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The parallel current driven by applied helicon waves is evaluated in tokamak geometry
along with the radio frequency (rf) power absorbed by the passing electrons. The results
are compared with the corresponding expressions for lower hybrid current drive. The
efficiency of both current drive schemes is found to be the same for any single wave
frequency, single mode number limit. The evaluation of the parallel currents is performed
using an adjoint technique. Tokamak geometry is retained by using an eigenfunction
expansion appropriate for a transit averaged long mean free path treatment of electrons
making correlated poloidal passes through the applied rf fields.
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1. Introduction

Investigating helicon (or whistler) waves as a means to drive a parallel current in a
tokamak is a less studied area of current drive (Pinsker 2015) than the more common
mechanism of lower hybrid waves (Fisch 1978; Karney & Fisch 1979, 1985; Fisch &
Boozer 1980; Fisch & Karney 1981; Cordey, Edlington & Start 1982; Taguchi 1983; Cohen
1987; Giruzzi 1987; Chiu et al. 1989; Ehst & Karney 1991) which is extensively reviewed
by Bonoli (2014). Nonetheless, helicon current drive (HCD) remains of considerable
interest (Vdovin 2013; Prater et al. 2014; Pinsker 2015; Wang et al. 2017; Lau et al. 2018,
2019; Pinsker et al. 2018) because of its many similarities to lower hybrid current drive
(LHCD) and its ability to efficiently access higher density regions (Li et al. 2020a,b; Lau
et al. 2021; Li, Li & Liu 2021; Yin et al. 2022). Both HCD and LHCD rely on a Landau
resonance and the preferential heating of electrons, although HCD uses a perpendicular
component of the applied electric field rather than the parallel component used for LHCD.
An early analytic attempt at evaluating the parallel current driven by helicon waves
and the associated efficiency appears in de Assis & Busnardo-Neto (1988). They give
rough estimates for a model collision operator in a constant magnetic field with some
inadequately defined notation. Little else in the way of analytic estimates is available in the
literature, even though a great deal of effort has been expended on simulations, planning
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experiments and designing antennas for DIII-D (Prater et al. 2014; Lau et al. 2018, 2019,
2021; Pinsker et al. 2018), KSTAR (Wang et al. 2017); EAST (Li et al. 2020b); and HL-2M
(Li et al. 2020a); as well as ITER and DEMO (Vdovin 2013; Lau et al. 2018) and CFETR
(Li et al. 2021). The purpose of the investigation here is to derive analytic expressions for
both the parallel current driven by helicon waves and its associated HCD efficiency in a
tokamak, and to compare them with the recently derived expressions for LHCD (Catto
2021) that are generalized herein. It turns out that the adjoint procedure (Antonsen & Chu
1982) used for these evaluations have many similarities so the comparisons can be made
in a meaningful way. Moreover, these results are derived in tokamak geometry by transit
averaging and then using the Cordey (1976) eigenfunctions and associated results (Hsu,
Catto & Sigmar 1990; Xiao, Catto & Molvig 2007; Parker & Catto 2012). In addition, since
the electrons are only weakly collisional, successive poloidal passes through the applied
radio frequency (rf) fields are correlated and the quasilinear (QL) description employed
(Catto & Tolman 2021a) accounts for this feature.

The next section introduces the transit averaged QL operator employed for the adjoint
evaluations of the parallel current, as well as notation. The adjoint technique is briefly
summarized in § 3, where the unlike collision operator is also presented. Section 4
summarizes the solution for the adjoint equation in a tokamak and also gives the like
particle collision operator employed. The parallel current driven by helicon waves is
derived in § 5, which also presents an improved evaluation of the lower hybrid results. The
rf power absorbed by the passing electrons and the current drive efficiencies associated
with HCD and LHCD are presented in § 6. Section 7 gives results when HCD and LHCD
are both operative. The Appendix presents some cold plasma material that suggests that
HCD and LHCD are able to drive comparable currents.

2. Background

In a tokamak the transit averaged QL operator for electrons, when the applied wave field
is at a frequency ω much smaller than the electron cyclotron frequency Ωe = eB/mec and
the unperturbed electron distribution function is nearly the Maxwellian f0, is

Q̄{f0} =
∑

k

1
τf

∂

∂E

(
τfv

2D
∂f0

∂E

)
, (2.1)

with τf = ∮
f dτ the time for a full ( f ) poloidal passing (σ = v||/|v||| = ±1) or trapped

(σ = 0) poloidal circuit, the sum over the applied rf wave vectors k, and D the velocity
space diffusivity (Catto & Tolman 2021a). Here e is the charge on a proton, c is the
speed of light, me is the electron mass and E = v2/2 − eΦ/me is the total energy, with Φ
the electrostatic potential, v = |v| the electron speed and v|| = n · v the parallel electron
velocity along the tokamak magnetic field B = Bn = I∇ζ + ∇ζ × ∇ψ . The unit vector
along the magnetic field is n, ζ is the toroidal angle variable, ψ is the poloidal flux
function and the flux function I(ψ) is I = RBt, where Bt is the toroidal magnetic field, R is
the major radius and Bp is the poloidal magnetic field in |∇ψ | = RBp. The poloidal angle
ϑ satisfies ∇ζ · ∇ψ = 0 = ∇ζ · ∇ϑ and is chosen such that B · ∇ϑ = |I|/qR2 = q−1|B ·
∇ζ |, making the safety factor, q = q(ψ), a flux function. Taking the toroidal current to be
in the ∇ζ direction makes Bp > 0, B · ∇ϑ > 0 and ϑ increases in the Bp = ∇ζ × ∇ψ
direction. Then the incremental time along a trajectory is dτ = dϑ/v||n · ∇ϑ > 0, with
dϑ and v|| reversing signs together when a trapped electron reflects, such that dϑ < 0 for
a passing electron with v|| < 0.
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The QL diffusivity D in tokamak geometry for successive correlated interactions
through the applied rf (Catto & Tolman 2021) is

