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We calculate the hydrodynamic force on a small spherical, unsteady squirmer moving
with a time-dependent velocity in a fluid at rest, taking into account convective and
unsteady fluid inertia effects in perturbation theory. Our results generalise those of
Lovalenti & Brady (J. Fluid Mech., vol. 256, 1993, pp. 561–605) from passive to active
spherical particles. We find that convective inertia changes the history contribution to the
hydrodynamic force, as it does for passive particles. We determine how the hydrodynamic
force depends on the swimming gait of the unsteady squirmer. Since swimming breaks
the spherical symmetry of the problem, the force is not determined completely by the
outer solution of the asymptotic matching problem, as it is for passive spheres. There
are additional contributions due to the inhomogeneous solution of the inner problem. We
also compute the disturbance flow, illustrating convective and unsteady effects when the
particle experiences a sudden start followed by a sudden stop.

Key words: micro-organism dynamics

1. Introduction

A small motile organism swimming in a marine environment experiences a hydrodynamic
force. How does this force depend on the mechanism of propulsion, upon the swimming
gait of the organism? How does the shape of the swimmer affect the hydrodynamic force,
and how does it depend on the centre-of-mass velocity, and upon the angular velocity of
the swimmer? Closely related questions concern the disturbance produced by the organism
as it moves through the fluid. How does the disturbance decay away from the swimmer,
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how does it change as a function of time for a time-dependent swimming gait, and how
do sudden accelerations affect the disturbance? These are important questions, because
the disturbance flow determines hydrodynamic interactions between organisms, and it is
known that motile microorganisms employ hydrodynamic signals to localise prey, or to
escape their predators, or to find mates (Guasto, Rusconi & Stocker 2012).

Answering these questions in general is obviously a very challenging task. To simplify
the problem, the dynamics of motile microorganisms in water is often described using the
creeping-flow approximation – the Stokes approximation – which neglects possible effects
of unsteady and convective fluid inertia (Lighthill 1952; Happel & Brenner 1965; Blake
1971; Yates 1986; Fauci & Dillon 2006; Lauga & Powers 2009; Visser 2011; Pedley 2016).
This approach works very well for the majority of microorganisms. But for larger ones,
in particular for organisms that swim with highly unsteady time-dependent gaits, fluid
inertia cannot be neglected. The flow field of the organism Chlamydomonas reinhardtii,
for instance, cannot be described by the Stokes approximation (Wei et al. 2021). As a
second example, consider Mesodinium rubrum, which swims with short jumps interrupted
by longer rest periods (Fenchel & Hansen 2006; Jiang 2011). When the organism stops
suddenly, fluid inertia cannot be neglected: the Stokes approximation predicts that the
surrounding fluid arrests instantly. In reality, the disturbance flow around the organism
takes some time to vanish. For a passive sphere, this inertia effect induced by the
unsteadiness of the disturbance flow gives rise to a memory term in the expression for the
hydrodynamic force that depends on its past accelerations, the Boussinesq–Basset–Oseen
(BBO) history force (Boussinesq 1885; Basset 1888; Oseen 1927). Wang & Ardekani
(2012b) used the unsteady Stokes equation to model how the velocity of a spherical
squirmer decays after a sudden jump to escape a predator. They determined how the history
force affects the velocity decay, and found good agreement with measurements performed
by Jiang & Kiorboe (2011) on copepods, despite the fact that possible effects of convective
fluid inertia were not considered. Spelman & Lauga (2017) calculated the hydrodynamic
force and the disturbance flow produced by a deforming swimmer, accounting for unsteady
fluid inertia.

At least for passive particles, it is known that convective fluid inertia, induced by a
non-zero slip velocity between the organism and the surrounding fluid, can change the
long-time behaviour of the history force. For times larger than the Oseen time, the kernel
of the history force decays more rapidly than the BBO kernel, namely as t−2 for a sudden
start (Sano 1981; Lovalenti & Brady 1993) instead of the t−1/2 decay of the BBO history
force. Sano (1981) and Lovalenti & Brady (1993) derived their results for weak convective
fluid inertia, for small but non-zero particle Reynolds numbers Rep. In the experiments
carried out by Jiang & Kiorboe (2011), Rep was quite high, however. The small-Rep theory
is expected to fail in this case.

It is not known how the results of Sano (1981) and Lovalenti & Brady (1993) generalise
to motile organisms, yet fluid-inertia forces are thought to play a significant role for
swimmers in many situations. Wang & Ardekani (2012a), for instance, determined
convective-inertia corrections for a steady, spherical squirmer, modelling the swimming
gait as a steady surface velocity (see also Khair & Chisholm 2014; Chisholm et al.
2016). However, the slip velocity of motile organisms is usually time-dependent, and
the quasi-steady approximation may fail if the slip velocity varies much faster than the
disturbance flow.

In order to understand how convective inertia modifies the unsteady dynamics of
a small motile organism, we calculated the hydrodynamic force on a small spherical
squirmer in an unsteady, spatially homogeneous flow, thus generalising the results of
Lovalenti & Brady (1993) to a small motile organism. While Lovalenti & Brady (1993)
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used the reciprocal theorem to obtain their results, we employed asymptotic matching
of perturbation expansions (Hinch 1995) in the parameter ε = √

Rep Sl, where Sl is the
Strouhal number. We note that Sennitskii (1990) computed the disturbance velocity for
a swimmer, far from its surface, using asymptotic matching of perturbation expansions
(in a different parameter), but not the hydrodynamic force. Our solution is related to that
of Lovalenti & Brady (1993). In particular, we find that the hydrodynamic force on the
squirmer involves memory forces, and that their kernels are closely related to those of
Lovalenti & Brady (1993). For all examples that we checked, the kernels were in fact
numerically identical.

