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ON THE MONOTONE CONVERGENCE OF
GENERAL NEWTON-LIKE METHODS

lOANNIS K. ARGYROS AND FERENC SZIDAROVSZKY

This paper examines conditions for the monotone convergence of general Newton-
like methods generated by point-to-point mappings. The speed of convergence of
such mappings is also examined.

1. INTRODUCTION

This paper examines conditions for the monotone convergence of Newton-like meth-
ods. Using the famous Kantorovich lemma on monotone mappings (see for example
Kantorovich and Akilov [5]) we derive several convergence results. The speed of con-
vergence of these processes is also examined.

In particular, let us consider the Newton-like iterates

(1) tk+i = Gk{zk) {k > 0),

where

(2) Gk(zk) = zk- Ak{zk, z^y1 fk(xk) (k > 0).

Here fk, Gk: D C B —> B\ (k ^ 0) are nonlinear mappings acting between two par-
tially ordered linear topological spaces (POL-spaces), (for definitions see for example
Krasnoselskii, [6]), whereas Ak(u, v)(.): D —* Bi{k ^ 0) are invertible linear mappings.
We provide sufficient conditions for the convergence of iteration (1) to 0. We may have
this assumption without losing generality, since any solution x* can be transformed
into 0 by introducing the transformed mapping gk(x) — fk(x + x*) — x* (k ^ 0). It-
erations of the above type are extremely important in solving optimisation problems,
as well as linear and nonlinear equations. A very important field of such applications
can also be found in solving equilibrium problems, in economy and in solving nonlinear
input-output systems (see for example [4, 6, 7, 8, 9, 12, 13]). Our results can be
reduced to the ones obtained earlier in [1, 2, 3, 5, 6, 10, 11, 12] when fk — f (k ^ 0).
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490 I.K. Argyros and F. Szidarovszky [2]

2. CONVERGENCE THEOREMS

Let us first define some special types of mappings between two POL-spaces. First
we introduce some notation. If B and B\ are two linear spaces then we denote by
(B, Bi) the set of all mappings from B into B\ and by L(B, Bi) the set of all linear
mappings from B into B±. If B and B\ are topological linear spaces then we denote
by LB(B, Bi) the set of all continuous linear mappings from B into Bi. For simplicity,
spaces L(B, B) and LB(B, B) will be denoted by L(B) and LB(B). Now let B and
B\ be two POL-spaces and consider a mapping G € (B, B\). G is called isotone
(respectively antitone) if x < y implies G(x) Sj G(y) (respectively G(x) ^ G(y)). G

is called nonnegative if x > 0 implies G(x) > 0. For linear mappings nonnegativity
is clearly equivalent to isotony. Also, a linear mapping is inverse nonnegative if and
only if it is invertible and its inverse is nonnegative. If G is a nonnegative mapping
we write G ^ 0. If G and H are two mappings from B into B\ such that H — G is
nonnegative then we write G ^ H. If Z is a linear space then we obviously have / ^ 0.
Suppose that B and B\ are two POL-spaces and consider the mappings T £ L(Bi, B)

and Z\ £ L(B, B^. If TjT ^ 7B (respectively if T^T ^ IB) then Tj is called a
left subinverse (respectively superinverse) of T, and T is called a right subinverse
(respectively superinverse) of 2\ . We say that Ti is a subinverse of T if T± is a left as
well as a right subinverse of T.

We assume that the following conditions hold:

(A) Consider mappings /*: D C B —> Bi where B is a regular POL-space and

Bi is a POL-space. Let xo, yo , 2/-i be three points of D such that

(3) xo < yo < y- i , (xo, y-i) c D, /0(x0) ^ 0 ^ /o(yo),

and denote Si = {(x, y) G B2 \ x0 ^ x ^ y ^ j /0},

52 = {(u, y-i) £ 5 2 | x0 ^ u < j/o},

53 = 5 i U 5 2 .

Assume mappings J4A(-J -): $3 ~* LB(B, B\) such that

(4) fk(y) - fk{x) < Ak{w, z)(y - x) for all k > 0, (x, y), (y, w) 6 Si, (w, z) 6 S,.

