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Abstract

The annelid mitochondrial genomes (mitogenomes) have been well documented, and phylo-
genetic analyses based on the mitogenomes provide insightful implications for annelid evolu-
tion. However, the mitogenomes of some families remain unknown. Herein, we determined
the complete mitogenome of the lugworm Abarenicola claparedi oceanica (15,524 bp), repre-
senting the first mitogenome from the family Arenicolidae. The gene order of this species is
the same as the various lineages in Sedentaria. The maximum likelihood phylogenetic analyses
were performed based on six different datasets, including 43 ingroups (oligochaetes, hirudi-
neans, echiurans and closely related polychaetes) and two outgroups (Siboglinidae), namely,
aligned and trimmed datasets consisting of the nucleotide sequences of protein-coding genes
(PCGs) and rRNAs, and amino acid sequences of PCGs. Phylogenetic analyses based on the
nucleotide sequences yielded trees with better support values than those based on the amino
acid sequences. Arenicolidae is clustered with Maldanidae in all analyses. Analyses based on
nucleotide sequences confirm the monophyly of Terebellidae, which was paraphyletic in
recent mitogenomic phylogenetic studies. We also performed the phylogenetic analysis
based on the RY-coding of the nucleotide sequences of PCGs only to yield phylogeny with
generally low support values. Additional mitogenome sequences of related ingroup species
would be needed to comprehensively understand the phylogenetic relationship, which was
not present in this study.

Introduction

Mitochondrial genomes (mitogenomes) are often used for phylogenetic analyses focusing on
the phylogenetic relationship of the shallow nodes from inter-familial to intra-species levels
(Hirase et al., 2016; Zhang et al., 2018; Tan et al., 2019; Alves et al., 2020; Kobayashi et al.,
2021; Ogoh et al., 2021; Sun et al., 2021). The animal mitochondrial DNA is generally circular,
comprising 15–20 kilobase pairs (kbp) (Boore, 1999), and is relatively conserved as compared
with the quite diverse plant mitogenomes ranging from 6 kbp to ≥11Mbp (Mower, 2020). The
mitogenomes of animals are usually comprised of 13 protein-coding genes (PCGs; cox1–3,
atp6, atp8, cytb, nad1–6 and nad4l), 2 rRNAs and 22 tRNAs (Boore, 1999), and this conser-
vation ensures the homology of genes when performing the phylogenetic analysis based on the
mitogenomes.

The phylum Annelida consists of over 20,000 described species, such as polychaetes,
echiurans, sipunculans, hirudineans and oligochaetes (Capa & Hutchings, 2021). Annelids
include some early-branching lineages, Errantia (mobile annelids with well-developed parapo-
dia) and Sedentaria (sessile annelids with less-developed parapodia) (Struck, 2019; Rouse et al.,
2022). Sedentaria comprises ecologically and morphologically diverse members from the high-
altitude mountains to the hadal zone, such as echiurans, vestimentiferans and clitellates (hir-
udineans and oligochaetes) (Manca et al., 1998; Paterson et al., 2009). The species of
Sedentaria are interesting research subjects due to their evolutionary history. However, several
families are not yet included in phylogenomics, and their phylogenetic position remains insuf-
ficiently resolved.

A family in Sedentaria, Arenicolidae includes four genera (Branchiomaldane, Abarenicola,
Arenicolides and Arenicola) and 24 described species (Darbyshire, 2020). Arenicolids are
known as ‘lugworms’ and are well-known polychaetes for their eye-catching faecal mounds
in the intertidal to shallow sublittoral zones. Generally, arenicolids are deposit feeders, inha-
biting silty sand by making burrows (Jumars et al., 2015) that can process sediments up to
280 times their dry body weight per day (Taghon, 1988). The phylogenetic position of
Arenicolidae is well known. The sister relationship between Arenicolidae and Maldanidae
has been supported by molecular phylogeny (Bleidorn et al., 2005; Struck et al., 2007) and
morphology (Bartolomaeus & Meyer, 1997). Arenicolidae is included in the clade of poly-
chaetes (e.g. Terebellida, Capirellidae, Opheliidae and Scalibregmatidae), echiurans and clitel-
lates (hirudineans and oligochaetes) (Struck et al., 2015; Helm et al., 2018; Martín-Durán
et al., 2021). Although a robust phylogenetic framework is established, the phylogenetic posi-
tions of some families in this clade remain unclear. The mitogenomic phylogeny might