We identified two major differences to the passive case. First, for the squirmer,
the memory forces involve a source term that contains an active part. Second, the
inhomogeneous part of the solution to the inner problem of order ε contributes to the
hydrodynamic force on the squirmer. For a passive spherical particle, by contrast, spherical
symmetry ensures that such contributions vanish. We discuss the significance of the
inhomogeneous contribution for the squirmer. Last, but not least, asymptotic matching
allows us to determine the disturbance flow. We show how the disturbance develops for
a sudden start and for a sudden stop, and discuss the implications of our findings for the
biology of small motile organisms in a marine environment.

2. Formulation of the problem

The spherical squirmer is an idealised model for a microswimmer, introduced by Lighthill
(1952) and Blake (1971). It is used widely to investigate the dynamics of motile
microorganisms, their interactions, and collective behaviours (Lauga & Powers 2009;
Visser 2011; Pak & Lauga 2014; Pedley 2016). In this model, the swimming gait is
represented by an axisymmetric surface-velocity field in the frame translating with the
squirmer:

v(θ, t) =
∑

l

Al(t) Pl(cos θ) êr + Bl(t) Vl(cos θ) êθ . (2.1)

Here, θ parametrises points on the surface, and êr and êθ are the corresponding basis
vectors in the body frame (figure 1). Using the notation of Lighthill (1952), Pl is
the Legendre polynomial of order l, and Vl is related to the first associated Legendre
polynomial of order l, namely Vl = −2P1

l /[l(l + 1)]. In general, the coefficients Al(t) and
Bl(t) are allowed to depend on time, but the simplest version of the model is the steady,
spherical squirmer with a time-independent, tangential surface-velocity field (Pedley 2016)

v(θ) = (B1 sin θ + B2 sin θ cos θ) êθ . (2.2)

When inertial effects are negligible, one solves the steady Stokes equation with the
boundary condition (2.2) to determine the hydrodynamic force acting on such a spherical
squirmer. The result is

f ′(0) = −6πμa
(

ẋ − 2
3 B1n

)
, (2.3)

where μ is the dynamic viscosity of the fluid, n is the unit vector along the symmetry
axis of the surface-velocity field (figure 1), a is the radius of the spherical squirmer, and x
is the position vector of its centre of mass in the laboratory frame. The steady swimming
velocity in the Stokes approximation is obtained by setting the hydrodynamic force to zero.
This gives ẋ = (2/3)B1n.

We consider an unsteady squirmer, with time-dependent coefficients B1(t) and B2(t) in
a quiescent fluid. The surface-velocity field produces a time-dependent disturbance flow
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êr
êθ
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ê1

ê2
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Figure 1. Schematic illustration of the squirmer model described in § 2. The squirmer swims head first, along
the direction n in the ê1–ê2 plane. Points on the surface in this plane are parametrised by the angle θ . We show
the lab-coordinate system êi, and the coordinate system êr and êθ in the body frame.

that causes the organism to move with a time-dependent centre-of-mass velocity ẋ(t). In
order to determine the hydrodynamic force on the squirmer, one has to solve the continuity
and momentum equations for the disturbance flow w and the disturbance pressure p. In
non-dimensional variables, these equations take the standard form

∇ · w = 0, (2.4a)

Rep Sl
∂w
∂t

∣∣∣∣
r
− Rep ẋ · ∇w + Rep w · ∇w = −∇p + �w. (2.4b)

When the angular velocity of the swimmer is negligible, the boundary conditions for (2.4b)
read

w = ẋ + v for |r| = 1 and w → 0 as|r| → ∞. (2.4c)

All vectors in (2.4) are expressed in the laboratory frame, but using a system of
moving coordinates that translates with the squirmer. In particular, (2.4b) is obtained
using the following relation that links the partial time derivative at a fixed point x in
the laboratory frame to the partial time derivative at a fixed point r in the moving
coordinate system: (∂/∂t)|x = (∂/∂t)|r − ẋ · ∇. Here, ẋ is the centre-of-mass velocity of
the squirmer. Furthermore, we non-dimensionalised lengths by dividing with the radius a
of the spherical squirmer, velocities with a typical velocity uc, and time with a typical time
scale τc. The resulting non-dimensional parameters are the particle Reynolds number and
the Strouhal number:

Rep = auc

ν
and Sl = a

ucτc
. (2.5a,b)

The particle Reynolds number determines the importance of convective terms in (2.4b),
and Rep Sl = a2/(ντc) is the ratio of two time scales, the viscous time τν = a2/ν, and
τc. Equations (2.4a) and (2.4b) are precisely those used by Lovalenti & Brady (1993) to
study the effect of convective inertia on the hydrodynamic force on a passive sphere in a
spatially uniform flow, their (2.3a), (2.3b). Only the boundary conditions (2.4c) differ,
by the surface-velocity field v. This additional term makes the difference between an
active and a passive particle. In the following, we describe how this term modifies the
hydrodynamic force.
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3. Matched asymptotic expansions

We solve (2.4) under the assumption that

Rep � 1 and RepSl � 1. (3.1a,b)

In this limit, the disturbance near the spherical squirmer is well approximated by
the quasi-steady Stokes solution, which decays as |r|−1 for large values of |r|. As
a consequence, the unsteady term Rep Sl ∂tw in (2.4b) becomes of the same order
of magnitude as the viscous term �w, at a distance |r| ∼ �p ≡ a/

√
Rep Sl called the

‘penetration length’. The convective term Rep ẋ · ∇w in (2.4b) is of the same order of
magnitude as the viscous term at the Oseen length, |r| ∼ �O ≡ a/Rep.

