ON THE LAW OF THE ITERATED LOGARITHM FOR INFINITE DIMENSIONAL ORNSTEIN-UHLENBECK PROCESSES

QI-MAN SHAO

Abstract

Let $\left\{X_{k}(t),-\infty<t<\infty\right\}_{k=1}^{\infty}$ be independent Ornstem-Uhlenbeck processes and $X(t, n)=\sum_{l=1}^{n} X_{t}(t)$ In this paper the law of iterated loganthm for $X(t, n)$ is considered The results obtained improve those of Csorgő and $\operatorname{Lin}(1988)$ and Schmuland(1987)

A real valued stationary Gaussian process $\{X(t),-\infty<t<\infty\}$ will be called an Ornstein-Uhlenbeck process with coefficients γ and $\lambda(\gamma \geq 0, \lambda>0)$ if $\operatorname{EX}(t)=0$ and $\operatorname{EX}(s) X(t)=(\gamma / \lambda) \exp (-\lambda|t-s|)$. Let

$$
\{Y(t),-\infty<t<\infty\}=\left\{X_{k}(t),-\infty<t<\infty\right\}_{k=1}^{\infty}
$$

be a sequence of independent Ornstein-Uhlenbeck processes with coefficients γ_{k} and λ_{k}. The process $Y(\cdot)$ was first studied by Dawson(1972) as the stationary solution of the infinite array of stochastic differential equations:

$$
d X_{k}(t)=-\lambda_{k} X_{k}(t) d t+\left(2 \gamma_{k}\right)^{1 / 2} d W_{k}(t), \quad k=1,2, \ldots,
$$

where $\left\{W_{k}(t),-\infty<t<\infty\right\}_{k=1}^{\infty}$ are independent Wiener processes. The properties of $Y(\cdot)$ have been extensively studied in the literature. Since $\mathrm{EX}_{k}^{2}(t)=\gamma_{k} / \lambda_{k}$, it is clear that for every fixed $\mathrm{t}, Y(t)$ is almost surely in ℓ^{2} if and only if $\sum_{k=1}^{\infty} \gamma_{k} / \lambda_{k}<\infty$. The continuity properties of $Y(\cdot)$ were investigated by Dawson(1972), Schmuland(1987), Iscoe and McDonald(1986), Fernique(1989), Csáki, Csórgő and Shao(1991). Csörgő and $\operatorname{Lin}(1988)$ studied $Y(\cdot)$ in terms of the path behaviour of the two-time parameter stochastic process $\{X(t, n),-\infty<t<\infty, n=1,2, \ldots\}$, where $X(t, n)=\sum_{k=1}^{n} X_{k}(t)$, $X(t, 0)=0$ for all $t \in R$ and established P . Lévy type moduli of continuity, large increment rates for the latter process and the following law of the iterated logarithm:

Theorem A. Let $\lambda_{N}^{*}=\max _{1 \leq l \leq N} \lambda_{l}$, and $\sigma_{N}=\sigma(N)=\sum_{l=1}^{N} \gamma_{l} / \lambda_{l}$. Assume that

$$
\begin{equation*}
\left(\log \lambda_{N^{*}}\right) / \log \log N \longrightarrow 0, \text { as } N \longrightarrow \infty \text {, } \tag{1}
\end{equation*}
$$

and that the non-decreasing sequence $\left\{T_{N}\right\}$ satisfies

$$
\begin{equation*}
\log T_{N} / \log \log N \longrightarrow 0, \text { as } N \longrightarrow \infty . \tag{2}
\end{equation*}
$$

[^0]Suppose also that for every $\epsilon>0$ there exist $1<\theta_{1}<\theta_{2}$ such that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sigma\left(\theta_{1}^{k+1}\right) / \sigma\left(\theta_{1}^{k}\right) \leq 1+\epsilon \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sigma\left(\theta_{2}^{k}\right) / \sigma\left(\theta_{2}^{k+1}\right) \leq \epsilon \tag{4}
\end{equation*}
$$

Then, with $\beta_{N}^{*}=\left(2\left(\sum_{l=1}^{N} \gamma_{l} / \lambda_{l}\right) \log \log N\right)^{1 / 2}$, we have

$$
\limsup _{N \rightarrow \infty}\left|X\left(T_{N}, N\right)\right| / \beta_{N}^{*}=\limsup _{N \rightarrow \infty} \max _{1 \leq n \leq N} \sup _{|t| \leq I_{N}}|X(t, n)| / \beta_{N}^{*}=1 \text { a.s. }
$$

Schmuland(1987), using Dirichlet form-techniques, proved that if $\gamma_{k} / \lambda_{k} \equiv 1$ and $\sum_{l=1}^{n} \gamma_{l} /(2 n \log \log n) \longrightarrow 0$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
P\left\{\limsup _{n \rightarrow \infty} X(t, n) /(2 n \log \log n)^{1 / 2}=1 \text { for all } t \in R\right\}=1 \tag{5}
\end{equation*}
$$

It is not difficult to see that (3) and (4), in fact, imply that there exists positive constants $\alpha_{1}, \alpha_{2}, c_{1}$ and c_{2} such that

$$
\begin{equation*}
\sigma_{n} / n^{\alpha_{1}} \leq c_{1} \sigma_{m} / m^{\alpha_{1}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n} / n^{\alpha_{2}} \geq c_{2} \sigma_{m} / m^{\alpha_{2}} \tag{7}
\end{equation*}
$$

for each $1 \leq n \leq m$.
Unfortunately, conditions (1) and (2) in Theorem A are too restrictive to be satisfied even for $\lambda_{k}=k^{\alpha}$, or $\lambda_{k}=\log ^{\alpha}(1+k)(\alpha>0)$, or $T_{N}=\log N$. The aim of this note is to relax the conditions of Theorem A and that of Schmuland(1987) as well.

Let $\left\{T_{N}, n \geq 1\right\}$ be a non-decreasing sequence of positive numbers. Put

$$
\begin{gathered}
\sigma_{N}=\sigma(N)=\sum_{l=1}^{N} \gamma_{l} / \lambda_{l}, \Gamma_{N}=\sum_{l=1}^{N} \gamma_{l}, \\
\beta_{N}=\left(2 \sigma_{N}\left(\log \left(\Gamma_{N} T_{N} / \sigma_{N}\right)+\log \log \sigma_{N}\right)\right)^{1 / 2},
\end{gathered}
$$

where and in the sequel, $\log x=\ln (\max (x, e)), \ln$ is the natural logarithm. For $0<\epsilon<1$, define $\theta_{n}(\epsilon)$ as the solution of the equation

$$
\begin{equation*}
\sum_{l=1}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{n}(\epsilon)}=\epsilon \sigma_{n} \tag{8}
\end{equation*}
$$

Theorem 1. Assume that

$$
\begin{equation*}
T_{N} \Gamma_{N} / \sigma_{N}+\sigma_{N} \longrightarrow \infty, \text { as } N \rightarrow \infty \tag{9}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \max _{1 \leq n \leq N} \sup _{|t| \leq T_{N}}|X(t, n)| / \beta_{N} \leq 1 \text { a.s. } \tag{10}
\end{equation*}
$$

