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Abstract

Let η = (η1, . . . , ηn) be a positive random vector. If its coordinates ηi and ηj are
exchangeable, i.e. the distribution of η is invariant with respect to the swap πij of its
ith and j th coordinates, then E f (η) = E f (πij η) for all integrable functions f . In
this paper we study integrable random vectors that satisfy this identity for a particular
family of functions f , namely those which can be written as the positive part of the
scalar product 〈u, η〉 with varying weights u. In finance such functions represent payoffs
from exchange options with η being the random part of price changes, while from the
geometric point of view they determine the support function of the so-called zonoid
of η. If the expected values of such payoffs are πij -invariant, we say that η is ij -swap-
invariant. A full characterisation of the swap-invariance property and its relationship to
the symmetries of expected payoffs of basket options are obtained. The first of these
results relies on a characterisation theorem for integrable positive random vectors with
equal zonoids. Particular attention is devoted to the case of asset prices driven by Lévy
processes. Based on this, concrete semi-static hedging techniques for multi-asset barrier
options, such as weighted barrier swap options, weighted barrier quanto-swap options,
or certain weighted barrier spread options, are suggested.
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1. Introduction

The classic univariate European put–call symmetry property, also known as Bates’ rule
from [7], relates certain calls and puts in the same market; see, e.g. [6], [11], [22], and, more
recently, [14] and [39]. This symmetry property of an integrable random variable η can be
expressed using expected payoffs from plain vanilla options as

E(Fη − k)+ = E(F − kη)+ (1.1)

for every strike k ≥ 0, with F being the forward price, so that the terminal asset price in
the one-period setting is Fη (in order that the discounted expectations can be interpreted as
arbitrage-free prices, they have to be taken with respect to a martingale measure); see [14]
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Exchangeability-type properties of asset prices 667

and [30]. In cases with vanishing carrying costs the put–call symmetry makes it possible to
replace at certain times a call option with equally valued puts in order to design so-called semi-
static hedges for barrier options. In cases of nonvanishing carrying costs semi-static hedges can
be constructed on the basis of a very closely related property, called quasi-self-duality, briefly
discussed in Section 6; see also [14] and [30].

Following Carr and Lee [14], semi-static hedging is the replication of contracts by trading
European-style claims no more than twice after inception. In the single-asset case such semi-
static hedging strategies have been analysed extensively in recent years; see, e.g. [2], [3], [9],
[12], [16], and, more recently, [14].

Interestingly, the duality principle in option pricing also traces some of its roots to the
same papers as put–call symmetry results; see, e.g. [6], [7], [11], and [24]. The power
of duality lies in the possibility to reduce the complexity of valuation problems by relating
them to easier problems in the dual markets. For a presentation of this principle in a general
univariate exponential semimartingale setting, see [17]; for bivariate Lévy markets, see [20]; for
multivariate semi-martingale extensions (with various dual markets), see [18]. The symmetry
property then appears if the original and certain dual markets coincide, motivating the name
self-dual chosen in [30] for distributions that coincide with their duals.

In the multi-asset setting η = (η1, . . . , ηn) is an n-dimensional random vector with positive
coordinates such that the price ST i of the ith asset at time T > 0 equals Fiηi , where, in a
risk-neutral world, Fi stands for the corresponding theoretical forward price and ηi denotes the
random part of the price change of the ith asset. We define

ST = (ST 1, . . . , ST n) = (F1η1, . . . , Fnηn) = F ◦ η.

Furthermore, assume that Q is a probability measure that makes η integrable. For later
applications to barrier options, we also assume that Q is a martingale measure that is consistent
with market option prices. The expectation with respect to Q is denoted by E. For further ease of
notation, we omit the time subscript T on η and, for the moment, incorporate the forward prices
Fi, i = 1, . . . , n, into the payoff functions. In our context payoff functions are measurable
functions f : (0, ∞)n �→ R+.

Molchanov and Schmutz [30] studied symmetries of expected payoffs from European basket
options defined as

fb(u0, u1, . . . , un) =
( n∑

l=1

ulηl + u0

)
+
, u0, u1, . . . , un ∈ R.

When writing the ‘weights’ of a basket option together with its strike as a vector, we number
the coordinates of the obtained (n + 1)-dimensional vectors as 0, 1, . . . , n and denote these
vectors as (u0, u) for u0 ∈ R and u ∈ R

n or as (u0, u1, . . . , un) = (u0, u) ∈ R
n+1. In the

following we consider vectors as rows or columns, depending on the situation.
Since fb(u0, u) can be understood as a plain vanilla option on the scalar product 〈u, η〉 with

strike u0, the corresponding expected payoffs uniquely determine the distribution of 〈u, η〉
(see, e.g. [10] and [34]), and thereupon also determine the distribution of η as the following
result (which holds also for not necessarily positive η) shows. Note that the expected values
of fb(u0, u) considered as a function of (u0, u) constitute the support function of an (n + 1)-
dimensional convex body called the lift zonoid of η; see [31, Section 2.2].

Theorem 1.1. (See, e.g. [30] and [31].) The expected values E fb(u0, u1, . . . , un) for all
u0 ∈ R and u ∈ R

n uniquely determine the distribution of an integrable random vector η.
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668 I. MOLCHANOV AND M. SCHMUTZ

Although it is possible to weaken the statement of Theorem 1.1 by considering only one
fixed u0 
= 0, the uniqueness does not hold any more if u0 = 0, i.e. for the payoffs from swap
(or exchange) options defined as

f o
b (u) =

( n∑
l=1

ulηl

)
+

= (〈u, η〉)+, u ∈ R
n. (1.2)

The random vector η with positive coordinates is called self-dual with respect to the ith
numeraire if η is integrable and E fb(u0, u1, . . . , un) as a function of (u0, u) is invariant with
respect to the permutation of u0 and the ith coordinate of u; see [30, Section 2]. A jointly
self-dual η satisfies this property for all numeraires i = 1, . . . , n, so that the expected payoff
E fb(u0, u1, . . . , un) becomes symmetric in all its n+1 arguments. This joint self-duality prop-
erty implies that η is exchangeable, i.e. (η1, . . . , ηn) coincides in distribution with (ηl1 , . . . , ηln)

for each permutation of its components. The exchangeability property is well studied in
probability theory; see, e.g. [1] or [26] and the literature cited therein. It is also known from
[30, Section 3] that the exchangeability property is strictly weaker than the joint self-duality.

While the self-duality property is crucial to switch between put and call options as in (1.1),
hedges for some other derivatives do not rely on the self-duality assumption. In particular, this
relates to derivatives with the payoff function (1.2). For example, we can require that

E(u1η1 + u2η2)+ = E(u1η2 + u2η1)+ (1.3)

for every (u1, u2) ∈ R
2 in the two-asset case. This swap-invariance property is weaker than

the exchangeability of η, e.g. it will be shown later that in the risk-neutral setting each two-
dimensional log-normally distributed random vector satisfies (1.3), no matter that its coordinates
are not identically distributed and so are not exchangeable unless the two assets share the same
volatility. This property helps to design semi-static hedges for certain barrier options, e.g. the
knock-out contract with payoff defined by

(aST 1 − bST 2)+1{cSt1>St2 for all t∈[0,T ]},

where 1{·} denotes the indicator function, and St1 and St2, t ∈ [0, T ], are two price processes
(with equal carrying costs); for details, see Section 7, in particular Example 7.2.