The problem has two asymptotic limits. In the limit Sl → 0, the problem becomes
steady, leading to an Oseen correction to the hydrodynamic force (Wang & Ardekani
2012a; Khair & Chisholm 2014; Chisholm et al. 2016). Conversely, when Rep → 0 and
Sl → ∞, keeping ε2 ≡ Rep Sl constant, one obtains an unsteady Stokes problem. Its
solution yields the BBO history force obtained by Wang & Ardekani (2012b).

Since inertial corrections are singular perturbations, we use asymptotic matching of
perturbation expansions (Hinch 1995) in the parameter ε = √

Rep Sl to compute the
inertial corrections to the hydrodynamic force on the squirmer. It is natural to take the
independent non-dimensional parameters as

ε = √
Rep Sl and �p/�O = √

Rep/Sl. (3.2a,b)

We require ε to be small – in keeping with (3.1a,b) – and �p/�O to remain finite as
ε becomes small. The length scale ratio �p/�O characterises the competition between
convective and unsteady inertia upon the disturbance flow. At first sight, it might appear
that one cannot treat large unsteadiness in this fashion, but we show below that the
hydrodynamic force obtained in this way is uniformly valid. In terms of the parameters
(3.1a,b), the equations of motion (2.4) take the form

∇ · w = 0, (3.3a)

ε2 ∂w
∂t

∣∣∣∣
r
− ε

(
�p

�O

)
ẋ · ∇w + ε

(
�p

�O

)
w · ∇w = −∇p + �w. (3.3b)

To find the disturbance flow w, configuration space is divided in two different regions: the
inner region, |r| ∼ 1, and the outer region, |r| � 1. In these two regions, disturbance flow
and pressure are written in the form of two different series expansions in ε. The inner and
outer expansions are matched at |r| ∼ 1/ε. This yields the necessary boundary conditions
for the inner problem that can then be solved to determine the hydrodynamic force (Hinch
1995).

Before going further, let us comment briefly on the different terms on the left-hand side
of (3.3b). Near the squirmer, all terms are small when ε is small. But while the unsteady
term scales as ε2, the convective terms are proportional to ε. These terms cause the key
difficulty. When the perturbation is of order εn with n > 1, the hydrodynamic force is
given by the outer solution alone (Legendre & Magnaudet 1998; Redaelli et al. 2022). In
the present case, the perturbation is larger – of order ε – therefore the method of Redaelli
et al. (2022) cannot be applied here. As a consequence, we need to consider the details
of the inner solution. We discuss the outer solution first, however, because it yields the
boundary conditions needed for solving the inner problem.
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3.1. Outer solution
Far from the squirmer, the boundary conditions on the surface of the organism can be
replaced by a Dirac delta function with amplitude f (0) (Childress 1964):

∇ · wout = 0, (3.4a)

ε2 ∂wout

∂t

∣∣∣∣
r
− ε

(
�p

�O

)
ẋ · ∇wout = −∇pout + �wout + f (0) δ(r). (3.4b)

In the matching region, the quadratic term ε(�p/�O) w · ∇w in (3.3) is negligible compared
to the other terms in the equation, because its magnitude scales as ε(�p/�O) |r|−3 ∼ ε4.
The amplitude of the source term is the opposite of the Stokes force (2.3):

f (0) = −6π
(

2
3 B1n − ẋ

)
. (3.4c)

The first term on the right-hand side is an active part, related to the surface-velocity field v.
The solution of the outer problem (3.4) is derived in Appendix A. It reads

wout = 1
8π

(
1

r
+ r ⊗ r

r3

)
· f (0)

︸ ︷︷ ︸
≡T (0)

reg(r,t)

− Rep ẋ · ∇
[

3r
32π

(
1 − 1

3
r ⊗ r

r2

)
· f (0)

]
︸ ︷︷ ︸

≡ε T (1)
reg(r,t)

− ε

∫ t

0

dτ

6π
K(1)(t, τ ) · d

dτ
f (0)(τ ) − Rep

∫ t

0

dτ

6π
K(2)(t, τ ) · f (0)(τ )︸ ︷︷ ︸

≡εU(t)

. (3.5a)

The integral kernels K1 and K2 in (3.5a) have elements

[K(1)(t, τ )]ij = −3
8

[
(−2 + A(t, τ )−2)

erf(A(t, τ ))

A(t, τ )
− 2

exp(−A(t, τ )2)

A(t, τ )2√π

]
δij√
t − τ

− 3
8

[(
1 − 3

2
A(t, τ )−2

)
erf(A(t, τ ))

