(T , M) yields a functor from modΛ to modΓ. The
action of Γ on HomΛ(T , M) is given by precomposition. This functor induces an
additive equivalence between add(X) and the category of projective Γ-modules.
That is, given an (indecomposable) module R ∈ X, the Γ-module HomΛ(T , R) is
isomorphic to the projective module (over Γ) at the vertex corresponding to R in the
quiver Q.

The following is critical.
Proposition 4.16 [ARS95, Proposition 2.1] Let R ∈ add(X) and M ∈ modΛ. Then the
functor HomΛ(T ,−) induces an isomorphism

HomΛ(R, M) ≃ HomΓ(HomΛ(T , R), HomΛ(T , M)).

Putting this together, we have the following.
Proposition 4.17 (1) Let M ∈ modΛ, and let R● be a (minimal) resolution of M

by X. Then HomΛ(T , R●) is a (minimal) projective resolution of the Γ-module
HomΛ(T , M).

(2) Let M ∈ modΛ, and let Q● be a minimal projective resolution of the Γ-
module HomΛ(T , M). Then there exists a resolution R● of M by X such that
HomΛ(T , R●) ≃ Q●.

(3) The X-dimension of Λ is bounded by the global dimension of Γ. In particular, if Γ
has finite global dimension, then Λ has finite X-dimension.

Proof (1) and (2) follow immediately from Proposition 4.16 and the fact that
HomΛ(T ,−) induces an additive equivalence. (3) is an immediate consequence of
(1). ∎
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While the global dimension of Γ gives an upper bound on the X-dimension, we
demonstrate with the following example that this bound will in general not be tight.

Example 4.18 Let Λ be as in Example 4.3. Then Γ = EndΛ(P1 ⊕ S1 ⊕ P2)op is the so-
called Auslander algebra of Λ. The Gabriel quiver of Γ is

Q = P2 P1 S1 ,ι π

and we can write Γ ≃ KQ/(ιπ). It is well known that the global dimension of Γ is 2,
whereas the X-dimension of Λ is clearly 0 since add(X) = modΛ.

As a consequence of Propositions 4.17 and 4.9, we have the following.

Proposition 4.19 Suppose that Γ is of finite global dimension. Then:
(1) The Grothendieck group relative to X is free with basis given by {[R] ∣ R ∈ X}. In

particular, the quotient map K split
0 (Λ) → K0(Λ,X) is a homological invariant.

(2) There is an isomorphism of Grothendieck groups K0(Λ,X) → K0(Γ) which sends
[M] to [HomΛ(T , M)].

Remark 4.20
(1) The axioms of exact structures allow one to define a relative version Db(Λ,X)

of the derived category of Λ relative to X (see [Kra21, Chapter 4]). When the
X-dimension of Λ is finite, then it can be shown that T is a tilting object as
defined in [Kra21, Section 7.2]. In this case, the functor HomΛ(T ,−) induces an
additive equivalence Db(Λ,X) →Db(Γ), and thus also an isomorphism of the
corresponding Grothendieck groups K0(Λ,X) ≃ K0(Γ). It is well known that the
Grothendieck group K0(Γ) is freely generated by the projective Γ-modules since
Γ has finite global dimension. As the projectives correspond to the elements of X
under the above isomorphism, we can deduce Proposition 4.9 from the general
theory of relative derived categories.

Note, however, that the simple Γ-modules in general do not correspond to Λ-
modules, but only to objects in the relative derived category. So, even if the derived
categories are equivalent, the X-dimension of Λ is in general not equal to the
global dimension of Γ, like it is often observed in classical tilting theory.

(2) We are not aware of any case where the X-dimension of Λ is finite and the global
dimension of Γ is infinity. It would not be surprising if such a case were impossible
in light of the fact that tilting preserves finite global dimension (see [KK20]).

We are now prepared to prove the main results of this section.

Proposition 4.21 LetX be a finite set of indecomposable Λ-modules which contains the
indecomposable projectives, and suppose that the global dimension of Γ = ΓX is finite.
Given M ∈ modΛ, write [M] ∈ K0(Λ,X) in the form

[M] = ∑
R∈X

cR[R],

where each cR ∈ Z. Then, for R′ ∈ X, we have

dim HomΛ(R′ , M) = ∑
R∈X

cR dim HomΛ(R′ , R).
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Proof Let n be the X-dimension of M. We proceed by induction of n.
If n = 0, then M ∈ add(X). The result then follows immediately from the additivity

of the functors Hom(R′ ,−).
Now, let n > 0 and suppose that the result holds for n − 1. Let f ∶ R ↠ M be a

minimal X-approximation of M. Note that f is surjective by Lemma 4.2 and the short
exact sequence

0 → ker f → R → M → 0

is in EX by Proposition 4.6(2). So we have [M] = [R] − [ker f ]. Moreover, for R′ ∈ X,
Proposition 4.6(1) implies that

dim HomΛ(R′ , M) = dim HomΛ(R′ , R) − dim HomΛ(R′ , ker f ).

Since the X-dimensions of R and ker f are 0 and n − 1, respectively, the result then
follows from the induction hypothesis. ∎

Theorem 4.22 (Theorem 1.1) Let X be a finite set of indecomposable Λ-modules which
contains the indecomposable projectives, and suppose that the global dimension of Γ =
ΓX is finite. Let p ∶ Ksplit

0 (Λ) → K0(Λ,X) be the canonical quotient map, and let q ∶
Ksplit

0 (Λ) → Z
∣X∣ be the dim-hom invariant given by q(M) = (dim HomΛ(R, M))R∈X.

Then p and q are equivalent invariants. In particular, any invariant that is either
homological or a dim-hom invariant relative to X is both homological and a dim-hom
invariant relative to X.