We proceed with a concise discussion of the ij -exchangeability property in Section 2. In
Section 3 we characterise the weaker swap-invariance property and discuss its relationships to
self-duality. Weighted variants of the swap invariance are considered in Section 4. In Section 5
we analyse log-infinitely divisible distributions exhibiting the swap-invariance property. The
necessity to handle unequal carrying costs in important applications motivates further weaken-
ing of the swap-invariance property in Section 6. Finally, in Section 7 we present applications
for creating semi-static hedges for certain multi-asset derivatives with knocking conditions. The
development of semi-static replication strategies of multi-asset barrier options (see Section 7)
and possibly also more complicated path-dependent contracts is probably the most important
application of exchangeability-type properties in finance. The importance of developing robust
hedging strategies for multi-asset path-dependent financial derivatives is particularly stressed
by Carr and Laurence [13]. Other obvious applications of the described symmetry results may
be found in the area of validating models or analysing market data, e.g. extending the univariate
case considered in [7] and [21].

https://doi.org/10.1239/aap/1316792665 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792665


Exchangeability-type properties of asset prices 669

2. Exchangeable random vectors

For each i, j ∈ {1, . . . , n}, i 
= j , define a linear mapping on R
n by

πij (x) = (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn),

i.e. πij transposes (swaps) the ith and j th coordinates of x. If the distribution of a random
vector η in R

n is πij -invariant, we say that η is ij -exchangeable. The following result follows
directly from Theorem 1.1.

Corollary 2.1. An integrable random vector η is ij -exchangeable if and only if E fb(u0, u) is
invariant with respect to permutation of the ith and j th coordinates of u for all u ∈ R

n and
any fixed u0 
= 0.

In view of financial applications, assume that all coordinates of η are positive, so that η = eξ

for a random vector ξ = (ξ1, . . . , ξn), where the exponential function is applied coordinatewise.
Because of the widespread use of Lévy models for derivative pricing, we characterise infinitely
divisible random vectors ξ = log η for ij -exchangeable η. In the sequel we denote the Euclidean
norm by ‖ · ‖, the imaginary unit

√−1 by i, and use the following formulation of the Lévy–
Khintchine formula for the characteristic function of ξ (see [35, Chapter 2]):

ϕξ (u) = E ei〈u,ξ〉

= exp

{
i〈γ, u〉 − 1

2
〈u, Au〉 +

∫
Rn

(ei〈u,x〉 − 1 − i〈u, x〉1{‖x‖≤1}) dν(x)

}
, u ∈ R

n.

Here A is a symmetric nonnegative definite n × n matrix, γ ∈ R
n is a constant vector, and ν is

a Lévy measure on R
n, namely ν({0}) = 0 and

∫
Rn

min(‖x‖2, 1) dν(x) < ∞. (2.1)

Since the ij -exchangeability of ξ is equivalent to the πij -invariance of its characteristic
function, we immediately obtain the following result.

Proposition 2.1. Let η = eξ with ξ being infinitely divisible. Then η is ij -exchangeable if and
only if the generating triplet (A, ν, γ ) of ξ satisfies the following conditions.

(a) The matrix A = (alm)nlm=1 satisfies aii = ajj and ali = alj for all l = 1, . . . , n, l 
= i, j .

(b) The Lévy measure is πij -invariant, i.e. ν(B) = ν(πijB) for all Borel B.

(c) The ith and j th coordinates of γ coincide.

Example 2.1. (Log-normal distribution, Black–Scholes setting.) Assume that η = eξ is log-
normal with ξ having expectation µ and covariance matrix A. Then η is ij -exchangeable if and
only if A satisfies aii = ajj and ali = alj for l = 1, . . . , n, l 
= i, j (with the remaining alm

arbitrarily chosen such that A is nonnegative definite), and µi = µj . The latter automatically
holds if all components of η are related to a martingale measure, i.e. µ = − 1

2 (a11, . . . , ann).
In bivariate risk-neutral cases the only restriction is the equality of the variances, while the
correlation coefficient between ξ1 and ξ2 can be arbitrary.
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3. Swap invariance

Now we consider the symmetry property for the payoff function (1.2).

Definition 3.1. An integrable random vector η with positive components is said to be ij -swap-
invariant if the expected value E f o

b (u) is invariant with respect to swapping the ith and j th
coordinates of any u ∈ R

n.

This property yields E ηi = E ηj , which is clearly weaker than the ij -exchangeability of η.
In the following we often need to change the probability measure Q. Let η = eξ , and let ζ

be a random variable that together with ξ builds the (n + 1)-dimensional random vector (ξ, ζ ).
If e〈w,(ξ,ζ )〉 with w ∈ R

n+1 is integrable, define Qw by

dQw

dQ
= e〈w,(ξ,ζ )〉

E e〈w,(ξ,ζ )〉 , (3.1)

i.e. Qw is the Esscher transform of Q with parameter w. In the case where w ∈ R
n, the same

notation applies with w extended by a zero component. If w = ej is the j th standard basis
vector in R

n+1 then we write Qj for short. The expectation with respect to changed measures
is indicated by the corresponding subscript.

The following result shows that ij -swap-invariance is related to the self-duality in a lower-
dimensional space. Define the functions κ̃j : (0, ∞)n �→ (0, ∞)n−1 acting as

κ̃j (x) =
(

x1

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

)
, j = 1, . . . , n.

Theorem 3.1. Let η be integrable and i, j ∈ {1, . . . , n}, i < j . Then the following two
statements are equivalent.

(a) The n-dimensional random vector η is ij -swap-invariant under Q.

(b) The (n−1)-dimensional random vector κ̃j (η) is self-dual with respect to the ith numeraire
under the probability measure Qj .

Proof. The change-of-measure formula yields, for all u ∈ R
n,

EQj

( n∑
l=1, l 
=j

ul

ηl

ηj

+ uj

)
+

= (E ηj )
−1 E

( n∑
l=1

ulηl

)
+
,

EQj

( n∑
l=1, l 
=i,j

ul

ηl

ηj

+ ui + uj

ηi

ηj

)
+

= (E ηj )
−1 E

( n∑
l=1, l 
=i,j

ulηl + uiηj + ujηi

)
+
.

The equality of the right-hand sides characterises the ij -swap-invariance of η, while the equality
of the left-hand sides means the self-duality of κ̃j (η) with respect to the ith numeraire under Qj .

Remark 3.1. In view of Corollary 2.1 we can show by a similar argument that if n ≥ 3 and
i, j < k (for notational convenience), then Theorem 3.1(a) holds if and only if κ̃k(η) is ij -
exchangeable under Qk . In the risk-neutral foreign exchange setting Qk acquires an immediate
interpretation in the market where trades take place in the currency number k.
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Example 3.1. (Bivariate swap invariance and symmetry.) Let η be a bivariate swap-invariant
random vector with E η1 = 1. Then κ̃1(η) = η2/η1 is denoted by η̃ and

EQ1(u1η̃ + u2)+ = E(u1η2 + u2η1)+ = E(u1η1 + u2η2)+ = EQ1(u1 + u2η̃)+

for all u1, u2 ∈ R. Hence, (η1, η2) is swap invariant under Q if and only if η̃ satisfies the classical
univariate European put–call symmetry under the ‘dual-market’ measure Q1. In particular, this
means that bivariate swap invariance is not more restrictive than the very well-known and often
applied European put–call symmetry. For the analysis and characterisation of even weaker
properties, we refer the reader to Section 6.

The expected payoff E f o
b (u) as a function of u becomes the support function of an n-dimen-

sional convex body called the zonoid of η; see, e.g. [31, Section 2.1] for a detailed discussion
about these well-known convex bodies in relation to random vectors. In particular, it is well
known that zonoids (unlike lift zonoids from Theorem 1.1) do not uniquely characterise the
distribution of η.

The ij -swap-invariance of η means that its zonoid is symmetric with respect to the plane
{ui = uj }, or, equivalently, that η and πij (η) share the same zonoid. In view of this, we first
characterise general positive integrable random vectors with equal zonoids. In the following
we let 1 = (1, . . . , 1) in the space of an appropriate dimension.

Theorem 3.2. Let η = eξ and η∗ = eξ∗
be integrable random vectors. Then

E(〈u, η〉)+ = E(〈u, η∗〉)+ for all u ∈ R
n (3.2)

if and only if
ϕξ (u − iw) = ϕξ∗(u − iw) (3.3)

for all u ∈ H, where

H =
{
u ∈ R

n :
n∑

k=1

uk = 0

}
,

and at least one (and then necessarily for all) w such that
∑

wi = 1 and both sides of (3.3)
are finite.