A(t, τ )
+ 3

exp(−A(t, τ )2)

A(t, τ )2√π

]

× δij − qi(t, τ ) qj(t, τ )√
t − τ

, (3.5b)

[K(2)(t, τ )]ij = −3
8

1
2 A(t, τ )

[(
1 − 3

2
A(t, τ )−2

)
erf(A(t, τ ))

A(t, τ )
+ 3

exp(−A(t, τ )2)

A(t, τ )2√π

]

× qi(t, τ ) ẋj(τ ) − 3 qi(t, τ ) qj(t, τ )
∑3

k=1qk(t, τ ) ẋk(τ )

t − τ

− 3
8

(
1

2 A(t, τ )

)[
3

erf(A(t, τ ))

A(t, τ )3 − (4 + 6 A(t, τ )−2)
exp(−A(t, τ )2)√

π

]

× [δij − qi(t, τ ) qj(t, τ )]
∑3

k=1qk(t, τ ) ẋk(τ )

t − τ
. (3.5c)

Here, A(t, τ ) is the norm of the pseudo-displacement vector a(t, τ ) introduced by
Lovalenti & Brady (1993) in (6.7d) of their paper:

a(t, τ ) ≡
(

�p

�O

)
1

2
√

t − τ

∫ t

τ

dt′ ẋ(t′), (3.5d)
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Hydrodynamic force on a small squirmer

and qi are the components of the (unit) direction vector q̂ = a(t, τ )/A(t, τ ). We note that
the outer solution derived here differs from that obtained by Shu & Chwang (2001); they
considered a Dirac delta function force, instead of a continuously time-dependent force.

Let us discuss briefly the different terms in the outer solution (3.5a). Following
Meibohm et al. (2016), we denote the first term on the right-hand side of (3.5a) by
T (0)

reg(r, t). This is the well-known Stokeslet describing the far-field disturbance flow
produced by an active particle in the Stokes limit. The second term on the right-hand
side of (3.5a) is denoted by ε T (1)

reg(r, t). This term represents a regular perturbation to
the Stokeslet T (0)

reg(r, t). The two integral terms, finally, combine to give the history force.
It can be written in the form ε U(t), where U(t) is a spatially uniform flow at infinity.
A passive sphere has B1 = B2 = 0. In this case, spherical symmetry ensures that all
first-order inertia corrections to the hydrodynamic force are due to the outer flow alone,
and one obtains f ′ = f ′(0) + 6πε U(t) to order ε. This expression for the hydrodynamic
force is equivalent to that obtained by Lovalenti & Brady (1993) (their (6.15)) with three
minor differences. First, Lovalenti & Brady (1993) combined the terms multiplying f (0)

and the time derivative of f (0). We kept them separate here, because they have different
behaviours at short and long times (§ 4). Second, we assumed that f (0) = 0 for t ≤ 0. As
a consequence, the integration domain is [0, t] instead of [−∞, t]. Third, our expression
for the kernel looks slightly different from the kernel in (6.15) of Lovalenti & Brady
(1993). However, we found that the two expressions are numerically equivalent for all
centre-of-mass motions that we examined: sudden start (Sano 1981), linearly increasing
velocity ẋ = v0t/t0, and sinusoidally varying centre-of-mass velocity ẋ = v0 sin(ω0t),
with coefficients v0, t0 and ω0. It is quite common that the two methods, reciprocal
theorem and asymptotic matching, yield expressions for the hydrodynamic force and
torque that look different but are equivalent (Meibohm et al. 2016).

3.2. Inner solution
Near the squirmer, for |r| = O(1), the disturbance flow is expanded as

win = w(0)
in + ε w(1)

in + O(ε2) and pin = p(0)
in + ε p(1)

in + O(ε2). (3.6a,b)

These inner expansions must be matched, order by order, to the outer expansion (3.5a). At
order ε0, the inner problem to solve is

∇ · w(0)
in = 0, −∇p(0)

in + �w(0)
in = 0, (3.7a)

w(0)
in = ẋ(t) + v(t) for |r| = 1 and w(0)

in ∼ T (0)
reg for |r| → ∞. (3.7b)

This is a homogeneous Stokes problem whose solution is well known (Blake 1971). At
order ε, an inhomogeneous Stokes problem must be solved:

∇ · w(1)
in = 0, −∇p(1)

in + �w(1)
in = −

(
�p

�O

)
ẋ · ∇w(0)

in +
(

�p

�O

)
w(0)

in · ∇w(0)
in , (3.8a)

w(1)
in = 0 for |r| = 1 and w(1)

in ∼ T (1)
reg + U(t) for |r| → ∞. (3.8b)

Since the problem is inhomogeneous, we seek its solution in the form of a sum of a
particular solution and the homogeneous solution:

w(1)
in = [w(1)

p + U(t)] + w(1)
h and p(1)

in = p(1)
p + p(1)

h . (3.9a,b)
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Consider first the particular solution. The velocity w(1)
p and the pressure p(1)

p must satisfy

∇ · w(1)
p = 0, −∇p(1)

p + �w(1)
p = −

(
�p

�O

)
ẋ · ∇w(0)

in +
(

�p

�O

)
w(0)

in · ∇w(0)
in .