https://doi.org/10.1017/S0025315422001035 Published online by Cambridge University Press

https://www.cambridge.org/mbi
https://doi.org/10.1017/S0025315422001035
https://doi.org/10.1017/S0025315422001035
mailto:genkikobayashi5884@gmail.com
https://orcid.org/0000-0002-5938-0824
https://orcid.org/0000-0002-0040-9557
https://doi.org/10.1017/S0025315422001035


provide implications for the phylogenetic relationships in this
clade, although the position of Travisiidae and Terebellidae are
unknown in the previous analyses based on mitogenomes
(Zhong et al., 2011; Nam et al., 2021; Kobayashi et al., 2022a,
2022b). The intra-familial relationship of Arenicolidae was also
not entirely understood by phylogenetic analyses based on 16S
or 18S rRNA sequences (Bleidorn et al., 2005; Darbyshire,
2017). The mitogenome sequences of arenicolids would therefore
help elucidate the intra-familial relationships of Arenicolidae in
the future and the inter-familial relationships of related families.
However, mitogenomes are not yet available for Arenicolidae.

In this study, we determined and examined the first mitochon-
drial genome of Arenicolidae. The phylogenetic trees were recon-
structed based on the nucleotide and amino acid sequences of
the part of Sedentaria, including the mitogenomes of recently pub-
lished families, which resulted in the most inclusive taxon sampling
of ingroup families to elucidate the phylogenetic relationship of
Abarenicola claparedi oceanica and closely related families.

Materials and methods

A specimen of Abarenicola oceanica was collected from the shal-
low subtidal zone (∼1 m) in Rishiri Island, Hokkaido (45°06′57′′N
141°17′18′′E) (Kobayashi et al., 2018a). The specimen was fixed
and preserved in 70% ethanol and was deposited at the Rishiri
Town Museum (RTMANL001). The total DNA was extracted
from the body wall tissue using a DNeasy Blood and Tissue Kit
(QIAGEN, Hilden, Germany).

Long PCR was performed for the mitogenome following a
method developed by Wu et al. (2009). The partial sequence of
the 16S rRNA gene sequence was determined using the method
described by Kobayashi et al. (2018b), using a universal 16S pri-
mer set (16Sar: 5′-CGCCTGTTTATCAAAAACAT-3′/16Sbr:
CCGGTCTGAACTCAGATCACGT-3′; Palumbi, 1996). A primer
set for long PCR (MalMito16SF: 5′-GAARAAGWTTGGCAC
CTCGATGTTGGCTTAG-3′/MalMito16SR: 5′-ATTATATGCTA
CCTTAGCACGGTCAGGRTACCGC-3′) was designed based on
the dataset consisting of the 16S rRNA gene sequence of arenico-
lids and maldanids. The PCR mixture for long PCR comprised
2.2 μl of sterilized water, 6.25 μl of KOD One PCR Master Mix
(TOYOBO, Osaka, Japan), 1.0 μl of 10 μM forward and reverse
primers and 3.3 μl of template DNA solution diluted 10 times
with sterilized water. PCR amplification was performed as follows:
60 s at 94°C for an initial denaturation, 35 cycles of 10 s at 98°C
and 3 min at 68°C. PCR product of >15 kb in size was checked
by electrophoresis in 1% agarose gel at 100 V for 40 min and
used as a sample for next-generation sequencing.

A paired-end sequencing (2 × 300 bp) of the mitogenome
amplicons was performed using an Illumina MiSeq System
(Illumina) at the National Institute for Environmental Studies,
Japan. The raw reads were registered at the NCBI repository
(DRA013990, PRJDB13458 and SAMD00467651). A mitogenome
sequence was assembled by GetOrganelle v1.7.1a (Jin et al., 2020)
with the default setting except for -R set to 20 using the 16S rRNA
gene sequence as a seed sequence. Assembled contigs and the 16S
rRNA gene sequence were manually concatenated, and the com-
plete mitogenome of A. claparedi oceanica was obtained. The
PCGs and tRNAs were identified using the MITOS2 web server,
and then the start and end positions of PCGs were manually
checked. The annotated mitogenome sequence was deposited in
GenBank through the DNA Data Bank of Japan with the acces-
sion number LC707921. Compositional skews were calculated
as follows: AT skew = (A − T )/(A + T ), GC skew = (G− C )/
(G + C ). A graphical map of the mitogenome was drawn using
CGView (Stothard & Wishart, 2004) and edited using Inkscape
0.91 (http://www.inkscape.org).