Proof. Necessity. Equality (3.2) implies that E ηi = E η∗
i for all i. Change the measure

Q to Q1 and Q1∗ using η1 and η∗
1, respectively, as the density normalised by the expectation.

By Theorem 1.1, the distribution of κ̃1(η) under Q1 coincides with the distribution of κ̃1(η
∗)

under Q1∗. Assume that (3.3) is finite, i.e. E e〈w,ξ〉 < ∞ for some w ∈ R
n with

∑
wi = 1.

Then
f (ξ) = exp{i〈(u2, . . . , un) − i(w2, . . . , wn), (ξ2 − ξ1, . . . , ξn − ξ1)〉}

is integrable under Q1, so that f (ξ∗) is integrable under Q1∗ and both expectations are equal. By
changing the measures back and using u = (− ∑n

i=2 ui, u2, . . . , un) ∈ H and
∑n

k=1 wk = 1,
this implies (3.3).

Sufficiency. If the both sides of (3.3) are finite and equal for some w, then

E e〈w,ξ〉 = E e〈w,ξ∗〉 = c.

Thus, the characteristic functions (restricted on H) of ξ under the changed measure Qw and of ξ∗
under Qw∗ coincide, where the change of measure is done with the normalised densities e〈w,ξ〉
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and e〈w,ξ∗〉, respectively. Therefore, ξ − 1 ξ1 under Qw is identically distributed as ξ∗ − 1 ξ∗
1

under Qw∗. Using the fact that
∑n

k=1 wk = 1 and changing measures, we obtain

E(〈u, η〉)+ = c EQw(〈u, eξ e−ξ1〉+eξ1 e−〈w,ξ〉) = c EQw(〈u, eξ−1 ξ1〉+e−〈w,ξ−1 ξ1〉),
E(〈u, η∗〉)+ = c EQw∗(〈u, eξ∗−1 ξ∗

1 〉+e−〈w,ξ∗−1 ξ∗
1 〉).

Since ξ − 1 ξ1 under Qw shares the distribution with ξ∗ − 1 ξ∗
1 under Qw∗, the right-hand and,

thus, also the left-hand sides coincide, i.e. we arrive at (3.2). It follows from the necessity
that (3.3) holds for all w such that the characteristic function is finite and

∑
wk = 1.

Remark 3.2. By the generalised Hölder inequality, it follows from the integrability of η and
η∗ in Theorem 3.2 that the characteristic functions in (3.3) are finite for all w from the unit
simplex

	 =
{
x = (x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n,

∑
xi = 1

}
.

Thus, the set of all w ∈ R
n such that e〈w,ξ〉 is integrable contains the unit simplex 	 if eξ is

integrable itself.

Let Hβ denote the family of nonnegative, positive β homogeneous functions g : (0, ∞)n �→
R+, i.e. g(cx) = cβg(x) for all c > 0 and x ∈ (0, ∞)n. Note that f o

b ∈ H1. Other examples
of payoff functions of class Hβ can be found in the literature about the duality principle; see,
e.g. [18] and [23]. The following result says that the equality of expected payoffs from exchange
options implies the equality of expected payoffs from the whole family H1, despite the fact
that the asset prices do not necessarily coincide in distribution.

Theorem 3.3. If integrable random vectors η = eξ and η∗ = eξ∗
satisfy (3.2) (i.e. share the

same zonoid), then E g(η) = E g(η∗) for all g ∈ H1.

Proof. By choosing u = e1 in (3.2) we arrive at E η1 = E η∗
1. Hence, (3.2) is equivalent to

EQ1

(
u1 +

n∑
i=2

ui

ηi

η1

)
+

= EQ1∗

(
u1 +

n∑
i=2

ui

η∗
i

η∗
1

)
+

for all u ∈ R
n. By Theorem 1.1, the distribution of κ̃1(η) under Q1 coincides with the

distribution of κ̃1(η
∗) under Q1∗ so that

E g(η) = c EQ1 g((1, κ̃1(η))) = c EQ1∗ g((1, κ̃1(η
∗))) = E g(η∗)

for all g ∈ H1.

It is possible to generalise this characterisation for functions from the family Hβ .

Theorem 3.4. Assume that random vectors η = eβξ and η∗ = eβξ∗
are integrable for some

β ∈ R. Then E g(η) = E g(η∗) for all g ∈ Hβ if and only if

ϕξ (u − iw) = ϕξ∗(u − iw) (3.4)

for all u ∈ H and at least one (and then necessarily for all) w ∈ R
n such that

∑
wk = β and

the characteristic functions in (3.4) exist.
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Proof. Assume first that β 
= 0. If g ∈ Hβ with β 
= 0, then g1(x) = g(x1/β), with
the power operation applied coordinatewise being 1-homogeneous, and Theorem 3.3 applies.
Thus, E(g(η)) = E(g(η∗)) for all g ∈ Hβ if and only if (3.3) holds for the characteristic
functions of βξ and βξ∗ (corresponding to ηβ and (η∗)β ) for all u ∈ H and at least one (and
then necessarily for all) w with

∑
wk = 1. Rewriting (3.3) for the characteristic functions of

ξ and ξ∗ yields (3.4).
Now let β = 0. For all u ∈ R

n+, consider the integrable functions g(η) = (u1 −∑n
i=2uiηi/η1)+ ∈ H0. It follows from a version of Theorem 1.1 for positive random vectors

from [25, Theorem 1.1] that κ̃1(η) and κ̃1(η
∗) are identically distributed. Calculating the

characteristic functions of ξ and ξ∗ with an arbitrary complex argument w yields (3.4) with∑
wk = 0 and the characteristic functions exist (at least) for all w with vanishing imaginary

part.
In the other direction, (3.4) implies that κ̃1(η) under Qw and κ̃1(η

∗) under Qw∗ are identically
distributed. Here we have also used the fact that (3.4) yields E e〈w,ξ〉 = E e〈w,ξ∗〉 = c. Let
g ∈ H0. Then e−〈w,ξ〉 = e−〈w,ξ−1 ξ1〉 is a function of (1, κ̃1(η)), so that we can define
f (κ̃1(η)) = g((1, κ̃1(η)))e−〈w,ξ−1 ξ1〉. Then

E g(η) = c EQw f (κ̃1(η)) = c EQw∗ f (κ̃1(η
∗)) = E g(η∗).

Corollary 3.1 below follows directly from Theorem 3.2 upon noting that the ij -swap-
invariance of η means that η and πij (η) have equal zonoids, or, equivalently, that

E(〈u, η〉)+ = E(〈πij (u), η〉)+ = E(〈u, πij (η)〉)+ for all u ∈ R
n.

Corollary 3.1. An integrable random vector η = eξ is ij -swap-invariant if and only if the
characteristic function of ξ satisfies

ϕξ (u − iw) = ϕξ (πij (u − iw)) (3.5)

for all u ∈ H and at least one (and then necessarily for all) w ∈ 	.

While the characteristic function (3.5) exists for all w ∈ 	, it is possible to relax the latter
condition. Namely, integrable η is ij -swap-invariant if and only if (3.5) holds for all u ∈ H

and at least one (and then necessarily for all) w such that
∑n

k=1 wk = 1 and one side of (3.5)
is finite, in other words such that E e〈w,ξ〉 < ∞.

The complex shifts on both sides of (3.5) are the same if wi = wj . In the most important
special case w = 1

2eij with eij = ei + ej , so that the ij -swap-invariance characterisation reads

ϕξ

(
u − i 1

2eij

) = ϕξ

(
πij (u) − i 1

2eij

)
, u ∈ H. (3.6)

Corollary 3.2. An integrable random vector η = eξ is ij -swap-invariant if and only if the
orthogonal projection of ξ onto H is ij -exchangeable under the probability measure Qw for at
least one (and then necessarily for all) w ∈ 	 such that wi = wj .