Proof Let M , N ∈ modΛ. It follows from Proposition 4.21 that if p(M) = p(N),
then q(M) = q(N). Thus, suppose q(M) = q(N). By Propositions 4.13 and 4.16,
this implies that [HomΛ(T , M)] = [HomΛ(T , N)] in K0(Γ). Proposition 4.19 then
implies that p(M) = p(N) and that p is a homological invariant. ∎

Remark 4.23 This result points toward the possibility that all homological invariants
are dim-hom invariants. Indeed, if we replace the finiteness condition (2)(b) in
Definition 4.12 with the condition that the global dimension of ΓX is finite, this would
follow from Theorem 4.22. As we suggest in Remark 4.20(2), we suspect that the two
finiteness conditions are equivalent, and thus that all homological invariants are in
fact dim-hom invariants.

5 Classes and morphisms of spread modules

We now return to the realm of persistence modules over a finite poset P, or equiv-
alently to modules over the incidence algebra I(P). We recall the definition and
notation of spread modules from Section 2.1. We start by focusing on single-source
spread modules and the link between persistence and morphisms from such modules.
We then characterize the I(P)-linear maps between arbitrary spread modules.

5.1 Single-source spreads

The single-source spread modules defined in Section 2.1 are particularly relevant for
persistence theory. To be precise, take an arbitrary module M ∈ modI(P), some vector
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v ∈ M(a), and consider the set of vertices where v persists:

X(v) = {x ∈ P∣ M(a, x)(v) ≠ 0}.

We observe that X(v) is precisely a single-source spread. The following proposition
thus ties the notions of morphism and persistence together.

Proposition 5.1 Let M ∈ modI(P), and let [a, B] ⊆ P be a single source spread. Then,
for v ∈ M(a), the map M[a ,B](a) ∋ 1K ↦ v induces a morphism M[a ,B] → M if and only
if [a, B] ⊇ X(v). Moreover, the single-source spread module MX(v) is isomorphic to the
image of the map Pa → M, induced by Pa(a) ∋ 1K ↦ v.

Proof If the map M[a ,B](a) ∋ 1K ↦ v induces a morphism f ∶ M[a ,B] → M, then for
each vertex x ∈ [a, B], fx ○ M[a ,B](a, x)(1K) = M(a, x)(v). In particular, if x ∈ X(v),
fx cannot be zero, so its domain cannot be zero. Then [a, B] ⊇ X(v). Conversely, if this
containment is respected, the described map is indeed a morphism.

Now, recall that Pa , the indecomposable projective module at a, is isomorphic to
M[a ,∞]. Clearly, X(v) ⊆ [a,∞], so the map Pa(a) ∋ 1K ↦ v induces a morphism g ∶
Pa → M. By definition, gx ≠ 0 if and only if x ∈ X(v). This means that im(g) is a thin
module of support X(v). By taking fx(1K) as the basis vector for the image at each
vertex x, we get

im(g)(x , y) =
⎧⎪⎪⎨⎪⎪⎩

1K , if x , y ∈ X(v),
0, otherwise.

So im(g) ≃ MX(v) as expected. ∎

Single-source spread modules also admit other characterizations.

Proposition 5.2 Let M ∈ modI(P). Then the following are equivalent.
(1) M is a single-source spread module.
(2) There exist an indecomposable projective P ∈ modI(P) and a (possibly empty) set

Q of proper projective submodules of P such that M ≃ P/(∑Q∈Q Q).
(3) The projective cover of M is indecomposable.

Proof We first note that given a, b ∈ P, we have that Pb ⊆ Pa if and only if a ≤ b.
(1 2⇒ 2): Write M = M[a ,B]. Define

B′ = {x ∣ x > a, x /≤ B, and ∀y ∈ P ∶ y < x 2⇒ y ≤ B}.

That is, B′ consists of those elements of P which cover elements of [a, B], but do not
themselves lie in [a, B]. We conclude that Px ⊂ Pa for all x ∈ B′. Moreover, we have
M[a ,B] ≃ Pa/(∑x∈B′ Px).

(2 2⇒ 3): Under the assumption of (2), the projective cover of M is the quotient
map P → M.

(3 2⇒ 1): Let p ∶ P → M be the projective cover of M. By assumption, there exists
a ∈ P such that P = Pa . In particular, we have dim Pa(x) ≤ 1 for all x ∈ P. Now, let B
be the set of elements which are maximal in

{x ∈ P ∣ Pa(x) ≠ 0 and (ker p)(x) = 0}.
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It is clear that B is a set of incomparable elements of P and that M ≃ M[a ,B]. This
completes the proof. ∎

Remark 5.3 In the setup of Proposition 5.2(2), those single-source spread modules
which satisfy ∣Q∣ ≤ 1 play a key role in the description of the rank invariant via an exact
structure given in [BOO]. We discuss this special case further in Section 7.2.

5.2 Morphisms between spread modules

We now turn our attention toward computing the Hom-spaces between spread
modules. We begin with an example.

Example 5.4 Let P = {1, 2, 3, 4, 5} × {1, 2, 3} be the 3 × 5 grid. We will denote ele-
ments of P using concatenation rather than ordered pairs, e.g., 13 will be used in
place of (1, 3). Consider the spreads [{13, 41}, 43] (drawn below in dashed red) and
[11, {23, 51}] (drawn below in dotted blue).

13 23 33 43 53

12 22 32 42 52

11 21 31 41 51

We want to compute the space of morphisms between the spread representations
M ∶= M[{13,41},43] and N ∶= M[11,{23,51}]. Since the supports of M and N only inter-
sect at 13, 23, and 41, any f ∶ M[{13,41},43] → M[11,{23,51}] must satisfy fv = 0 for v ∉
{13, 23, 41}. We then have a pair of commutative diagrams:

M K K K 0

N K K K K .