Suppose for any (u, v) £ 53 the linear mappings Ak(u, v) (fc ^ 0) have a continuous

nonsingular nonnegative subinverse. Assume furthermore that

(5) fk{x) < /fc_! (x) for all x 6 (x0, yo) (* ^ 1), / t - i (x) < 0,

(6) fk(y) > fh-i (y) for all y € (*o, yo) (i ^ 1), /*-i(y) ^ 0.

We can now formulate the main result.
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[3] Montone convergence of general Newton-like methods 491

THEOREM 1. Assume Condition (A) is satisfied.
Then there exist two sequences {x}, {yj.} (k ^ 0) and points x*, y*, x\, y£ such

that forallk^Q;

(7) fk(yk) + Ak{yk, y*-i)(yt+i - 2/fb) = 0,

(8) /*(zfc) + Ah(ykl yfc_1)(a;fc+1 - xh) = 0,

(9) fk(xk) < /fc-i(zjb-i) ^ 0 < fk-i(Vh-i) < /*(»*) (* > 1)

(10) x0 ^ xi < . . . ^ zfc ^ xk+1 < i/fc+i ^ i/fc < . . . < 2/1 < 2/o

(11) z* -+ x*,yt. -*y* as k -> oo, z* ^ y*

and

(12) fk(xk) -» i j , / 4 ( w ) -»2/j* as A: -» oo, with z ^ 0 < y*.

PROOF: Let £<> be a continuous nonsingular nonnegative left subinverse of Ao(yo, y-i)
Ao and consider the mapping P: (0, yo — Xo) —* B defined by

P(x) = z - L0(fo{xo) + A0(x)),

where ^lo(z) denotes the image of x with respect to the mapping Ao = Ao(yo, 2/-i)-
It is easy to see that P is isotone and continuous. We also have

P(0) = -Xo(/o(*o)) ^ 0,

P{yo - z0) = yo - z0 - £o(/o(yo)) + -to(/o(yo) - /o(z0) - ^o(yo - »o))

^ yo - z0 - io(/o(yo)) ^ yo - z0.

According to the famous Kantorovich lemma (see for example [5]) mapping P has a
fixed point w G (0, y0 — x0). Taking Xi = z0 + w, we have

/o(zo) + ^4o(zi - zo) = 0, z0 ^ zi ^ y0.

Using (4), (5) and the above relation we get

/i(zi) < /o(zi) - /o(xi) - /o(zo) + A0{x0 - zi) < 0.

Consider now the mapping Q: (0, j/o — xi) —> B given by

Q(x) = x + Lo{fo{yo) - Ao{x)).

Q is clearly continuous, isotone, and

Q(0) = £o/o(yo) ^ 0,

Q(yo - z i ) = y0 - xi + i o / o ( z i ) + £o(/o(yo) - fo{xi) - A0(y0 -

^ yo - zi + L o /o(z i ) < y0 - xi.
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Applying the Kantorovich lemma again, we deduce the existence of a point z £ (0, j/o —
Xx) such that Q(z) = z. Taking yi = y0 — z,

fo(yo) + -4o(^i -J/o) = 0, zi ^ t/i ^ i/o-

Using the above relations and conditions (4), (6) we obtain

A(yi) ^ Mvi) = Myi) - fo(yo) + A0(y0 - yi) ^ 0.

By induction it is easy to show there exist four sequences {z*}, {j/*}, {fk(zk)},
{fk(yk)}(k ^ 0), satisfying (7)-(10). Since space B is regular, from (9) and (10) we
know that there eixst x*, y*, x%, j/j £ B satisfying (11)-(12), which completes the
proof. 0

In the next part we give some natural conditions which guarantee that points x*,

y* are common solutions of equations /*(z) = 0 (k ^ 0).

THEOREM 2 . Under the hypotheses of Theorem 1, assume furthermore that

(i) tiere exists u 6 B such that x$ ^ U ^ J/O and /*(u) = 0 (A: ̂  0);
(ii) iinear mappings Ak(w, z) (k ^ 0), (to, z) £ 5s are inverse nonnegative.

Tien

Xk < u < yk {h ^ 0)

and x* ^ u ^ y*.

Moreover if x* — y* , then x* = u = y* .