The maximum likelihood (ML) phylogeny was reconstructed
based on the following subsets: (1) nucleotide sequences of 13
PCGs (nucP), (2) nucleotide sequences of 13 PCGs and 2
rRNAs (nucPR), (3) nucleotide sequences of 13 PCGs with
ambiguous positions trimmed (nucPt), (4) nucleotide sequences
of 13 PCGs and 2 rRNAs with ambiguous positions trimmed
(nucPRt), (5) amino acid sequences of 13 PCGs (aaP) and (6)
amino acid sequences of 13 PCGs with ambiguous positions
trimmed (aaPt). In addition, phylogenetic analysis based on the
RY-coding of the nucleotide sequences of PCGs was performed
to reduce base compositional biases. This is because RY-coding
was judged an effective strategy in inferring the phylogenetic rela-
tionship within Terebellida using mitogenomes by Zhong et al.
(2011). The same group was included in this study. On the
other hand, the RY-coding considerably reduces information;
therefore, the phylogenetic analysis based on the RY-coding was
considered only for discussion on Terebellida. The nucleotide
sequences were RY-coded with a Perl program RYcode (https://
github.com/ebraun68/RYcode).

Each dataset consisted of 43 ingroups (oligochaetes, hirudi-
neans, echiurans and closely related polychaetes) and two out-
groups (Siboglinidae). The nucleotide sequences of
mitogenomes of some Sedentaria, such as spionids and serpulids,
are quite different from those of other Sedentaria (e.g. Sun et al.,
2021), and they are not suitable for phylogenetic analyses. We
therefore focused on the part of Sedentaria, which is phylogenet-
ically related to Arenicolidae, and chose siboglinids as outgroups,
referring to the current understanding of the phylogenetic rela-
tionships of Sedentaria (Struck, 2019; Rouse et al., 2022). The
sequences were obtained from GenBank except for the newly
determined sequence of A. claparedi oceanica (Table 1). The
ML analysis was conducted with IQ-TREE v1.6.12 (Nguyen
et al., 2014) using 1000 ultrafast bootstrap replicates. The
NEXUS partition files were prepared to input sequence data
into IQ-TREE. The best-fit substitution model for each gene
was selected with ModelFinder (Kalyaanamoorthy et al., 2017),
except for JC2 for the RY-coding dataset, implemented in
IQ-TREE (Supplementary data). The amino acid sequences
were translated using invertebrate mitochondrial code with
SeqKit (Shen et al., 2016). The PCGs were aligned with MAFFT
v7 (Katoh & Standley, 2013) using the default option for PCGs.
Q-INS-I option, which considers the secondary structure, was
used for rRNAs in the MAFFT web server (https://mafft.cbrc.jp/
alignment/server/index.html). FigTree v1.4.3 (http://tree.bio. ed.a-
c.uk/software/figtree/) was used to illustrate phylogenetic trees.

The gene orders of the ingroup were mapped on the clado-
gram of nucPt to compare gene orders, including PCGs, rRNAs
and tRNAs. Species whose mitogenomes were partially deter-
mined were excluded from mapping. The trnR of Perionyx exca-
vatus (EF494507) was not annotated and detected with
ARAGORN (base 5856 to 5915) (Laslett & Canback, 2004).

Results

The mitogenome of Abarenicola claparedi oceanica was circular
and consisted of 15,524 bp. The mitogenome included 13 PCGs
(atp6 and atp8, cox1–cox3, cytb, nad1–nad6 and nad4l), 22
tRNA genes (one for each of the amino acids except for trnL
and trnS) and 2 rRNA genes (rrnS or 12S rRNA and rrnL or
16S rRNA) (Figure 1 and Table 2). All determined genes were
encoded on the ‘ + ’ strand (Figure 1). Non-coding region
(621 bp) between trnR and trnH with high A + T content
(79.6%) was a putative control region. GC skew of all genes was
negative, indicating that C outnumbered G, while AT skew was
largely negative or almost zero except for cox2, rrnL and rrnS
(Table 3). The gene order, including the tRNAs of A. claparedi
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Table 1. Mitogenome sequences used in this study. Bold indicates the sequence identified in this study

Group Classificationa Family Speciesb GenBank accession no.