1K

f13 f23 f41 f51

1K 1K

These diagrams imply that f13 = f23 and that f41 = 0. Thus, choosing a morphism
f ∶ M → N is equivalent to choosing a scalar λ ∈ K and setting f13(1) = λ. So,
Hom (M[{13,41},43] , M[11,{23,51}]) ≃ K.

Generalizing this example, we have the following explicit description of the Hom-
space between spread modules. See also [Mil, Proposition 3.10].

Proposition 5.5 Let [A, B] and [C , D] be spreads. Denote by X1 , . . . , Xn the connected
components of [A, B] ∩ [C , D] which satisfy

{a ∈ A ∣a ≤ X i} ⊆ X i and {d ∈ D ∣ X i ≤ d} ⊆ X i .(⋆)

Then there are inverse isomorphisms Φ ∶ Kn ⇄ Hom(M[A,B] , M[C ,D]) ∶ Ψ given as
follows.
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• Let (λ1 , . . . , λn) ∈ Kn . We identify each λ i with the linear map K → K given as scalar
multiplication by λ i . Then, for each x ∈ P, set

Φ(λ1 , . . . , λn)x =
⎧⎪⎪⎨⎪⎪⎩

λ i , x ∈ X i ,
0, otherwise.

• For each i, choose some x i ∈ X i . Then, for f ∈ Hom(M[A,B], M[C ,D]), set

Ψ( f ) = ( fx1(1), . . . , fxn(1)).

Proof We will first show that Ψ is well defined. Let f ∶ M[A,B] → M[C ,D], and let
x , y ∈ P lie in the same connected component Y of [A, B] ∩ [C , D]. Then x and
y are connected by a path in the Hasse quiver of Y. Moreover, if x ≤ z ∈ Y , then
M[A,B](x , z) = 1K = M[C ,D](x , z). These two observations together imply that fx = fy ,
and therefore Ψ is well defined.

We will next show that Ψ is injective. Let f ∶ M[A,B] → M[C ,D], and suppose
Ψ( f )=0. We wish to show that f = 0, or equivalently that fx = 0 for x ∉ ⋃n

i=1 X i .
This is clear if x ∉ [A, B] or x ∉ [C , D]; thus, assume that x ∈ [A, B] ∩ [C , D]. By
assumption, the connected component Y containing x does not satisfy (⋆). We then
have two cases to consider. Suppose first that there exists a ∈ A with a ≤ Y and a ∉ Y .
Then there exists y ∈ Y with a ≤ y. By the previous paragraph, this means fa = fy = fx .
However, we cannot have a ∈ [C , D], because otherwise the interval [a, y] would be
contained in Y. We conclude that fx = 0. The case where there exists d ∈ D with Y ≤ d
and d ∉ Y is analogous.

We will now show that Φ is well defined. Let (λ1 , . . . , λn) ∈ Kn . Obviously,
Φ(λ1 , . . . , λn) satisfies the morphism condition within each connected component of
[A, B] ∩ [C , D]. The only other morphism conditions to check are at the boundaries
of the components X1 , . . . , Xn . Since these components satisfy (⋆), there is no diagram
of either of the following shapes:

K K K 0

0 K K K

(vertex outside of X i) (vertex inside of X i) (vertex inside of X i) (vertex outside of X i).

1

λi λi

1

Therefore, the only patterns that could make the morphism condition fail never
happen. We conclude that Φ(λ1 , . . . , λn) is well defined.

It is clear that Ψ ○ Φ is the identity on Kn . In particular, this means Ψ is surjective.
Since we have already shown that Ψ is injective, we conclude that Ψ is an isomorphism
with inverse Φ. ∎

To conclude this section, we tabulate several consequences of Proposition 5.5.

Corollary 5.6 Let [A, B] be a connected spread. Then Hom(M[A,B] , M[A,B]) = K. In
particular, M[A,B] is indecomposable.

Proof The result is a direct consequence of the previous proposition, taking [A, B] =
[C , D]. Since the intersection of [A, B]with itself is again itself, it is a single connected
component. Since A, B ⊆ [A, B], it clearly verifies both conditions of (⋆). ∎
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Corollary 5.7 Let [A, B] and [C , D] be spreads and suppose that
Hom(M[A,B] , M[C ,D]) ≠ 0. Then there exist a ∈ A, b ∈ B, c ∈ C, and d ∈ D such
that c ≤ a ≤ d ≤ b.

Proof By Proposition 5.5, there exists a connected component X which satisfies (⋆).
Then there exist a ∈ A∩ X and d ∈ D ∩ X such that a ≤ d. Moreover, since a ∈ X ⊆
[C , D], there exists c ∈ C with c ≤ a. Likewise, since d ∈ X ⊆ [A, B], there exists b ∈ B
with d ≤ b. This proves the result. ∎

As a corollary, we also directly get the following characterization of morphism
between intervals, as is well known for type A quivers.

Corollary 5.8 There exists a nonzero morphism from M[a ,b] to M[c ,d] if and only if
c ≤ a ≤ d ≤ b. In this case, Hom(M[a ,b] , M[c ,d]) = K.

Proof It follows directly from Corollary 5.7 and Proposition 5.5. ∎

Next, we show the following necessary conditions to have nonzero morphisms
between spreads of the same type, which will be crucial to show Theorem 6.2. We
note that Lemma 5.9(2) is an immediate consequence of [Mil, Proposition 3.10], but
we provide a proof here for the convenience of the reader.

Lemma 5.9 (1) Let [a, B] and [c, D] be single-source spreads. Then
Hom(M[a ,B], M[c ,D]) ≠ 0 implies either c < a or c = a and [c, D] ⊆ [a, B].