PROOF: Using (i),

A0(yi -u) = A0{y0) - fo(yo) - A0{u)

= ^o(yo -"«) - (/o(»o) - /o(«)) > o

and A§{x\ — u) = A0(x0) — fo(xo) — A0(u)

= AQ(x0 - u) - (/o(*o) - /o(w)) < 0.

By(ii) it follows that x\ ^ u ^ t/i. By induction it is easy to show that xk ^ w ^ 2/A
for all k ^ 0. Hence, x* ^ u ^ y*. Moreover if x* = y*, then x* = u = y*, which
completes the proof. U

Moreover we can show:

THEOREM 3 . Under the hypotheses of Theorem 2, assume that either

(i) B is normal and there exists a mapping L: B —* B\ (L(0) — 0) which

has an isotone inverse continuous at the origin and Ak(yk, I/fc-i) ^ L for

all sufficiently large k ^ 0;
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(ii) B\ is normal and there exists a mapping T: B —> Bi (T(0) = 0) contin-

uous at the origin and Ak(yk, Vk-i) ^ T for sufficiently large k ^ 0;

or

(iii) Mappings Ak{yk, 2/fc-i) (& ^ 0) are equicontinuous.

Tien fk(xk) -> 0, /fc(yk) -* 0 as fc -> oo.

PROOF: (i) Using relations (6)-(10) we get

0 ^ fk{xk)

0 ^ /t(y*) = Ak{vk, yk-i){yk - yk+i) <: L(yk -

Hence 0 ^ L'1 fk{xk) ^ xk - xk+i, 0 ^ L~x

Since B is normal and both xj. — x*+i and j/fc —j/*+i converge to zero, L~1fk(xk) —* 0,

fk{yk) —* 0 as fc —> oo, from which the result follows,

(ii) Using relations (7)-(10) we have

0 ^ /jt(Efc) = Ak{yk, Vk-i)(xk - xk+i) ^ T(xk -

0 < fk(yk) = Ak(yk, Vk-i){yk - Vk+i) < T(yk -

By letting k —> oo we obtain the result.

(iii) From equicontinuity of mappings Ak(yk, yk-i) it follows that Ak{yki 3/fc-i)(zfc)
—» 0 whenever 2* —» 0. In particular, we have

Ak{yk, yk-i)(xk - xk+i) -> 0, Ak(yk, Vk-i){yk -2/*+i) -» 0 as fc -^ co.

By (7) and (8) and above estimate the result follows. D

The uniqueness of a common solution of equations fk{x) = 0 (k ^ 0) in (xo, 2/o)
can be proven assuming a condition which is complementary to (4). More precisely we
can prove the following:

THEOREM 4 . Let B and B1 be two POL-spaces. Let fk(.): D C B -> Bi be
nonlinear mappings and suppose there exist two points xo, yo G D such that XQ ^ j/o
and (xo,yo) C D. Denote by Si = {(x, y) G B2;x0 ^ x ^ y < y0} and assume
there exist mappings Lk{., .): 5i —> L(B, B\) such that Lk(x, y) has a nonnegative
left superinverse for each (x, y) £ Si and

fk(y) - fk{x) ^ Lk{x,y)(y - x) for all (x, y) e Si.
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Under these assumptions if (a;*, y*) G Si and fk(x*) = fk{y*)i then x* = y*.

PROOF: Let Tk(x*, y*) denote a nonnegative left superinverse of Lk{x*, y*) for

all ib > 0. We have

0 < y* - x* < Tk(x*, y*)Lk(x\ y*)(y* - x*)

^Tk(x*,y*)(fk(y*)-fk(x*))=0.

Hence x* = y*, which completes the proof. D

REMARK 1. The conclusions of Theorem 1 hold if iteration (7)-(8) is modified as

fk(Vk) + Ak(yk, yk+1)(yk+1 - yk) = 0,

fk(xk) + Ak(yk+1, yk)(xk+1 -xk) = 0{k^ 0).

This modification seems to be advantageous (see for example Slugin, [11]) in many
applications.