(3.10a,b)

Since we added the uniform term U(t) to w(1)
p , the boundary condition at infinity is

w(1)
p ∼ T (1)

reg as |r| → ∞. The homogeneous part of the full solution satisfies

∇ · w(1)
h = 0, −∇p(1)

h + �w(1)
h = 0, (3.11a)

w(1)
h = −w(1)

p

∣∣∣|r|=1
− U(t), |r| = 1 and w(1)

in ∼ 0 as r → ∞. (3.11b)

The solutions of (3.7) and (3.8) obtained in this way are quite lengthy; we do not reproduce
them here. The inhomogeneous equation (3.9a,b) is solved using a Fourier transform
(Candelier et al. 2023). Equation (3.11a) is a Stokes problem, solved by Lamb’s general
solution (Happel & Brenner 1965). Integrating the corresponding stress tensor over the
surface of the swimmer yields the hydrodynamic force. For a passive spherical particle,
the contribution of the inhomogeneous part of the inner solution to the hydrodynamic
force must vanish due to spherical symmetry. In this case, the inertial corrections to
the hydrodynamic force are determined by the outer solution alone. For the swimmer,
the inhomogeneous solution contributes to the hydrodynamic force. This explains why
the method of Redaelli et al. (2022) fails to determine the entire corrections to the
hydrodynamic force due to convective-inertia effects.

4. Results

4.1. Hydrodynamic force
For the unsteady squirmer, the calculations outlined in the previous section yield the
hydrodynamic force

f ′ = −6π

[
ẋ − 2

3
B1(t) n(t)

]

− ε 6π

∫ t

0
dτ K(1)(t, τ ) · d

dτ

[
ẋ(τ ) − 2

3
B1(τ ) n(τ )

]

− Rep 6π

∫ t

0
dτ K(2)(t, τ ) ·

[
ẋ(τ ) − 2

3
B1(τ ) n(τ )

]

− Rep

[
2π

5
ẋ(t) B2(t) + 2π

15
B1(t) B2(t)

]
n(t). (4.1)

This is our main result, the hydrodynamic force on an unsteady, spherical squirmer in
a time-dependent homogeneous flow at small but non-zero particle Reynolds number.
Equation (4.1) generalises (6.15) of Lovalenti & Brady (1993) from a passive to an
active sphere. As discussed already, the numerical calculations described above indicate
that the kernels in (4.1) combine to those of Lovalenti & Brady (1993).
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Hydrodynamic force on a small squirmer

Equation (4.1) simplifies to known solutions when unsteadiness is either very weak or
very strong. To see this, consider the asymptotic behaviours of the integrals

I1 = −ε

∫ t

0
dτ K(1)(t, τ ) · d

dτ
f (0)(τ ) and I2 = −Rep

∫ t

0
dτ K(2)(t, τ ) · f (0)(τ ).

(4.2a,b)
In the steady limit, �p/�O → ∞, we find

I1 → 0 and I2 → −3
8 Rep |ẋ| f (0). (4.3a,b)

Only the convective Oseen correction survives. It combines with the contribution of the
inhomogeneous inner solution to give the steady hydrodynamic force obtained by Wang &
Ardekani (2012a) and Khair & Chisholm (2014).

Conversely, when unsteadiness is high, �p/�O → 0. In this limit, A(t, τ ) → 0. As a
result, the integrals converge as follows:

I1 → −ε

∫ t

0
dτ

I√
π(t − τ)

· df (0)(τ )

dτ
and I2 → 0, (4.4a,b)

where I is the identity tensor. So the kernel K(1) in I1 simplifies to the BBO kernel, which
describes how the disturbance-velocity gradients relax due to viscous diffusion. In this
limit, the ε terms dominate over the Rep terms, and the outer flow (3.5a) converges to
the outer flow obtained from the unsteady Stokes equation. This is the limit considered by
Wang & Ardekani (2012b) and Redaelli et al. (2022). The fact that the BBO history force is
contained in (4.1) shows that the perturbation theory is valid uniformly in ε (as in Mehaddi,
Candelier & Mehlig 2018). In other words, (4.1) is accurate if the particle Reynolds number
is small, regardless of how large the unsteadiness of the problem. Note, however, that
when the unsteadiness is very large, for ε � 1, there is an additional contribution to the
hydrodynamic force: the added-mass force (Wang & Ardekani 2012b; Candelier et al.
2023), which is of order ε2.

In summary, there are two fundamental differences between the hydrodynamic forces
on an active compared to a passive sphere in a time-dependent uniform flow. First,
while the history kernels are likely to be the same, the other factors in the integrals are
different because they involve an active part for the active particle. Second, for an active
particle, there are additional instantaneous contributions to the hydrodynamic force that
stem from an inhomogeneous solution of the inner problem. Spherical symmetry causes
these contributions to vanish for the passive sphere. This does not happen for the spherical
swimmer, because swimming breaks the spherical symmetry.

4.2. Effect of convective and unsteady fluid inertia on the dynamics
As an example, consider the motion of a small neutrally buoyant swimmer that jumps.
Its motion starts suddenly, followed by a sudden stop. We mimic the sudden start/stop by
imposing a corresponding time dependence on the tangential surface velocity:

B1(t) = [1 − erf (2t/τν − 10)]erf (2t/τν)
2 (mm s−1) and B2(t) = 3

2 B1(t) (4.5a,b)

in dimensional variables. The error function squared in (4.2a,b) ensures that f (0) and its
time derivative both vanish at t = 0, as required by (4.1).