Theorem 2. Assume that (9) is satisfied and that there exists a positive constant C such that

$$
\begin{gather*}
\sigma_{N} \leq C \sigma_{N-1} \text { for every } N \geq 1 \tag{11}\\
\log \frac{T_{N} \Gamma_{N}}{\sigma_{N}} \leq(1+C \epsilon) \log \frac{T_{N}}{\theta_{N}(\epsilon)}+C \epsilon \log \log \sigma_{N} \tag{12}
\end{gather*}
$$

for every $0<\epsilon<1$ as $N \rightarrow \infty$. Then, we have

$$
\begin{gather*}
\limsup _{N \rightarrow \infty} \sup _{0 \leq \leq \leq T_{N}}|X(t, N)| / \beta_{N}=1 \text { a.s. } \tag{13}\\
\underset{N \rightarrow \infty}{ } \limsup _{1 \leq n \leq N} \operatorname{mup}_{|t| \leq T_{N}}|X(t, n)| / \beta_{N}=1 \text { a.s. } \tag{14}
\end{gather*}
$$

If, in addition, we also have

$$
\begin{equation*}
\log \log \sigma_{N}=o\left(\log \frac{T_{N} \Gamma_{N}}{\sigma_{N}}\right), \text { as } N \rightarrow \infty \tag{15}
\end{equation*}
$$

Then

$$
\begin{gather*}
\lim _{N \rightarrow \infty} \sup _{0 \leq t \leq T_{N}}|X(t, N)| / \beta_{N}=1 \text { a.s. } \tag{16}\\
\lim _{N \rightarrow \infty} \max _{1 \leq n \leq N} \sup _{|t| \leq I_{N}}|X(t, n)| / \beta_{N}=1 \text { a.s. } \tag{17}
\end{gather*}
$$

Theorem 3. Assume that (11) is satisfied. Moreover, suppose that

$$
\begin{equation*}
\log \left(\Gamma_{N} / \sigma_{N}\right)=o\left(\log \log \sigma_{N}\right) \text { as } N \rightarrow \infty, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{N} \longrightarrow \infty \text { as } N \longrightarrow \infty \tag{19}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
P\left\{\limsup _{N \rightarrow \infty} X(t, N) /\left(2 \sigma_{N} \log \log \sigma_{N}\right)^{1 / 2}=1 \text { for all } t \in R\right\}=1 . \tag{20}
\end{equation*}
$$

Before stating our corollaries, we introduce the following notations:

$$
\begin{gathered}
\lambda_{N}^{*}=\max _{l \leq N} \lambda_{l}, m_{n}(1, \epsilon)=\max \left\{\ell: \sum_{l=\ell}^{n} \frac{\gamma_{l}}{\lambda_{l}} \geq(1-\epsilon) \sigma_{n}\right\}, \\
m_{n}(2, \epsilon)=\min \left\{\ell: \sum_{i=1}^{\ell} \frac{\gamma_{l}}{\lambda_{l}} \geq(1-\epsilon) \sigma_{n}\right\}, \lambda_{N}^{\prime}(\epsilon)=\max \left\{\min _{m_{n}(1, \epsilon \leq \leq \leq N} \lambda_{l}, \min _{1 \leq l \leq m_{n}(2, \epsilon)} \lambda_{l}\right\} .
\end{gathered}
$$

A sequence $\left\{a_{n}\right\}$ is called quasi-increasing if there exists a positive constant C such that

$$
a_{k} \leq C a_{n} \text { for each } k \leq n .
$$

Corollary 1. Assume that (9) and (11) are satisfied and that there exists a positive constant C such that

$$
\lambda_{N}^{*} \leq C\left(\lambda_{N}^{\prime}(\epsilon)\right)^{1+C \epsilon} \log ^{C \epsilon} \sigma_{N}
$$

for every $0<\epsilon<1$. Then, (13) and (14) hold. If we also have (15), then (16) and (17) are true.

Corollary 2. Assume that (11) is satisfied and that there is positive constants α and C such that $\sigma(n) / n^{\alpha}$ is quasi-increasing and $\lambda_{2 k}^{*} \leq C \min _{k \leq 1 \leq 2 k} \lambda_{l}$ for each $k \geq 1$. Then, (13) and (14) hold. If we also have (15), then (16) and (17) are true.

Corollary 3. Assume that (11) is satisfied and that

$$
\log \frac{T_{N} \Gamma_{N}}{\sigma_{N}}=o\left(\log \log \sigma_{N}\right) \text { as } N \rightarrow \infty
$$

Then, we have (13), (14) and

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} X\left(T_{N}, N\right) /\left(2 \sigma_{N} \log \log \sigma_{N}\right)^{1 / 2}=1 \text { a.s. } \tag{21}
\end{equation*}
$$

COROLLARY 4. Assume that (9) and (11) are satisfied and that $\lambda_{n} \sigma_{n}^{1-\alpha}$ and $\sigma_{n}^{1 / \alpha} / \lambda_{n}$ are quasi-increasing for some $0<\alpha<1$. Then, (13) and (14) hold. If we also have (15), then (16) and (17) are true.

The proof of theorems is based on the following lemmas.
Lemma 1 (Fernique(1964)). Let $G(t)$ be a Gaussian process on $[0,1]$ with

$$
E(G(t)-G(s))^{2} \leq \Lambda^{2}(|t-s|)
$$

where Λ is continuous, non-decreasing and satisfies $\int_{1}^{\infty} \Lambda\left(e^{-y^{2}}\right) d y<\infty$ and also $E G^{2}(t) \leq \Gamma^{2}$. Then, for every $x>0$

$$
P\left\{\sup _{0 \leq t \leq 1}|G(t)|>x\left(\Gamma+4 \int_{1}^{\infty} \Lambda\left(e^{-y^{2}}\right) d y\right)\right\} \leq d \int_{x}^{\infty} e^{-y^{2} / 2} d y
$$

where d is an absolute constant.
Lemma 2. For every $0<\epsilon<1$, there exists a constant $C=C(\epsilon)$ such that

$$
\begin{equation*}
P\left\{\sup _{|t| \leq T}|X(t, n)| \geq x \sigma_{n}^{1 / 2}\right\} \leq C\left(1+\frac{T \Gamma_{n}}{\sigma_{n}}\right) \exp \left(-\frac{(1-\epsilon)}{2} x^{2}\right) \tag{22}
\end{equation*}
$$

Proof. Note that

$$
\begin{equation*}
\mathrm{EX}^{2}(t, n)=\sigma_{n} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
E(X(t, n)-X(s, n))^{2}=2 \sum_{t=1}^{n} \frac{\gamma_{t}}{\lambda_{t}}\left(1-e^{-\lambda_{l}|t-s|}\right) \leq 2 \Gamma_{n}|t-s| \tag{24}
\end{equation*}
$$

for every t and s. Put

$$
\delta=\frac{\epsilon}{32(1-\epsilon)^{1 / 2}}, \quad \theta=\frac{\delta^{2} \sigma_{n}}{\Gamma_{n}}
$$

Then

$$
\begin{align*}
P\left\{\sup _{|t| \leq T}|X(t, n)| \geq x \sigma_{n}^{1 / 2}\right\} & \leq 2\left(\left[\frac{T}{\theta}\right]+1\right) P\left\{\sup _{0 \leq t \leq \theta}|X(t, n)| \geq x \sigma_{n}^{1 / 2}\right\} \tag{25}\\
& =2\left(\left[\frac{T}{\theta}\right]+1\right) P\left\{\sup _{0 \leq t \leq 1}|X(t \theta, n)| \geq x \sigma_{n}^{1 / 2}\right\}
\end{align*}
$$

By (23) and (24), we have

$$
\begin{equation*}
\int_{1}^{\infty}\left(2 \theta \Gamma_{n} e^{-y^{2}}\right)^{1 / 2} d y \leq 4 \delta \sigma_{n}^{1 / 2} \tag{26}
\end{equation*}
$$