REMARK 2. Conditions (5) and (6) of Theorem 1 are very natural and they hold in
many interesting problems in numerical analysis. See for example, Krasnoselskii, [6].
Let us consider equations fk(x) = (k + l)(k + 2)~ x, k ^ 0 on [—1, 1] = [xo, yo] G R,
where M. is ordered with the usual ordering of real numbers. Then for any x, y with
x G [xo, 0] and y G [0, yo], conditions (5) and (6) are satisfied. We note that when
fk = f (k ^ 0), the same conditions are satisfied as equalities.

REMARK 3. The regularity of space B which is assumed in Theorem 1, is a rather
restrictive condition. This condition was essentially used in proving that the iter-
ative procedure (7)-(8) is well defined (that is, there exist sequences {xk}, {yk},
{fk(xk)}, {fk(yk)} (k > 0) satisfying (7)-(10) and they are convergent. Next, we
present a method to avoid this regularity assumption. Consider now the following
explicit method:

(13) yk+i = yk - A\(yk, yk~i)fk{yk) (k > 0)

(14) Zjfe+i = xk - A2
k(yk, yh-i)fh(ik) (* > 0),

where Al(yk, yk-i) and A\(yk, yk-i) are nonnegative subinverses of 4̂*(t/fc, 2/fc-i)
(k ^ 1). Without the regularity it is impossible to prove that sequences {a:*}, {yk},

{fk{xk)}, {fk(yk)} (k ^ 0) produced by (13)-(14) are convergent. However, we can
verify that for any common solution u G (zoj 2/o) of the equations fk(x) = 0 (k ^ 0),

x k < x k + i < u < y k + 1 ^ y k ( k ^ 0 ) .

This result becomes important when the existence of the solution is proven by other

methods, but it has to be enclosed monotonically (see the next section).
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THEOREM 5 . Consider mappings fk: D C B -> B^k ^ 0) , where B and Bx

are two POL-spaces and let xo, yo, y-i be three points of B for which condition (3)

holds. Define Si, S2, S3 as in Theorem 1 and assume that there exist mappings

Ak(-)- S3 -> L(B, Bx) (Jfc ^ 0) , satisfying conditions (4)-(6) and such that Ak(u, v)

has a nonnegative subinverse for any (u, v) E S3 .

Then, iteration (13)-(14) defines four sequences {z/fc}, {yk}, {fk{xk)}>

{fk(yk)} (£ ^ 0) and they satisfy properties (9)-(10).

Moreover for any common solution u £ (xo, yo) of equations fk(x) = 0 (fc ̂  0) ,

(15) xk < u ̂  yh (k 2 0).

PROOF: For k = 0, by denoting -Aj(O;3/0,2/-i) = A\ and A%{Q;y0, y_i ) = A\ we

have

. ^ . x0 < yo, /o(xo) < 0 ̂  /o(yo) , K > 0, A2
0 > 0, / ^ ^ 0 ^ ? ,

(16)

I>AlAo,I>AoA\ and ^Ao.

Therefore

yo -3/1 = ^o7o(yo) ^ 0,
(17) yi - x0 = yQ - x0 - Alfo{yo) ^ yo - x0 - Aj(/o(yo) - /o(a;o))

Ss 4j(A0(y0 - x0) - (/o(yo) - /o(*o))) > 0,

xi -xo = -Alfo(xo) ^ 0,

(18) yo - xi = yo - xo + i4o/o(xo) > Vo - xo - Al(fo(yo) - fo(xo))

^ A2
0{A0(yQ - x0) - (/o(yo) - /o(xo))) > 0.

Hence both x\ and y\ belong to the interval (xo, yo)-

From (4)-(6), (13), (14) and (16) we get

/i(yi) ^ /o(yi) = /o(yi) + ̂ 4o(yo - y-i - ^J/o(yo))

= /o(yi) - A0Alf0(y0) + ^o(yo - 2/1)

^ /o(yi) - /o(yo) + A0(y0 - yi) > 0,

^(yo , y-i)(xi - x0 + ^ / 0 ( x 0 ) )

Ao^Mzo) - 0̂(2=1 - x0)

- /o(xo) - A0{x! - x0) < 0,

and

(19) yi-x1^y1-x1+ Aj/^xi) = y0 - xi + ;l$(/i(j/b) -

^ Al[A0{y0 -xj)- (/i(y0) - /i(*i))] > 0.
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Thus, we have proved xo ^ x\ ^ yi $J yo and

0 ^ / 0 (yi) < h{yx).