(2) Let [A,∞] and [B,∞] be connected upsets. Then Hom(M[A,∞], M[B ,∞]) ≠ 0
implies [A,∞] ⊆ [B,∞].

Proof (1) Suppose Hom(M[a ,B], M[c ,D]) ≠ 0. By Corollary 5.7, we have c ≤ a. Thus,
suppose c = a. It follows that X ∶= [a, B] ∩ [c, D] is connected and must therefore
satisfy (⋆). It is clear that c ∈ X, so it remains only to show that D ⊆ X. Since c ∈ X
and c ≤ d for all d ∈ D, we have {d ∈ D∣X ≤ d} = D. As X verifies (⋆), we thus have
D ≤ X ≤ B. So, D ≤ B, and [c, D] ⊆ [a, B].

(2) We prove the contrapositive. Suppose [A,∞] /⊆ [B,∞], and let f ∶ M[A,∞] →
B[B ,∞] be a morphism. Because [A,∞] and [B,∞] are upsets, the assumption that
[A,∞] /⊆ [B,∞] means there exists c ∈ A/[B,∞]. In particular, we have fc = 0. Now,
let a ∈ A be arbitrary. Since [A,∞] is connected, it follows that there exists a finite set
{x0 , . . . , xk} ⊆ [A,∞] such that

c = x0 ≤ x1 ≥ x2 ≤ ⋅ ⋅ ⋅ ≥ xk = a.

It follows by induction that fx i = 0 for each x i . In particular, we have that fa = 0 for
all a ∈ A. By Proposition 5.5, we conclude that f = 0. ∎

Finally, Proposition 5.5 can be used to show the following generalization of the
well-known fact that irreducible morphisms (in the traditional sense) are either
monomorphisms or epimorphisms (see, for example, [ARS95, Lemma 5.1]). Our proof
follows similar arguments to the traditional case, which arise as a special case of the
following by setting add(X) = modI(P).

Proposition 5.10 Suppose that add(X) is closed under images in the sense that if
g ∶ R → R′ with R, R′ ∈ add(X), then g(R) ∈ add(X). Let f ∶ M[A,B] → M[C ,D] be an
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X-irreducible morphism. Then f is either a monomorphism or an epimorphism. In
particular, Hom(M[A,B] , M[C ,D]) ≃ K and either [A, B] ⊆ [C , D] or [C , D] ⊆ [A, B].

Proof Consider the factorization M[A,B]↠ f (M[A,B]) ↪ M[C ,D] of f. By assump-
tion, we have f (M[A,B]) ∈ add(X). If the quotient map M[A,B]↠ f (M[A,B]) is a
section, then f is a monomorphism. If it is not, the inclusion map f (M[A,B]) ↪ M[C ,D]
must be a retraction. In this case f, is an epimorphism.

If f is a monomorphism, then [A, B] ⊆ [C , D] since these are the supports of M[A,B]
and M[C ,D], respectively. Proposition 5.5 then implies that Hom(M[A,B] , M[C ,D]) ≃
K. The case where f is an epimorphism is completely analogous. ∎

Remark 5.11 We note that if we remove the assumption that add(X) is closed under
images, then there may be X-irreducible morphisms which are neither mono nor epi.
For example, in the setting of Example 5.4, take X to be the set consisting of M, N,
and the indecomposable projectives. Then any nonzero morphism M → N is an X-
irreducible morphism, but is neither mono nor epi.

6 Homological invariants in persistence theory

In this section, we use the spread modules discussed in Section 5 to describe examples
of homological invariants for persistence modules over some incidence algebra I(P).
More precisely, we first use the theory of projectivization from Section 4.3 to provide
sufficient conditions for a set X of spread modules to give rise to a homological
invariant. We then use these conditions to prove Theorem 1.2 as Theorem 6.2. In
particular, this theorem yields many concrete examples of homological invariants.
Finally, we discuss how our theoretical framework gives an algorithm to compute
them. Proposition 6.7 gives a way to optimize such an algorithm for certain choices of
X. It can also be used to extend the reach of this theory to posets that are not finite.

6.1 Homological invariants

We now turn our attention to showing that many interesting sets of spread modules
give rise to endomorphism algebras of finite global dimension, and thus homological
invariants. The basis for these results is the following well-known lemma. Note that
this lemma holds more generally, but we have stated it in the generality of the other
results of this section. Thus, for the duration of this section, X denotes an arbitrary set
of spread modules which contains the indecomposable projectives.

Lemma 6.1 If the transitive closure of the relation X → Y whenever
HomI(P)(X , Y) ≠ 0 is a partial order on X, then the endomorphism algebra
Γ = EndI(P)(T)op has finite global dimension.

Proof Let Q be the Gabriel quiver of Γ = EndI(P)(T)op . By the discussion following
Definition 4.15, there is a directed path from X to Y in Q if and only if there is a
sequence of nonzero morphisms

Y = Z0
f1�→ Z1

f2�→ ⋅ ⋅ ⋅ fm�→ Zm = X
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with each Z i ∈ X. That is, if ⪯ denotes the transitive closure of →, then there is a
directed path from X to Y if and only if Y ⪯ X. The assumption that ⪯ is a partial
order then implies that the quiver Q contains no oriented cycles. It is well-known
consequence that gl.dimΓ < ∞. ∎

We are now prepared to prove our first main theorem.
Theorem 6.2 (Theorem 1.2) Let P be a finite poset.
(1) Let X be a set of single-source spread modules over I(P) which contains the

indecomposable projectives. Then the quotient map K split
0 (I(P)) → K0(I(P),X)

is a homological invariant.
(2) Let X be a set of connected upset modules over I(P) which contains the inde-

composable projectives. Then the quotient map K split
0 (I(P)) → K0(I(P),X) is a

homological invariant.
Proof (1) Let Q be the poset of single-source spreads, ordered by inclusion. By
Lemma 5.9(1), the transitive closure of the relation M[a ,B] → M[c ,D] whenever
Hom(M[a ,B], M[c ,D]) ≠ 0 can be identified with a subposet of the lexicographical
product P⊗l ex Q. The result then follows from Lemma 6.1 and Proposition 4.17.