Using the Fernique lemma, we find

$$
\begin{align*}
P\left\{\sup _{0 \leq t \leq 1}\right. & \left.|X(t \theta, n)| \geq x \sigma_{n}^{1 / 2}\right\} \tag{27}\\
& \leq P\left\{\sup _{0 \leq 1 \leq 1}|X(t \theta, n)| \geq \frac{x}{1+16 \delta}\left(\sigma_{n}^{1 / 2}+4 \int_{1}^{\infty}\left(2 \theta \Gamma_{n} e^{-y^{2}}\right)^{1 / 2} d y\right\}\right. \\
& \leq d \int_{\frac{x}{1+16 x}}^{\infty} e^{-t^{2} / 2} d t \\
& \leq d \exp \left(-\frac{x^{2}}{2(1+16 \delta)^{2}}\right) \\
& \leq d \exp \left(-\frac{(1-\epsilon) x^{2}}{2}\right) .
\end{align*}
$$

Now (22) follows from (27) and (25).
LEMMA 3. Let $0<\epsilon<\frac{1}{2}, \theta_{n}(\epsilon)$ be the solution of the equation (8).Then, there is a positive $C(\epsilon)$ such that

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}|X(t, n)| \leq x \sigma_{n}^{1 / 2}\right\} \leq\left(1-C(\epsilon) \exp \left(-\frac{x^{2}}{2(1-2 \epsilon)}\right)\right)^{T / \theta_{n}(\epsilon)} \tag{28}
\end{equation*}
$$

for each $x>0$.
PROOF. Let $\left\{W_{l}(t), 0 \leq t<\infty\right\}_{l=1}^{\infty}$ be independent standard Wiener processes. Noting that

$$
\{X(t, n), 0 \leq t \leq T\} \text { and }\left\{\sum_{l=1}^{n}\left(\frac{\gamma_{l}}{\lambda_{l}}\right)^{1 / 2} \frac{W_{l}\left(e^{2 \lambda_{l} t}\right)}{e^{\lambda_{l} t}}, 0 \leq t \leq T\right\}
$$

have the same distribution, we have

$$
\begin{align*}
P\left\{\sup _{0 \leq t \leq T}|X(t, n)| \leq x \sigma_{n}^{1 / 2}\right\} & \leq P\left\{\sup _{\left.0 \leq J \leq \leq \frac{T}{\theta_{n}}\right]}\left|X\left(j \theta_{n}, n\right)\right| \leq x \sigma_{n}^{1 / 2}\right\} \tag{29}\\
& =P\left\{\max _{0 \leq J \leq \leq \frac{T}{\theta_{n}} 1}\left|\sum_{l=1}^{n}\left(\frac{\gamma_{l}}{\lambda_{l}}\right)^{1 / 2} \frac{W_{l}\left(e^{2 \lambda_{l} \theta_{n}}\right)}{e^{\lambda_{l} \theta_{n}}}\right| \leq x \sigma_{n}^{1 / 2}\right\}
\end{align*}
$$

where $\theta_{n}=\theta_{n}(\epsilon)$. Set

$$
U_{J}=\sum_{l=1}^{n}\left(\frac{\gamma_{l}}{\lambda_{l}}\right)^{1 / 2} \frac{W_{l}\left(e^{2 \lambda_{l} \theta_{n}}\right)}{e^{j \lambda_{l} \theta_{n}}}, V_{J}=\sum_{l=1}^{n}\left(\frac{\gamma_{l}}{\lambda_{l}}\right)^{1 / 2} \frac{W_{l}\left(e^{2(-1) \lambda_{i} \theta_{n}}\right)}{e^{j \lambda_{l} \theta_{n}}} .
$$

It is easy to see that

$$
U_{J}-V_{J} \sim N\left(0, \sum_{l=1}^{n} \frac{\gamma_{l}}{\lambda_{l}}\left(1-e^{-2 \lambda_{i} \theta_{n}}\right)\right) .
$$

Whence

$$
\begin{equation*}
U_{J}-V_{J} \sim N\left(0,(1-\epsilon) \sigma_{n}\right) \tag{30}
\end{equation*}
$$

by the definition of θ_{n}.Thus, by (30), we obtain

$$
\begin{align*}
& P\left\{\max _{0 \leq j \leq\left[\frac{T}{\theta_{n}}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2}\right\} \tag{31}\\
& =P\left\{\max _{0 \leq \jmath<\left[\frac{T}{\theta_{n}}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2},\left|U_{\left[\frac{T}{\theta_{n}}\right]}-V_{\left[\frac{T}{\theta_{n}}\right]}+V_{\left[\frac{T}{\theta_{n}}\right]}\right| \leq x \sigma_{n}^{1 / 2}\right\} \\
& =\int_{-\infty}^{\infty} P\left\{\left|U_{\left[\frac{T}{\theta_{n}}\right]}-V_{\left[\frac{T}{\theta_{n}}\right]}+y\right| \leq x \sigma_{n}^{1 / 2}\right\} d P\left\{V_{\left[\frac{T}{\theta_{n}}\right]}<y, \max _{\left.0 \leq j<\backslash \frac{T}{\theta_{n}}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2}\right\} \\
& =\int_{-\infty}^{\infty}\left(\Phi\left(\frac{x \sigma_{n}^{1 / 2}-y}{\left((1-\epsilon) \sigma_{n}\right)^{1 / 2}}\right)-\Phi\left(\frac{-x \sigma_{n}^{1 / 2}-y}{\left((1-\epsilon) \sigma_{n}\right)^{1 / 2}}\right)\right) d P \\
& \left\{V_{\left[\frac{T}{\theta_{n}}\right]}<y, \max _{0 \leq \jmath<\left[\frac{T}{\theta_{n}}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2}\right\} \\
& \leq \int_{-\infty}^{\infty}\left(\Phi\left(\frac{x}{(1-\epsilon)^{1 / 2}}\right)-\Phi\left(\frac{-x}{(1-\epsilon)^{1 / 2}}\right)\right) d P\left\{V_{\left[\frac{T}{\theta_{n}}\right]}<y, \max _{\left.0 \leq J<\frac{I}{\theta}^{T}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2}\right\} \\
& =\left(1-\frac{2}{\sqrt{2 \pi}} \int_{\frac{x}{(1-\theta)^{1 / 2}}}^{\infty} e^{-t^{2} / 2} d t\right) P\left\{\max _{0 \leq \leq<\left[\frac{T}{\theta_{n}}\right]}\left|U_{j}\right| \leq x \sigma_{n}^{1 / 2}\right\} \\
& \leq\left(1-C(\epsilon) e^{-\frac{x^{2}}{2(1-2 \epsilon)}}\right) P\left\{\max _{0 \leq \leq<\left[\frac{T}{\theta_{n}}\right]}\left|U_{J}\right| \leq x \sigma_{n}^{1 / 2}\right\},
\end{align*}
$$

here we have used the following facts on the Wiener Process:
i) $U_{\left[\frac{T}{\theta_{n}}\right]}-V_{\left[\frac{T}{\theta_{n}}\right]}$ and $\left\{V_{\left[\frac{T}{\theta_{n}}\right]}, U_{j}, 0 \leq j<\left[\frac{T}{\theta_{n}}\right]\right\}$ are independent,
ii) $\Phi(x-y)-\Phi(-x-y) \leq \Phi(x)-\Phi(-x)$ for every $y \in R$ and $x \geq 0$,
iii) for each $\delta>0$, there is a $C(\delta)>0$ such that

$$
\int_{x}^{\infty} e^{-t^{2} / 2} d t \geq C(\delta) \exp \left(-\frac{x^{2}(1+\delta)}{2}\right) \text { for every } x \geq 0
$$

By recurrence, we conclude from (29) and (31) that (28) holds true.
From (28) it is easy to see that
Lemma 4. Let $0<\epsilon<\frac{1}{2}, \theta_{n}(\epsilon)$ be the solution of the equation (8). Then, there is a positive $C(\epsilon)$ such that