By induction we can easily obtain (9) and (10). Consider now u €E [xo, i/o] such
that fk(u) = 0 (Jb ^ 0). We have

yi - u = y0 - u - Alfo{yo) + Alfo(u) ^ Al[A0(y0 - u) - (fo(yo) - fo(u))} ^ 0,

u-xx =u-xo+ -4JS/o(sco) - Alfo(u)

> A2
0[A0(u - x0) - (/o(«) - /0(«o))] ^ 0.

Hence, zi ^ u ^ t/i. By induction it follows that Xk ^ ti ^ T/J. , which completes the
proof. U

If the space P is regular then from (9) and (10) it follows that the sequences {xk},
{Vk}, ifk(xk)}, {fk{yk)} (k ^ 0) are convergent. In some cases the convergence of
these sequences can follow from other conditions than regularity.

In the following theorem we provide some sufficient conditions for the convergence
of iterations {fk(xk)}t {fk{yk)} (* > 0).

THEOREM 6 . Under the hypotheses of Theorem 2, assume:

(i) Bi is a POL-space and B is a normal POL-space;
(ii) xk —> x* and yk -* y* as k —» 00,

(iii) there are two continuous nonsingular nonnegative mappings A1 and A2

such that A\(yk, 2/*-i) ^ A1 and A\{yk, 2/A-I) ^ A2 for sufficiently large
k.

Then

* 0 and fk(yk) —* 0 as k —> 00.

PROOF: Note first that

0 < A1 fk{xk) ^ Al(yk,yk-i)

= A\{yk, yk-i)fk{xk) ^ A\(yk, yk-i)fk{xk) < 0

for sufficiently large k. The normality of B implies that

A^fkixk) -> 0 and A2 fk{yk) -» 0 as k -> 00,

from which the result follows.
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REMARK 1. Instead of the algorithm (13), (14) we may consider, more generally, an
iteration scheme of the form

J/fc+i = Vk - A\(yk, yk-i)z\ {k ^ 0),

=xk- A2
k(yk, yk-i)4 {k ^ 0),

where z\, z\ are arbitrary elements satisfying the inequality

/*(**) ^ 4 ^ 0 ̂  z\ ^ fk{yk) {k > 0).

Similar to the previous results it can be shown that under the hypotheses of Theorem
2 this iteration is well defined and the resulting sequences satisfy (9) and (10). This
shows, roughly speaking, that if /i(xjt) is approximated from "below" and fk(xk) is
approximated from "above" then monotone convergence is preserved.

This observation is important in many practical computations.

REMARK 2. In Theorem 2, we assumed that Ak(u, v) (fc ^ 0), have nonnegative subin-
verses for (u, v) £ S3. If we make the stronger assumption that Ak(u;v) is inverse
nonnegative for (u, v) £ S3 then in iteration (13)-(14) A\{yk, yk-i) and A\(yk, yk-i)

can be taken as any nonnegative right subinverses of Ak(yk, yjt-i) {k Ji 0). Note that
the property that it is a left subinverse was used only in proving inequalities (17)—(19).
Observing that

A0(yi - x0) = A0(y0 - x 0 - Alfo(yo))

> Ao(yo -x0) - fo{yo)

^ A0(y0 - x0) - (/o(t/o) - /o(zo)) ^ 0

and using the inverse nonnegativity of Ao we deduce that x<> ^ j / i . The inequalities
xi ^ 3/0 and Xj ^ j / ! can be proved analogously.

REMARK 3. Note that replacing condition (4) by the milder condition

(20) fk(y) - fk{x) ^ Ak(y, z)(y - as), * ^ 0, (x, y) € Si, (y, z) € 53

we can still prove that iteration (7) is well defined and that iteration sequence satisfies

Vk I V* s? xo whereas fk(yk) —> 0 as k —* 00. However, assumption (20) does not imply

these properties. However by replacing (4) by (20), we can only prove that sequence

(13) satisfies x0 < yk+1 < yk ^ y0 {k ^ 0).