Oligochaetes Moniligastrida Moniligastridae Drawida japonica KM199288

Crassiclitellata Megascolecidae Amynthas aspergillus KJ830749

Metaphire vulgaris KJ137279

Perionyx excavatus EF494507

Tonoscolex birmanicus KF425518

Lumbricidae Aporrectodea rosea MK573632

Eisenia balatonica MK642872

Lumbricus terrestris U24570

Rhinodrilidaec Pontoscolex corethrurus KT988053

Hirudineans Acanthobdellida Acanthobdellidae Acanthobdella peledina MZ562997

Arhynchobdellida

Haemadipsidae Haemadipsa crenata MW711186

Hirudiniformes Hirudinidae Hirudo medicinalis KU672396

‘Hirudo nipponia’ KC667144

Hirudo verbana KU672397

‘Hirudinaria manillensis’ KC688268

Whitmania acranulata KM655838

Whitmania laevis KC688269

Whitmania laevis KM655839

Erpobdelliformes Erpobdellidae Erpobdella japonica MF358688

‘Erpobdella octoculata’ KC688270

Rhynchobdellida

Glossiphoniiformes Glossiphoniidae Haementeria officinalis LT159848

Placobdella lamothei LT159849

Placobdella parasitica LT159850

Oceanobdelliformes Piscicolidae Codonobdella sp. MZ202177

Zeylanicobdella arugamensis KY474378

Ozobranchidae Ozobranchus jantseanus KY861060

Polychaetes Travisiidae Travisia sanrikuensis LC677172

Terebellida Ampharetidae Auchenoplax crinita. FJ976041

Decemunciger sp. KY742027

Eclysippe vanelli EU239687

Alvinellidae Paralvinella sulfincola FJ976042

Melinnidae Melinna cristata MW542504

Trichobranchidae Terebellides stroemii EU236701

Terebellidae Neoamphitrite affinis MZ326700

Pista cristata EU239688

Thelepus plagiostoma MW557377

Pectinariidae Pectinaria gouldii FJ976040

Arenicolida Arenicolidae Abarenicola claparedi oceanica LC707921

Maldanidae Clymenella torquata AY741661

Capitellida Cepitellidae Notomastus sp. LC661358

Opheliidae Armandia sp. LC661359

Echiurans Thalassematidaed Urechis caupo AY619711

Urechis unicinctus EF656365

Outgroup – Siboglinidae Lamellibrachia luymesi KJ789163

Sclerolinum brattstromi KJ789167

aThe classifications are after Schmelz et al. (2021) for oligochaetes, Tessler et al. (2018) for hirudineans and Struck (2019) for polychaetes. bQuotation marks indicate that species were
possibly erroneously identified and should be species of Whitmania (Ye et al., 2015). cJames (2012). dGoto et al. (2020).
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oceanica, was the same as that observed in various lineages in
Sedentaria (Bleidorn et al., 2009; Oceguera-Figueroa et al.,
2016) (Figures 2 and 3).

The analyses based on each dataset (nucleotide sequences of
PCGs, nucleotide sequences of PCGs and rRNAs and amino
acids) yielded different tree topologies. In contrast, the exclu-
sion of ambiguously aligned positions had little effect on the
topology (Figures 2 and S1–S5). In all phylogenetic analyses,
A. claparedi oceanica was clustered with Clymenella torquata
(Maldanidae) (bootstrap values, BS = 100% in nucleotide data-
sets and 85%/95% in aaP/aaPt). The monophyly of the
Terebellida, Arenicolida and Travisiidae clade was supported
in all analyses, although the phylogenetic relationships in this
clade differed between analyses. Travisia sanrikuensis was clus-
tered with Arenicolida in nucP (BS = 84%), nucPt (BS = 82%)
and aaP/aaPt (BS < 50%), whereas this species was sister to
the Arenicolida and Terebellida clade in nucPR (BS = 79%)
and nucPRt (BS = 97%) and was clustered with Capitellidae
and Opheliidae clade in the phylogeny based on the
RY-coding (BS = 94%) (Figures 4 and S6). Pectinariidae was sis-
ter to the other Terebellida species in all analyses except for the
analysis based on the RY-coding. Terebellidae was not

