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Abstract
Matching-adjusted indirect comparison (MAIC) has been increasingly applied in health technology assessments
(HTA). By reweighting subjects from a trial with individual participant data (IPD) to match the summary statistics
of covariates in another trial with aggregate data (AgD), MAIC enables a comparison of the interventions for
the AgD trial population. However, when there are imbalances in effect modifiers with different magnitudes of
modification across treatments, contradictory conclusions may arise if MAIC is performed with the IPD and AgD
swapped between trials. This can lead to the “MAIC paradox,” where different entities reach opposing conclusions
about which treatment is more effective, despite analyzing the same data. In this paper, we use synthetic data to
illustrate this paradox and emphasize the importance of clearly defining the target population in HTA submissions.
Additionally, we recommend making de-identified IPD available to HTA agencies, enabling further indirect
comparisons that better reflect the overall population represented by both IPD and AgD trials, as well as other
relevant target populations for policy decisions. This would help ensure more accurate and consistent assessments
of comparative effectiveness.

Highlights
What is already known:

• Matching-adjusted indirect comparison (MAIC) methods are increasingly used in health technology
assessment (HTA) submissions to adjust for population differences.

• MAIC estimates the comparative effectiveness of interventions for the population represented by the trial
with aggregate data (AgD).

What is new:

• We present an illustration demonstrating an MAIC paradox in which the comparative effectiveness
conclusions are reversed by switching the availability of IPD and AgD while adjusting the same set of effect
modifiers.
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• Additionally, we examine how variations in covariate distribution overlap of effect modifiers between trials
influence the estimated comparative effectiveness.

Potential impact for Research Synthesis Methods readers:

• Through an illustrative example, we emphasize the vital importance of clearly defining the target population
when applying MAIC in HTA submissions.

• We recommend providing de-identified IPD to HTA agencies to enable a more accurate assessment of
comparative effectiveness for the target population.

1. Background of MAIC

Effect modification occurs when the magnitude of the effect of a treatment on an outcome differs
depending on the value of a third variable. For example, studies indicate that Black individuals may
experience less favorable outcomes compared to non-Black individuals when treated with angiotensin-
converting enzyme (ACE) inhibitor-based therapies.1,2 In health technology assessments (HTAs),
pharmaceutical companies are required to benchmark their new drugs against the prevailing standard
of care for reimbursement decisions by HTA agencies.3 Nevertheless, the presence of effect modifiers
can pose a unique challenge in comparing treatments when there is a lack of head-to-head trials.
The traditional Bucher method,4 which compares the relative treatment effects of two interventions
assessed in two randomized trials without covariate balancing, is limited to scenarios where all effect
modifiers are balanced across trial populations.5 When individual participant data (IPD) are available
for one trial while aggregate-level data (AgD) are only available for the other trial, researchers
introduced population-adjusted indirect comparison (PAIC) methods to obtain unbiased estimates
of comparative effectiveness, particularly when imbalances in effect modifiers exist. PAIC methods
include matching-adjusted indirect comparison (MAIC),6 simulated treatment comparison (STC),7 and
multilevel network meta-regression (ML-NMR).8

Among these methods, MAIC is becoming increasingly popular and widely used in health
technology appraisals, such as the National Institute for Health and Care Excellence (NICE) in the
United Kingdom.9 In a recent methodological systematic review, 88.9% (144 out of 162) of PAIC
studies used MAICs.10 MAICs estimate a set of balancing weights for each subject in the IPD trial
such that the weighted summary statistics (e.g., mean and standard deviation) of covariates in the IPD
trial match the reported summaries of the same covariates in the AgD trial. Then, MAIC compares the
marginal treatment effect estimated using the weighted data in the IPD trial with the marginal treatment
effect reported in the AgD trial.5,11 For a more detailed description of the MAIC methods, readers can
refer to the review paper by Jiang et al.12

Notably, the indirect comparison result is only valid with respect to the population represented by
the AgD trial. However, this may not align with the population of interest for the company conducting
the MAIC, which might prioritize the population represented by the IPD trial or another specific target
population. This paper presents an illustrative example showing that MAICs can yield conflicting
comparative effectiveness results when switching the availability of AgD and IPD between trials. This
paradoxical phenomenon occurs due to differing magnitudes of effect modification for the two drugs
by an effect modifier that is also imbalanced between the trial populations.