As the conclusion of this section we will now give some examples which satisfy

conditions (4) and indicate how the general results of this section can be applied to

obtain monotone convergence theorems for Newton's and secant methods.

https://doi.org/10.1017/S0004972700030392 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030392


498 I.K. Argyros and F. Szidarovszky [10]

Let us consider mappings fk '• D C B —» B\{k ^ 0), where B and B\ are POL-
spaces. We recall that fk is called order-convex on an interval (xo, j/o) C D if

(21) fk(Xx + (1 - Xx)y) ^ Xfk(x) + (1 - A)/t(y) (k > 0)

for all comparable x, y E (XQ, J/O) and X 6 [0, 1]. If B and .Bj are POL-spaces and if
fk (k ^ 0) has a linear G-derivative f'k{x) a t each point x 6 {xo, J/o) then (21) holds
if and only if

fk(x){y - x) < fk{y) - fk(x) ^ f'k{y){y - x) (fc ^ 0) for x0 ^ x ^ y ^ y0.

Thus, for order-convex G-differentiable mappings, (20) is satisfied with Ak(u, v) —

f'k(u)- IQ the unidimensional case (21) is equivalent with isotony of the mapping x —»
f'k(x) but in general the latter property is stronger. Assuming isotony of the mapping
x —> /j.(x), we have

fk{y) - fk(x) ^ f'k{w) (y - x)(k ^ 0) for x0 ^ x ^ y ̂  w ^ y0

so, in this case condition (4) is satisfied for Ak(w, z) = /£(«>) (fc ^ 0).

The above observations show that our results can be applied for the Newton
method. Iteration (7)-(8) becomes

(22)

(23)

whereas iteration (13)-(14) becomes

(24) yk+i=yk-fk{ykT
lh<,yk),

(25) xk+i = xk - f'khJkV1 h{xk).

Moreover, if in addition

(26) H/^r 'C/U*) - /I(»))| < 7 ||* - y||, for x, y, z £ <*„,

then ||j/fc+i - x f c + i | | ^ .57 | |y t - xk\\
2 {k ^ 0) ,

||yfc+i-y*IK.57l|y*-!/*l|2(fc^0)

and ||xfc+1 - x*|K -57 Ik* - **l|2 (* > 0).

These results follow immediately by using (24)-(26), since

|| ll = ||yfc - xk - / ^y t ) "^ /*^*)
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[11] Montone convergence of general Newton-like methods 499

Note that iteration (7)-(8) with fk = f{k^0) and Ak(u, v) — f'(u) is exactly the
same algorithm which was proposed by Fourier in 1918, (see for example [5]) in the
unidimensional case and was extended by Baluev, [2]) in the general case.

If fk '• [a, 4] -» R is a real mapping of a real variable then fk (k Js 0), is order
convex if and only if

(/*(*) - fk(y))(x - y)-1 ^ (h(u) - /*(„))(« - t , ) - 1

for all x, y, u, v £ [o, 6] such that x ^ u and y ^ v. This fact motivates the notion

of convexity with respect to a divided difference discussed earlier for the case fk =

f(k>0).

Let fk'.DcB^Bi be nonlinear mappings between two linear spaces B and Bi.

A mapping 8fk{-, •)'• D X D —> L(B, B\) is called a divided difference of fk (k ^ 0) on

D if

6fk{u, v)(u -v) = fk(u) - fk{v) {k > 0), u,v£D.

If B and B\ are topological linear spaces then the linear mapping Sfk{u, v) is supposed
continuous (that is, Sfk(u, v) £ LB(B, Bi)). Now suppose B, B-y are two POL-spaces
and assume the nonlinear mapping /*(.): D C B —> Bi (fc^O) has a divided difference
Sfk on D (k ^ 0). Then fk (k' ̂  0) is called convex with respect to the divided
difference Sfk(-) on D if