(2) Let U be the set of upsets of X ordered by inclusion. By Lemma 5.9(2), the tran-
sitive closure of the relation M[A,∞] → M[B ,∞] whenever Hom(M[A,∞] , M[B ,∞]) ≠ 0
can be identified with a subposet ofU. As with (1), the result then follows from Lemma
6.1 and Proposition 4.17. ∎
Remark 6.3 The special case of Theorem 6.2(2) where X is the set of all connected
upset modules can also be deduced from [Mil, Theorem 6.12]. Indeed, over a finite
poset, every (pfd) persistence module satisfies [Mil, Definition 2.11]. Thus, condition
(6) in [Mil, Theorem 6.12] says precisely that the X-dimension of I(P) is not properly
infinite.

In case X is the set of all single-source spread modules, we refer to the quotient
map Ksplit

0 (I(P)) → K0(I(P),X) as the single-source homological spread invariant.
We defer further discussion of this invariant, and others which fit into the framework
of Theorem 6.2(1), to Section 7.

It is an interesting problem to characterize precisely which sets of spread modules
yield homological invariants. Unfortunately, over arbitrary posets, we cannot hope for
an extension of Theorem 6.2 to arbitrary choices ofX, as the following example shows.
Example 6.4 Let P be the poset with Hasse diagram

6

4 5

1 2 3.

Note that the incidence algebra I(P) is in this case a path algebra of type Ã5. Now, set

X = {indecomposable projectives} ∪ {M[{1,3},{5,6}] , M[{1,2},{4,6}] , M[{2,3},{4,5}]}.
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The Gabriel quiver of EndI(P)(T)op is then

M[6,6] M[1,{4,6}] M[4,4]

M[{1,2},{4,6}]

M[{1,3},{5,6}] M[{2,3},{4,5}]

M[3,{5,6}] M[5,5] M[2,{4,5}] .

The oriented 3-cycle at the center of this quiver has the relation that the composition
of any two arrows is 0. Moreover, the three oriented pentagons (for example, from
M{[1,3},{5,6}] to M[6,6]) all have commutativity relations. We claim that the global
dimension of Γ is infinite. To see this, given a spread module M[A,B] ∈ X, we denote
by P[A,B] the projective Γ-module at the vertex labeled by M[A,B]. Now, let N be
the indecomposable Γ-module supported at the vertices labeled by M[{1,3},{5,6}],
M[3,{5,6}], and M[5,5]. Then N has a minimal projective resolution

⋅ ⋅ ⋅ → P[{1,2},{4,6}] → P[{1,3},{5,6}] → P[{2,3},{4,5}] → P[{1,2},{4,6}] → N → 0.

Indeed, the kernel of the first map is the Γ-module supported at the vertices labeled by
M[{1,2},{4,6}] , M[1,{4,6}], and M[6,6]. The symmetry of the quiver then makes it clear
that this will be the projective resolution of N.

In addition, we can see directly that theX-dimension of (modI(P),EX) is properly
infinite. Indeed, the following is readily seen to be a minimal X-resolution of the
spread representation M[1,6]:

⋅ ⋅ ⋅ → M[{1,2},{4,6}] → M[{1,3},{5,6}] → M[{2,3},{4,5}] → M[{1,2},{4,6}] → M[1,6] → 0.

Note that there are connected spread modules which are not included in set X in
Example 6.4. Thus, while Example 6.4 shows that we cannot fully generalize Theorem
1.2 to arbitrary sets of spread modules, one natural question is what happens when one
asks that X be the set of all spread modules.

Question 6.5 Let P be an arbitrary finite poset, and let X be the set of all connected
spread modules. Is the quotient map Ksplit

0 (I(P)) → K0(I(P),X) a homological
invariant?

Remark 6.6 After a preliminary version of this paper was posted on the arXiv,
Asashiba, Escolar, Nakashima, and Yoshiwaki provided a positive answer to Question
6.5 in [AENYa]. Their proof is based on a result of Iyama [Iya03] (see also [Rin10])
which shows that for any finite-dimensional algebra Λ and any generator-cogenerator
T ∈ modΛ, then there exists T ′ ∈ modΛ such that (i) EndΛ(T ⊕ T ′)op has finite global
dimension and (ii) every indecomposable direct summand of T ′ is a submodule of
an indecomposable direct summand of T. The positive answer to Question 6.5 then
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comes from showing that ifX is the set of all connected spreads, then every submodule
of an object in X lies in add(X) (see [AENYa, Lemma 4.4]).

6.2 Algorithms and extensions to infinite posets

Proposition 4.17 can be leveraged into an algorithm for computing the value of the
invariant [M]X when Γ has finite global dimension. Indeed, one can first compute a
minimal projective resolution of the Γ-module HomI(P)(T , M). By Proposition 4.19,
the class of M in the Grothendieck group can then be computed by alternating sum of
the terms of this resolution. The advantage of this approach is that one avoids needing
to compute an X-resolution directly in favor of the more straightforward process of
computing a projective resolution.