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}|X(t, n)| \geq x \sigma_{n}^{1 / 2}\right\} \geq C(\epsilon)\left(1+\frac{T}{\theta_{n}}\right) \exp \left(-\frac{x^{2}}{2(1-2 \epsilon)}\right) \tag{32}
\end{equation*}
$$

for each $x \geq\left(2(1-2 \epsilon) \log \frac{T}{\theta_{n}}\right)^{1 / 2}$.
Lemma 5. For each $0<\epsilon<\frac{1}{2}$, there is a constant $C=C(\epsilon)$ such that

$$
\begin{equation*}
P\left\{\max _{1 \leq n \leq N} \sup _{\mid t \leq T}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\} \leq C\left(1+\frac{T \Gamma_{N}}{\sigma_{N}}\right) \exp \left(-\frac{(1-2 \epsilon) x^{2}}{2}\right) \tag{33}
\end{equation*}
$$

Proof. (33) will follow from Lemma 2 and

$$
\begin{align*}
& P\left\{\max _{1 \leq n \leq N} \sup _{|t| \leq T}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\} \tag{34}\\
& \quad \leq 4\left(1+\frac{T \Gamma_{N}}{\sigma_{N}}\right) P\left\{\sup _{|t| \leq \sigma_{N} / \Gamma_{N}}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\}
\end{align*}
$$

for every x sufficiently large. Let

$$
\begin{gathered}
B=\sigma_{N} / \Gamma_{N}, E_{1}=\left\{\sup _{|t| \leq B}|X(t, 1)| \geq x \sigma_{N}^{1 / 2}\right\}, \\
E_{l}=\left\{\max _{J<1} \sup _{|t| \leq B}|X(t, j)|<x \sigma_{N}^{1 / 2} \leq \sup _{|t| \leq B}|X(t, i)|\right\}, \quad i=2, \ldots, N .
\end{gathered}
$$

Noting that

$$
\begin{aligned}
\left\{\max _{1 \leq n \leq N} \sup _{|t| \leq B}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\}= & \bigcup_{n=1}^{N} E_{n} \subset\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\} \\
& \bigcup \bigcup_{n=1}^{N-1}\left(E_{n} \cap\left\{\sup _{|t| \leq B}|X(t, N)|<x(1-\epsilon) \sigma_{N}^{1 / 2}\right\}\right) \\
\subset & \left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\} \\
& \bigcup \bigcup_{n=1}^{N-1}\left(E_{n} \cap\left\{\sup _{|t| \leq B}|X(t, N)-X(t, n)| \geq \epsilon x \sigma_{N}^{1 / 2}\right\}\right)
\end{aligned}
$$

and that $\{X(t, N)-X(t, n),|t| \leq B\}$ and E_{n} are independent, we have

$$
\begin{aligned}
& P\left\{\max _{1 \leq n \leq N} \sup _{|t| \leq B}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\} \\
& \leq P\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\} \\
& \quad+\sum_{n=1}^{N-1} P\left\{\sup _{|t| \leq B}|X(t, N)-X(t, n)| \geq \epsilon x \sigma_{N}^{1 / 2}\right\} P\left(E_{n}\right) \\
& \leq P\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\} \\
& \quad+\sum_{n=1}^{N-1} d\left(1+\frac{B \sum_{l=1+n}^{N} \gamma_{l}}{\sum_{t=1+n}^{N} \gamma_{l} / \lambda_{l}}\right) \exp \left(-\frac{\epsilon^{2} x^{2} \sigma_{N}}{4 \sum_{l=1+n}^{N} \gamma_{l} / \lambda_{l}}\right) P\left(E_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq P\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\}+2 d \exp \left(-\frac{\epsilon^{2} x^{2}}{4}\right) \sum_{n=1}^{N-1} P\left(E_{n}\right) \\
& \leq P\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\}+\frac{1}{2} P\left\{\max _{1 \leq n \leq N} \sup _{|t| \leq B}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\}
\end{aligned}
$$

provided $x \geq 4(\log (8 d)) / \epsilon$. In the last but second inequality we have used the fact that $f(y)=y e^{-a y}$ is decreasing on $[1 / a, \infty)$ for each $a>0$ fixed, and d is an absolute constant as in Lemma 2. The above inequality yields

$$
P\left\{\max _{1 \leq n \leq N} \sup _{|t| \leq B}|X(t, n)| \geq x \sigma_{N}^{1 / 2}\right\} \leq 2 P\left\{\sup _{|t| \leq B}|X(t, N)| \geq x(1-\epsilon) \sigma_{N}^{1 / 2}\right\}
$$

for $x \geq 4(\log (8 d)) / \epsilon$, as desired.
Proof of Theorem 1. It suffices to show that for each $0<\epsilon<1 / 8$

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \max _{1 \leq n \leq N} \sup _{|t| \leq T_{N}}|X(t, n)| / \beta_{N} \leq 1+8 \epsilon \text { a.s. } \tag{35}
\end{equation*}
$$

For $k \geq 0$, put

$$
\begin{aligned}
& H_{k}=\left\{N:(1+\epsilon)^{k}<\beta_{N} \leq(1+\epsilon)^{k+1}\right\}, \\
& M_{k}=\max \left\{N: N \in H_{k}\right\} .
\end{aligned}
$$

Clearly, (9) implies that $\beta_{N} \rightarrow \infty$ as $N \rightarrow \infty$. So, we have

$$
\begin{align*}
& \limsup _{N \rightarrow \infty} \max _{1 \leq n \leq N} \sup _{|t| \leq T_{N}}|X(t, n)| / \beta_{N} \tag{36}\\
& \leq \limsup _{k \rightarrow \infty} \max _{N \in H_{k}} \max _{1 \leq n \leq N} \sup _{|t| \leq T_{N}}|X(t, n)| / \beta_{N} \\
& \leq(1+\epsilon) \limsup _{k \rightarrow \infty} \max _{1 \leq n \leq M_{k}} \sup _{|t| \leq T_{M_{k}}}|X(t, n)| /(1+\epsilon)^{k+1} .
\end{align*}
$$

From the definition of M_{k}, we find that

$$
\frac{(1+\epsilon)^{2 k}}{2\left(\log \left(T_{M_{k}} \Gamma_{M_{k}} / \sigma_{M_{k}}\right)+\log \log \sigma_{M_{k}}\right)}<\sigma_{M_{k}} \leq \frac{(1+\epsilon)^{2(k+1)}}{2\left(\log \left(T_{M_{k}} \Gamma_{M_{k}} / \sigma_{M_{k}}\right)+\log \log \sigma_{M_{k}}\right)} .
$$

Whence, for each $k \geq 1$

$$
\begin{equation*}
\sigma_{M_{k}} \geq(1+\epsilon)^{k} \text { or }\left(\frac{T_{M_{k}} \Gamma_{M_{k}}}{\sigma_{M_{k}}}+e\right) \geq \exp \left(\frac{1}{4}(1+\epsilon)^{k}\right) . \tag{37}
\end{equation*}
$$

Using Lemma 5, we deduce

$$
\begin{align*}
P\left\{\max _{1 \leq n \leq M_{k}|t| \leq T_{M_{k}}}\right. & \left.\sup |X(t, n)| \geq(1+\epsilon)^{k+1}(1+\epsilon)^{2}\right\} \tag{38}\\
& \leq P\left\{\max _{1 \leq n \leq M_{k}} \sup _{|t| \leq T_{M_{k}}}|X(t, n)| \geq \beta_{M_{k}}(1+\epsilon)^{2}\right\} \\
& \leq C(\epsilon)\left(1+\frac{T_{M_{k}} \Gamma_{M_{k}}}{\sigma_{M_{k}}}\right) \exp \left(-(1+\epsilon)\left(\log \frac{T_{M_{k}} \Gamma_{M_{k}}}{\sigma_{M_{k}}}+\log \log \sigma_{M_{k}}\right)\right) \\
& \leq C(\epsilon)\left(1+\frac{T_{M_{k}} \Gamma_{M_{k}}}{\sigma_{M_{k}}}\right)^{-\epsilon}\left(\log \sigma_{M_{k}}\right)^{-(1+\epsilon)} \\
& \leq C(\epsilon) k^{-(1+\epsilon)}
\end{align*}
$$

by (37). Now (35) follows from (36), (38) and the Borel-Cantelli lemma. This completes the proof of Theorem 1.