D = πe2

2m2
ev

2τf

∑
�

δ(

∮
f
dτχ − 2π�)

∣∣∣∣
∮

f
dτek ·

[
nv||J0(η)− in × k

v⊥
k⊥

J1(η)

]
e−i

∫ τ
τ0

dτ ′χ(τ ′)
∣∣∣∣
2

,

(2.2)
with the transit averaged resonance condition defined by∮

f
dτχ = ωτf − 2πσ(qn − m), (2.3)

and the exponential phase factor given by∫ τ

τ0

dτ ′χ(τ ′) = ω(τ − τ0)− σ(qn − m)ϑ(τ), (2.4)

where τ0 is taken to be the trajectory time at the equatorial plane crossing where B
is a minimum. In the preceding and what follows ek is the Fourier amplitude of the
applied electric field of wave vector k = k⊥ + k||n having k⊥ = k⊥(ψ cos ς + p sin ς),
k|| = (qn − m)/qR and η = k⊥v⊥/Ωe, with ψ = ∇ψ/|∇ψ | = ∇ψ/RBp, and p = ∇ζ ×
∇ψ/|∇ζ × ∇ψ | = Bp/Bp. The orthonormal unit vectors satisfy ψ × p = n, n and m are
the toroidal and poloidal mode numbers, respectively, and large aspect ratio is assumed
to write n · ∇ϑ ≈ 1/qR. The integer � denotes the resonant path in velocity space as
electrons can experience other (usually less important) resonances besides � = 0 in
toroidal geometry as their velocity changes along a field line as they cannot remain in
resonance indefinitely in an inhomogeneous magnetic field. Indeed, they can have other
resonant interactions by crossing the various resonant paths or curves in velocity space
defined by

∮
f dτχ = 2π�.

For LHCD the applied rf fields are tailored to make the first or v||J0 term dominate.
For HCD the rf fields must be applied in a manner that makes the second or v⊥J1
term dominate (Prater et al. 2014; Pinsker 2015; Pinsker et al. 2018; Yin et al. 2022),
so J1 will not be expanded by assuming its argument is small. Of course, both HCD
and LHCD rely on there being a Landau resonance. Here the goal is to evaluate HCD
by an adjoint technique (Antonsen & Chu 1982) very similar to the one used recently
to evaluate LHCD in full toroidal geometry to find the aspect ratio modifications to the
driven current and efficiency (Catto 2021). Unlike for LHCD, HCD does not seem to have
an accepted analytic expression for the driven current or efficiency even without toroidal
effects retained.

3. Adjoint technique summary

For an adjoint evaluation of HCD the preceding QL operator is all that is required along
with the perturbed electron kinetic equation

v||n · ∇f1 = C{f1} + Q{f0}, (3.1)

and its adjoint equation for the adjoint function h associated with f1

v||n · ∇h + C{h} = −
(

B
I

− meνu

Tex3
V||

)
v||f0, (3.2)
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where the small term containing the parallel mean ion velocity V|| is needed to account for
the non-self-adjoint term in the electron-ion collision operator and f0 is the Maxwellian

f0 = f0(ψ,E) = ne(ψ)

(
me

2πTe

)3/2

e−[meE+eΦ(ψ)]/Te(ψ). (3.3)

The potential may be assumed to be a flux function to lowest order. In the electron kinetic
equation f1 is the perturbed electron distribution function with f = f0 + f1, Q{f0} is the
QL operator prior to transit averaging, and C{f1} = Cee{f1} + Cei{f1} is the sum of the
self-adjoint linearized electron-electron collision operator plus the electron-ion collision
operator

Cei{f1} = νu

x3
L
{

f1 − me

Te
V||v||f0

}
, (3.4)

where L{h} is the self-adjoint Lorentz or pitch angle scattering operator

L{h} = 2B0

B
ξ
∂

∂λ

(
λξ
∂h
∂λ

)
, (3.5)

with x = v/ve and ve = (2Te/me)
1/2 the electron thermal speed. The pitch angle is defined

as λ = 2μB0/Bv2 = B0v
2
⊥/Bv

2 and ξ = v||/v, with B0 a normalizing flux function to be
defined shortly. The unlike collision frequency νu is defined as

νu = 3
√
πνei/4, (3.6)

where νei = 4
√

2πZ2e4ni�nΛC/3m1/2
e T3/2

e = Zνee for a quasineutral plasma with the ion,
ni, and electron, ne, densities satisfying Zni = ne, Z the ion charge number, νee the
electron-electron collision frequency and �nΛC the Coulomb logarithm.