Another way to help compute approximations more effectively is to reduce the size
of X in function of the module we are approximating. In the following proposition,
we show how this can be done when all quotients of the modules of X lie in add(X).
We emphasize that this is different than saying add(X) is closed under quotients. For
example, if we takeX to be the set of all single-source spread modules, then all nonzero
quotients of the modules in X will lie in X (hence also in add(X)) by Proposition 5.2.
On the other hand, the category add(X) will not be closed under arbitrary quotients,
as this would force add(X) = modI(P). Indeed, every module is a quotient of its
projective cover, which will lie in add(X).

Proposition 6.7 Let M be an arbitrary I(P)-module. Let X a set of spread modules
and suppose that every quotient of a module in X lies in add(X). Denote Y = {R ∈ X ∣
supp(R) ⊆ supp(M)}. Then every X-approximation of M is also a Y-approximation. In
particular, the minimal X-approximation of M is exactly the minimal Y-approximation
of M.

Proof It suffices to show that all morphisms from add(X) to M factor through
morphisms from add(Y). Let R ∈ add(X), that is, R = R1 ⊕ ⋅ ⋅ ⋅ ⊕ Rn for some R i ∈ X,
and take some morphism f ∶ R → M. Then f admits a factorization of the form

R →
n
⊕
i=1

f (R i) →
n
∑
i=1

f (R i) = f (R) ↪ M .

As each f (R i) is a quotient of a module in X and satisfies supp( f (R i)) ⊆ supp(M),
this shows that f factors through add(Y). ∎

Remark 6.8 The previous proposition indicates that much of the theory introduced
in this paper may be applicable to finite-dimensional representations of locally finite
posets that are not necessarily finite. Note that here we are using finite-dimensional
to mean that the total dimension is finite, not to mean pfd. In particular, such
representations have finite support. Given an infinite set of finite-dimensional spread
modules X, we can then use Proposition 6.7 to form X-approximations of arbitrary
finite-dimensional representations. On the other hand, the indecomposable projective
representations will generally not be finite-dimensional, and if X is infinite, then the
module TX = ⊕R∈X R will not be finite-dimensional either. Thus, the extent to which
the rest of the paper applies to locally finite posets requires further investigation.
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7 Examples and comparison to other invariants

In this section, we investigate the relation between our homological invariants and
other invariants in persistence theory. It was already shown in Section 3 that the
dimension vector is a homological invariant relative to the set of projective modules
(see Proposition 4.13). We now investigate the barcode, the rank invariant, the gener-
alized rank invariant, the signed barcode, and the generalized persistence diagrams of
[KM21].

7.1 The barcode

In this section, we assume that the Hasse quiver of P = (P, ⪯) is Dynkin type A. More
precisely, as a set we identify P with {1, 2, . . . , ∣P∣}. We denote by ⪯ the partial order
defining P and by ≤ the standard linear order on P = {1, 2, . . . , ∣P∣}. The assumption
that the Hasse quiver of P is Dynkin type A then amounts to the assumption that all
cover relations in P are either of the form i ⪯ i + 1 or i + 1 ⪯ i.

Under this setup, it is well known that the indecomposable I(P)-modules are
precisely the connected spread modules. Moreover, the connected spreads under
the order ⪯ correspond directly to the intervals under the order ≤. For example, if
the quiver of P is 1 → 2 ← 3, it is common to identify the spread module M[{1,3},2]

with the interval [1, 3]. More generally, let F ≃ Z
(∣P∣2 ) be the free abelian group

generated by the closed intervals of (P, ≤). Then the identification between inde-
composable I(P)-modules and closed intervals of (P, ≤) induces an isomorphism
bar ∶ Ksplit

0 (I(P)) → F. Given a persistence module M ∈ modI(P), the data bar[M]
are often referred to as the barcode of M.

Proposition 7.1 Suppose that the Hasse quiver of P is Dynkin type A. Then the barcode
bar ∶ Ksplit

0 → Z
(∣P∣2 ) is a homological invariant.

Proof Let X be the set of all connected spread modules. By the above discussion,
X is also the set of all indecomposable I(P)-modules. This means the quotient map
Ksplit

0 (I(P)) → K0(I(P),X) is an isomorphism, and is in particular equivalent to bar.
Thus, it remains only to show that the X-dimension of I(P) is finite. To see this, let
TX = ⊕R∈X R. As X contains all indecomposable modules, EndI(P)(TX)op is the so-
called Auslander algebra of I(P), which is known to have global dimension 2. The
result thus follows immediately from Proposition 4.19. ∎

7.2 The rank invariant

We return to P denoting an arbitrary finite poset.
Denote by F the free abelian group generated by the (closed) intervals4 of P. Then

the rank invariant (equation (1.1)) can be considered as a map p ∶ Ksplit
0 (I(P)) → F.

It is shown in [BOO, Theorem 2.5] that p is surjective, and is therefore an invariant
in the sense of Definition 4.10. In order to show that this invariant is homological, we
recall a special collection of single-source spreads following [BOO]. We append an

4Recall that in this paper, intervals are always of the form [a, b] for some a, b ∈ P.
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extra element ∞ to P, and we set a < ∞ for all a ∈ P. For any a < b ∈ P ∪ {∞}, the
persistence module N⟨a ,b⟨, defined by

N⟨a ,b⟨(c) =
⎧⎪⎪
⎨
⎪⎪⎩

K , a ≤ c and b /≤ c,
0, otherwise,

N⟨a ,b⟨(c, d) =
⎧⎪⎪
⎨
⎪⎪⎩

1K , N⟨a ,b⟨(c) = K = N⟨a ,b⟨(d)
0, otherwise

is called the hook module from a to b. Note that, if b ≠ ∞, then N⟨a ,b⟨ is precisely the
quotient of the projective at a by the projective at b. Likewise, if b = ∞, then N⟨a ,b⟨
is precisely the projective at a. In particular, hook modules are single source spread
modules by Proposition 5.2.