Proof of Theorem 2. Noting that σ_{N} is non-decreasing, we have

$$
\sigma_{N} \rightarrow \sigma \text { as } N \rightarrow \infty,
$$

where $0<\sigma \leq \infty$. If $0<\sigma<\infty$, then (9) implies $T_{N} \Gamma_{N} / \sigma_{N} \rightarrow \infty$ and hence (15) is satisfied. So we only need to consider two cases: one is $\sigma=\infty$, the other is (15) being satisfied. We formulate the proof below in two steps, which together with (10) will imply our statements.

STEP 1. Suppose $\sigma=\infty$, then, for each $0<\epsilon<1 /\left(4 C^{2}\right)$

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \sup _{0 \leq t \leq T_{N}}|X(t, N)| / \beta_{N} \geq 1-\epsilon^{1 / 2} \text { a.s. } \tag{39}
\end{equation*}
$$

Let

$$
N_{1}=1, N_{k+1}=\min \left\{n: \sigma_{n} \geq\left(\frac{8 C^{2}}{\epsilon^{2}}\right)^{k}\right\}, \quad k=1,2, \ldots
$$

From condition (11), we get

$$
\begin{equation*}
\left(\frac{8 C^{2}}{\epsilon^{2}}\right)^{k}<\sigma_{N_{k+1}} \leq C\left(\frac{8 C^{2}}{\epsilon^{2}}\right)^{k} \tag{40}
\end{equation*}
$$

Clearly, $\sigma=\infty$ implies $N_{k} \uparrow \infty$ as $k \rightarrow \infty$. Then
(41) $\quad \limsup \sup _{N \rightarrow \infty}|X(t, N)| / \beta_{N} \geq \limsup _{k \rightarrow t \leq T_{N}} \sup _{0 \leq t \leq T_{N_{k}}}\left|X\left(t, N_{k}\right)\right| / \beta_{N_{k}}$

$$
\begin{aligned}
& \geq \limsup \sup _{k \rightarrow \infty}\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}} \\
& \quad-\limsup \sup _{k \rightarrow \infty} \sup _{0 \leq t \leq I_{N_{k}}}\left|X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}} .
\end{aligned}
$$

Using Lemma 5 again, we have

$$
\begin{aligned}
P\left\{\sup _{0 \leq I \leq T_{N_{k}}}\right. & \left.\left|X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}} \geq \frac{\epsilon}{2}\right\} \\
& \leq C(\epsilon)\left(1+\frac{T_{N_{k}} \Gamma_{N_{k-1}}}{\sigma_{N_{k-1}}}\right) \exp \left(-\frac{\epsilon^{2} \sigma_{N_{k}}}{9 \sigma_{N_{k-1}}}\left(\log \frac{T_{N_{k}} \Gamma_{N_{k}}}{\sigma_{N_{k}}}+\log \log \sigma_{N_{k}}\right)\right) \\
& \leq C(\epsilon)\left(1+\frac{T_{N_{k}} \Gamma_{N_{k-1}}}{\sigma_{N_{k-1}}}\right)\left(1+\frac{T_{N_{k}} \Gamma_{N_{k}}}{\sigma_{N_{k}}}\right)^{-2} \log ^{-2} \sigma_{N_{k}} \\
& \leq C(\epsilon) k^{-2}
\end{aligned}
$$

by (40). This implies that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{0 \leq t \leq T_{N_{k}}}\left|X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}} \leq \frac{\epsilon}{2} \text { a.s. } \tag{42}
\end{equation*}
$$

To estimate $\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}}$, we let $\theta_{k}^{*}(\epsilon)$ be the solution of the equation

$$
\sum_{l=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{l} \theta_{k}^{*}(\epsilon)}=\epsilon \sum_{l=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}}
$$

and let

$$
\beta_{k}^{\prime}=\left(2\left(\sum_{l=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}}\right)\left(\log \left(T_{N_{k}} / \theta_{k}^{*}(\epsilon)\right)+\log \log \sum_{t=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}}\right)\right) .
$$

Then, in terms of (32), we obtain

$$
\begin{aligned}
& P\left\{\sup _{0 \leq I \leq T_{N_{k}}}\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right| / \beta_{k}^{\prime} \geq(1-2 \epsilon)^{1 / 2}\right\} \\
& \geq C(\epsilon)\left(1+\frac{T_{N_{k}}}{\theta_{k}^{*}(\epsilon)}\right) \exp \left(-\left(\beta_{k}^{\prime}\right)^{2} / 2\right) \\
& \geq C(\epsilon) \log ^{-1}\left(\sum_{t=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}}\right) \\
& \geq C(\epsilon) k^{-1}
\end{aligned}
$$

by (40) again. Therefore, we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{0 \leq \leq \leq T_{N_{k}}}\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right| / \beta_{k}^{\prime} \geq(1-2 \epsilon)^{1 / 2} \text { a.s., } \tag{43}
\end{equation*}
$$

since $\left\{\sup _{0 \leq t \leq T_{N_{k}}}\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right|, k \geq 1\right\}$ are independent random variables. On the other hand, it follows from the definitions of $\theta_{N_{k}}(\epsilon / 2)$ and θ_{k}^{*} that

$$
\begin{aligned}
\frac{1}{4} \epsilon \sigma_{N_{k}} & =\sum_{i=1}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{N_{k}}\left(\frac{\xi}{4}\right)} \\
& \geq \sum_{l=1+N_{k}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{i} \theta_{N_{k}}\left(\frac{\mathrm{f}}{4}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2} \epsilon \sigma_{N_{k}} & =\frac{\epsilon}{2}\left(\sigma_{N_{k}}-\sigma_{N_{k-1}}+\sigma_{N_{k-1}}\right) \\
& \leq \frac{\epsilon}{2}\left(\sigma_{N_{k}}-\sigma_{N_{k-1}}\right)+\frac{\epsilon}{4} \sigma_{N_{k}}
\end{aligned}
$$

From the latter, we find that $\sigma_{N_{k}} \leq 4\left(\sigma_{N_{k}}-\sigma_{N_{k-1}}\right)$. Hence

$$
\sum_{l=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{N_{k}}\left(\frac{(4)}{4}\right)} \leq \sum_{l=1+N_{k-1}}^{N_{k}} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{k}^{*}(\epsilon)},
$$

which is equivalent to say that $\theta_{N_{k}}\left(\frac{\epsilon}{4}\right) \geq \theta_{k}^{*}(\epsilon)$. Combining the above results with the assumption (12), we finally conclude that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{0 \leq t \leq T_{N_{k}}}\left|X\left(t, N_{k}\right)-X\left(t, N_{k-1}\right)\right| / \beta_{N_{k}} \geq \frac{(1-2 \epsilon)}{(1+C \epsilon)^{2}} \text { a.s. } \tag{44}
\end{equation*}
$$

This proves (39) by (41), (42) and (44).
STEP 2. If, in addition, (15) is satisfied, then for each $0<\epsilon<\frac{1}{8}$