Defining the flux surface average of any quantity A by

〈A〉 =
(∮

dϑA/B · ∇ϑ
)/(∮

dϑ/B · ∇ϑ
)
, (3.7)

using 〈B · ∇(B−1
∫

d3vv||hf1/f0〉 = 0, and the self-adjointness of both Cee (that requires f0
to be Maxwellian) and L to combine the equations leads to the convenient adjoint relation

〈
B
∫

d3vv||f1

〉
= I

(∫
d3v

v||h̄
Bf0

τf Q̄{f0}
)/(∮

dϑ/B · ∇ϑ
)
, (3.8)

where the V|| ∼ viρpi/a term, with vi the ion thermal speed, ρpi the poloidal ion gyroradius
and a the minor radius, is negligible for the rf amplitudes of interest. Catto (2021) can be
consulted for more details on this approximation and the treatment to follow. To write the
final form of 〈B ∫ d3vv||f1〉 the lowest-order result n · ∇h̄ = 0 is employed along with the
transit average definition Ā = ∮

dτA/τf . It is convenient to let B2
0 = 〈B2〉.

Recall the Ohmic current is in the positive toroidal direction. Therefore, the helicon
waves must drive the current in the same direction, requiring 〈B ∫ d3vv||f1〉 < 0.
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4. Solution of the adjoint equation

The advantage of the adjoint method is that only the simpler adjoint equation

v||n · ∇h + Cee{h} + νux−3L{h} = −I−1Bv||f0, (4.1)

need be solved instead of the more complicated electron kinetic equation. To solve the
preceding equation, it is adequate to approximate the electron-electron collision operator
by its standard high speed (v2 	 v2

e ) expansion. Then its self-adjoint form becomes

Cee{h} = 2ν�B0ξ

B
∂

∂λ

(
λξ
∂h
∂λ

)
+ ν�Te

mev2

∂

∂v

[
v2f0

x3

∂

∂v

(
h
f0

)]
, (4.2)

where the like collision frequency is defined as

ν� = 3
√
πνee/4, (4.3)

with νee = 4
√

2πe4ne�nΛC/3m1/2
e T3/2

e . This like particle operator is the usual
non-momentum conserving, high speed expansion of the Rosenbluth potentials for
collisions with a Maxwellian used by Karney & Fisch (1979, 1985). Recent estimates
(Catto 2021; Catto & Tolman 2021a,b) indicate f0 must be nearly Maxwellian for QL
theory to remain valid.

The adjoint equation is solved using the Cordey eigenfunctions (Cordey 1976; Hsu et al.
1990; Xiao et al. 2007; Parker & Catto 2012) by writing h = h̄ + h̃ with ∂ h̄/∂ϑ = 0 to
obtain, upon annihilating v||n · ∇h̃ the term, the transit average equation

C̄ee{h̄} + νux−3L{h̄} = −I−1Bv||f0. (4.4)

Integration over a full trapped (t) bounce gives Bv|| = 0 implying that h̄t = 0. For the
passing (p) electrons flux surface averages are used to rewrite the adjoint equation as

2(Z + 1)
∂

∂λ

[
λ〈ξ〉 ∂

∂λ

(
h̄p

f0

)]
+ Tex3〈B/v||〉

meB0v2f0

∂

∂v

[
v2f0

x3

∂

∂v

(
h̄p

f0

)]
= −〈B2〉vx3

IB0ν�
, (4.5)

where Bv||
∮

p dτ = 〈B2〉 ∮ dϑ/B · ∇ϑ .
For the purposes here, the recent solution of (4.5) by Catto (2021) is adequate and

convenient. Ignoring order ε = r/R 
 1 terms it is given by

h̄p

f0
≈ vx3

Rν�

{
(1 + 0.62

√
ε)Λ1(λ)− 1.02[(Z + 5)/(7Z + 11)]

√
εΛ2(λ)

[(Z + 1)(1 + 1.46
√

2ε)+ 4]

}

≡ vx3

Rν�

Λ1+2(
√
ε,Z, λ)[

(Z + 1)(1 + 1.46
√

2ε)+ 4
] , (4.6)

where the Cordey (1976) eigenfunctionsΛj with eigenvalues κj satisfy the Sturm–Liouville
differential equation obtained by transit averaging,

∂

∂λ

(
λ〈ξ〉∂Λj

∂λ

)
= κj

∂〈ξ〉
∂λ

Λj . (4.7)
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In the preceding, ∂〈ξ〉/∂λ = −〈B/2B0ξ〉, Λj(λ = 0) = 1,

Λ1+2(
√
ε,Z, λ = 0) = 1 + [0.62 − 1.02(Z + 5)/(7Z + 11)]

√
ε, (4.8)

〈ξ〉 = 2
√

2εE(k)/π
√
(1 − ε)k2 + 2ε, (4.9)

where E(k) is the elliptic integral of the second kind, k2 = 2ελ/[1 − (1 − ε)λ] andΛj =
0 at k = 1. The response h̄p increases with speed because of the v dependence of C{h}. For
the passing

τp =
∮

p
dτ ≈ 4qR

√
(1 − ε)k2 + 2εK(k)/v

√
2ε, (4.10)

with K(k) the elliptic integral of the first kind. The Λ2 term has a somewhat small
numerical coefficient. It was ignored in Catto (2021), but is retained here as it modestly
alters the

√
ε correction of interest (order ε corrections are ignored). More eigenfunction

details are available in Catto (2021), Hsu et al. (1990), Xiao et al. (2007) and Parker &
Catto (2012).