Consider how to non-dimensionalise the problem. The maximal value of B1(t) produces
swimming speed 4

3 mm s−1 in the Stokes limit, and we chose to non-dimensionalise with
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uc = 4
3 mm s−1. For a particle of radius a = 150 μm in water (ν = 10−6 m2 s−1), this

gives Rep = 0.2. How to choose the time scale τc is perhaps less obvious. The typical time
of variation of the boundary conditions on the surface of the swimmer can be estimated
by B1(t)/Ḃ1(t). At short times, B1(t)/Ḃ1(t) ≈ 1

2 t. This shows that the characteristic time
tends to zero at very short times. After a while, however, the parameter B1(t) reaches a
plateau, the disturbance flow becomes steady, and the characteristic time tends to infinity.
As discussed at the end of § 4.1, (4.1) is valid regardless of how unsteady the motion is. It
is required only that the particle Reynolds number is small. As a consequence, it does not
matter precisely how the time scale τc is chosen. We took τc = τν .

To determine the trajectory, one needs to solve Newton’s equation of motion. In
non-dimensional variables, it reads

4π

3
ε2ẍ = f ′. (4.6)

Both fluid and the particle inertia are accounted for in f ′. Considering the expression
(4.1) for the hydrodynamic force, we see that (4.6) is an integro-differential equation. We
solved this equation numerically using the method described by Daitche (2013). When
only unsteady fluid inertia is considered, one can solve the equation of motion by Laplace
transform (Wang & Ardekani 2012b; Ishimoto 2013; Fouxon & Or 2019). In our case, this
is not possible, because the equation is nonlinear.

Figure 2 illustrates how the dynamics and the disturbance flow develop after a sudden
start followed by a sudden stop, obtained by solving (4.1) and (4.6) together with (4.2a,b).
Figure 2(a) shows how the centre-of-mass speed ẋ changes when both unsteady and
convective fluid inertia are taken into account (solid black line). At very short times,
the centre-of-mass motion of the squirmer is well described by the BBO equation, which
neglects the effect of convective fluid inertia (solid grey line). This is expected, because
the dynamics is dominated by the unsteadiness of the disturbance flow at short times. Also
shown in figure 2(a) is the Stokes swimming speed (2/3) B1(t) (dashed grey line). We
see that the actual swimming velocity differs significantly from the Stokes approximation:
during the acceleration phase, ẋ is lower than (2/3) B1. This produces a negative value
of the component of the force f (0) along the swimming direction n (figure 2b), and this
affects the uniform contribution U (figure 2c).

At larger times, during the plateau of B1(t), differences between the short-time BBO
approximation and the present theory appear, caused by the instantaneous contributions
from the inner solution to the hydrodynamic force (the last two terms on the right-hand side
of (4.1)). Although the inertial parameters are quite small (as they must be for the theory to
be valid), these terms nevertheless have a noticeable effect upon the centre-of-mass speed.
Khair & Chisholm (2014) and Wang & Ardekani (2012a) derived an approximation for the
centre-of-mass speed in the steady limit, where B1 and B2 are independent of time:

ẋ ≈ 2
3

B1

(
1 − 3β

20
Rep

)
n. (4.7)

This result is shown as a horizontal dashed black line in figure 2(a). Comparing
with our theory, we observe that ẋ reaches its steady limit after a few viscous
times. As a consequence, the magnitude of the hydrodynamic force decreases to
f (0) ≈ −(6π/10)B2 Rep n (where B2 = βB1 was used), and U decreases to 1

40 B1B2 Re2
p n.

Comparing the two expressions, we see that convective-inertia effects due to the singular
term U are negligible at small Rep, because it contributes only at order O(Re2

p).
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Figure 2. Sudden start followed by sudden stop (see (4.2a,b)). (a) Time dependence of the resulting
centre-of-mass speed ẋ non-dimensionalised with uc and tν (solid black line). Also shown is the BBO
approximation obtained using (2.12) of Wang & Ardekani (2012b) (solid grey line). The dashed grey line
shows the Stokes approximation for the centre-of-mass speed. The horizontal dashed black line corresponds to
the steady-state speed (Wang & Ardekani 2012a; Khair & Chisholm 2014). (b) Time dependence of f (0) · n
(see (3.4c)). (c) Time dependence of U · n. (d–g) Disturbance flow produced by the squirmer at the different
non-dimensional times t = 0.5, 3, 5 and 5.6, with the streamlines as well as the magnitude.

Now consider the deceleration phase. As B1 → 0, the Stokes velocity decreases to zero.
When inertia effects are taken into account, however, ẋ relaxes more slowly. The present
theory and the BBO approximation yield quite similar results in this phase. This suggests
that the decrease of the velocity of the organism for a sudden stop is governed mainly by
unsteady-inertia effects.