Remark 3.3. (Independency and self-duality in the bivariate case.) Consider a bivariate
integrable random vector η = (η1, η2) with independent components. A sufficient condition
for η to be swap invariant is that both η1 and η2 are self-dual random variables, since then we
have, for arbitrary (u1, u2) ∈ R

2,

E(u1η1 + u2η2)+ = E(E((u1η1 + u2η2)+ | η1))

= E(E((u1η1η2 + u2)+ | η2))

= E(u1η2 + u2η1)+.
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Note that this construction does not apply for η of dimension 3 and more. Nonexchangeable
swap-invariant random vectors with independent, not necessarily self-dual components can be
constructed in the following way. Consider integrable, independent, and identically distributed
ζ1, ζ2 and self-dual ζ̃1, ζ̃2 all jointly independent. It is easy to see that (η1, η2) = (ζ1ζ̃1, ζ2ζ̃2)

is a swap-invariant random vector with not necessarily self-dual independent components. It
is apparent from [30] that the product of a self-dual random variable and a general random
variable is not necessarily self-dual.

4. Weighted swap invariance

The introduced swap-invariance concept relies on invariance properties of the payoff function
f o

b from (1.2). It is also possible to modify this payoff function by introducing a positive weight
given by a random variable eϑ . A random vector η is called weighted ij -swap-invariant if eϑη

is integrable and

E(eϑf o
b (u)) = E(eϑf o

b (πij (u))) for all u ∈ R
n. (4.1)

In this case we write η ∈ WSij (ϑ). The involved payoff function is typical for so-called
quanto-swap options.

Theorem 4.1. Let η = eξ be a random vector, and let eϑ be a random variable such that eϑη

is integrable. Then η ∈ WSij (ϑ) if and only if

ϕξ+1 ϑ(u − iw) = ϕξ+1 ϑ(πij (u − iw)) (4.2)

for all u ∈ H and at least one (and then necessarily for all) w ∈ 	.

Proof. It suffices to note that eϑη and eϑπij (η) share the same zonoid and apply Theorem 3.2.

If w = 1
2eij then (4.2) simplifies to

ϕξ+1 ϑ

(
u − i 1

2eij

) = ϕξ+1 ϑ

(
πij (u) − i 1

2eij

)
for all u ∈ H. (4.3)

If the log-weight ϑ is given by a linear combination of the log-prices of the assets included
in f o

b (u), i.e. ϑ = 〈ξ, v〉 for some v ∈ R
n, we obtain the following result.

Corollary 4.1. Let η = eξ be a random vector such that eϑη is integrable with ϑ = 〈v, ξ〉 for
some v ∈ R

n. Then η ∈ WSij (ϑ) if and only if

ϕξ (u − iw − iv) = ϕξ (πij (u − iw) − iv)

for all u ∈ H and at least one (and then necessarily for all) w ∈ 	.

Proof. Since u ∈ H and w ∈ 	,

ϕξ+1 ϑ(u − iw) = E ei(〈u−iw,ξ+1〈v,ξ〉〉)

= E ei〈u−iw,ξ〉+i〈v,ξ〉(〈u,1〉−i〈w,1〉)

= E ei〈u−iw−iv,ξ〉

and analogously ϕξ+1 ϑ(πij (u − iw)) = ϕξ (πij (u − iw) − iv).
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5. Swap invariance for Lévy models

In this section we assume that η = eξ with ξ being infinitely divisible, i.e. ξ = L1 for a
Lévy process Lt , t ≥ 0; see [35]. In order to handle possibly weighted cases, consider also a
random variable ζ such that (ξ, ζ ) is infinitely divisible.

Define the linear transformation (actually orthogonal projection) which maps every x ∈
R

n+1 onto the hyperplane H in the space of dimension n acting as Px with the matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1

n
−1

n
· · · −1

n
0

−1

n
1 − 1

n
· · · −1

n
0

...
...

...
...

...

−1

n
−1

n
· · · 1 − 1

n
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Corollary 3.1, Theorem 4.1, and Corollary 4.1 provide many equivalent characterisations
of the (weighted) ij -swap-invariance in terms of various w ∈ 	 ⊂ R

n. In order to simplify
the calculations, we let w = 1

2eij = 1
2 (ei + ej ) in the sequel (so that w is πij -invariant), and

we can consider ei and ej to be standard basis vectors in R
n+1. Sometimes we add the zero

component to the vectors u ∈ H and then write (u, 0).

Theorem 5.1. Let (ξ, ζ ) be an infinitely divisible (n+1)-dimensional random vector such that
e〈v,(ξ,ζ )〉eξ is integrable for some v ∈ R

n+1. Then η = eξ ∈ WSij (〈v, (ξ, ζ )〉) if and only if
the characteristic triplet (A, ν, γ ) of (ξ, ζ ) satisfies the following conditions.

(a) If n ≥ 3, the matrix A satisfies

ali − alj = 1
2 (aii − ajj ) (5.1)

for all l 
= i, j, l ≤ n.

(b) The image ν̂P −1 under P of measure

dν̂(x) = e〈eij /2+v,x〉 dν(x), x ∈ R
n+1, (5.2)

is πij -invariant on H \ {0}.
(c) γ satisfies

γi − γj = 1

2
(ajj − aii) +

n+1∑
k=1

(ajk − aik)vk (5.3)

+
∫

Rn+1
(xj − xi)(e

〈eij /2+v,x〉1{‖Px‖≤1} − 1{‖x‖≤1}) dν(x). (5.4)

Proof. Since u ∈ H, we can express (4.3) in terms of the joint characteristic function of
(ξ, ζ ), i.e.

ϕ(ξ,ζ )

(
(u, 0) − i

( 1
2eij + v

)) = ϕ(ξ,ζ )

(
πij (u, 0) − i

( 1
2eij + v

))
, (5.5)

where from now on πij stands for the corresponding permutation matrix of appropriate dimen-
sion. Let Q̂ be the Esscher transform (3.1) of Q with parameterw = 1

2eij + v. The characteristic
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triplet (Â, ν̂, γ̂ ) of (ξ, ζ ) under Q̂ is given by Â = A, the new Lévy measure ν̂ is given by (5.2),
and

γ̂ = γ + A

(
1

2
eij + v

)
+

∫
Rn+1

x(e〈eij /2+v,x〉 − 1)1{‖x‖≤1} dν(x); (5.6)

see [36, Example 7.3] and [35, Theorem 25.17] for the extension of the Lévy–Khintchine
formula to the needed subset in the (n + 1)-dimensional complex plane in view of the imposed
integrability conditions.

By (5.5) and in view of Corollary 3.2, the weighted swap invariance of η means that (ξ, ζ )

projected by P onto H is ij -exchangeable under Q̂. This projection has the characteristic triplet
(A′, ν′, γ ′), where A′ = P ÂP � = PAP �, ν′ = ν̂P −1 is the projection of ν̂ on H \ {0}, and

γ ′ = P γ̂ +
∫

Rn+1
Px(1{‖Px‖≤1} − 1{‖x‖≤1}) dν̂(x); (5.7)

see [35, Proposition 11.10]. The elements of A′ can be calculated as

a′
ij = aij − 1

n

( n∑
k=1

aki +
n∑

k=1

akj

)
+ 1

n2

n∑
k,l=1

alk.

Since the projection of (ξ, ζ ) is ij -exchangeable, Proposition 2.1(a) requires a′
ii = a′

jj , so that

aii − 2

n

n∑
k=1

aik = ajj − 2

n

n∑
k=1

ajk. (5.8)

Furthermore, a′
li = a′

lj for l 
= i, j yields (5.1), which also always satisfies (5.8). By Propo-
sition 2.1, ν′ is symmetric with respect to πij and γ ′

i = γ ′
j . By combining (5.7) with (5.6) we

obtain (5.3).