monophyletic in the analyses based on the amino acid
sequences. However, the support values for the position of ter-
ebellid species were low, Thelepus plagiostoma was clustered
with the Ampharetidae and Alvinellidae clade (BS = 71% in
aaP and 69% in aaPt) and the other two terebellids
(Neoamphitrite affinis and Pista cristata) were sister to the
Melinnidae and Trichobranchidae clade (BS = 70% in aaP and
68% in aaPt) (Figure 4C). Monophyletic Terebellidae has clus-
tered with the Melinnidae and Trichobranchidae clade. The
clade, including these three families, was clustered with
Ampharetidae and Alvinellidae in the analyses based on
nucleotide sequences with generally high support values (BS
= 76–97%). A phylogenetic analysis based on the RY-coding
resulted in a different topology from the other analyses
(Figure 5 and S6). The BS values were generally low in
Terebellida except for the Ampharetidae and Alvinellidae
clade (BS = 100%) and the N. affinis and P. cristata clade (BS
= 98%).

The phylogenetic relationships of other clades (echiurans +
Capitellidae + Opheliidae, hirudineans and oligochaetes) remained
broadly stable between analyses. Thalassematidae (echiurans) was
sister to the Capitellidae and Opheliidae clade (BS = 96–100%).

Fig. 1. Gene map of the mitochondrial genome of Abarenicola claparedi oceanica. The photograph shows A. claparedi oceanica. Red: protein-coding genes, blue:
transfer RNAs, green: ribosomal RNAs, grey: control region.
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The position of Thalassematidae was not resolved in the phylogen-
etic analysis based on the RY-coding, whereas Capitellidae
and Opheliidae were monophyletic with full support (Figure S6).
In the hirudinean clade, Acanthobdellidae was sister to the clade
consisting of monophyletic Rhynchobdellida (Glossiphoniidae was
clustered with the Piscicolidae and Ozobranchidae clade) (BS =
79–100%) and monophyletic Arhynchobdellida (Erpobdellidae
and Hirudinidae) (BS = 100%). In oligochaetes, Rhinodrilidae was
clustered with Moniligastridae and Crassiclitellata (Megascolecidae
and Lumbricidae) clade (BS = 70–100%).

Discussion

This is the first study to determine the mitogenome sequence of
Arenicolidae using Abarenicola claparedi oceanica and perform
phylogenetic analyses using closely related families registered in
GenBank. Using previously published mitogenome data (Bolbat
et al., 2021; Nam et al., 2021; Kobayashi et al., 2022a, 2022b), mito-
genomic phylogenetic trees were reconstructed with the most inclu-
sive taxon sampling of the part of the Sedentaria families
(oligochaetes, hirudineans, echiurans and some polychaetes).
Analyses based on the nucleotide sequences confirmed the mono-
phyly of Terebellidae, which was paraphyletic in analyses based on
the amino acid sequences and previous mitogenomic phylogenies.

The mitogenome of Abarenicola claparedi oceanica is similar to
the mitogenome of several lineages of Sedentaria with respect to
the genes and gene order, including the tRNAs. Although this gene
order is conserved in the lineages of Sedentaria, such as
Megascolecidae and Moniligastridae (oligochaetes), Erpobdellidae
and Ozobranchidae (hirudineans) and Siboglinidae (Bleidorn et al.,
2009; Oceguera-Figueroa et al., 2016), the present study is the first
in the Terebellida + Arenicolida + Travisiidae clade. This finding
supports that this gene order was conserved in the ancestral lineage
of Sedentaria because a common origin and the subsequent changes
of the gene order in each lineage aremore parsimonious than obtain-
ing the same gene order inmultiple lineages independently. The gene
orderofClymenella torquata (Maldanidae), whichwas clusteredwith
A. claparedi oceanica in the phylogenetic analysis in this study, dif-
fered in trnK located between the trnR and trnH (Jennings and
Halanych, 2005). The gene order of C. torquata may therefore be
uniquely obtained in this species or the ancestor of Maldanidae.