Figures 2(d–g) illustrate how the disturbance near the swimmer changes as a function
of time. Streamlines and contours are shown of the magnitude |w(0)

in + εw(1)
in | of the

disturbance-flow velocity at four different times, marked by arrows in figure 2(a).
Figure 2(d) shows the flow during the acceleration phase. The term U · n contributes a
Stokeslet to the disturbance flow that decays slowly, as r−1, and thus dominates far from
the swimmer. As a consequence, the disturbance flow extends far from the swimmer. Near
its surface, on the other hand, the disturbance must match the imposed tangential surface
velocity; in the upper half-plane, this velocity opposes the swimming velocity. Therefore,
a growing flow cell forms in front of the swimmer. Figure 2(e) shows the disturbance
at a later stage, when the motion is quasi-steady, so that U vanishes. The disturbance
flow is essentially a stresslet that decays as r−2. The disturbance is therefore localised
closer to the swimmer. We checked that the flow field is well approximated by the steady
solution obtained by Chisholm et al. (2016). In figure 2( f ), we plot the disturbance during
the deceleration phase. This case is similar to that shown in figure 2(d), except that the
sign of U is reversed. Near the swimmer, the flow cell now forms behind the swimmer.
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Figure 2(g) shows the disturbance flow at large times. Here, the parameter B1 is almost
zero. The disturbance flow is therefore similar to that produced by a passive sphere, a
Stokeslet, but with a very weak intensity.

5. Conclusions

We determined the hydrodynamic force on a small spherical squirmer in an unsteady,
spatially homogeneous flow. We obtained the hydrodynamic force by asymptotic matching
of perturbation expansions in the parameter ε = √

Rep Sl, for small particle Reynolds
numbers. Our main result (4.1) for the hydrodynamic force generalises the result of
Lovalenti & Brady (1993) from a passive sphere to an active particle, an unsteady
spherical squirmer. Equation (4.1) describes how convective inertia changes the kernel
of the history force. As explained by Lovalenti & Brady (1993), convective inertia tends
to cause the kernel to decay more rapidly. We believe that the kernels for passive and
active particles are identical. We did not demonstrate this analytically, but numerical
evaluation for all cases that we considered showed them to be the same. The kernels do
not depend upon the particular swimming gait of the squirmer, given by the coefficients
B1(t) and B2(t). This information is encoded in f (0). For the active particle, this amplitude
contains an additional term, compared with the passive sphere, stemming from the active
surface-velocity field.

A second difference compared to the result of Lovalenti & Brady (1993) is that an
inhomogeneous part of the inner solution contributes to the hydrodynamic force. Spherical
symmetry ensures that this contribution vanishes for a spherical passive particle, but
swimming breaks spherical symmetry. This contribution explains why the method used
by Redaelli et al. (2022) to compute inertial corrections to the hydrodynamic force works
in the Saffman limit and for unsteady inertia, but not for the Oseen problem considered
here.

Our expression (4.1) for the hydrodynamic force simplifies to known results in two
limits. First, when unsteadiness dominates, our result simplifies to that of Wang &
Ardekani (2012b) and Redaelli et al. (2022), where the history force is determined by
the BBO kernel that decays as t−1/2. Second, when particle inertia is more important than
unsteadiness, our expression converges to the steady Oseen approximation obtained by
Wang & Ardekani (2012a) and Khair & Chisholm (2014).

In order to illustrate the effects of weak unsteady and convective fluid inertia, we
considered a swimmer that suddenly starts its centre-of-mass motion, followed by a
sudden stop. We analysed how the disturbance flow created by the swimmer changes as a
function of time. During acceleration and deceleration, the disturbance flow is essentially
a Stokeslet that decreases more slowly far from the swimmer than the stresslet due to
steady swimming. This implies that the swimmer is easier to detect immediately after
a sudden start or a sudden stop, because the disturbance can be perceived from further
away.

We stress that the theory presented here rests on the assumption that Rep � 1. Marine
organisms come in many different sizes, and they swim with different speeds and with
different swimming gaits. A number of empirical studies have estimated both the particle
Reynolds number Rep and the Strouhal number Sl for different microswimmers. Wadhwa,
Andersen & Kiorboe (2014) estimated the Strouhal number for copepods, and concluded
that Sl ∼ 1 for nauplii (with Rep = 5, . . . , 10) and for adult copepods that move more
vigorously (Rep ∼ 40). Kiorboe et al. (2014) measured Rep and Sl for copepods in different
stages of their evolution, observing Sl ∼ 1, and Rep values up to 70 (see their table S1).
For these values of Rep, our theory most certainly fails. However, there are also organisms
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that move less vigorously. Mesodinium rubrum, for instance, has particle Reynolds
numbers of order of unity (Jiang 2011). Also, cruising copepods tend to swim with
smaller particle Reynolds numbers, in the range ∼0.1–0.4; see tables I and II in Qiu et al.
(2022). In these cases, small-Rep theory may give a qualitatively correct description of the
dynamics.

Let us consider in more detail how fluid inertia affects the dynamics of a small
neutrally buoyant organism that uses ciliary propulsion to swim. For such organisms,
the instantaneous velocity produced by the oscillations of the cilia over the surface of
the particle scales as ẋ ∼ εsaω, where εsa is the amplitude of the oscillation of the cilia
(εs ∼ 0.1 is a small non-dimensional parameter), and ω is the angular frequency of the
oscillations. It follows that Rep = εsa2ω/ν = εsε

2. So when Rep is unity, unsteady inertia
dominates the dynamics, as for instance for Paramecium. In this case, (4.1) shows that
the hydrodynamic force is well approximated using the BBO kernel, and adding the
instantaneous convective-inertia contribution mentioned above.