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \sup _{0 \leq t \leq T_{N}}|X(t, N)| / \alpha_{N} \geq 1-4 \epsilon \text { a.s. } \tag{45}
\end{equation*}
$$

where $\alpha_{N}=\left(2 \sigma_{N} \log \frac{T_{N} \Gamma_{N}}{\sigma_{N}}\right)^{1 / 2}$.
Let $1<\theta<1+\frac{\epsilon^{2}}{6}$. Define

$$
\begin{gathered}
A_{k}=\left\{N: \theta^{k} \sigma_{1} \leq \sigma_{N}<\theta^{k+1} \sigma_{1}\right\}, \quad k=0,1, \ldots, \\
B_{J}=\left\{N: \theta^{\prime} \leq \frac{T_{N} \Gamma_{N}}{\sigma_{N}}+1<\theta^{+1}\right\}, \quad j=0,1, \ldots, \\
L_{k_{, j}}=\min \left\{N: N \in A_{k} B_{J}\right\}, L_{k, J}^{*}=\max \left\{N: N \in A_{k} B_{J}\right\}, \\
\Gamma_{k, J}=\sum_{i=1+L_{k, J}}^{L_{k, j}^{*}} \gamma_{l}, \sigma_{k, j}=\sum_{i=1+L_{k, J}}^{L_{k, j}^{*}} \frac{\gamma_{l}}{\lambda_{l}} .
\end{gathered}
$$

Clearly, (15) implies that $T_{N} \Gamma_{N} / \sigma_{N} \rightarrow \infty$ and that $A_{k} B_{J}=\emptyset$ if $k \geq \theta^{\epsilon}$, when j is sufficiently large. Thus, we have
(46) $\liminf _{N \rightarrow \infty} \sup _{0 \leq t \leq T_{N}}|X(t, N)| / \alpha_{N}$

$$
\begin{aligned}
& \geq \liminf _{J \rightarrow \infty} \inf _{N \in B_{J}} \sup _{0 \leq t \leq T_{N}}|X(t, N)| / \alpha_{N} \\
& \geq \liminf _{j \rightarrow \infty} \inf _{0 \leq k \leq \theta^{\prime}} \inf _{N \in B_{j} A_{k}} \sup _{0 \leq \leq \leq T_{N}}|X(t, N)| / \alpha_{N} \\
& \geq \liminf _{J \rightarrow \infty} \inf _{0 \leq k \leq \theta^{\xi}} \inf _{N \in B_{j} A_{k}} \sup _{0 \leq t \leq I_{L_{k}, j}} \frac{|X(t, N)|}{\left(2 \theta^{k+1} \log \theta^{\beta^{\prime+1}}\right)^{1 / 2}} \\
& \geq \liminf _{J \rightarrow \infty} \inf _{0 \leq k \leq \theta^{\beta}} \sup _{0 \leq t \leq T_{L_{k_{j}}}} \frac{\left|X\left(t, L_{k_{j}}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{J+1}\right)^{1 / 2}} \\
& -\limsup \sup _{J \rightarrow \infty} \sup _{0 \leq k \leq \theta^{d}} \sup _{L_{k, j} \leq N \leq L_{k_{j}, j}^{*}} 0 \leq \leq \leq T_{L_{k, j}} \frac{\left|X(t, N)-X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} .
\end{aligned}
$$

Similarly to (33), we can obtain that

$$
\begin{aligned}
& P\left\{\sup _{L_{k, j} \leq N \leq L_{k_{j}}^{*}} \sup _{0 \leq t \leq T_{L_{k, j}}} \frac{\left|X(t, N)-X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \geq \epsilon\right\} \\
& \leq C(\epsilon)\left(1+\frac{T_{L_{k, j}} \Gamma_{k, j}}{\sigma_{k, j}}\right) \exp \left(-\frac{\epsilon^{2} \theta^{k+1} \log \theta^{+1}}{2 \sigma_{k, j}}\right)
\end{aligned}
$$

Since $x e^{-x}$ is decreasing on $[1, \infty)$ and $\sigma_{k, j}=\sigma_{L_{k, j}^{*}}-\sigma_{L_{k, j}} \leq(\theta-1) \theta^{k}$, the above inequality is bounded by

$$
C(\epsilon)\left(1+\frac{T_{L_{k, j}^{*}} \Gamma_{L_{k, j}^{*}}}{\sigma_{L_{k, j}^{*}}}\right) \exp \left(-\frac{\epsilon^{2} \log \theta^{\beta+1}}{2(\theta-1)}\right) \leq C(\epsilon) \theta^{j+1} \exp \left(-3 \log \theta^{j+1}\right) \leq C(\epsilon) \theta^{-2 j}
$$

for every j sufficiently large. Therefore

$$
P\left\{\sup _{0 \leq k \leq \theta^{\prime} L_{L_{k}, j} \leq N \leq L_{k_{k}}^{*}} \sup _{0 \leq t \leq T_{L_{k, J}}} \frac{\left|X(t, N)-X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \geq \epsilon\right\} \leq C(\epsilon) \theta^{-j}
$$

which follows that

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \sup _{0 \leq k \leq \theta^{*} L_{L_{k}, j} \leq N \leq L_{k_{k}}^{*}} \sup _{0 \leq t \leq T_{L_{k, J}}} \frac{\left|X(t, N)-X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \leq \epsilon \text { a.s. } \tag{47}
\end{equation*}
$$

On the other hand, using (28), we have

$$
\begin{aligned}
& P\left\{\sup _{0 \leq t \leq I_{L_{k, j}}} \frac{\left|X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \leq \frac{1-2 \epsilon}{\theta}\right\} \\
& \leq P\left\{\sup _{0 \leq t \leq T_{L_{k, j}}} \frac{\left|X\left(t, L_{k, j}\right)\right|}{\left(2 \sigma_{L_{k, j}} \log \theta^{j+1}\right)^{1 / 2}} \leq 1-2 \epsilon\right\} \\
& \leq\left(1-C(\epsilon) \exp \left(-(1-2 \epsilon) \log \theta^{j+1}\right)\right)^{T_{L_{k, j}} / \theta_{L_{k, j}}(\epsilon)} \\
& \leq \exp \left(-\frac{C(\epsilon) T_{L_{k, j}}}{\theta^{(1-2 \epsilon)} \theta_{L_{k_{j}}}(\epsilon)}\right) \\
& \leq \exp \left(-C(\epsilon) \theta^{\epsilon j}\right)
\end{aligned}
$$

by (12) and (15), for every sufficiently large j, and hence

$$
P\left\{\inf _{0 \leq k \leq \theta^{\prime}} \sup _{0 \leq t \leq T_{L_{k, J}}} \frac{\left|X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \leq \frac{1-2 \epsilon}{\theta}\right\} \leq \theta^{\epsilon j} \exp \left(-C(\epsilon) \theta^{\epsilon J}\right) \leq \theta^{-J}
$$

provided that j is sufficiently large, which implies immediately

$$
\begin{equation*}
\liminf _{j \rightarrow \infty} \inf _{0 \leq k \leq \theta^{f}} \sup _{0 \leq t \leq I_{L_{k, j}}} \frac{\left|X\left(t, L_{k, j}\right)\right|}{\left(2 \theta^{k+1} \log \theta^{j+1}\right)^{1 / 2}} \geq \frac{1-2 \epsilon}{\theta} \text { a.s. } \tag{48}
\end{equation*}
$$

by the Borel-Cantelli lemma.
Now (45) follows from (46)-(48). This completes the proof of Theorem 2.