The sister relationship of Arenicolidae and Maldanidae estab-
lished in this study has been well understood (Bartolomaeus &
Meyer, 1997; Bleidorn et al., 2005; Struck et al., 2007). The phylo-
genetic relationship of Terebellida, namely, the Ampharetidae +
Alvinellidae clade, the Trichobranchidae + Terebellidae +
Melinnidae clade and Pectinariidae, showed similar results to
the transcriptome analyses (Stiller et al., 2020) except for
Terebellidae, which was sister to the Trichobranchidae and
Melinnidae clade in this study. However, Trichobranchidae was
sister to the Terebellidae and Melinnidae clade in Stiller et al.
(2020). Although the close relationship between Terebellidae
and Trichobranchidae recovered in mitogenomic phylogeny was
suggested to be due to compositional bias in the mitogenomes
of the Ampharetidae and Alvinellidae (Zhong et al., 2011), phyl-
ogeny based on transcriptomes also supported that
Trichobranchidae is more close to Terebellidae than
Ampharetidae or Alvinellidae (Stiller et al., 2020). Zhong et al.
(2011) stated that the compositional bias in the mitogenome of
Ampharetidae and Alvinellidae influences the phylogenetic rela-
tionships of Terebellidae and Trichobranchidae. They conclude
that no approach completely ameliorated the influence of bias,
although the phylogenetic analysis based on the RY-coding was
suggested as the most effective strategy in their analyses.
Unfortunately, the support values of the phylogenetic analysis
based on the RY-coding were generally low in the
present study. This method did not sufficiently resolve the phylo-
genetic relationship in Terebellida. The paraphyletic status of
Terebellidae in mitogenomic phylogeny was suggested by the
phylogeny based on the nucleotide sequences of PCGs in Nam
et al. (2021) and by the phylogeny based on the amino acid
sequences in Kobayashi et al. (2022b). In the present analyses,
although Terebellidae was paraphyletic in analyses based on
amino acid sequences, it was monophyletic with high support
values in analyses based on nucleotide sequences.

A previous study on the mitogenomic phylogeny indicated a
close relationship between Travisiidae and the Terebellida and

Table 2. Summary of the mitogenome of Abarenicola claparedi oceanica

Gene Start Stop Length Start/stop codons

cox1 1 1557 1557 ATG/TAA

trnN (GTT) 1562 1630 69

cox2 1631 2323 693 ATG/TAG

trnD (GTC) 2323 2391 69

atp8 2393 2563 171 ATG/TAA

trnY (GTA) 2562 2626 65

trnG (TCC) 2626 2693 68

cox3 2694 3473 780 ATG/TAA

trnQ (TTG) 3489 3556 68

nad6 3557 4039 483 ATG/TAA

cytb 4032 5171 1140 ATG/TAG

trnW (TCA) 5170 5235 66

atp6 5236 5937 702 ATG/TAA

trnR (TCG) 5941 6007 67

CR 6008 6626 619

trnH (GTG) 6627 6691 65

nad5 6692 8425 1734 ATG/TAA

trnF (GAA) 8430 8496 67

trnE (TTC) 8499 8568 70

trnP (TGG) 8570 8636 67

trnT (TGT) 8637 8702 66

nad4l 8703 9002 300 ATG/TAA

nad4 8996 10,354 1358 ATG/TAG

trnC (GCA) 10,356 10,421 66

trnM (CAT) 10,422 10,488 67

rrnS 10,490 11,361 872

trnV (TAC) 11,357 11,428 72

rrnL 11,417 12,739 1323

trnL1 (TAG) 12,772 12,839 68

trnA (TGC) 12,845 12,911 67

trnS2 (TGA) 12,912 12,978 67

trnL2 (TAA) 12,980 13,043 64

nad1 13,044 13,977 934 ATG/T(AA)

trnI (GAT) 13,978 14,047 70

trnK (TTT) 14,048 14,114 67

nad3 14,115 14,486 372 ATG/TAA

trnS1 (TCT) 14,467 14,536 70

nad2 14,537 15,524 987 ATG/T(AA)
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Table 3. Nucleotide composition (%) of 13 protein-coding genes, ribosomal RNAs, control region and the skewness of Abarenicola claparedi oceanica