(27) Sfk{x, y) < Sfk(u, v) {k ^ 0), for all x, y, u, v £ D,

with x ^ y and y ^ v. Moreover, the mapping £/*(., .) : D x D —» L(B, Bi) (k ^ 0)

satisfying

(28) Sfk(u, v)(u -v)^ fk(u) - fk(v) (k > 0) for all comparable u, v e D

is called the generalised divided difference of fk (k ^ 0) on D. If both conditions (27)
and (28) are satisfied, then we say fk{k ^ 0), is convex with respect to the generalised
divided difference Sfk{k Js 0). It is easily seen that if (27) and (28) are satisfied on
D = (xo, y-i) then condition (4) is satisfied with Ak(u, v) = Sfk(u, v) (k ^ 0). Indeed,
for x0 ^ x ^ y ^ w < z < j /_ i , we have

6fk{x, y){y - x) < fk(y) - fk(x) ^ Sfk(y, x)(y - x)

< Sfk(w, z)(y - x).

That is, our results can be applied also for secant method.
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3 . A LATTICE THEORETICAL FIXED POINT THEOREM

In this section we reformulate two fixed point theorems which hold in arbitrary
complete lattices. These theorems are due to Tarski, [13].

The first theorem provides sufficient conditions for the existence of a fixed point of a
mapping f: S ^> S where 5 is a nonempty set. The second theorem provides sufficient
conditions for the existence of a common fixed point x* of a sequence /& : 5 —» S (fc J5 0)
of mappings.

We shall need some definitions:

DEFINITION 1: By a lattice we mean a system Q — {S, ^} formed by a nonempty
set S and a binary relation ^ ; it is assumed that $J establishes a partion order in S
and that for any two elements a, b £ S there is a least upper bound (join) o U b and
a greatest lower bound (meet) a C\ b. The relations ^ , <, and > are defined in the
usual way in terms of ^ .

DEFINITION 2: The lattice Q — {S, ^} is called complete, if every subset Si of
5 has a least upper bound USi and a greatest lower bound flSi. Such a lattice has in
particular two elements 0 and 1 defined by the formulas

0 = nS and 1 = US.

Given any two elements a, b 6 S with a ^ b, we denote by [a, b] the interval with
the end points a and b, that is the set of all elements x £ S for which a ^ x ^ 6; in
symbols [a, b] = Ex[x (E S and a ^ x ^ 6]. System {[a, 6], $$} is clearly a lattice; it is
complete if Q is complete.

We consider functions / on 5 to 5 and, more generally on a subset Si of 5 to
another subset S2 of S. Such a function / is called increasing if, for any elements
x, y G Si, x ^ y implies f(x) ^ f{y)- Note that this assumption is the same as
isotony.

We can now present the following theorem whose proof can be found for example
in Tarski, [13].

Assume that

(Bi ) Q = {S, ^} is a complete lattice;
(B2 ) / is an increasing function on S to S;
(B3 ) P is the set of all fixed points of / .

THEOREM 7 . Assume conditions (B\ )-(Bs ) are satisfied.

Tien t ie set P is not empty and the system {P, <} is a complete lattice. In
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particular,

UP

and

By the above theorem, the existence of a fixed point for every increasing function

is a necessary condition for the completeness of a lattice. The question arises as to

whether this condition is also sufficient. It has been shown that the answer to this

question is affirmative (see, [13]).

A set W of functions is called commutative if

(i) All functions of W have a common domain, say, Si and the ranges of all

functions of W are subsets of Si;

(ii) For any f, g£W,

/(</(*)) = </(/(*)) ^ all x G S j .

Assume that

(C i ) Q = (S, ^ ) is a complete lattice;

(C2) W is any commutative set of increasing functions on 5 to 5 ;

(C3 ) P is the set of all common fixed points of all functions / G W.

We can provide the following.

THEOREM 8 . Assume conditions (Ci)-(C3 ) are satisfied.

Then P is not empty and the system {P, ^ } is a complete lattice. In particular,

we have

UP = UEx[f{x) ^ x for every f G W] G P
and

HP = r\Ex[f{x) ^ x for every f G W] G P.

The proof of this theorem is found also in Tarski, [13], and it can be used in connec-

tion with the theorems of the previous section. In particular all monotone convergence

methods introduced in the previous sections can be used to approximate fixed points

x* of mappings /* (A; ^ 0), whose existence is guaranteed under the hypotheses of the

above theorems.
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