When the swimmer is not neutrally buoyant, the particle equation of motion contains an
additional term, the buoyancy force. In this case, the amplitude f (0) does not tend to zero,
even if the swimmer stops swimming, because f (0) must balance the buoyancy force. To
leading order in Rep, the resulting convective-inertia correction is described by our result
for the hydrodynamic force.

The disturbance caused by small motile organisms in a marine environment has been
described in other ways, by superposing different elementary Stokes solutions. Examples
are the impulsive Stokeslet and the impulsive stresslet (Afanasyev 2004). Guasto et al.
(2012) give examples where this approach fails, because it does not approximate reliably
the outer disturbance flow, and they state possible reasons: inertia effect induced by the
unsteadiness, buoyancy (giving rise, for example, to Stratlets; Ardekani & Stocker 2010),
or a combination of both. At least for small particle Reynolds numbers, our results show
how convective and unsteady fluid inertia modify the disturbance flow. At small Reynolds
number, the outer flow is universal: shape and swimming gait enter only through an
amplitude; the kernels describing the history effect on the outer disturbance flow do not
depend on these details. However, for larger particle Reynolds numbers, it remains an
open question how history force and disturbance flow depend on the shape and propulsion
mechanism of the swimmer.
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Appendix A

In this appendix, we summarise how the outer solution (3.5) of (3.4) is obtained. These
equations are solved by Fourier transform. We use the convention

ŵ =
∫

d3r w exp(−ik · r) and w = 1
8π3

∫
d3k ŵ exp(ik · r). (A1a,b)

Transforming (3.4) one finds

k · ŵout = 0, (A2a)

ε2 ∂ŵout

∂t
− iε

(
�p

�O

)
(ẋ · k) ŵout = −ik p̂out − k2ŵout + f (0). (A2b)

The pressure p̂out can be determined by projecting (A2b) along k, and using (A2a).
Substituting the resulting expression for p̂out into (A2b) yields

ε2 ∂ŵout

∂t
= −k2ŵout + iε

(
�p

�O

)
(ẋ · k)ŵout + k2 Ĝ · f (0), (A3)

where Ĝ is the Fourier transform of the Green tensor of the Stokes equations,

[Ĝ]ij(k) = 1
k2

(
δij − kikj

k2

)
, [G]ij(r) = 1

8π

(
δij

r
+ rirj

r3

)
. (A4a,b)

The solution of the inhomogeneous differential equation (A3) reads

ŵout = k2

ε2

∫ t

0
dτ Ĝ · f (0)(τ ) exp

[
−k2

ε2 (t − τ) + i
ε

(
�p

�O

) ∫ t

τ

dτ ′ k · ẋ(τ ′)
]

. (A5)

Here, we assumed that the force f (0) vanishes for t ≤ 0.
In order to match the outer solution (A5) to the inner solution, we seek an expansion of

the outer solution of the form

ŵout = T̂ (0)

reg + ε T̂ (1)

reg + ε T̂ (1)

sing + O(ε2). (A6)

The terms T̂ (n)

reg correspond to regular parts of the expansion. From (A3), we are led to

T̂ (0)

reg = Ĝ · f (0), (A7)

T̂ (1)

reg = i
(

�p

�O

)
(ẋ · k)

Ĝ · f (0)

k2 . (A8)

Transforming back to configuration space gives

T (0)
reg = G · f (0), (A9)

T (1)
reg = −

(
�p

�O

)
ẋ · ∇

[
3r

32π

(
1 − 1

3
r ⊗ r

r2

)
· f (0)

]
. (A10)

The term T̂ (1)

sing is singular in k-space (Meibohm et al. 2016), proportional to δ(k). The
singular term in the expansion (A6) is determined by evaluating the limit (Childress 1964;
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Saffman 1965; Meibohm et al. 2016)

T̂ (1)

sing = lim
ε→0

ŵout − T̂ (0)

reg

ε
− T̂ (1)

reg . (A11)

Evaluating the limit, one finds

T̂ (1)

sing = 8π3 U(t) δ(k), (A12)

with

U(t) = 1
8π3

∫
d3k

{
−

∫ t

0
dτ Ĝ · df (0)(τ )

dτ
exp(−k2(t − τ) + 2i

√
t − τ k · a(t, τ ))

+ i
(

�p

�O

) ∫ t

0
dτ Ĝ · f (0)(τ ) (k · ẋ(τ )) exp(−k2(t − τ) + 2i

√
t − τ k · a(t, τ ))

}
.

(A13)

Here, a is given in (3.5d). In order to perform the k integration in (A13), we follow
Lovalenti & Brady (1993) and express the vectors in spherical coordinates defined around
an axis that moves with the displacement vector a. We therefore write

k · a = k A(t, τ ) cos(θa) and q̂ = a(t, τ )

A(t, τ )
, (A14a,b)

where θa is the angle between k and a, and A(t, τ ) is the norm of a. Performing the
k-integration yields

U(t) = − 1
6π

∫ t

0
dτ K(1)(t, τ ) · df (0)(τ )

dτ
−

(
�p

�O

)
1

6π

∫ t

0
dτ K(2)(t, τ ) · f (0)(τ ).

(A15)

The expressions for the kernels K(1) and K(2) are given in (3.5b) and (3.5c).
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