By combining Theorem 5.1 with [35, Proposition 11.10] and changing variables, or adapting
the proof of Theorem 5.1, we obtain the following result.

Corollary 5.1. The integrable random vector η = eξ with infinitely divisible ξ having the Lévy
triplet (A, ν, γ ) is ij -swap-invariant if and only if Theorem 5.1(a) holds for the n×n matrix A,
the orthogonal projection of measure

dν̄(x) = e(xi+xj )/2 dν(x), x ∈ R
n, (5.9)

on H \ {0} is πij -invariant, and

γi − γj = 1

2
(ajj − aii) +

∫
Rn

(xj − xi)(e
(xi+xj )/21{‖P ′x‖≤1} − 1{‖x‖≤1}) dν(x), (5.10)

where P ′ is P with the last column omitted.

The following theorem shows that the condition on the drift γ from the Lévy triplet is
automatically satisfied in the case of equal means.

Theorem 5.2. Let η = eξ be an n-dimensional integrable random vector with infinitely divis-
ible ξ and such that E ηi = E ηj . Then η is ij -swap-invariant if and only if the characteristic
triplet (A, ν, γ ) of ξ satisfies the first two conditions of Corollary 5.1 (i.e. (5.10) always holds
in this case).
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Proof. Since E ηl = ϕ
Q
ξ (−iel) for l = i, j (where here el ∈ R

n),

γi + 1

2
aii +

∫
Rn

(exi − 1 − xi1{‖x‖≤1}) dν(x)

= γj + 1

2
ajj +

∫
Rn

(exj − 1 − xj 1{‖x‖≤1}) dν(x).

In this case (5.10) becomes∫
Rn

(e(xi−xj )/2 − e(xj −xi )/2 + (xj − xi)1{‖P ′x‖≤1}) dν̄(x) = 0.

Making the change of variable x = x′ + x′′ with x′ ∈ H and x′′ ∈ H
⊥ and noting that

H
⊥ = {t 1 : t ∈ R} consists of vectors with all equal components, the integral becomes an

integral over H with respect to the projection of ν̄ onto H. The integrand changes the sign if x is
replaced by πij (x), while the projected measure ν̄ is invariant on H \ {0} (where the integrand
is nonvanishing) under this change. Thus, the whole integral vanishes.

Remark 5.1. (Risk-neutral nonweighted case.) It is worth noting that the assumption E ηi =
E ηj in Theorem 5.2 is satisfied in a risk-neutral setting, where E ηl = 1, l = 1, . . . , n.

Example 5.1. (Two-asset case.) In the bivariate nonweighted infinitely divisible (Lévy) case
the first condition of Corollary 5.1 is vacuous. The second condition holds, e.g. for exchangeable
ν, while the third condition always holds in the risk-neutral setting.

Example 5.2. (Log-normal distribution.) If the Lévy measure vanishes, the first condition of
Theorem 5.1 remains the same, the second condition always holds, while the third condition
becomes (with µ replacing γ )

µi − µj = 1

2
(ajj − aii) +

n+1∑
k=1

(ajk − aik)vk.

Under a risk-neutral assumption, this condition means that
∑n+1

k=1(ajk − aik)vk = 0, so in the
nonweighted risk-neutral setting only the first condition of Corollary 5.1 is imposed.

In particular, each bivariate risk-neutral log-normal distribution is (nonweighted) swap
invariant, no matter what the volatilities of the assets and correlation are. In the nonweighted
risk-neutral setting with n = 3 and i = 1, j = 2 the only condition is

a31 − a32 = 1
2 (a11 − a22).

In the presence of a weight (ξ1, ξ2, ζ ), i.e. ϑ = ζ , in the risk-neutral case the only condition
a13 = a23 on the covariance matrix of (ξ1, ξ2, ζ ) guarantees the weighted swap-invariance
property

E eζ (u1η1 + u2η2)+ = E eζ (u2η1 + u1η2)+, (u1, u2) ∈ R
2.

If the weight is determined by the prices of the assets included in the swap, namely ϑ = 〈v, ξ〉,
the swap-invariance condition reads v1a11 − v2a22 = (v1 − v2)a12.

Consider a higher-dimensional risk-neutral log-normal setting with the weight ϑ = 〈v, ξ〉
determined by the assets included in f o

b (u) in a rather general way with v /∈ H and vi = vj (in
particular, v = ek with k 
= i, j ). Then η ∈ WSij (〈v, ξ〉) implies the ij -exchangeability of η.
Indeed, the risk neutrality reduces (5.3) to

∑n
k=1(ajk − aik)vk = 0. By vi = vj and (5.1), this

yields 1
2 (aii − ajj )〈1, v〉 = 0, whence aii = ajj by v /∈ H. Taking into account (5.1), we also

have ali = alj for all l 
= i, j , so that the exchangeability follows from Proposition 2.1.
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Remark 5.2. (Square integrable case and covariance.) Theorem 5.1(a) yields a certain restric-
tion on the correlation structure arising from the centred Gaussian term for n ≥ 3, while, for
n = 2, there are no restrictions. In order to also relax the restrictions for higher-dimensional
models, it is useful to introduce a jump component. Assume that

∫
‖x‖>1 ‖x‖2 dν(x) < ∞,

i.e. (ξ, ζ ) is square integrable. Then the covariance matrix of (ξ, ζ ) has elements

�lj =
(

alj +
∫

xlxj dν(x)

)
, l, j = 1, . . . , n + 1;

see [35, Example 25.12]. Thus, despite some constraints on the Lévy measure given in
Theorem 5.1 and Corollary 5.1, there is more flexibility in modelling the correlation structure
of η.

Remark 5.3. (Lévy measures based on exchangeability.) The image of the Lévy measure ν̂

under P is πij -invariant if (but not only if) the Lévy measure ν̂ is πij -invariant itself. A simple
example of Lévy measures satisfying Theorem 5.1(b) can be constructed by taking an (n + 1)-
dimensional ij -exchangeable (i.e. πij -invariant) Lévy measure ν̂ satisfying (2.1), and defining
ν from (5.2) given that the imposed integrability assumption on e〈v,(ξ,ζ )〉η is satisfied.

Example 5.3. (Compound Poisson distribution.) Assume that the Lévy measure is finite with
existing first exponential moments. Without loss of generality, assume that its total mass is 1.
Then ν̄ from Corollary 5.1 is, up to a constant, the Esscher transform of ν with parameter 1

2eij .
Thus, the invariance of its projection onto H is equivalent to

ϕν

(
u − i 1

2eij

) = ϕν

(
πij (u) − i 1

2eij

)
, u ∈ H,

for the characteristic function of ν, which exactly corresponds to (3.6). Hence, the distribution
of the logarithm of any ij -swap-invariant vector η can be chosen to serve as the Lévy measure
ν (where ν({0}) is set to 0 if η has an atom at (1, . . . , 1)). For instance, Lévy measures
satisfying (5.9) can be created from normal distributions described in Example 5.2. In the
bivariate case this imposes only a slight restriction on the expectations, while the variances and
correlation are not restricted.

Example 5.4. (Swap invariance in bivariate generalized hyperbolic models.) Consider a risk-
neutral bivariate generalised hyperbolic case, i.e. η=eξ , where (ξ1, ξ2)∼GH2(λ, α, β, δ, µ, 	)

(cf. [5]), with corresponding parameters λ ∈ R, α, δ ∈ R+, µ, β ∈ R
2, and 	 a symmetric,

positive definite, 2 × 2 matrix, where without loss of generality det(	) = 1. Following [18,
Example 5.9] based on [29], assume that δ > 0 and α2 − 〈β, 	β〉 > 0 so that the moments of
all orders exist and the Lévy measure ν has a density ν(x) given by

ν(x) = e〈β,x〉

π
√〈x, 	−1x〉

( ∫ ∞

0

√
2y + α2K1(

√
(2y + α2)〈x, 	−1x〉)

π2y(J 2|λ|(δ
√

2y) + Y 2|λ|(δ
√

2y))
dy

+ αK1(α
√

〈x, 	−1x〉)λ1{λ>0}
)

,

where Jι, Yι, and Kι denote the (modified) Bessel functions of the first, second, and third kinds
with index ι, and where further conditions on the parameters for ensuring the existence of the
exponential moments can immediately be obtained from [40, Remark 2.2].