Length A C G T A + T AT-skew GC-skew

Mitogenome 15,524 31.9 22.4 13.5 32.2 64.1 0.00 −0.25

atp6 702 27.2 24.8 12.8 35.2 62.4 −0.13 −0.32

atp8 171 33.3 26.9 7.0 32.7 66.1 0.01 −0.59

cox1 1557 28.8 22.8 15.9 32.5 61.3 −0.06 −0.18

cox2 693 32.5 24.4 15.2 28.0 60.5 0.07 −0.23

cox3 780 26.7 24.6 17.3 31.4 58.1 −0.08 −0.17

cytb 1140 30.4 21.8 14.1 33.7 64.1 −0.05 −0.21

nad1 934 30.2 23.3 12.8 33.6 63.8 −0.05 −0.29

nad2 987 31.8 23.4 9.7 35.1 66.9 −0.05 −0.41

nad3 372 26.1 22.3 13.7 38.0 64.0 −0.19 −0.24

nad4 1358 32.7 23.2 10.9 33.3 65.9 −0.01 −0.36

nad4l 300 32.3 21 13.7 33.0 65.3 −0.01 −0.21

nad5 1734 30.3 24.8 11.2 33.7 64.0 −0.05 −0.38

nad6 483 29.0 22.6 9.5 38.9 68.0 −0.15 −0.41

rrnL 1323 37.1 21.2 14.7 27.0 64.0 0.16 −0.18

rrnS 872 35.4 21.4 17.2 26.0 61.4 0.15 −0.11

CR 619 42.3 12.4 7.9 37.3 79.6 0.06 −0.22

Fig. 2. Maximum likelihood phylogeny of a subset of Sedentaria based on the dataset, including the nucleotide sequences of 13 protein-coding genes (PCGs) after
ambiguous positions were excluded (10,938 characters; nucPt). Numbers above the branches represent the maximum likelihood bootstrap values (BS). Asterisks
indicate the branches with BS = 100%. Abarenicola claparedi oceanica, whose nucleotide sequence is newly obtained, is shown in bold. Illustrations: Pontoscolex
corethrurus (oligochaetes) and an unassigned hirudinean, obtained from phylopic.org, and a schematic illustration of Terebellidae (polychaetes).
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Arenicolida clade (Kobayashi et al., 2022a). However, the phylogen-
etic position was not sufficiently clarified as the position of
Travisiidae was poorly supported. The precise placement of
Travisiidae was still ambiguous in the present analyses, which are
more inclusive than the previous mitogenomic phylogenetic studies
due to the addition of at least four polychaete families (Arenicolidae,
Capitellidae, Melinnidae and Opheliidae) to the dataset of
Kobayashi et al. (2022b). Scalibregmatidae was represented as the
sister family of Travisiidae based on the molecular phylogenetic

analyses (Persson & Pleijel, 2005; Paul et al., 2010; Law et al.,
2014; see Blake & Maciolek, 2020 for review on taxonomic status
of Travisiidae), and Scalibregmatidae showed a sister relationship
to the Arenicolida and Terebellida clade in the phylogenetic analysis
based on transcriptomes (Helm et al., 2018; Martín-Durán et al.,
2021). These results suggest that Travisiidae is one of the early-
branching lineages in the Terebellida and Arenicolida clade.

The results of this study support the monophyly of both
Arhynchobdellida and Rhynchobdellida. The phylogenetic

Fig. 3. Comparison of the gene orders of the ingroup based on the phylogenetic tree shown in Figure 2. The species with partial mitogenomes are not related
(species names and branches shown in grey). Abarenicola claparedi oceanica, whose nucleotide sequence is newly obtained, is shown in bold.
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relationship of hirudineans was contentious as the results were
not congruent (Martin, 2001; Rousset et al., 2008; Tessler et al.,
2018). For example, the Rhynchobdellida (proboscis-bearing
leeches) was paraphyletic; Glossiphoniidae (Rhynchobdellida)
was clustered with Arhynchobdellida (leeches without proboscis),
not with Rhynchobdellida (Ozobranchidae and Piscicolidae)
(Tessler et al., 2018). Moreover, the mitogenomic studies with
limited taxon sampling of annelids showed the paraphyletic status
of Rhynchobdellida (Wang et al., 2018; Sosa-Jiménez et al., 2020).
These results were consistent with the paraphyly of
Rhynchobdellida. Contrarily, the phylogenetic analysis based on
the mitogenomes (Bolbat et al., 2020, 2021), anchored hybrid
enrichment (Phillips et al., 2019) and transcriptomes (Erséus
et al., 2020) with more taxon sampling revealed the sister relation-
ship between Glossiphoniidae and Oceanobdelliformes (only
Piscicolidae in Erséus et al. (2020)) and thus the monophyly of
Rhynchobdellida. However, the number of the
Arhynchobdellida families is still limited in the phylogenomic
studies therefore further taxon sampling would be required to
conclude the monophyly of hirudinean orders.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315422001035
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