One of the main results of [BOO], specialized to finite posets and restated in the
language of this paper, is the following.

Theorem 7.2 [BOO, Theorems 4.4, 4.8, and 4.10] Let P be a finite poset, and let H be
the set of hook modules inmodI(P). Then the rank invariant is homological with respect
to H.

For the convenience of the reader, we give a proof of this result using the language
of our framework.

Proof We first note that the quotient map Ksplit
0 (I(P)) → K0(I(P),H) is homo-

logical as a consequence of Theorem 1.2(1) and the fact that every hook module
is also a single-source spread module. In particular, this means that this quo-
tient map is equivalent to the invariant p ∶ Ksplit

0 (I(P)) → Z
∣H∣ given by p(M) =

(dim Hom(M , H))H∈H. It therefore suffices to show that the rank invariant is equiv-
alent to p.

To see this, first let N⟨a ,b⟨ ∈H with b ≠ ∞, and let v be a nonzero vector in
N⟨a ,b⟨(a). Then, for any M ∈ modI(P), the morphisms from N⟨a ,b⟨ to M can be
identified with the vectors in ker M(a, b). Indeed, for w ∈ M(a), there is a morphism
f ∶ N⟨a ,b⟨ → M with fa(v) = w if and only if M(a, b)(w) = 0. As N⟨a ,∞⟨ = Pa , this
means the following all hold:

rk(M(a, b)) = dim Hom(N⟨a ,∞⟨ , M) − dim Hom(N⟨a ,b⟨ , M),
dim Hom(N⟨a ,b⟨ , M) = rk(M(a, a)) − rk(M(a, b)),

rk(M(a, a)) = dim Hom(N⟨a ,∞⟨ , M).

This shows that rk(M) is determined by p(M) and vice versa. Thus, rk and p are
equivalent invariants. ∎
Remark 7.3 One consequence of this result, which is made explicit as part of
[BOO, Theorem 4.4], is that the exact sequences 0 → L → M → N → 0 in EH are
characterized by the property that rk(M) = rk(L) + rk(N). Said differently, the set
of exact sequences on which rk(−) is additive form an exact structure, and this exact
structure is precisely EH.

We are now ready to prove our second main theorem, which shows that the single-
source spread invariant is finer than the rank invariant.

Theorem 7.4 (Theorem 1.3) Let P be a finite poset. Then the single-source homological
spread invariant is finer than the rank invariant onmodI(P). Moreover, these invariants
are equivalent if and only if for all a ∈ P the upset [a,∞] is totally ordered.
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Proof Let X be the set of single-source spread modules. Since X contains all of the
hook modules in modI(P), it follows immediately from Lemma 4.11 and Theorem 7.2
that the single-source spread invariant is finer than the rank invariant.

Now, suppose that for all a ∈ P, the upset [a,∞] is totally ordered. We claim that
the interval modules, hook modules, and single-source spread modules all coincide.
Indeed, suppose [a, B] is a single-source spread. Then [a, B] ⊆ [a,∞] is totally
ordered, and so B = {b} for some b ∈ P. In particular, [a, B] = [a, b] is an interval.
Now, if [a, b] = [a,∞], then M[a ,b] = Pa is a hook module. Otherwise, the setS = {x ∈
P ∣ b < x} is nonempty and totally ordered. We can then write M[a ,b] = N⟨a ,min(S)⟨,
which proves the claim. It then follows from Theorem 7.2 that the single-source spread
invariant and the rank invariant are equivalent.

Finally, suppose that there exists a ∈ P such that the upset Qa ∶= {x ∈ P ∣ a ≤ x} is
not totally ordered. Choose two elements b, c ∈ Qa which are incomparable. Without
loss of generality, we can assume that a ≤ b and a ≤ c are both cover relations; that
is, we can suppose that [a, {b, c}] = {a, b, c}. Now, denote M ∶= M[a ,b] ⊕ M[a ,c] and
M′ ∶= M[a ,a] ⊕ M[a ,{b ,c}]. As M and M′ are not isomorphic and are both direct sums
of single-source spread modules, we have [M]X ≠ [M′]X. On the other hand, we have
rk(M) = rk(M′). This concludes the proof. ∎

Remark 7.5 The hypotheses of Theorem 1.3 include the case where P is totally
ordered, but are slightly more general. Indeed, we only require that for every a ∈ P, the
upset [a,∞] is totally ordered. Such subsets are sometimes called “principle upsets.”
For example, consider the poset with Hasse quiver

1 2

3 4 5.

The principle upsets of this poset are {1, 2, 4, 5}, {2, 4, 5}, {3, 4, 5}, {4, 5}, and {5},
all of which are totally ordered. Thus, the rank invariant and the homological spread
invariant coincide for this particular poset.

In the spirit of the counterexample used to prove Theorem 7.4, we consider the
following.

Example 7.6 Let P be a finite poset which contains a unique maximal element.
Let H be the set of hook modules, and let I be the set of interval modules. Since
P contains a unique maximal element, we note that I contains all of the indecom-
posable projectives. Since every interval is a single-source spread, the quotient map
Ksplit

0 (I(P)) → K0(I(P), I) is therefore a homological invariant by Theorem 6.2(1).
We also know that the quotient map Ksplit

0 (I(P)) → K0(I(P),H) is equivalent to the
rank invariant and is also homological by Theorem 7.2.

These two invariants have the same rank (given by the number of pairs a ≤ b ∈ P),
but are not equivalent. For example, let P = {(0, 0), (0, 1), (1, 0), (1, 1)} be the 2 × 2
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grid. We consider the modules

K 0 K 0

K2 K K2 K .