The parameters for ξ̃ = ξ2 − ξ1 under Q1 are calculated in [18, Example 5.9], in particular

β̃ = s
β2δ22 − (β1 + 1)δ11 − δ12(β2 − β1 − 1)

(δ11 + δ22 − 2δ12)
.
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By Theorem 3.1 or Example 3.1, (eξ1 , eξ2) is swap invariant if and only if eξ̃ is self-dual
under Q1. However, following [22] in the risk-neutral setting, this is the case if and only if
β̃ = − 1

2 , so we obtain the slight restriction

2(δ22 − δ12)β2 + δ22 = 2(δ11 − δ12)β1 + δ11.

Hence, the considerable effective degrees of freedom for modelling two assets based on
the considered dependent generalised hyperbolic Lévy processes only slightly diminish by
additionally imposing the bivariate swap-invariance property.

By interpreting (ξ, ζ ) as the time-one value of a Lévy process, we arrive at the following
result.

Corollary 5.2. If (ξt , ζt ), t ≥ 0, is the Lévy process that satisfies the conditions of Theorem 5.1
then eξt is weighted ij -swap-invariant for all t ≥ 0.

Remark 5.4. (Random times.) Consider a family {η(t), t ≥ 0} of ij -swap-invariant random
vectors. Let τt , t ≥ 0, be an increasing nonnegative random function independent of η. If
the time-changed stochastic process η(τt ), t ≥ 0, is integrable for all t then η(τt ) is also
ij -swap-invariant.

6. Quasi-swap-invariance

In some cases the swap-invariance condition is too restrictive; in particular, its adjusted
variant is useful to take into account unequal carrying costs. We say that η is quasi-swap-
invariant if

E(eϑf o
b (u)) = E

(
eϑf o

b (πij (u))

(
ηi

ηj

)α)
(6.1)

for all u ∈ R
n and all mentioned expectations exist. Note that this property is not symmetric

with respect to i and j .

By passing to the new probability measure Q̃
j

defined by (3.1) with w = ej + en+1 for

ϑ = ζ and w = ej + 〈v, (ξ, ζ )〉 for ϑ = 〈v, (ξ, ζ )〉, assuming the Q̃
j
-integrability of κ̃j (η) as

well as κ̃j (η)α+1, and using [30, Theorem 5.2] (with vanishing λ), it is easy to see that (6.1)
with α 
= −1 is equivalent to the fact that κ̃j (η)α+1 is self-dual with respect to the ith numeraire
under Q̃

j
. Random vectors that become self-dual if normalised and raised to some power are

called quasi-self-dual in [30].

Theorem 6.1. Let η = eξ be a random vector such that eϑη and eϑ(ηi/ηj )
αη are integrable.

Then (6.1) holds if and only if

ϕξ+1 ϑ(u − iw) = ϕξ+1 ϑ(πij (u − iw) − iα(ei − ej )) (6.2)

for all u ∈ H and at least one (and then necessarily for all) w ∈ 	.

Proof. Define ϑ ′ = ϑ + αξi − αξj , and note that eϑη and eϑ ′
η are integrable. Then (6.1)

means that eϑη and πij (eϑ ′
η) share the same zonoid. By Theorem 3.2, this holds if and only if

ϕξ+1 ϑ(u − iw) = ϕπij (ξ+1 ϑ ′)(u − iw)

for all u ∈ H and at least one (and then necessarily for all) w ∈ 	. It remains to note that the
right-hand side is

ϕξ+1 ϑ ′(πij (u − iw)) = ϕξ+1 ϑ(πij (u − iw) − iα(ei − ej )).
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Since eϑη and πij (eϑ ′
η) share the same zonoid, it follows from Theorem 3.3 that (6.1)

implies that

E(eϑg(η)) = E

(
eϑg(πij (η))

(
ηi

ηj

)α)
(6.3)

for all g ∈ H1.
The assumption that w ∈ 	 in Theorem 6.1 can be replaced by the assumption that

∑
wk = 1

and at least one side of (6.2) is finite. Note that the integrability of eϑη and eϑ(ηi/ηj )
αη implies

that E e(1+α)ξi/2+(1−α)ξj /2+ϑ < ∞. Hence, we can choose w = 1
2 (1 + α)ei + 1

2 (1 − α)ej so
that (6.2) becomes

ϕξ+1 ϑ

(
u − i

[
1 + α

2
ei + 1 − α

2
ej

])
= ϕξ+1 ϑ

(
πij (u) − i

[
1 + α

2
ei + 1 − α

2
ej

])
(6.4)

for all u ∈ H, i.e. the complex shifts on both sides of (6.4) are identical. For ϑ = 〈v, (ξ, ζ )〉, we
can use the fact that u ∈ H in order to express (6.4) in terms of the joint characteristic function
of (ξ, ζ ) as

ϕ(ξ,ζ )

(
(u, 0)−i

[ 1
2eij + 1

2α(ei −ej )+v
]) = ϕ(ξ,ζ )

(
πij (u, 0)−i

[ 1
2eij + 1

2α(ei −ej )+v
])

(6.5)

for all u ∈ H. Hence, (6.5) corresponds to (5.5) written for

v′ = v + α

2
(ei − ej )

instead of v. Thus, in the infinite divisible case, under suitable integrability assumptions, the
quasi-swap-invariance holds if and only if the conditions of Theorem 5.1 are satisfied with v

replaced by v′ given above, so that we immediately obtain the following result.

Corollary 6.1. Let η = eξ be a random vector such that e〈v,(ξ,ζ )〉η and e〈v,(ξ,ζ )〉(ηi/ηj )
αη are

integrable for some v ∈ R
n+1 and with (ξ, ζ ) being infinitely divisible. Then eξ is quasi-swap-

invariant of order α (i.e. satisfies (6.1) with ϑ = 〈v, (ξ, ζ )〉) if and only if the characteristic
triplet (A, ν, γ ) of (ξ, ζ ) satisfies the following conditions.

(a) If n ≥ 3, the matrix A satisfies

ali − alj = 1
2 (aii − ajj )

for all l 
= i, j, l ≤ n.

(b) The image of ν̂P −1 under P of measure

dν̂(x) = e〈v+(1+α)ei/2+(1−α)ej /2,x〉 dν(x)

is πij -invariant on H \ {0}.
(c) γ satisfies

γi − γj = 1

2
(ajj − aii) − α

2
(aii + ajj − 2aij ) +

n+1∑
k=1

(ajk − aik)vk

+
∫

Rn+1
(xj − xi)(e

〈v+(1+α)ei/2+(1−α)ej /2,x〉1{‖Px‖≤1} − 1{‖x‖≤1}) dν(x).
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For some applications, notably for semi-static hedging of barrier options with unequal
carrying costs, the symmetry should be imposed on price changes adjusted with carrying
costs. Unlike equity markets, where the assumption of equal carrying costs is often not totally
unrealistic (e.g. in dividend-free cases), this assumption is quite restrictive in currency markets,
since the risk-free interest rates in different countries usually differ. The carrying costs on
various assets amount to componentwise multiplication of η by a vector eλ = (eλ1 , . . . , eλn),
where λi = r − ri, i = 1, . . . , n. In currency trading ri denotes the risk-free interest rate in
the ith foreign market, while in the share case it becomes the dividend yield of the ith share. If
useful, λ can also have other interpretations than being the pure carrying costs and η need not
be a one-period martingale itself.