5. Helicon driven current in a tokamak compared with LHCD

Only the passing electrons contribute to helicon drive current, giving

〈
B
∫

d3vv||f1

〉
= 〈B2〉

2πq

∫
d3v

v||h̄p

Bf0
τpQ̄{f0} = 〈B2〉

2πq

∑
k

∫
d3v

v||h̄p

Bvf0

∂

∂v

∣∣∣∣
μ

(
τpvD

∂f0

∂v

∣∣∣∣
μ

)
,

(5.1)

at large aspect ratio, with the QL diffusivity for helicon waves simplifying to

D = πe2|ek · n × k|2τpv
2
⊥J2

1(η)

8m2
ek2

⊥v2

∑
�

δ[ωτp − 2πσ(qn − m)− 2π�]Θ(v, λ, n,m). (5.2)

Here,

Θ = 1
τ 2

p

|
∮

p
dτ e−i[ω(τ−τ0)−σ(qn−m)ϑ(τ)]|2 = q2R2

τ 2
p v

2

∣∣∣∣
∫ π

−π

dϑ
ξ

e−i
[
ωqR

∫ ϑ
0 dϑ/v||−σ(qn−m)ϑ

]∣∣∣∣
2

≤ 1,

(5.3)

and d3v → 2πB dE dμ/v|| → 2πBv3 dv dλ/B0v||. Integrating by parts in E, μ variables,
yields 〈

B
∫

d3vv||f1

〉
= me〈B2〉

2πqTe

∑
k

∫
d3v

v||
B
τpvDf0

∂

∂v

∣∣∣∣
μ

(
h̄p

f0

)
. (5.4)

Catto (2021) has an extra v2 multiplying h̄p in his (4.7), implying the factors of v in his
(4.27) for the lower hybrid driven parallel current need to be corrected, as will be found
shortly.

To sustain or enhance the poloidal magnetic field the parallel current driven by the
helicon waves must be positive, requiring 〈B ∫ d3vv||f1〉 < 0. Therefore, passing electrons
with v|| < 0 must drive the current implying σ = −1 and �+ m − qn > 0 in the argument
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of the delta function (requiring k|| < 0 for � = 0). As a result, writing it in a form allowing
the speed integral to be performed gives

δ[ωτp − 2π(�+ m − qn)] = v2
ω/k||δ(v − vω/k||)/ωvτp, (5.5)

with

vω/k|| = ωvτp/2π(�+ m − qn) > 0. (5.6)

Then the exponential factor in the Maxwellian becomes

x2
ω/k|| = mev

2
ω/k||/2Te, (5.7)

where recall a high speed expansion of the like collision operator is used so x2
ω/k|| 	 1

in f0. In addition, the barely passing do not contribute significantly to the current since
vτp/4qR →

k→1
(2ε)−1/2�n(4/

√
1 − k2) 	 1. Therefore, because of the exponential from f0,

the freely passing (k2 <∼ ε 
 1) electrons make the dominant contribution. As a result, only
� = 0 need be retained in

D ≈ πe2|ek · n × k|2λJ2
1(η)

8m2
ek2

⊥ |k||| δ(v − vω/k||) ≡ D�k λJ
2
1(η)δ(v − vω/k||). (5.8)

Defining the exponential factor of f0 for � = 0 as X2(λ) ≡ x2
ω/k||(� = 0), gives

X2(λ) ≈ (ω2/k2
||v

2
e )(1 + k2/2ε) ≈ (ω2/k2

||v
2
e )[λ/(1 − λ)], (5.9)

as vτp →
k2
1

2πqR
√

1 + k2/2ε, vω/k|| →
�=0
ω
√

1 + k2/2ε/k|| and

Θ →
ε
1

∣∣∣∣
∫ π

−π

dϑ
2π

e−i�ϑ

∣∣∣∣
2

= δ0� =
{

1 � = 0
0 � �= 0 . (5.10)

Then, integrating over v|| < 0 only, as D vanishes for v|| > 0, leads to

〈
B
B0

∫
d3vv||f1

〉
= −4πR

k||<0∑
k

ω2

k2
||v2

e
Dk

∫ λ<1−ε

0
dλλJ2

1(η)

∫ ∞

0
dvδ(v − vω/k||)v f0

∂

∂v

∣∣∣∣
μ

(
h̄p

f0

)
.