Proof of Theorem 3. It suffices to show that

$$
\begin{equation*}
\forall A>0, \quad \limsup _{n \rightarrow \infty} \sup _{|t| \leq A} \frac{|X(t, n)|}{\left(2 \sigma_{n} \log \log \sigma_{n}\right)^{1 / 2}} \leq 1 \text { a.s. } \tag{49}
\end{equation*}
$$

and
(50) $\forall \epsilon>0, \forall A>0, \quad \lim _{n \rightarrow \infty} P\left\{\bigcup_{|t| \leq A} \bigcap_{l=n}^{\infty}\left\{X(t, i)<(1-\epsilon)\left(2 \sigma_{l} \log \log \sigma_{l}\right)^{1 / 2}\right\}\right\}=0$
hold true.
(49) follows from Theorem 1 and (18) immediately. We now prove (50). Let

$$
0<\epsilon<\frac{1}{4}, \quad n_{k}=\max \left\{n: \sigma_{n} \leq a^{k}\right\}
$$

where $a>1$ is a constant which will be specified later. Then

$$
\frac{a^{k}}{C} \leq \sigma_{N_{k}} \leq a^{k}
$$

Clearly, (50) is implied by

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P\left\{\bigcup_{|t| \leq A} \bigcap_{t=k}^{\infty}\left\{X\left(t, n_{t}\right)<(1-\epsilon)\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\}\right\}=0 . \tag{51}
\end{equation*}
$$

Noting that

$$
\begin{aligned}
& \left\{X\left(t, n_{l}\right)<(1-\epsilon)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\} \\
& \subset\left\{X\left(t, n_{l-1}\right)<-\frac{\epsilon}{2}\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\} \\
& \quad \bigcup\left\{X\left(t, n_{l}\right)-X\left(t, n_{l-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{l}}\right)^{1 / 2}\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \bigcup_{|t| \leq A} \bigcap_{l=k}^{\infty}\left\{X\left(t, n_{t}\right)<(1-\epsilon)\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\} \\
& \subset \bigcup_{|t| \leq A} \bigcap_{l=k}^{\infty}\left\{X\left(t, n_{t}\right)-X\left(t, n_{t-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\} \\
& \quad \bigcup \bigcup_{|t| \leq A} \bigcup_{l=k}^{\infty}\left\{X\left(t, n_{t-1}\right)<-\frac{\epsilon}{2}\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\} .
\end{aligned}
$$

From Theorem 1 and (18) it follows that

$$
P\left\{\bigcup_{|t| \leq A} \bigcup_{l=k}^{\infty}\left\{X\left(t, n_{l-1}\right)<-\frac{\epsilon}{2}\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{l}}\right)^{1 / 2}\right\} \longrightarrow 0 \text { as } k \rightarrow \infty\right.
$$

provided $a>8 C / \epsilon^{2}$.

The rest we should do is to prove

$$
\begin{equation*}
P\left\{\bigcup_{|t| \leq A} \bigcap_{l=k}^{\infty}\left\{X\left(t, n_{l}\right)-X\left(t, n_{l-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\}\right\} \longrightarrow 0 \tag{52}
\end{equation*}
$$

as $k \rightarrow \infty$. Let $b:=b_{k}=1 /\left(A k^{2}\right)$. Then

$$
\begin{align*}
& P\left\{\bigcup_{|t| \leq A} \bigcap_{l=k}^{\infty}\left\{X\left(t, n_{l}\right)-X\left(t, n_{t-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\}\right\} \tag{53}\\
& \leq P\left\{\bigcup_{|t| \leq A} \bigcap_{l=k}^{2 k}\left\{X\left(t, n_{l}\right)-X\left(t, n_{l-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\}\right\} \\
& \leq 4 k^{2} P\left\{\bigcup_{0 \leq t \leq b} \bigcap_{l=k}^{2 k}\left\{X\left(t, n_{l}\right)-X\left(t, n_{t-1}\right)<\left(1-\frac{\epsilon}{2}\right)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{l}}\right)^{1 / 2}\right\}\right\} \\
& \leq 4 k^{2} P\left\{\bigcap_{l=k}^{2 k}\left\{X\left(b, n_{l}\right)-X\left(b, n_{l-1}\right)<\left(1-\frac{\epsilon}{3}\right)\left(2 \sigma_{n_{l}} \log \log \sigma_{n_{t}}\right)^{1 / 2}\right\}\right\} \\
&+4 k^{2} P\left\{\bigcup_{0 \leq t \leq b} \bigcup_{l=k}^{2 k}\left\{\frac{X\left(t, n_{t}\right)-X\left(t, n_{t-1}\right)-X\left(b, n_{l}\right)+X\left(b, n_{l-1}\right)}{\left(2 \sigma_{n_{t}} \log \log \sigma_{n_{t}}\right)^{1 / 2}}<-\frac{\epsilon}{6}\right\}\right\} \\
&:= I_{1}(k)+I_{2}(k) .
\end{align*}
$$

Since $\left\{X\left(b, n_{l}\right)-X\left(b, n_{l-1}\right), k \leq i \leq 2 k\right\}$ are independent, we have

$$
\begin{align*}
I_{1}(k) & \leq 4 k^{2} \prod_{t=k}^{2 k}\left(1-C(\epsilon) \exp \left(-\left(1-\frac{\epsilon}{6}\right) \log \log \sigma_{N_{t}}\right)\right) \tag{54}\\
& \leq 4 k^{2} \prod_{t=k}^{2 k}\left(1-C(\epsilon) i^{-1+\frac{\epsilon}{6}}\right) \\
& \leq 4 k^{2} \exp \left(-\sum_{t=k}^{2 k} C(\epsilon) i^{-1+\frac{t}{6}}\right) \\
& \leq 4 k^{2} \exp \left(-C(\epsilon) k^{\epsilon / 6}\right) \longrightarrow 0, \text { as } k \rightarrow \infty
\end{align*}
$$

On the other hand, for $0 \leq t \leq b$ and $k \leq i \leq 2 k$ we have

$$
\begin{aligned}
E\left(X\left(t, n_{l}\right)-X\left(t, n_{t-1}\right)-X\left(b, n_{t}\right)+X\left(b, n_{l-1}\right)\right)^{2} & =2 \sum_{j=1+n_{t-1}}^{n_{t}} \frac{\gamma_{l}}{\lambda_{l}}\left(1-e^{-2 \lambda_{t}(b-t)}\right) \\
& \leq 4(b-t) \sum_{j=1+n_{l-1}}^{n_{t}} \gamma_{t} \\
& \leq \frac{4 \Gamma_{n_{t}}}{A \sigma_{n_{t}}} k^{-2} \sigma_{n_{t}} \\
& \leq 4 k^{-2} \sigma_{n_{t}}\left(\log \sigma_{N_{1}}\right) / A \\
& \leq 8 \sigma_{n_{t}}(\log a) /(A k) \\
& \leq \epsilon \sigma_{n_{t}} / 48
\end{aligned}
$$

provided that k is large enough.
Consequently, using the Fernique lemma again, we get

$$
\begin{aligned}
I_{2}(k) & \leq C(\epsilon) k^{3} \max _{k \leq \leq \leq 2 k}\left(1+\frac{b \Gamma_{n_{i}}}{\sigma_{n_{t}}}\right) \exp \left(-4 \log \log \sigma_{n_{k}}\right) \\
& \leq C(\epsilon) k^{3} \exp \left(-4 \log \log \sigma_{n_{k}}\right) \\
& \leq C(\epsilon) k^{-1} \longrightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