Multiplying η with a vector representing unequal carrying costs affects the (weighted)
ij -swap-invariance property (4.1). However, in some cases it is possible to find α such that
(6.1) holds, i.e. η = eξ+λ is quasi-swap-invariant. In this case ξ +λ instead of ξ satisfies (6.4).
In the infinitely divisible case the only new condition on the Lévy triplet of (ξ +λ, ζ ) concerns
the ‘drifts’:

γi − γj = 1

2
(ajj − aii) − α

2
(aii + ajj − 2aij ) +

n+1∑
k=1

(ajk − aik)vk

+
∫

Rn+1
(xj − xi)(e

〈v+(1+α)ei/2+(1−α)ej /2,x〉1{‖Px‖≤1} − 1{‖x‖≤1}) dν(x)

+ λj − λi. (6.6)

Note that this condition depends only on the carrying costs of the ith and j th assets. If ϑ

vanishes then the condition on the drift simplifies to

γi − γj = 1

2
(ajj − aii) − α

2
(aii + ajj − 2aij )

+
∫

Rn

(xj − xi)(e
(1+α)xi/2+(1−α)xj /21{‖P ′x‖≤1} − 1{‖x‖≤1}) dν(x) + λj − λi.

Remark 6.1. (Determining α from the Lévy triplet and the carrying costs.) Consider η = eξ+λ

that satisfies (6.1) with given λ and ϑ = ζ such that (ξ, ζ ) is infinitely divisible. Note that neither
(weighted) ij -swap-invariance nor the more general quasi-swap-invariance condition (6.1)
implies that E eξj = 1. Thus, for many applications, we additionally assume that E eξl =
ϕ(ξ,ζ )(−iel) = 1 for all l and also that E eζ = 1. In particular, this implies that

γl = −1

2
all −

∫
Rn+1

(exl − 1 − xl1{‖x‖≤1}) dν(x), l = i, j. (6.7)

Substitute (6.7) into (6.6) in order to see that α satisfies

α(aii + ajj − 2aij )

= 2(λj − λi) + 2(aj (n+1) − ai(n+1))

+ 2
∫

Rn+1
(exi − exj + (xj − xi)e

〈en+1+(1+α)ei/2+(1−α)ej /2,x〉1{‖Px‖≤1}) dν(x). (6.8)

In the nonweighted case this condition can be written as

α(aii + ajj − 2aij ) = 2(λj − λi)

+ 2
∫

Rn

(exi − exj + (xj − xi)e
(1+α)xi/2+(1−α)xj /21{‖P ′x‖≤1}) dν(x).
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In the Lévy processes setting the values of α calculated from the distributions at any time
moment t ≥ 0 coincide.

Example 6.1. (Black–Scholes setting.) In the absence of jumps it is easy to explicitly derive
α from (6.8). Namely, if ν vanishes and A satisfies (6.8), with aii + ajj 
= 2aij , then

α = 2

∑n+1
k=1(ajk − aik)vk + λj − λi

aii + ajj − 2aij

, (6.9)

which in the nonweighted case simplifies to

α = 2(λj − λi)

aii + ajj − 2aij

.

In the bivariate Black–Scholes case this result has been derived in [37] by directly using a
symmetry result in univariate Black–Scholes markets. In Section 7 we show that this result can
be used for semi-statically hedging certain generalised swap options in certain (in the bivariate
case all) Black–Scholes economies.

Example 6.1 demonstrates that turning to the more general quasi-swap-invariance concept
also in the equal carrying cost case (λi = λj ) yields considerably more flexibility for modelling
the asset prices. In particular, for, e.g. v = e3, each three-asset Black–Scholes model is quasi-
swap-invariant with α determined from (6.9).

7. Hedging multi-asset barrier options

In this section we show how the analysed symmetry properties can be used in order to create
semi-static hedging strategies for several multi-asset options. First we derive in Section 7.1 a
general hedging strategy for rather general options in (weighted) quasi-swap-invariant models,
extending results obtained in [37], before applying them to well-known options in Section 7.2.
We will also discuss examples where the more restrictive ij -exchangeability property is needed.

It should be noted that the suggested hedging strategies are only practicable if the instruments
involved in the hedge are liquid or can be replicated by liquid instruments. Decompositions of
not sufficiently liquid instruments in over-the-counter traded claims is an active area of current
research and lies beyond the scope of this paper. In this relation, Carr and Laurence [13] wrote
that ‘all major banks stand ready to provide over-the-counter quotes on customised baskets’
and mentioned a decomposition possibility of multivariate European payoff functions in basket
options, thereby generalising the results of Lipton [28, Section 8.8] in the bivariate case; see
also [8] and [25]. An easy decomposition formula for a large family of bivariate European
payoff functions in other over-the-counter traded instruments is given in [38], while the results
of [4] (in an appropriately adjusted interpretation) yield further decompositions in bivariate
binary and certain bivariate correlation options. There is also a fast-growing literature about
sub- and super-replication of basket options; see, e.g. [27], [33], and the literature cited therein.
Furthermore, it is sometimes also possible to increase the liquidity of the involved instruments
by implementing the hedges in a foreign derivative market or by using decomposition methods,
similarly to [18] and [37]. Note that in special cases with equal (but not necessarily vanishing)
carrying costs our hedging instruments are already of the form of exchange or basket options;
see, e.g. the swap-invariant version of Example 7.2 or the nonquanto version of Example 7.3,
respectively.
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7.1. A general hedging strategy

Consider a multivariate finite horizon model with the asset prices given by

(St , Zt ) = (S0 ◦ eξ̃t , Z0eζ̃t ), t ∈ [0, T ],
where (ξ̃t , ζ̃t ) = (λt + ξt , µt + ζt ) is a Lévy process such that all components of (eξt , eζt )

are martingales defined on a filtered probability space (�, F, (Ft )t∈[0,T ], Q) with the usual
conditions imposed on the filtration. Note that the vector (λ, µ) ∈ R

n+1 represents deterministic
carrying costs.

Fix i < j, i, j ∈ {1, . . . , n}, and assume that, for every t ∈ [0, T ], (eξ̃t , eζ̃t ) satisfies the
quasi-swap-invariance property (6.1) with η = eξ̃t and ϑ = ζ̃t , in particular, this involves the
integrability of ZtSt and ZtSt (Sti/Stj )

α for all t ∈ [0, T ].
Note that in real market applications often neither the ‘symmetry assumption’ nor the

assumption that the asset prices follow multivariate componentwise exponentials of Lévy
processes will typically be completely fulfilled. However, in the univariate case several
comparative studies (see, e.g. [15], [19], and [32]) have confirmed a relatively good performance
of symmetry-based semi-static hedges, even if the assumptions behind the semi-static hedges
are not satisfied exactly. (We thank an anonymous referee for this hint.)

Consider a payoff function g ∈ H1 weighted by the terminal price ZT of the (n+1)th asset,
satisfying E ZT g(ST ) < ∞, with knock-in features given by the claims

X = ZT g(ST )1{τ≤T },

where
τ = inf{t : cSti

≤≥Stj }.
Note that we simultaneously handle the two knock-in cases corresponding to the crossing of
the barrier from below or from above by the ratio process Stj /Sti , choosing the appropriate
inequality in the indicator event. We assume that, for the crossing from below and above cases,
the spot ratio S0j /S0i lies below and, respectively, above the barrier.

Assume that the ratio process cannot jump over the barrier c. Then we can semi-statically
replicate X by the following (path-independent) European claim:

G(ST , ZT ) = ZT g(ST )1B + ZT g(κ̂(c, ST ))

(
c
ST i

STj

)α

1B0 . (7.1)

Here B = {cST i
≤≥STj }, B0 = {cST i

<
>STj }, and

κ̂(c, ST ) =
(

ST 1, . . . , ST (i−1),
STj

c
, ST (i+1), . . . , ST (j−1), cST i, ST (j+1), . . . , ST n

)
.