2. An illustrative example of the MAIC paradox

Consider an anchored indirect comparison between drug A (from Company A) and drug B (from
Company B), each compared to a common placebo comparator C, as depicted in Figure 1. Each
company has access only to IPD from its own trial and to AgD for the other company’s trial through
published sources. For simplicity, we assume that race (Black versus non-Black) is the sole effect
modifier, allowing both MAICs to include the “correct” effect-modifying variable. Additionally, we
assume that drug A shows a stronger treatment effect among Black participants, while drug B is more
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Figure 1. Indirect comparison of Drug A versus B in two trials. For the AC trial, we have the individual
participant data (IPD). For the BC trial, we only have the aggregate level data (AgD).

effective among non-Black participants. If the AC trial includes a higher proportion of non-Black
participants (among whom drug A is less effective than drug B), while the BC trial predominantly
includes Black participants, we can observe a paradox: in separate MAICs, drug A outperforms drug B
in the BC trial population, while drug B outperforms drug A in the AC trial population.

Table 1 presents hypothetical data of the AC and BC trials. Let 𝑛11 = 800, 𝑛10 = 400 be the number of
non-Black and Black patients in the AC trial, and 𝑛21 = 400, 𝑛20 = 800 denote the number of non-Black
and Black patients in the BC trial, respectively. The MAIC performed by Company A calculates the
weights 𝑤1 for all non-Black patients and 𝑤0 for all Black patients in the AC trial such that the weighted
proportion of non-Black patients 𝑛11𝑤1

𝑛11𝑤1+𝑛10𝑤0
matches the proportion of non-Black patients in the BC

trial 𝑛21
𝑛21+𝑛20

= 1
3 (see Table 1), subject to the constraint that weights sum to 1 (i.e., 𝑛11𝑤1 + 𝑛10𝑤0 = 1).

Solving the equation, we have 𝑤1 = 1
3𝑛11

= 1
2400 and 𝑤0 = 2

3𝑛10
= 1

600 . Based on the trial data, under
the usual logit link, the estimated treatment effect (log of the odds ratio of the survival rate) for drug A
versus drug C in the population of BC trial would be

log
����

80×𝑤1+180×𝑤0
400×𝑤1+200×𝑤0(

1 −
(

80×𝑤1+180×𝑤0
400×𝑤1+200×𝑤0

)) ���	
− log

����
40×𝑤1+80×𝑤0

400×𝑤1+200×𝑤0(
1 −

(
40×𝑤1+80×𝑤0

400×𝑤1+200×𝑤0

)) ���	
= 1.540.

The indirect comparison of drug A versus B can then be obtained by subtracting the estimated
marginal treatment effect for drug B in the BC trial from this value, which gives 1.540−1.115 = 0.425.
The corresponding standard error can be calculated using the robust sandwich estimator, which provides
robust results given that the weights are estimated. The 95% confidence interval can then be constructed
as (0.048, 0.802), indicating that drug A is statistically significantly better than drug B in the population
of the BC trial.

Similarly, for the MAIC performed by Company B with IPD and AgD switched, the weights can
also be determined by matching the weighted proportion of non-Black patients in the BC trial (IPD
trial) to the proportion in the AC trial (AgD trial). This gives 𝑤1 = 2

3𝑛21
= 1

600 and 𝑤0 = 1
3𝑛20

= 1
2400 .

Performing the same calculations, the estimated comparative effectiveness for drug A versus drug B
in the population of the AC trial is −0.402 with a 95% confidence interval (−0.014,−0.790), which
indicates that drug B is significantly better than drug A in the population of the AC trial.

Here, we emphasize that both conclusions—drug A being more effective than drug B or B being
more effective than A—are potentially valid within the context of the specific populations considered
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Table 1. Results for the illustrative example. In this example, the risk difference in survival rate for
Drug A versus Drug C in the AC trial is 10% for non-black patients and 50% for black patients.
Treatment effect for Drug B versus Drug C in the BC trial is 40% for non-black patients and 20% for
black patients.

AC Trial BC Trial A versus B

Drug A Drug C logOR* Drug B Drug C logOR logOR

Non-black Y = 0** 80 40 100 20
Y = 1 320 360 100 180
n*** 400 400 200 200

Survival rate 20% 10% 0.81 50% 10% 2.20 −1.39
Black Y = 0 180 80 240 160

Y = 1 20 120 160 240
n 200 200 400 400

Survival rate 90% 40% 2.60 60% 40% 0.81 1.79
Overall Survival rate 43.3% 20% 1.12 56.7% 30% 1.12
* logOR: Log of odds Ratio.
** Y: Outcome variable with Y = 1 indicating death and Y = 0 indicating survival.
*** n: Sample size.

in this example. However, without a clearly defined target population, the results of the indirect
comparison lack meaningful applicability for guiding medical decisions.