M M′

[1 0]
[0 1]

[1 0]
[1 0]

We note that dim(M) = dim(M′) and that rk(M) = rk(M′). On the other hand, we
see that M is a direct sum of interval modules, whereas M′ has an I-resolution

0 → M[(1,1),(1,1)] → M[(0,0),(1,1)] ⊕ M[(0,0),(0,0)] → M′ → 0.

Since this resolution has a nonzero term in degree 1, this means that [M]I ≠ [M′]I.

We conclude this section with a detailed explanation of why the signed barcode of
[BOO] and the homological invariant with respect to I are not equivalent.

Remark 7.7 Let H and I be as in Example 7.6. We denote by p ∶ Ksplit
0 (I(P)) →

K0(I(P),H) and q ∶ Ksplit
0 (I(P)) → K0(I(P), I) the two quotient maps. Now, recall

that the signed barcode of a persistence module M is obtained in [BOO] by applying
Möbius inversion to the classical rank invariant. The result is an invariant which is
contained in K0(I(P), I) and is equivalent to p. More explicitly, there is an isomor-
phism σ ∶ K0(I(P),H) → K0(I(P), I) such that σ ○ p(M) is the signed barcode of M.
Asking whether the signed barcode and the homological invariant with respect to I are
equivalent is then the same as asking whether σ ○ p = q. However, if this equality were
to hold, then we would have that p and q are equivalent, contradicting Example 7.6.
In other words, there exists a persistence module M such that [M]I and the signed
barcode of M are not equivalent.

7.3 Generalized rank invariants

We conclude by discussing the generalizations of the rank invariant appearing in
[AENYb, BOO, KM21]. Again P denotes an arbitrary finite poset in this section.
Given a set R of connected spread modules, we recall the “R-rank invariant” rk(−,R)
from Section 3. We also recall that a “generalized persistence diagram” δ(−,R) can be
obtained by applying Möbius inversion to the R-rank invariant. We emphasize that
while δ(−,R) and rk(−,R) are equivalent as invariants, δ(−,R) has the advantage of
yielding a “signed approximation” of a given persistence module by the spreads in R.

To understand the connection between theR-rank invariants, dim-hom invariants,
and homological invariants, we first consider the following example.

Proposition 7.8 LetP = {1, 2} × {1, 2, 3} be the 2 × 3 grid. LetR be the set of connected
spreads in P, and let X be the set of connected spread modules over I(P). Then the
generalized rank invariant rk(−,R) is not a dim-hom invariant relative to X.
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Proof Let M be the following module:

K K 0

K K2 K .

1

[1
1
]

1

[0 1]

[1 0]

Over this poset, indecomposable modules are uniquely determined by their dimen-

sion vector. For example, we identify M with the vector [1 1 0
1 2 1].

Seeking a contradiction, we compute the “generalized persistence diagram”
obtained by applying Möbius inversion to the invariant rk(M ,R). Following [KM21,
Proposition 3.19] or [AENYb, Definition 5.9], this yields

δ(M ,R) = [1 0 0
1 1 1] + [

1 1 0
1 1 0] + [

0 0 0
0 1 0] − [

1 0 0
1 1 0] .

Now, denote

N ∶= M ⊕ [1 0 0
1 1 0] , L ∶= [1 0 0

1 1 1] ⊕ [1 1 0
1 1 0] ⊕ [0 0 0

0 1 0] .

Recalling that δ(X ,R) = X whenever X is a direct sum of spread modules (see [KM21,
Theorem 3.14]), we conclude that δ(N ,R) = δ(L,R). On the other hand, denote X =

[1 0 0
1 1 0] and observe that

dim HomI(P)(X , N) = 1, dim HomI(P)(X , L) = 0.

Thus, the dim-hom invariant induced by X can distinguish N and L, whereas the
invariant δ(−,R) cannot. Since the latter is equivalent to the generalized rank invari-
ant rk(−,R), this proves the result. ∎

Remark 7.9 Since this example is small, it is a coincidence that the signed approx-
imation δ(M ,R) preserves the values of dim Hom(−, M[A,B]) for [A, B] ∈ R. If one

were to replace M with [1 2 1
0 1 1], the result would be an approximation which no

longer preserves these values.

As an immediate consequence, we obtain the following.

Corollary 7.10 Let P be a poset in which the 2 × 3 grid is embedded. Let R be the set
of connected spreads in P, and let X be the set of connected spread modules over I(P).
Then the generalized rank invariant rk(−,R) is not a dim-hom invariant relative to X.

Proof All of the modules in the proof of Proposition 7.8 embed into persistence mod-
ules over the larger poset, and the computation is preserved by this embedding. ∎

To summarize, let P,R, and X be as in Corollary 7.10. We have shown that the
generalized rank invariant rk(−,R), and thus also the signed barcode δ(−,R), is not
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a dim-hom invariant relative toX. This choice ofX is particularly natural (see Question
6.5). Indeed, if the quotient map p ∶ Ksplit

0 (I(P)) → K0(I(P),X) is a homological
invariant, then both p and rk(−,R) assign a persistence module M to a “signed
approximation” of M by the set of spread modules. Corollary 7.10 would then imply
that these approximations do not coincide, even if one allows for a change of basis.

While restricting X to be composed of only spread modules is a natural choice,
it remains an open question whether the generalized rank invariant is either homo-
logical or a dim-hom invariant relative to some other set Y. We have shown with a
brute-force calculation that this is not the case when P is the 2 × 3 grid, which leads
to the following conjecture.

Conjecture 7.11 Let P be a finite poset in which the 2 × 3 grid is embedded, and let R
be the set of connected spreads in P. Then the generalized rank invariant rk(−,R) is
neither a homological invariant nor a dim-hom invariant (relative to any Y).
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