In order to justify this hedge, note that on the event {τ > T } the claim in (7.1) expires worthless
as desired. If the barrier knocks in then at time τ we can exchange (7.1) for a claim on ZT g(ST )

at zero costs. To confirm this, write

ZT g(ST ) = ZT g(ST )1B + ZT g(ST )1Bc ,

so we need to show that the conditional expectations of the second term on the right-hand side
given the stopping σ -algebra Fτ coincides with the conditional expectation of the second term
in (7.1) on the event {τ ≤ T }.
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Since (ξt , ζt ) is a Lévy process, ((ξτ , ζτ ), (ξT , ζT )) and

((ξτ , ζτ ), (ξτ + ξ ′
T −τ , ζτ + ζ ′

(T −τ)))

share the same distribution on the event {τ ≤ T }, where (ξ ′
t , ζ

′
t ), t ∈ [0, T ], is an indepen-

dent copy of the process (ξt , ζt ), t ∈ [0, T ]. Hence, ((Sτ , Zτ ), (ST , ZT )) and ((Sτ , Zτ ),

(Sτ ◦ η′
σ , ZτZ

′
σ )) also coincide in distribution, where (η′

t , Z
′
t ) is an independent copy of the

process (ηt , Zt ) and σ = T − τ . The quasi-swap-invariance property (6.3) together with
Remark 5.4 yields

E(ZT g(ST )1Bc | Fτ ) = E(ZτZ
′
σ g(Sτ ◦ η′

σ )1{cSτiη
′
σ i

>
<Sτj η′

σj } | Fτ )

= E

(
ZτZ

′
σ g(Sτ ◦ πijη

′
σ )1{cSτiη

′
σj

>
<Sτj η′

σ i }
(

η′
σ i

η′
σj

)α ∣∣∣∣ Fτ

)

= E

(
ZτZ

′
σ g(κ̂(c, Sτ ◦ η′

σ ))1{Sτj η′
σj

>
<cSτiη

′
σ i }

(
cSτiη

′
σ i

Sτj
η′

σj

)α ∣∣∣∣ Fτ

)

= E

(
ZT g(κ̂(c, ST ))

(
c
ST i

STj

)α

1B0

∣∣∣∣ Fτ

)

on the event {τ ≤ T }. Note that we have used the fact that Sτj = cSτi . Hence, on the event
{τ ≤ T },

E(ZT g(ST ) | Fτ ) = E(G(ST , ZT ) | Fτ ).

The above arguments also can be used to valuate the described barrier options for models with
continuous sample paths in the ith and j th components.

Note that if the ratio process can jump over the barrier, the hedge in (7.1) is no longer exact.

7.2. Illustrative examples

We will assume in all examples without loss of generality that i = 1 and j = 2, and so
accordingly speak about 12-swap-invariance or 12-exchangeability.

Example 7.1. (Barrier quanto-swap options.) Consider a vector of asset prices

St = (St1, St2, St3) = (S01eλ1teξt1 , S02eλ2teξt2 , S03eλ3teξt3) = S0 ◦ eξt+λt

with λ = (λ1, λ2, λ3) representing the carrying costs and

ηt = (ηt1, ηt2, ηt3) = (eλ1t+ξt1 , eλ2t+ξt2 , eλ3t+ξt3) = eξt+λt

being 12-quasi-swap-invariant (with the weight given by the third asset) for all t ∈ [0, T ],
where other conditions remain the same as in Section 7.1. Consider barrier claims defined by

Xqsw = ST 3(aST 1 − bST 2)+1{there exists t∈[0,T ], cSt1≤St2},
Yqsw = ST 3(aST 1 − bST 2)+1{cSt1>St2 for all t∈[0,T ]},

where cS01 > S02, the positive parameters satisfy 0 < a ≤ bc, and

τ = inf{t : cSt1 ≤ St2}. (7.2)
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By (7.1), the hedge portfolio for Xqsw is given by

G(ST 1, ST 2, ST 3) = ST 3(aST 1 − bST 2)+1{cST 1≤ST 2}

+ ST 3

(
a

c
ST 2 − bcST 1

)
+

(
c
ST 1

ST 2

)α

1{cST 1<ST 2}.

Since 0 < a ≤ bc, if cST 1 ≤ ST 2 then (aST 1 − bST 2)+ is out of the money, so the first term
vanishes. Furthermore, 0 < a ≤ bc implies that if (aST 2/c − bcST 1)+ is (strictly) positive
then cST 1 < ST 2, so we can omit the indicator function in the second term. Thus, Xqsw can
be hedged (exactly if the ratio process cannot jump over the barrier) with a long position in the
European derivative with payoff

ST 3

(
a

c
ST 2 − bcST 1

)
+

(
c
ST 1

ST 2

)α

.

By the knock-in–knock-out parity, Yqsw can be hedged by a short position in this derivative and
a long position in the European derivative with payoff ST 3(aST 1 − bST 2)+. In the weighted
12-swap-invariant case α = 0 and the hedging instruments reduce to weighted quanto-swap
options.

Example 7.2. (Barrier swap options.) By specialising the claims Xqsw and Yqsw to the cases
where ST 3 = 1 (with the other assumptions unchanged), we get weighted barrier swap (also
known as Margrabe) options with knocking conditions, defined by the claims

Xsw = (aST 1 − bST 2)+1{there exists t∈[0,T ], cSt1≤St2},
Ysw = (aST 1 − bST 2)+1{cSt1>St2 for all t∈[0,T ]},

where the assumptions on the parametersa, b, and c remain unchanged. Assuming that (ηt1, ηt2)

is quasi-swap-invariant, the hedging portfolio for Xsw consists of a long position in the European
derivative with payoff (aST 2/2 − bcST 1)+(cST 1/ST 2)

α , while the hedge of Ysw is given by
a short position in this derivative and a long position in the European derivative with payoff
(aST 1 − bST 2)+. In the swap-invariant case all hedging instruments reduce to weighted swap
options and weighted Margrabe options, respectively.

Example 7.3. (Hedges based on the exchangeability property.) We end this section by dis-
cussing an example where we need more symmetry in the model than (weighted) swap invari-
ance in order to hedge some basket payoffs with barrier features on a ratio process. Assume that
the vector of asset prices from Example 7.1, St = (St1, St2, St3), is such that (eξt1 , eξt2 , eξt3)

is 12-exchangeable for all t ∈ [0, T ], while the remaining assumptions are not changed. Let
the carrying costs λ1 = λ2 be the same for the first and the second assets, e.g. both being
the risk-free interest rate. Assume that cS01 > S02, and define the stopping time τ by (7.2).
Consider the claim

Yqsp = ST 3(aST 1 − bST 2 − k)+1{cSt1>St2 for all t∈[0,T ]},

with positive weights a, b, c, a ≤ bc and nonnegative strike k. This option is knocked out if
the ratio St2/St1 achieves or exceeds c.

We again assume for the moment that jumps cannot cross the barrier, e.g. as in the case of
the Black–Scholes setting. By similar arguments as in Example 7.1, we can hedge the claim
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Yqsp by taking the following positions in the European weighted quanto-spread options:

long ST 3
(
aST 1 − bST 2 − k

)
+,

short ST 3

(
a

c
ST 2 − bcST 1 − k

)
+
.

This also yields the result that the knock-in claim

Xqsp = ST 3(aST 1 − bST 2 − k)+1{there exists t∈[0,T ], cSt1≤St2},

with the same parameters a, b, c, and k, can be hedged with a long position in the European
option given by the payoff function

ST 3

(
a

c
ST 2 − bcST 1 − k

)
+
.

In the case of jump processes the exchangeability implies that eξt1 has up or down jumps if
and only if eξt2 has up or, respectively, down jumps, so that cSτ1 is no longer almost surely
equal Sτ2. This fact leads to a super-replication of knock-in options and a sub-replication of
knock-out options.
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