This proves (52) by (53) and (54), as desired. The proof of Theorem 3 is completed.
Proof of Corollary 1. It is easy to see that

$$
\begin{aligned}
& \frac{T_{N} \Gamma_{N}}{\sigma_{N}} \leq \lambda_{N}^{*}, \\
& 2 \epsilon \sigma_{n}=\sum_{l=1}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{n}(2 \epsilon)} \\
& \leq \sum_{l=1}^{m_{n}(1, \epsilon)-1} \frac{\gamma_{l}}{\lambda_{l}}+\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{l} \theta_{n}(2 \epsilon)} \\
& \leq \epsilon \sigma_{n}+\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{l} \theta_{n}(2 \epsilon)} \\
& \leq \epsilon \sigma_{n}+\left(\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}}\right) \exp \left(-2 \min _{m_{n}(1, \epsilon) \leq l \leq n}\left\{\lambda_{l}\right\} \theta_{n}(2 \epsilon)\right) \\
& \leq \epsilon \sigma_{n}+\sigma_{n} \exp \left(-2 \min _{m_{n}(1, \epsilon) \leq l \leq n}\left\{\lambda_{l}\right\} \theta_{n}(2 \epsilon)\right) .
\end{aligned}
$$

The latter implies that

$$
\frac{1}{\theta_{n}(2 \epsilon)} \geq 2 \min _{m_{n}(1, \epsilon) \leq I \leq n}\left\{\lambda_{l}\right\} / \log (1 / \epsilon) .
$$

Similarly, we have

$$
\frac{1}{\theta_{n}(2 \epsilon)} \geq 2 \min _{1 \leq l \leq m_{n}(2, \epsilon)}\left\{\lambda_{l}\right\} / \log (1 / \epsilon)
$$

Consequently, we obtain

$$
\frac{1}{\theta_{n}(2 \epsilon)} \geq 2 \lambda_{n}^{\prime}(\epsilon) / \log (1 / \epsilon)
$$

This indicates that the condition (12) is satisfied. The corollary now follows from Theorems 2 and 3.

Proof of Corollary 2. Since σ_{n} / n^{α} is quasi-increasing, there exists a positive constant C such that

$$
\begin{equation*}
\sigma_{\ell} / \ell^{\alpha} \leq C \sigma_{n} / n^{\alpha} \tag{55}
\end{equation*}
$$

for each $\ell \leq n$. From (55) we can find that for every $0<\epsilon<\frac{1}{4}$

$$
\sigma_{\ell} \leq \epsilon \sigma_{n} \text { for each } \ell \leq\left(\frac{\epsilon}{C}\right)^{1 / \alpha} n
$$

and hence

$$
\begin{equation*}
m_{n}(1, \epsilon) \geq\left(\frac{\epsilon}{C}\right)^{1 / \alpha} n \tag{56}
\end{equation*}
$$

On the other hand, it is easy to find that from the assumption $\lambda_{2 k}^{*} \leq C \min _{k \leq l \leq 2 k} \lambda_{t}$, for each $0<\epsilon<\frac{1}{4}$, there exists a constant $C(\epsilon)$ such that

$$
\begin{equation*}
\lambda_{n}^{*} \leq C(\epsilon) \min _{\epsilon n \leq \leq \leq n} \lambda_{l} . \tag{57}
\end{equation*}
$$

Thus, the assumption of Corollary 1 is satisfied by (56) and (57) and hence the corollary holds.

The proof of Corollary 3 is trivial and so is omitted here.
Proof of Corollary 4. By the assumption of quasi-increasing, there is a positive constant C such that for each $k \leq n$

$$
\lambda_{k} \sigma_{k}^{1-\alpha} \leq C \lambda_{n} \sigma_{n}^{1-\alpha}
$$

and

$$
\sigma_{k}^{1 / \alpha} / \lambda_{k} \leq C \sigma_{n}^{1 / \alpha} / \lambda_{n}
$$

Then

$$
\begin{aligned}
\frac{\Gamma_{n}}{\sigma_{n}} & =\left(\sum_{l=1}^{n} \frac{\gamma_{l}}{\lambda_{l}} \lambda_{l}\right) / \sigma_{n} \\
& \leq\left(\sum_{l=1}^{n} \frac{\left(\sigma_{l}-\sigma_{l-1}\right)}{\sigma_{l}^{1-\alpha}} \lambda_{n} \sigma_{n}^{1-\alpha}\right) / \sigma_{n} \\
& \leq C \lambda_{n} / \alpha,
\end{aligned}
$$

and

$$
\begin{aligned}
2 \epsilon \sigma_{n} & =\sum_{l=1}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{n}(2 \epsilon)} \\
& \leq \epsilon \sigma_{n}+\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}} e^{-2 \lambda_{t} \theta_{n}(2 \epsilon)} \\
& \leq \epsilon \sigma_{n}+\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}} \exp \left(-\frac{2 \lambda_{n} \sigma_{l}^{1 / \alpha} \theta_{n}(2 \epsilon)}{C \sigma_{n}^{1 / \alpha}}\right) \\
& \leq \epsilon \sigma_{n}+\sum_{l=m_{n}(1, \epsilon)}^{n} \frac{\gamma_{l}}{\lambda_{l}} \exp \left(-\frac{2 \lambda_{n} \epsilon^{1 / \alpha} \theta_{n}(2 \epsilon)}{C}\right) \\
& \leq \epsilon \sigma_{n}+\sigma_{n} \exp \left(-\frac{2 \lambda_{n} \epsilon^{1 / \alpha} \theta_{n}(2 \epsilon)}{C}\right) .
\end{aligned}
$$

Therefore, we have

$$
\frac{1}{\theta_{n}(2 \epsilon)} \geq \frac{2 \lambda_{n} \epsilon^{1 / \alpha}}{C \log (1 / \epsilon)}
$$

This proves that condition (12) is also satisfied and hence the corollary follows from Theorems 2 and 3.

ACKNOWLEDGEMENTS. A part of this work was done while at Carleton Unıversity, Ottawa, Canada. The author gratefully expresses his thanks to Professor M. Csorgб, the referee and Dr. Jun Liu for their valuable comments and suggestions.

References

1. E Csákı, M Csorgő and Q M Shao, Modulı of continuity for Gaussian processes, Tech Rep Ser Lab Res Stat Probab 160, Carleton University-University of Ottawa, 1991
2. M Csorgô and Z Y Lin, A law of the iterated logarithm for infinte dimensional Ornstein-Uhlenbeck processes, C R Math Rep Acad Scı Canada 10(1988), 113-118
3. D A Dawson, Stochastic evolutıon equations, Math Biosciences 15(1972), 1-52
4. X Fernique, La régularité des fonctoons aleatoıres d'Orenstein-Uhlenbeck á valeurs dans ℓ^{2}, le cas dıagonal, C R Acad Scı Parıs 309(1989), 59-62
5. \qquad Continutte des processus Gaussiens, C R Acad Scı Parıs 258(1964), 6058-6060
6. I Iscoe and D McDonald, Contınulty of ℓ^{2}-valued Ornstein-Uhlenbeckprocesses, Tech Rep Ser Lab Res Stat Probab 58, Carleton University-University of Ottawa, 1986
7. B Schmuland, Dirichlet forms and infinite dimensional Ornstein-Uhlenbeck processes, Ph D Dissertation, Carleton University, Ottawa, 1987

Department of Mathematics
Hangzhou University
Hangzhou, Zhejlang
People's Republic of China

Present address
Department of Mathematics
National University of Singapore
Singapore 0511

[^0]: Supported by the Fok Yingtung Education Foundation, and by an NSERC Canada Scientific Exchange Award at Carleton Unıversity, Ottawa,Canada

 Received by the editors April 22, 1991
 AMS subject classıfication Prımary 60G10, 60G15, 60 G17, secondary 60F15
 (C) Canadian Mathematical Society, 1993