(5.11)

In v, λ variables

v f0
∂

∂v

∣∣∣∣
μ

(
h̄p

f0

)
= vf0

[
∂

∂v

∣∣∣∣
λ

(
h̄p

f0

)
+ ∂λ

∂v

∣∣∣∣
μ

∂

∂λ

∣∣∣∣
v

(
h̄p

f0

)]
=
(

4 − 2λ
Λ1+2

∂Λ1+2

∂λ

)
h̄p,

(5.12)

since the lowest-order solution is h̄p/f0 ∝ v4Λ1+2(λ). The exponential in the Maxwellian
makes the evaluation of the λ integral insensitive to its upper limit (λ < 1 − ε) as
will be shown shortly. The pitch angle derivative of Λ1+2 is finite at λ = 0 making
Λ−1

1+2∂Λ1+2/∂λ ∼ 1.
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Only the λ = 0 limit of this term will matter when the pitch angle integral is performed
in (5.18) by integrating by parts, leaving just

〈
B
B0

∫
d3vv||f1

〉
= −16πR

k||<0∑
k

ω2

k2
||v2

e

Dk

∫ λ<1−ε

0
dλλJ2

1(η)h̄p, (5.13)

to be evaluated, where at resonance η = √
λk⊥ω/k||Ωe and

h̄p = 4neω
4 e−ω2/k2

||v
2
eΛ1+2(

√
ε,Z, λ) e−X2(λ)

3π 2Rνeek4
||v6

e [(Z + 1)(1 + 1.46
√

2ε)+ 4]
. (5.14)

Inserting h̄p leads to the expression for the parallel current driven by helicon waves to
be

JH
|| = −e

〈
B
B0

∫
d3vv||f1

〉
= 8ene

(Z + 1)(1 + 1.46
√

2ε)+ 4

×
k||<0∑

k

e2|ek · n × k|2
3m2

ek2
⊥

ω6 e−ω2/k2
||v

2
e

νee|k7
|||v8

e

∫ λ<1−ε

0
dλλJ2

1(η)Λ1+2(λ) e−X2(λ),

(5.15)

where η ∼ √
λk⊥ve/Ωe = √

λk⊥ρe. As a result, X2(λ) provides a cut-off before λ→
1 − ε. However, the procedure is more complex in the HCD case than in the LHCD
case because of the Bessel function behaviour due the helicon wave interacting with
gyromotion of the electron, while the lower hybrid wave only interacts with its parallel
streaming.

To understand the procedure and generalize the LHCD results, it is helpful to first
consider the LHCD case in more detail than was given in Catto (2021). To obtain the
parallel current driven by the LH waves, JLH

|| , the preceding steps are repeated starting with
the replacement k−2

⊥ |ek · n × k|2v2
⊥J2

1(η) → |ek · n|2v2
||J

2
0(η) and then using v2

⊥ ≈ λv2 ≈
λω2/k2

|| → v2
|| ≈ ω2/k2

||. As a result, the driven parallel LH current is

JLH
|| = 8ene

(Z + 1)(1 + 1.46
√

2ε)+ 4

k||<0∑
k

e2|ek · n|2
3m2

e

ω6 e−ω2/k2
||v

2
e

νee|k7
|||v8

e

∫ λ<1−ε

0
dλJ2

0(η)Λ1+2(λ) e−X2(λ),

(5.16)

where again η = √
λk⊥ω/k||Ωe. Then, an integration by parts is performed by using

e−X2(λ) = −[(1 − λ)2/z]∂ e−X2(λ)/∂λ to obtain an asymptotic expansion in inverse powers
of z = ω2/k2

||v
2
e 	 1 to find

JLH
|| ≈ 8eneΛ1+2(

√
ε,Z, 0)

(Z + 1)(1 + 1.46
√

2ε)+ 4

k||<0∑
k

e2|ek · n|2
3m2

e

ω4 e−ω2/k2
||v

2
e

νee|k5
|||v6

e

, (5.17)

as
∫ λ<1−ε

0 dλJ2
0Λ1+2 e−X2 ≈ Λ1+2(λ = 0)/z since Λj(0) = 1 = J2

0(0). This result is 2/3 of
the value given by Catto (2021) when Λ2 is neglected. The difference is due to the extra
power of v2 multiplying h̄p inside the v derivative beginning of his (4.7). Notice that only
terms that remain finite at λ = 0 will contribute, as assumed in (5.13).
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In the helicon case three integrations by parts in λ are required. Again, only terms finite
at λ = 0 contribute. Ignoring exponentially small terms

∫ λ<1−ε

0
dλλJ2

1Λ1+2 e−X2 ≈ 1
z2

∫ λ<1−ε

0
dλ e−X2 ∂

∂λ

{
(1 − λ)2 ∂

∂λ
[(1 − λ)2λJ2

1Λ1+2]
}

≈ 1
z3

∂

∂λ

{
(1 − λ)2 ∂

∂λ
[(1 − λ)2λJ2

1Λ1+2]
}∣∣∣∣
λ=0

= 1
z3

∂J2
1

∂λ

∣∣∣∣
λ=0

= k2
⊥ρ

2
e

2z2
.

(5.18)

Therefore, for HCD

JH
|| = 4eneΛ1+2(

√
ε,Z, 0)

(Z + 1)(1 + 1.46
√

2ε)+ 4

k||<0∑
k

e2|ek · n × k|2
3m2

ek2
⊥

ω2 e−ω2/k2
||v

2
e

νee|k3
|||v4

e

k2
⊥ρ

2
e . (5.19)

The stronger Te dependence of JH
|| compared with JLH

|| was previously noted by Li et al.
(2020a, 2021). Helicon waves are also sensitive to the density. If ne increases substantially,
(A14) indicates k2

|| will increase, causing a less effective rf to interaction with the bulk
electrons.