In the supplementary material Section S1, we show a step-by-step derivation of the weights. In
Section S2, we further explore the impact of varying proportions of non-Black participants in the IPD
and AgD populations separately on the MAIC results (see Figures S1a and Figure S1b). In addition, we
present an example illustrating this paradox in unanchored MAIC in Section S3.

3. Discussion

In this manuscript, we highlight a potential paradox, referred to as the “MAIC paradox,” where both
companies may claim the superiority of their drugs through MAIC, even when the same covariates,
including all effect modifiers, are included in the analyses. This paradox arises when there are
imbalances in effect modifiers with different magnitudes of modification across treatments. The key
issue is the lack of careful consideration of the target population. If the target population is not
clearly defined or appropriately selected for the context, results from MAIC may lead to misleading
or contradictory conclusions. This emphasizes the need for Health Technology Assessment (HTA)
appraisals to explicitly define the target population that is most relevant for policy decision-making
to ensure valid and consistent results. A clear definition of the target population is crucial to avoid
misinterpretations that may arise from the MAIC paradox. Additionally, population overlap can impact
MAIC results. Indirect comparison results tend to be more consistent when there is a high degree of
overlap between populations. Conversely, if neither the AC trial population nor the BC trial population
is comparable to the target population, MAIC may not reliably estimate the most relevant treatment
effect. A more detailed discussion is provided in Supplementary Material Section S2.

The dependence of MAIC results on the target population has also been discussed in other literature
as well. Following a review of NICE appraisals, Phillippo et al.9 observed that many appraisals
overlooked the fact that comparative effectiveness was estimated over the population from the AgD
trial, which might not represent the target population of interest. An example provided by the NICE
DSU Technical Support Document 1811 illustrates how contradicting conclusions may arise when both
Novartis and AbbVie used MAIC to compare their drugs secukinumab and adalimumab: Novartis
claimed significant efficacy advantages for secukinumab, while AbbVie argued that adalimumab had
comparable efficacy but was more cost-effective. This discrepancy arose in part because two MAICs
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used different sets of covariates in their analyses, which complicated the understanding of the cause for
inconsistency. In our manuscript, we show that such paradoxes can still occur even when the correct
MAIC model is used with the same set of covariates.

The manuscript illustrates how the target population affects the results of MAIC. However, the
results of other PAIC methods, such as STC, also depend on the target population. Additionally,
extrapolating outside the IPD population increases the risk of bias in the case of STC, which is a broader
concern for any regression-based or other adjustment method. In the presence of effect modifiers,
indirect comparison results are only valid when the target population is clearly defined.

Phillippo et al.5 proposed an additional sufficient condition for validly extrapolating the comparative
effectiveness results to other populations, known as the “shared effect modifier assumption.” This
assumption has two key components: 1) treatment effect modifiers are the same for all treatments,
and 2) the magnitude of each effect modifier (i.e., how much it influences the treatment effect) is the
same for all included treatments. Under the classical two-trial scenario, this assumption is statistically
untestable, as only one trial provides IPD, leaving the other trial’s effect modifiers uncertain. Therefore,
the validity of this assumption must only be demonstrated from a clinical perspective, relying on
existing knowledge about the disease and treatments. This highlights the importance of ensuring clinical
consistency and understanding of the treatments involved when applying MAIC or other PAIC methods.

Finally, we advocate for a collaborative effort among all relevant stakeholders to make de-identified
IPD from clinical trials available through a trusted authority. Access to IPD from both trials would
allow for a more robust approach to balancing the entire covariate distribution rather than just balancing
the moments (such as means) of the covariates. This help mitigate the risk of ecological fallacy when
drawing inferences between the two populations. However, sharing data must be done with the informed
consent of trial participants, ensuring that appropriate de-identification protocols are followed to
minimize the risk of participant re-identification.13 In addition to direct sharing of IPD, interim solutions
could include the use of federated learning algorithms14–17 and secure data-sharing infrastructures,18

which allows for the analysis of summary statistics without exposing sensitive individual data.
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