Letting z = ω2/k2
||v

2
e = c2/v2

e n2
||, then HCD and LHCD depend on z3/2e−z and z5/2e−z,

respectively, and are maximized at z = 3/2 and z = 5/2, consistent with assuming v2 >
v2

e in Cee. Consequently, a slightly higher parallel refractive index is desirable for HCD
compared with LHCD, as noted by Prater et al. (2014). In addition to penetrating into the
central core plasma, the current driven by helicon waves can be comparable to or larger
than that driven by lower hybrid waves for the same ω2/k2

||v
2
e based on the estimate of

(A15) and simulations (Vdovin 2013; Prater et al. 2014; Lau et al. 2018, 2019; Li et al.
2020a,b, 2021).

6. The rf power and current drive efficiency

To form the HCD efficiency requires evaluating the rf power absorbed by the passing
electrons. Integrating over v|| < 0 and ignoring the negligible power into the barely
passing leads to

PH
cd = me

2

〈∫
d3vv2Q

〉
≈ meB0

4πqR

∫
d3v

v||
B
v2τpQ̄

= meB0

4πqR

∫
d3v

v||
B
v
∂

∂v

∣∣∣∣
μ

(
τpvD

∂f0

∂v

∣∣∣∣
μ

)
= m2

e

qRTe

∫ λ<1−ε

0
dλ
∫ ∞

0
dvτpv

5Df0

= π 1/2

2
mene

k||<0∑
k

e2|ek · n × k|2ω4

m2
ek2

⊥ |k5
|||v5

e

e−ω2/k2
||v

2
e

∫ λ<1−ε

0
dλλJ2

1(η) e−X2(λ).

(6.1)

Similarly, fixing the v2 and the numerical factor in Catto (2021) for LHCD, gives

PLH
cd = π 1/2

2
mene

k||<0∑
k

e2|ek · n|2ω4

m2
e|k5

|||v5
e

e−ω2/k2
||v

2
e

∫ 1−ε

0
dλJ2

0(η) e−X2(λ). (6.2)
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Again using e−X2(λ) to integrate by parts gives

PH
cd = π 1/2

4
mene

k||<0∑
k

e2|ek · n × k|2
m2

ek2
⊥ |k|||ve

k2
⊥ρ

2
e e−ω2/k2

||v
2
e , (6.3)

and

PLH
cd = π 1/2

2
mene

k||<0∑
�k

e2|ek · n|2ω2

m2
e|k3

|||v3
e

e−ω2/k2
||v

2
e . (6.4)

The numerical coefficient of PLH
cd is half that of (5.7) in Catto (2021).

The current drive efficiency is defined by the ratio J||/Pcd. Consequently

JH
||

PH
cd

=
16e{1 + [0.62 − 1.02(Z + 5)/(7Z + 11)]

√
ε}

k||<0∑
k

e2|ek·n×k|2ω2

νeem2
e k2

⊥ |k3
|||v4

e
k2

⊥ρ
2
e e−ω2/k2

||v
2
e

3π 1/2me[(Z + 1)(1 + 1.46
√

2ε)+ 4]
k||<0∑

k

e2|ek·n×k|2
m2

e k2
⊥ |k|||ve

k2
⊥ρ2

e e−ω2/k2
||v2

e

,

(6.5)
while

JLH
||

PLH
cd

=
16e{1 + [0.62 − 1.02(Z + 5)/(7Z + 11)]

√
ε}

k||<0∑
k

e2|ek·n|2ω4

νeem2
e |k5

|||v6
e

e−ω2/k2
||v

2
e

3π 1/2me[(Z + 1)(1 + 1.46
√

2ε)+ 4]
k||<0∑

k

e2|ek·n|2ω2

m2
e |k3

|||v3
e

e−ω2/k2
||v2

e

. (6.6)

In the terms in the sums in these two general forms and in (5.17), (5.19), (6.1) and (6.2),
the Fourier mode amplitudes |ek · n × k|2 and |ek · n|2 and the wavenumbers k⊥ and k|| are
to be obtained from a full wave code for precise evaluations.

Remarkably, for any (not necessarily the same) single ω and k the preceding forms are
identical

JH
|| /eneve

PH
cd/nemev2

eνee
= 16{1 + [0.62 − 1.02(Z + 5)/(7Z + 11)]

√
ε}ω2

3π 1/2[(Z + 1)(1 + 1.46
√

2ε)+ 4]k2
||v2

e

= JLH
|| /eneve

PLH
cd /nemev2

eνee
.

(6.7)

Approximation (6.7) suggests that comparable current drive efficiencies are possible with
helicon and lower hybrid waves, with HCD providing core access as well as profile control.
In addition, based on the cold plasma estimate (A15) of the Appendix, it seems possible
to drive comparable parallel currents with helicon and lower hybrid waves, as suggested
by the simulations of Prater et al. (2014) and Lau et al. (2018). The ε = 0 form of (6.7)
is essentially the same as the non-relativistic, z = v2

p 	 1 limit (31) in Karney & Fisch
(1985).

7. Combined helicon and lower hybrid

The preceding idealized analytic evaluations of the currents driven and the form of the
QL operator suggest it is possible to combine HCD with LHCD for the same applied
resonant wave frequency (Yin et al. 2022). Helicon and lower hybrid waves then drive
current by simultaneously acting on the perpendicular and parallel electron distribution
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function, respectively. Indeed, an antenna used for LHCD can drive some level of helicon
waves and vice versa. Retaining only � = 0, using the approximation e−i

∫ τ
τ0

dτ ′χ(τ ′) ≈ 1 and
inserting the delta function, the combined QL diffusivity for the passing electrons becomes

D = πe2

2m2
ev

2τp

∣∣∣∣
∮

p
dτek ·

[
nv||J0(η)− in × k

v⊥
k⊥

J1(η)

]∣∣∣∣
2 v2

ω/k||δ(v − vω/k||)

ωvτp
, (7.1)

with
vω/k|| = ωvτp/2π(m − qn) > 0. (7.2)

The combined parallel current that can be driven is therefore

JH+LH
|| = 8e3ne{1 + [0.62 − 1.02(Z + 5)/(7Z + 11)]

√
ε}

3m2
eνee[(Z + 1)(1 + 1.46

√
2ε)+ 4]

k||<0∑
k

ω6 e−ω2/k2
||v

2
e

|k7
|||v8

e

{
|ek · n|2

+ i
|k|||veρe

2ω
[(ek · n)(e∗

k · n × k)− (e∗
k · n)(ek · n × k)] + k2

||v
2
eρ

2
e

2ω2
|ek · n × k|2

}
,

(7.3)

where the integrals are performed by integration by parts as before, but with one new
integral appearing in the cross terms, namely∫ λ<1−ε

0
dλλ1/2J1(η)J0(η)Λ1+2(λ) e−X2(λ) ≈ 1

z
∂(λ1/2J1)

∂λ

∣∣∣∣
λ=0

= k⊥ρe

2z3/2
Λ1+2(

√
ε,Z, λ = 0).

(7.4)

The rf power absorbed by passing electrons is

PH+LH
cd = π 1/2e2ne

2me

k||<0∑
k

ω2

|k3
|||v3

e

e−ω2/k2
||v

2
e

{
|ek · n|2

+ i
|k|||veρe

2ω
[(ek · n)(e∗

k · n × k)− (e∗
k · n)(ek · n × k)] + k2

||v
2
eρ

2
e

2ω2
|ek · n × k|2

}
.

(7.5)

As a result, the efficiency is the ratio JH+LH
|| /PH+LH

cd , which for a single frequency and
wavenumber recovers the same expression as given at the end of § 6. Moreover, the cross
term may allow more current to be driven and more power to be absorbed, perhaps as
observed in the EAST numerical simulations of Yin et al. (2022). Synergy is possible, but
not assured, since helicon and lower hybrid waves independently act on perpendicular and
parallel motion, respectively, to make the electrons less collisional.

8. Summary

The new results are the analytic expressions for the parallel current that can be driven
in a tokamak by a helicon wave, (5.19), and the associated efficiency of HCD, (6.5) and
(6.7). In addition, the numerical coefficients of the corresponding tokamak expressions
for LHCD (Catto 2021), (5.17), (6.4), (6.6) and (6.7), are generalized as well as corrected,
by using a more systematic derivation. Interestingly, for any single applied frequency and
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wave vector the efficiency of HCD and LHCD are shown to be the same, (6.7). In addition,
HCD and LHCD can be combined for the same applied frequency as shown in (7.3) and
(7.5) of § 7, and, of course, recover the same single wave vector efficiency, (6.7). If a
combination of HCD and LHCD is possible from the same antenna and rf source, more
current than the sum might be driven and steady state tokamak operation might be slightly
more feasible.
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Appendix A. Helicon and lower hybrid waves in a cold plasma

To highlight the differences between helicon and lower hybrid waves in the simplest
fashion, cold plasma theory can be employed. Helicon current drive employs a
perpendicular component of the applied electric field, while the parallel component is
used for LHCD.

In a cold plasma, Maxwell’s equations lead to the need for the Fourier transform of the
applied electric field, ek, to satisfy

[ε − n2(I − k2kk)] · ek = 0, (A1)

with k a wave vector, k = |k|, I the unit dyad and n = kc/ω the index of refraction, and
the dielectric tensor written as

ε = ε⊥(I − nn)+ ε||nn − iε×n × I, (A2)

where the magnetic field is B = Bn. The components of the dielectric tensor are defined
as

ε⊥ = 1 −
∑

s

ω2
ps

ω2 −Ω2
s

≈ 1 + ω2
pe

Ω2
e

− ω2
pi

ω2
= 1 + ω2

pe

Ω2
e

(
1 − ΩiΩe

ω2

)
, (A3)

ε|| = 1 −
∑

s

ω2
ps

ω2
≈ −ω

2
pe

ω2
, (A4)

ε× = −
∑

s

ω2
psΩs

ω(ω2 −Ω2
s )

≈ − ω2
pe

ωΩe
− ω2

piΩi

ω3
≈ − ω2

pe

ωΩe
, (A5)

with ω2
peΩi = ω2

piΩe, where the approximate forms are valid for Ωe 	 ω 	 Ωi =
ZieB/mic, which is the frequency range of interest here. The species (s) plasma frequency

https://doi.org/10.1017/S0022377823000569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000569


Helicon and lower hybrid current drive comparisons 13

is defined as ω2
ps = 4πZ2

s e2ns/ms, and βe = v2
eω

2
pe /Ω

2
e c2.The orderings give ε2

×/ε|| ∼
ω2

pe/Ω
2
e ∼ 1 and ε|| 	 ε× 	 ε⊥ ∼ 1. Moreover, for a resonant Landau interaction

ω/k||ve > 1 suggesting the ordering n|| = k||c/ω >∼ 1.
Letting

ek = e||n + e⊥(k⊥ + Υ n × k)/k⊥
√

1 + |Υ |2, (A6)

the three components of the cold plasma equation are related by

e||/e⊥ = n||n⊥/[(n2
⊥ − ε||)

√
1 + |Υ |2], (A7)

and
Υ = iε×/(ε⊥ − n2), (A8)

and the cold plasma dispersion relation is

n2
||ε||/(ε|| − n2

⊥) = ε⊥ − ε2
×/(ε⊥ − n2), (A9)

which when rewritten in powers of n2
⊥ yields

ε⊥n4
⊥ + [(ε|| + ε⊥)(n2

|| − ε⊥)+ ε2
×]n2

⊥ + ε||[(n2
|| − ε⊥)2 − ε2

×] = 0. (A10)

The two distinct branches satisfying accessibility (n2
⊥ > 0) are found by assuming

[(ε|| + ε⊥)(n2
|| − ε⊥)+ ε2

×]2 	 4ε⊥ε||[(n2
|| − ε⊥)2 − ε2

×] to find

n2
⊥ ≈

{−[(ε|| + ε⊥)(n2
|| − ε⊥)+ ε2

×]/ε⊥ lower hybrid/slow

−ε||[(n2
|| − ε⊥)

2 − ε2
×]/[(ε|| + ε⊥)(n2

|| − ε⊥)+ ε2
×] helicon/fast

. (A11)

For the lower hybrid branch ε2
× + ε⊥n2

⊥ + ε||(n2
|| − ε⊥) ≈ 0. Keeping |Υ |2 
 1, requires

n2 	 ε× 	 ε⊥, leading to

ω2 = ΩiΩe(1 + ω2
pe/k

2
⊥c2 + k2

||Ωe/k2
⊥Ωi)

(1 +Ω2
e /ω

2
pe)(1 + ω2

pe/k
2
⊥c2)+ ω2

pe/k
2
⊥c2

≈ ΩiΩe(1 + k2
||Ωe/k2

⊥Ωi)

1 +Ω2
e /ω

2
pe

, (A12)

where the last form assumes k2
⊥c2 	 ω2

pe or n2
⊥ 	 ε|| to further increase the size e||

to allow e||/e⊥ ≈ k||/k⊥. Lower hybrid accessibility requires n2
|| > 1 + ω2

pe/Ω
2
e (Golant

1972), which does not allow it to penetrate to the core in reactor relevant tokamaks.
The helicon or whistler branch can be approximated by

n2
⊥ = [ε2

× − (n2
|| − ε⊥)2]/[(n2

|| − ε⊥)+ ε2
×/ε||]. (A13)

Substituting in the components of the dielectric tensor and rewriting gives

ω2 = ΩiΩe(1 + k2
||c

2/ω2
pi)

1 + k2
⊥/k2 +Ω2

e /ω
2
pe + ω2

pe/k2c2
→ ΩiΩe

(
k2

||c
2

ω2
pi

)(
k2c2

ω2
pe

)
, (A14)

where the first form allows k2
⊥c2 ∼ ω2

pe, while the last assumes ω2
pe/k

2c2 	 2 +Ω2
e /ω

2
pe

and k2
||c

2/ω2
pi 	 1 to recover the form in Preinhaelter & Vaclavik (1967) and used

in de Assis & Busnardo-Neto (1988). The last form is sometimes referred to as an
oblique whistler wave. Moreover, helicon waves can propagate in the high harmonic fast

https://doi.org/10.1017/S0022377823000569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000569


14 P.J. Catto and M. Zhou

wave (HHFW) range of frequencies (Ono 1995; Lashmore-Davies et al. 1998) and are
sometimes referred to as HHFWs (Yin et al. 2022).

For the same value of ω2/k2
||v

2
e the ratio of the parallel currents driven by helicon and

lower hybrid waves (or the power absorbed) is roughly

JH
||

JLH
||

∼ ρ2
e |ek · n × k|2

|ek · n|2 ∼ k2
⊥ρ

2
e |Υ | e2

⊥
(1 + |Υ |2)e2

||
∼ k2

⊥ρ
2
e
ε×(n2

⊥ − ε||)
2

n2
⊥n2

||(n2 − ε⊥)

∼ k2
⊥ρ

2
e

ωω2
pe(ω

2
pe + k2

⊥c2)
2

Ωek2
|| c2k2

⊥c2k2c2
,

(A15)

which can be order unity.
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